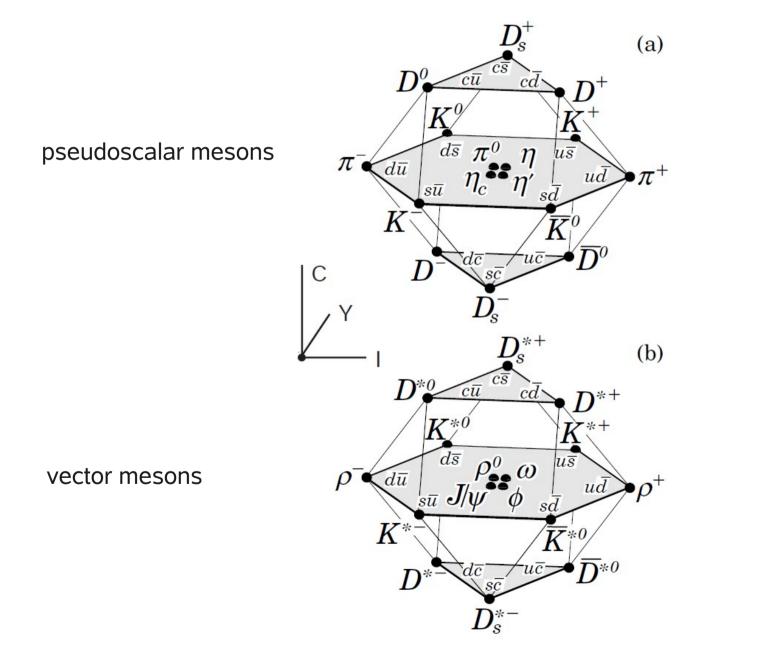
PWA analysis of diffractively produced K⁻ $\pi^+ \pi^-$ events


CEDAR NO1 The story behind...

Prometeusz Jasinski Mainz COMPASS Seminar 13.12.2010

Topics

- The idea behind (strange) meson spectroscopy
- How resonances are assigned today
- Accessing resonances and the corresponding experiments
- Interesting topics in my specific channel

Once gain: the quark model fitting resonances into qqbar states

Today's (2010) quark model association

$n^{2s+1}\ell_J$	J^{PC}	I = 1 $u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s}, d\overline{s}; \overline{ds}, -\overline{us}$	$ I = 0 \\ f' $	I = 0 f	$egin{array}{ccc} heta_{ ext{quad}} & heta_{ ext{lin}} \ [^{\circ}] & [^{\circ}] \end{array}$
$1 {}^{1}S_{0}$	0-+	π	K	η	$\eta'(958)$	-11.5 -24.6
$1 \ {}^{3}S_{1}$	1	$\rho(770)$	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	38.7 36.0
$1 {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$	
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	
$1 {}^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	29.6 28.0
$1 \ {}^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$	
$1 \ {}^{3}D_{1}$	1	ho(1700)	$K^{*}(1680)$		$\omega(1650)$	
$1 {}^{3}D_{2}$	2		$K_{2}(1820)$			
$1 {}^{3}D_{3}$	3	$ ho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_3(1850)$	$\omega_3(1670)$	32.0 31.0
$1 \ {}^{3}F_{4}$	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$	$f' = \psi_8 \cos\theta - \psi_1 \sin\theta$
$1 {}^{3}G_{5}$	5	$ \rho_5(2350) $				$f = \psi_8 \sin\theta + \psi_1 \cos\theta$
$1 \ {}^{3}H_{6}$	6++	$a_6(2450)$			$f_6(2510)$	1 ($uz + d\overline{z} - 2z^{-1}$)
$2 {}^{1}S_{0}$	0^{-+}	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$	$-\psi_8 = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s})$
$2 {}^{3}S_{1}$	1	ho(1450)	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$	$\psi_1 = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$

[†] The 1^{+±} and 2^{-±} isospin $\frac{1}{2}$ states mix. In particular, the K_{1A} and K_{1B} are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$. The physical vector mesons listed under 1³ D_1 and 2³ S_1 may be mixtures of 1³ D_1 and 2³ S_1 , or even have hybrid components.

The 'ground state' = lightest in mass

$n^{2s+1}\ell_J$	J^{PC}	$ = 1$ $u\overline{d} \overline{u}d \frac{1}{-1}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$	I = 0	I = 0	$\theta_{\text{quad}} \theta_{\text{lin}}$
1 ¹ S ₀	0-+	$\sqrt{2}$ π	K	η	$\eta'(958)$	-11.5 -24.6
$1^{2}S_{1}$	1	$p(\tau \tau 0)$	R (892)	$\phi(1020)$	ω(182)	30.1 30.0
$1 {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$	
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	
$1 {}^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	29.6 28.0
$1 \ {}^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$	
$1 \ {}^{3}D_{1}$	1	ho(1700)	$K^{*}(1680)$		$\omega(1650)$	
$1 {}^{3}D_{2}$	2		$K_{2}(1820)$			
$1 {}^{3}D_{3}$	3	$ ho_3(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_3(1670)$	32.0 31.0
$1 \ {}^{3}F_{4}$	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$	$f' = \psi_8 \cos \theta - \psi_1 \sin \theta$
$1 {}^{3}G_{5}$	5	$\rho_5(2350)$				$f = \psi_8 \sin\theta + \psi_1 \cos\theta$
$1 {}^{3}H_{6}$	6++	$a_6(2450)$			$f_6(2510)$	1
$2 {}^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$	$-\psi_8 = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$
$2 {}^{3}S_{1}$	1	ho(1450)	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$	$-\psi_1 = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$

[†] The 1^{+±} and 2^{-±} isospin $\frac{1}{2}$ states mix. In particular, the K_{1A} and K_{1B} are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$. The physical vector mesons listed under 1³ D_1 and 2³ S_1 may be mixtures of 1³ D_1 and 2³ S_1 , or even have hybrid components.

strange meson spectroscopy

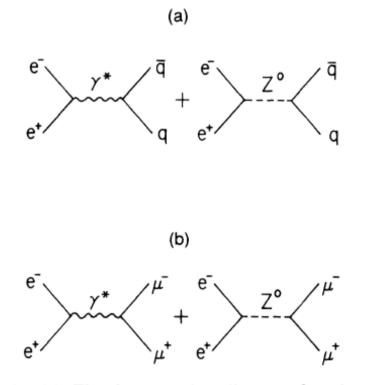
$n^{2s+1}\ell_J$	J^{PC}	I = 1 $u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s}, d\overline{s}; \overline{ds}, -\overline{us}$	$ I = 0 \\ f' $	I = 0 f	$egin{array}{ccc} heta_{ ext{quad}} & heta_{ ext{lin}} \ [^\circ] & [^\circ] \end{array}$
1 ¹ S ₀	0-+	π	K	η	$\eta'(958)$	-11.5 -24.6
$1 {}^{3}S_{1}$	1	ho(770)	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	38.7 36.0
$1 {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$	
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	
$1 {}^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_{2}^{\prime}(1525)$	$f_2(1270)$	29.6 28.0
$1 \ {}^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$	
$1 \ {}^{3}D_{1}$	1	ho(1700)	$K^{*}(1680)$		$\omega(1650)$	
$1 {}^{3}D_{2}$	2		$K_2(1820)$			
$1 {}^{3}D_{3}$	3	$ ho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_3(1670)$	32.0 31.0
$1 \ {}^{3}F_{4}$	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$	$f' = \psi_8 \cos \theta - \psi_1 \sin \theta$
$1 {}^{3}G_{5}$	5	$\rho_5(2350)$				$f = \psi_8 \sin \theta + \psi_1 \cos \theta$
$1 {}^{3}H_{6}$	6++	$a_6(2450)$			$f_6(2510)$	
$2 {}^{1}S_{0}$	0^{-+}	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$	$\psi_8 = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$
$2 {}^{3}S_{1}$	1	ho(1450)	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$	$\psi_1 = \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s})$

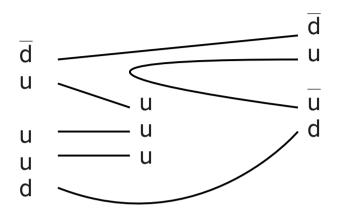
[†] The 1^{+±} and 2^{-±} isospin $\frac{1}{2}$ states mix. In particular, the K_{1A} and K_{1B} are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$. The physical vector mesons listed under 1³ D_1 and 2³ S_1 may be mixtures of 1³ D_1 and 2³ S_1 , or even have hybrid components.

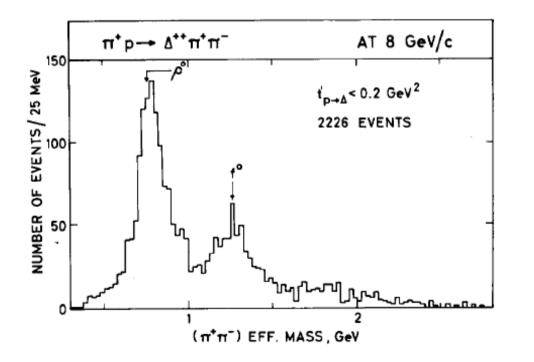
How to produce resonances

some examples...

e+ e- annihilation



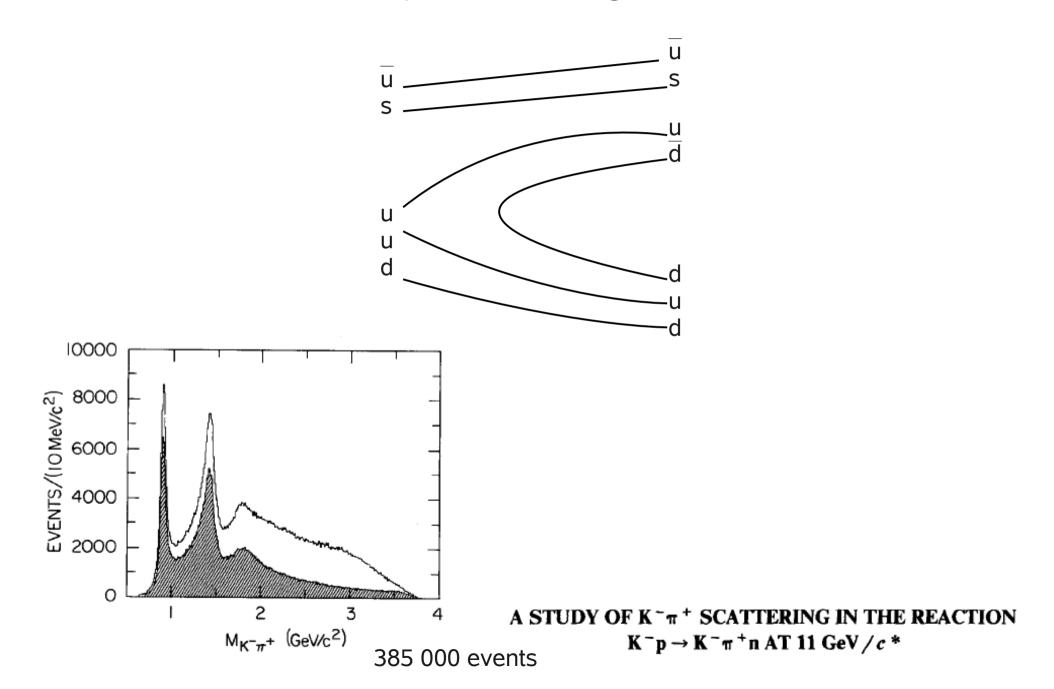

FIG. 1. (a) The lowest-order diagram for the process $e^+e^- \rightarrow q\bar{q}$. (b) The lowest-order diagram for the process $e^+e^- \rightarrow \mu^+\mu^-$.

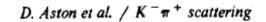

Direct access to JPC = 1-- via gamma

$n^{2s+1}\ell_J$	J^{PC}	$I = 1$ $u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s}, d\overline{s}; \overline{ds}, -\overline{us}$	$ I = 0 \\ f' $	I = 0 f	$egin{array}{ccc} heta_{ ext{quad}} & heta_{ ext{lin}} \ [^\circ] & [^\circ] \end{array}$
$1 {}^{1}S_{0}$	0-+	π	K	η	$\eta^{\prime}(958)$	-11.5 -24.6
$1 {}^{3}S_{1}$	1	$\rho(770)$	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	38.7 36.0
$1 {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$	
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	
$1 {}^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_{2}^{\prime}(1525)$	$f_2(1270)$	29.6 28.0
$1 {}^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$p_2(1870)$	$n_{2}(1645)$	
$1 \ {}^{3}D_{1}$	1	ho(1700)	$K^*(1680)$		$\omega(1650)$	
$1^{2}D_{2}$	2		$K_{2}(1820)$			-
$1 \ {}^{3}D_{3}$	3	$ ho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_3(1670)$	32.0 31.0
$1 \ {}^{3}F_{4}$	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$	$f' = \psi_8 \cos \theta - \psi_1 \sin \theta$
$1 \ {}^{3}G_{5}$	5	$ \rho_5(2350) $				$f = \psi_8 \sin \theta + \psi_1 \cos \theta$
$1 \ {}^{3}H_{6}$	6++	$a_6(2450)$			$f_6(2510)$	1,
$2 {}^{1}S_{0}$	0 ⁻⁺	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$	$\psi_8 = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s})$
$2 {}^{3}S_{1}$	1	ho(1450)	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$	$\psi_1 = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s}$
† The 1 ^{+±} a	and $2^{-\pm}$ is	$\frac{1}{2}$ states mix. In particular	llar, the K_{1A} and K_{1B}	are nearly equal (4	5°) mixtures of th	e $K_1(1270)$ and $K_1(1400)$.

The physical vector mesons listed under 1^3D_1 and 2^3S_1 may be mixtures of 1^3D_1 and 2^3S_1 , or even have hybrid components.

deep inelastic scattering




s-WAVE INTERFERENCE IN THE f^o RESONANCE REGION

Aachen-Berlin-CERN Collaboration

deep inelastic scattering with open strangeness (pion exchange)

The LASS Spectrometer

495

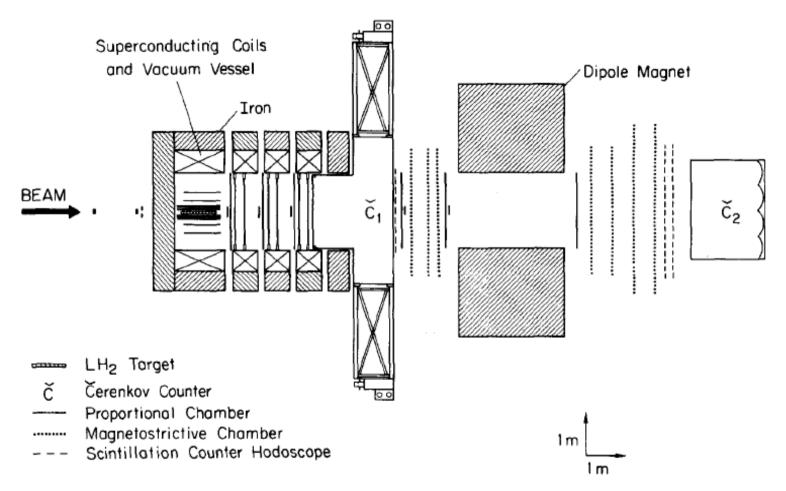
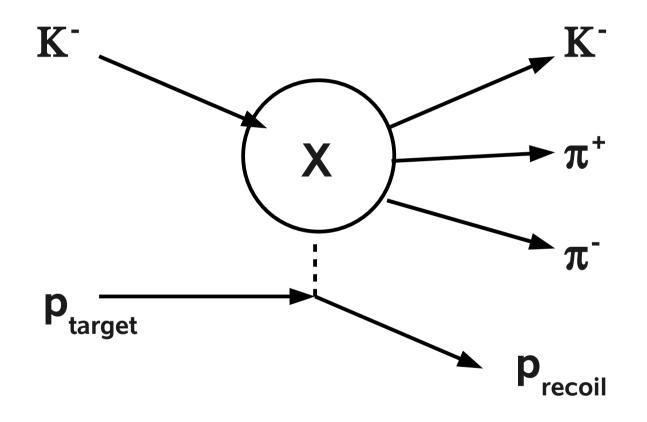
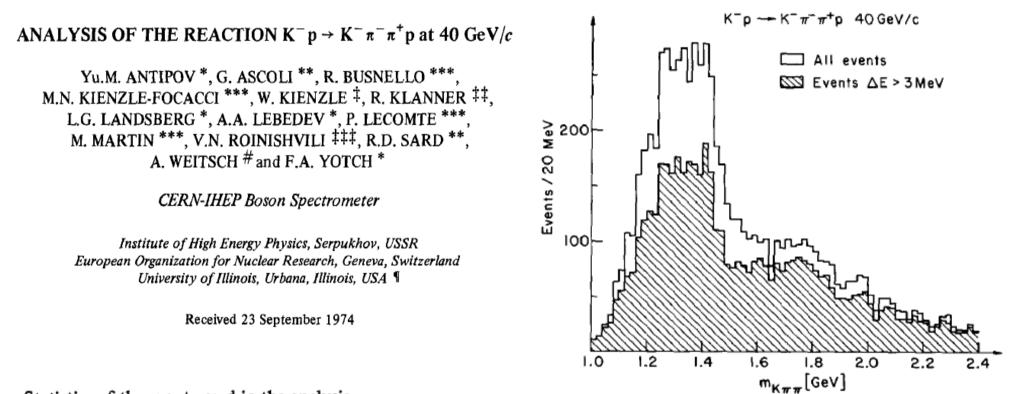




Fig. 1. Plan view of the LASS spectrometer.

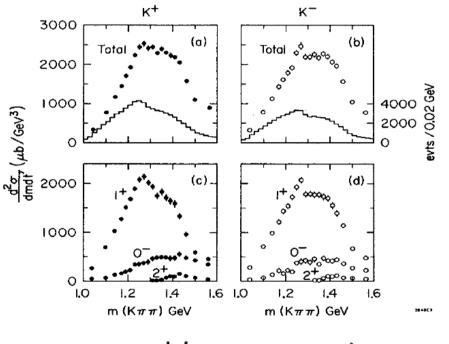
Diffractive scattering via pomeron exchange

Measurements on the charged channel sector (at Serpukhov Proton Accelerator)

Statistics of the events used in the analysis

Running period	Incident momentum (GeV/c)	Number of raw triggers	Number of $K\pi\pi$ events	Number of inc. K-mesons
October 1971	40	81 500	1 662	1.59×10^{8}
October 1971	25	21 000	485	0.42×10^{8}
January 1972	40	120 000	2489	2.34×10^{8}
April 1972	40	180 000	3 345	3.92×10^8
April 1972	25	100 000	2196	1.91×10^{8}

Measurements on the charged channel sector (at SLAC)


SLAC-PUB-1697 December 1975 (T/E)

OBSERVATION OF TWO STRANGENESS-ONE AXIAL VECTOR MESONS*

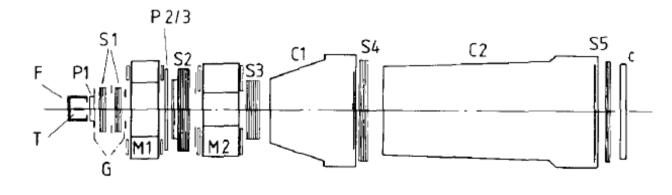
14 C. 14 C. C.

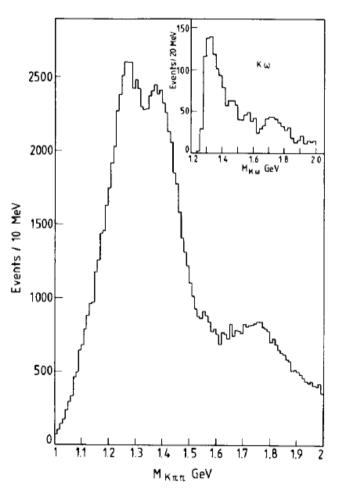
G. W. Brandenburg[†], R. K. Carnegie^{††}, R. J. Cashmore^{†††},
M. Davier[‡], W. M. Dunwoodie, T. A. Lasinski, D.W.G.S. Leith,
J.A.J. Matthews^{‡‡}, P. Walden^{‡‡‡}, S. H. Williams, and F. C. Winkelmann^{††}

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

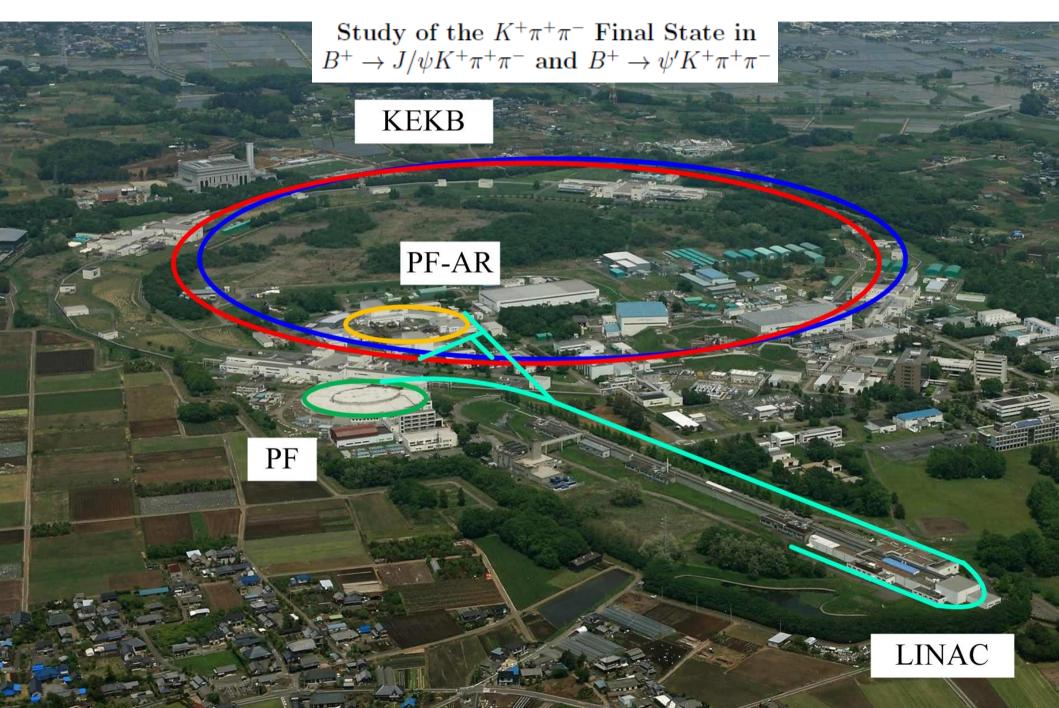
72,000 $\mathbf{K}^{\dagger}\pi^{\dagger}\pi^{-}$

56,000 K $\pi^+\pi^-$

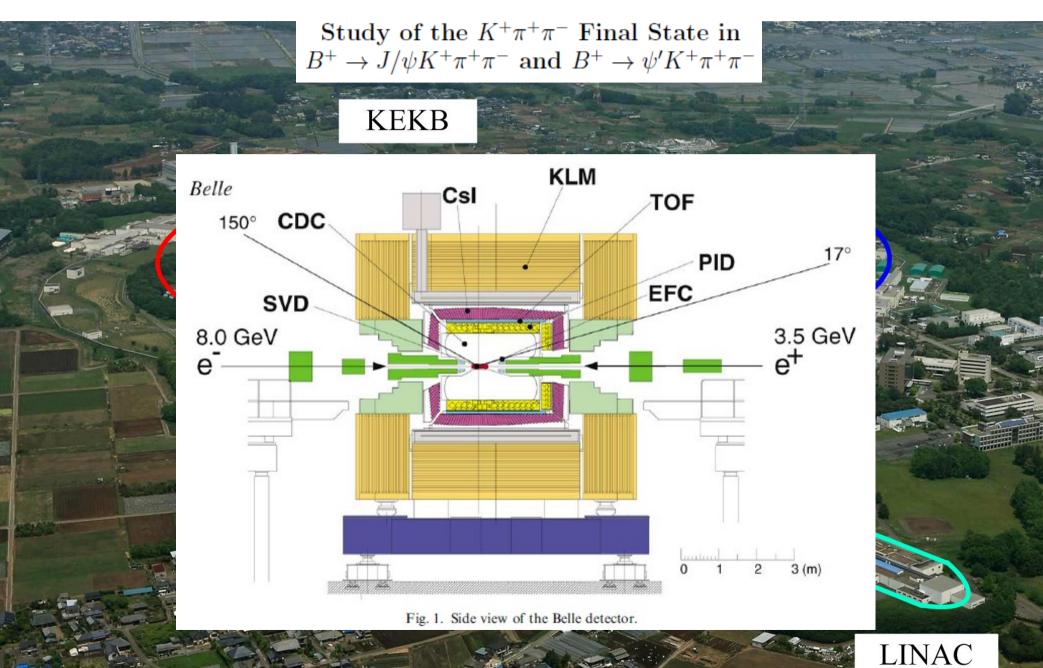

Measurements on the charged channel sector (at CERN)

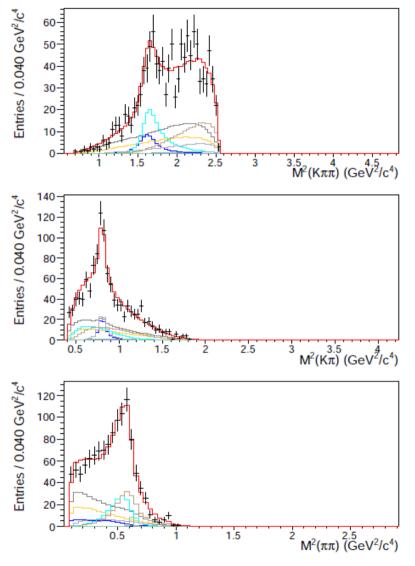

DIFFRACTIVE PRODUCTION OF STRANGE MESONS AT 63 GeV

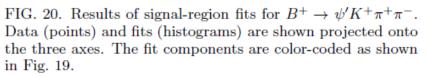
The ACCMOR Collaboration


Received 19 December 1980

Nearly 200 000 examples of the diffractive process $K^-p \rightarrow K^-\pi^-\pi^+p$ at 63 GeV have been obtained using a two magnet spectrometer equipped with Čerenkov counters for secondary particle identification. In addition some 2000 examples of the process $K^-p \rightarrow \omega K^-p$ have been obtained.




Latest publication from BELLE detector at KEKB



Latest publication from BELLE detector at KEKB

Results obtained at KEKB

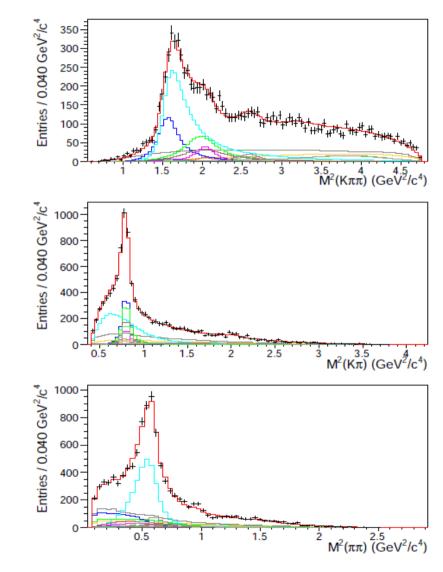


FIG. 21. Results of signal-region fits for $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$, with the mass and width of the $K_1(1270)$ floated. Data (points) and fits (histograms) are shown projected onto the three axes. The fit components are color-coded as shown in Fig. 19.

What do we search for?

Resonances reported but not confirmed

$$K_1(1650)$$

$$I(J^P) = \frac{1}{2}(1^+)$$

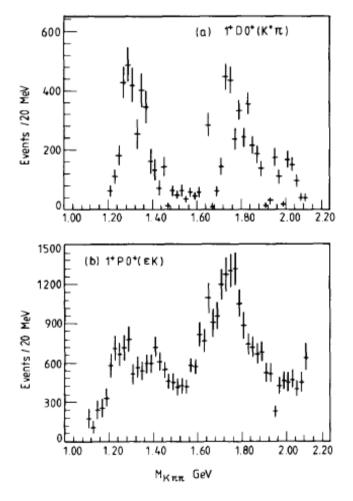
OMITTED FROM SUMMARY TABLE

This entry contains various peaks in strange meson systems ($K^+\phi$, $K\pi\pi$) reported in partial-wave analysis in the 1600–1900 mass region.

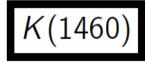
K1(1650) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1650±50	FRAME	86	OMEG	+	13 $K^+ p \rightarrow \phi K^+ p$
• • • We do not use the	e following data f	for ave	erages, f	its, lim	nits, etc. • • •
\sim 1840	ARMSTRONG	83	OMEG	_	$18.5 \ K^- p \rightarrow 3 K p$
\sim 1800	DAUM	81 C	CNTR	_	$63 \ K^- p \rightarrow \ K^- 2\pi p$

K1(1650) WIDTH


VALUE (MeV)	DOCUMENT ID	TECN CHG	COMMENT
150±50	FRAME 86	OMEG +	13 $K^+ p \rightarrow \phi K^+ p$
• • • We do not use the	e following data for a	verages, fits, lir	nits, etc. • • •
~ 250	DAUM 810	CNTR –	$63 \ K^- p \rightarrow \ K^- 2\pi p$

K₁(1650) DECAY MODES


Mode

 $\Gamma_1 \quad K\pi\pi$

 $\Gamma_2 \quad K\phi$

Resonances reported but not confirmed

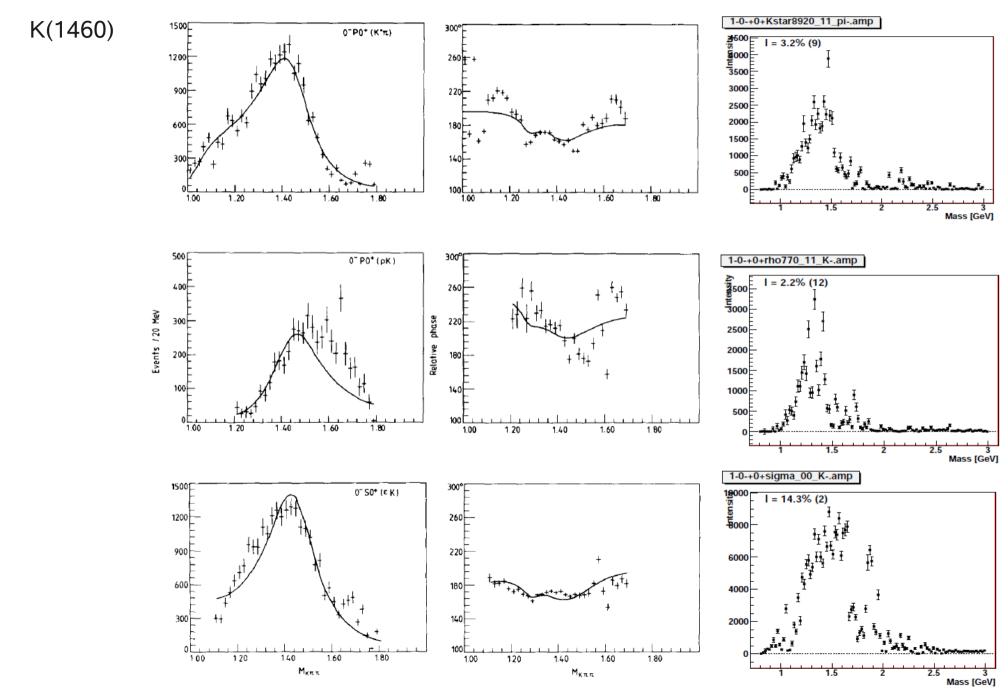
$$I(J^P) = \frac{1}{2}(0^-)$$

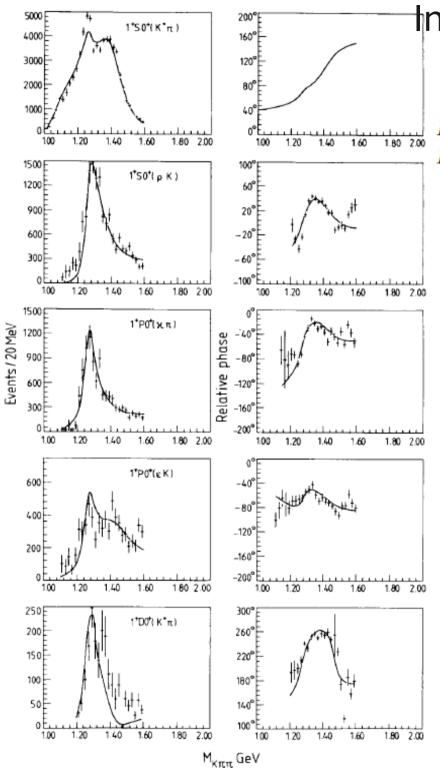
OMITTED FROM SUMMARY TABLE Observed in $K\pi\pi$ partial-wave analysis.

K(1460) MASS

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
• • • We do not u	use the following data for a	verages, f	its, lin	nits, etc. • • •
\sim 1460	DAUM 810	CNTR	_	$63 \ K^- p \rightarrow \ K^- 2\pi p$
\sim 1400	¹ BRANDENB 76	B ASPK	±	$\begin{array}{rcl} 63 \ K^{-} p \rightarrow & K^{-} 2\pi p \\ 13 \ K^{\pm} p \rightarrow & K^{+} 2\pi p \end{array}$
¹ Coupled mainly	y to <i>K f₀(</i> 1370). Decay int	o K*(892	π see	en.

K(1460) WIDTH


VALUE (MeV)	DOCUMENT ID	TECN CHG	COMMENT
• • • We do not use t	he following data for a	iverages, fits, li	mits, etc. • • •
~ 260			$63 \ K^- p \rightarrow \ K^- 2\pi p$
~ 250	² BRANDENB 76	3 ASPK \pm	$13 K^{\pm} p \rightarrow K^{+} 2\pi p$
2		a sele a se	


²Coupled mainly to $K f_0(1370)$. Decay into $K^*(892)\pi$ seen.

K(1460) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$K^*(892)\pi$	seen
<u> </u>	Κρ	seen
Γ ₃	$K_0^*(1430)\pi$	seen

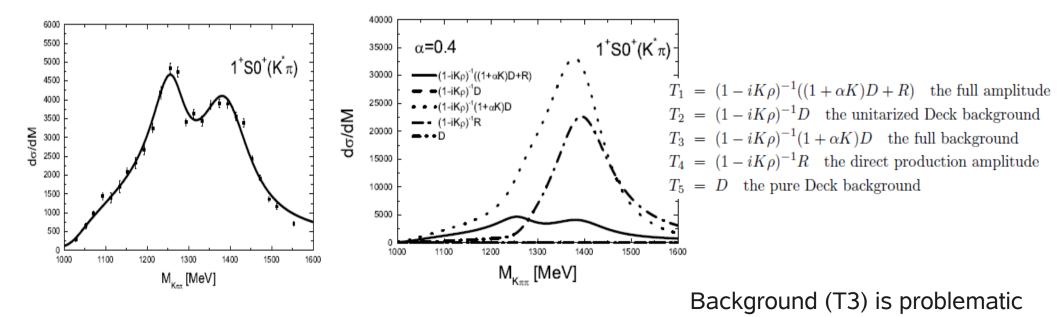
Resonances reported but not confirmed

Interpretation of the double structure of K₁

 $K_1(1270) = K(1^3 P_1) \sin \theta_K + K(1^1 P_1) \cos \theta_K$ $K_1(1400) = K(1^3 P_1) \cos \theta_K - K(1^1 P_1) \sin \theta_K$

Could it be that these are 2 resonances?

Clues for the existence of two $K_1(1270)$ resonances


L. S. Geng^{*} and E. Oset^{\dagger}

Departamento de Fisica Teorica e IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Apdo 22085, 46071 Valencia, Spain

L. Roca[‡] and J. A. Oller[§]

Departamento de Física. Universidad de Murcia. E-30071 Murcia. Spain.

The axial vector meson $K_1(1270)$ was studied within the chiral unitary approach, where it was shown that it has a two-pole structure. We reanalyze the high-statistics WA3 experiment $K^-p \rightarrow K^-\pi^+\pi^-p$ at 63 GeV, which established the existence of both $K_1(1270)$ and $K_1(1400)$, and we show that it clearly favors our two-pole interpretation. We also reanalyze the traditional K-matrix interpretation of the WA3 data and find that the good fit of the data obtained there comes from large cancellations of terms of unclear physical interpretation.

Thanks for your patience