Abschlußkolloqium zur Masterarbeit:

Bestimmung von Hadronmultiplizitäten in Lepton-Nukleon-Streuung bei COMPASS

Johannes Giarra

06.07.2016

Motivation

- keine freien Quarks beobachtbar (confinement)
- Hadronisierung durch Fragmentationsfunktionen (FF) beschrieben

 $\mathbf{Quarks} \Longleftrightarrow \mathbf{Hadron}$

Wie lassen sich die FF bestimmen?

- experimenteller Zugriff
 - \rightarrow Hadronmultiplizitäten
- Information über Anzahl der produzierten Hadronen
 - \rightarrow semi-inklusive Messung der tiefinelastische Lepton-Nukleon-Streuung (SIDIS)
- \Rightarrow Korrekturen der Multiplizitäten nötig

Tiefinelastische Streuung (DIS)

DIS Prozess:

$$l + N \rightarrow l' + X$$

 $\rightarrow \textbf{SIDIS} \text{ zusätzlicher Nachweis} \\ \text{von Hadronen}$

 $l + N \rightarrow l' + h + X$

kin. Variablen:

•
$$y = \frac{\nu}{E}$$
 (lab.) mit $\nu = E - E'$
• $Q^2 = -q^2 = -(k - k')^2$
• $x = \frac{Q^2}{2M\nu}$ (lab.)
• $W^2 = (P_N + q)^2 = M^2 + 2M\nu - Q^2$
• $z = \frac{E_h}{\nu}$ (lab.)

FF und Multiplizitäten

Wirkungsquerschnitt der SIDIS:

 $\sigma_{SIDIS}(x, Q^2, z) \propto$ $\sigma_{hart}(x, Q^2) \otimes q_f(x) \otimes D^h_f(z, Q^2)$

- \rightarrow unabhängige Teilprozesse
- \Rightarrow Faktorisierungsansatz

Fragmentationsfunktionen:

 $D^h_{\scriptscriptstyle F}(z)
ightarrow {
m Wahrscheinlichkeit, dass ein Hadron } h$ mit Energiebruchteil z aus dem Quark f

k

Ρ

PDF

favorisiert:

unfavorisiert:

-μν

q

FF

k'

P_h

Multiplizität:

$$M_{h}(x, Q^{2}, z) = \frac{d\sigma_{SIDIS}(x, Q^{2}, z)/dxdQ^{2}dz}{d\sigma_{DIS}(x, Q^{2})/dxdQ^{2}} \stackrel{LO}{=} \frac{\sum_{f} e_{f}^{2}q_{f}(x)D_{f}^{h}(z)}{\sum_{f} e_{f}^{2}q_{f}(x)} \stackrel{exp.}{=} \frac{N_{h}(x, Q^{2}, z)}{N_{DIS}(x, Q^{2})}$$

⇒ experimenteller Zugang durch Hadronmultiplizitäten

COMPASS Aufbau 2012

Daten: W44-W48 im Jahr 2012

Multiplizitäten in der Analyse:

$$M_h(x, y, z) = \frac{N_h(x, y, z)/\Delta z}{N_{DIS}(x, y)}$$

für geladene Hadronen des Typs h (nicht identifiziert, Pion oder Kaon) $\rightarrow N_{DIS}$ und N_b durch Datenselektion

kinematische Intervalle:

9 Intervalle in x: 0.004-0.4 **5** Intervalle in y: 0.1-0.7 **12** Intervalle in z: 0.20-0.85

Datenselektion für die Multiplizitäten

Datenselektion für die Multiplizitäten

DIS Selektion:

- Vertex innerhalb des Targets
- $Q^2 > 1 \text{ GeV}/c^2$

Hadron Selektion:

\Rightarrow ermöglicht Faktorisierungsansatz

- Vertex innerhalb des Targets
- $Q^2 > 1 \text{ GeV}/c^2$
- 0.1 < y < 0.7

- Vertex innerhalb des Targets
- $Q^2 > 1 \text{ GeV}/c^2$
- 0.1 < y < 0.7
- $\bullet~5~\text{GeV}/c^2 < \textit{W} < 17~\text{GeV}/c^2$

- Vertex innerhalb des Targets
- $Q^2 > 1 \text{ GeV}/c^2$
- 0.1 < y < 0.7
- $\bullet~5~\text{GeV}/c^2 < \textit{W} < 17~\text{GeV}/c^2$
- 0.004 < *x* < 0.4

- Vertex innerhalb des Targets
- $Q^2 > 1 \text{ GeV}/c^2$
- 0.1 < y < 0.7
- 5 GeV/c² < W < 17 GeV/c²
- 0.004 < x < 0.4

Hadron Selektion:

• Teilchenspur vor und nach SM1 rekonstruiert

 \Rightarrow Impulsmessung durchgeführt

- Vertex innerhalb des Targets
- $Q^2 > 1 \text{ GeV}/c^2$
- 0.1 < y < 0.7
- 5 GeV/c² < W < 17 GeV/c²
- 0.004 < x < 0.4

Hadron Selektion:

- Teilchenspur vor und nach SM1 rekonstruiert
- weniger als 15 Strahlungslängen an Material durchquert

 \rightarrow sonst Teilchen sehr wahrscheinlich ein μ

- Vertex innerhalb des Targets
- $Q^2 > 1 \text{ GeV}/c^2$
- 0.1 < y < 0.7
- 5 GeV/c² < W < 17 GeV/c²
- 0.004 < x < 0.4

Hadron Selektion:

- Teilchenspur vor und nach SM1 rekonstruiert
- weniger als 15 Strahlungslängen an Material durchquert
- 0.2 < *z* < 0.85

 \rightarrow diffraktiv produzierte Vektormesonen z.B. $\rho^{0} \rightarrow \pi^{+}\pi^{-}$

- Vertex innerhalb des Targets
- $Q^2 > 1 \text{ GeV}/c^2$
- 0.1 < y < 0.7
- 5 $\text{GeV}/\text{c}^2 < W < 17~\text{GeV}/\text{c}^2$
- 0.004 < x < 0.4

- Teilchenspur vor und nach SM1 rekonstruiert
- weniger als 15 Strahlungslängen an Material durchquert
- 0.2 < *z* < 0.85
- Eintrittswinkel in den RICH: 0.01 rad $< \theta <$ 0.12 rad
- nicht innerhalb des Strahlrohrs (RICH)

 \rightarrow nach Selektion alles vorhanden, um Multiplizitäten zu berechnen

 \rightarrow Korrekturen nötig:

Strahlungskorrekturen

- Berücksichtigung von QED-Beiträgen höherer Ordnung
- Berechnet als $\eta(x, y) = \frac{\sigma_{1\gamma}}{\sigma_{mess}}$
- Unterschiedlich für N_{DIS} und N_h
- Kleine Korrektur (max. 7%)
- Effizienz bei der Teilchenidentifikation (PID-Effizienz)
- Akzeptanzkorrektur \rightarrow aus simulierten Daten

RICH-Detektor

Ring Imaging CHerenkov-Detektor

- Basiert auf Cherenkoveffekt
- Photonen auf Photodetektoren als Ring projiziert

Radiale Photonenverteilung einer Teilchenart zu weisen \rightarrow Likelihood Methode

RICH-Detektor

Ring Imaging CHerenkov-Detektor

- Basiert auf Cherenkoveffekt
- Photonen auf Photodetektoren als Ring projiziert

Radiale Photonenverteilung einer Teilchenart zu weisen \rightarrow Likelihood Methode

Definition:

$$E(t
ightarrow i) = rac{N^{t
ightarrow i}}{N^{t}} (t = \pi, K, p; i = \pi, K, p, keinelD)$$

 $N^{t \rightarrow i}$: Anzahl der Teilchen t vom RICH als i identifiziert N^{t} : Gesamtzahl der Teilchen t

Methode:

- **2** N^t und $N^{t \rightarrow i}$ durch Fit der Spektren

Benötigt:

- ightarrow Zerfälle in relevante Teilchen (π , K, p) aus Datenselektion
 - Pionen: $K_S^0 \rightarrow \pi^+\pi^-$
 - Protonen: $\Lambda^0 o p\pi^-$ und $\bar{\Lambda}^0 o \bar{p}\pi^+$
 - Kaonen: $\Phi \to K^+ K^-$

Bsp.: $K_S^0
ightarrow \pi^+ \pi^-$

- Teilchenwahl z.B. π^+
 - \rightarrow RICH (LH vgl.) korrekt identifiziert
 - \Rightarrow Gesamtzahl \mathbf{N}^{t} und Identität des zweiten Teilchens festgelegt
- zugehöriges π^- in Impuls- und Winkelintervall \rightarrow als π^- , K^- , \overline{p} oder *keinelD*⁻ identifiziert
 - \Rightarrow Anzahl identifiziert **N**^{t \rightarrow i}
- \Rightarrow analog für anderes Teilchens, sowie $\Lambda_0,\,\overline{\Lambda}_0$ und Φ

Bekannt: Effizienzen abhängig von Winkel und Impuls **13 Impulsintervalle:** 10 - 50 (GeV/c) **3 Winkelintervalle:** 0.0 - 0.12 (rad) Bsp. $K_{\rm S}^0$ -Zerfall

Impuls: 15 GeV/c 17 GeV/c $Winkel: 0.01 rad <math>< \theta <$ 0.04 rad

Fitergebnis Bsp. K_S^0 -Zerfall

Signalfit + Untergrundfit = Gesamtfit

PID-Effizenzen $\pi^+ \rightarrow i$

PID-Effizenzen $\pi^+ \rightarrow i$

PID-Effizienzen als Matrix:

$$M_{\rm eff} = \begin{pmatrix} \epsilon(\pi \to \pi) & \epsilon(K \to \pi) & \epsilon(p \to \pi) \\ \epsilon(\pi \to K) & \epsilon(K \to K) & \epsilon(p \to K) \\ \epsilon(\pi \to p) & \epsilon(K \to p) & \epsilon(p \to p) \end{pmatrix}$$

 \rightarrow Zusammenhang: Anzahl identifizierter ($\vec{l}_{\rm h} = (N_{\pi}^{\rm I}, N_{\rm K}^{\rm I}, N_{\rm p}^{\rm I}))$ und wahrer Hadronen ($\vec{\mathcal{T}}_{\rm h}$)

$$\vec{I}_{\rm h} = M_{\rm eff} \, \vec{T}_{\rm h}$$

 \rightarrow Benötigt für Multiplizitäten Anzahl der wahren Hadronen

$$\Rightarrow \vec{T}_{\rm h} = M_{\rm eff}^{-1} \vec{I}_{\rm h}$$

Berücksichtigt

- Geometrische Akzeptanz
- Detektoreffizienzen und Auflösungen
- Rekonstruktionseffizienzen
- Kinematische Migration

Methode:

 $A_h(x, y, z) = \frac{M_{h,rek}(x_{rek}, y_{rek}, z_{rek})}{M_{h,gen}(x_{gen}, y_{gen}, z_{gen})} = \frac{N_{h,rek}(x_{rek}, y_{rek}, z_{rek})/N_{DIS,rek}(x_{rek}, y_{rek})}{N_{h,gen}(x_{gen}, y_{gen}, z_{gen})/N_{DIS,gen}(x_{gen}, y_{gen}, z_{gen})}$

 $M_{h,rek}(x_{rek}, y_{rek}, z_{rek})$: Hadronmultiplizität aus rekonstruierten Events $M_{h,gen}(x_{gen}, y_{gen}, z_{gen})$: Hadronmultiplizität aus generierten Events

 \rightarrow gleiche kinematische Intervalle wie Multiplizitäten

TGEANT: Total GEometry ANd Tracking

 \rightarrow Simulationssoftware

CORAL: COmpass Reconstruction ALgorithm

- \rightarrow Rekonstruktionsoftware
 - \Rightarrow Spurparameter, Impulse, Vertices ect.

Datenselektion \Rightarrow generierten/rekonstruierten N_{DIS} und N_h

rekonstruierte Ereignisse \rightarrow wie gemessene Daten generierte Ereignisse \rightarrow nur kinematische Schnitte

Momentan noch kin. Bereiche (DIS) berücksichtigt ohne mögliche produzierte Hadronen im *z*-Bereich

 \Rightarrow Zusätzlicher ν -Schnitt, um DIS-Ereignisse zu unterdrücken

Vergleich der inklusiven Variablen:

Datenselektion

Datenselektion \Rightarrow generierten/rekonstruierten N_{DIS} und N_h

rekonstruierte Ereignisse \rightarrow wie gemessene Daten generierte Ereignisse \rightarrow nur kinematische Schnitte

Momentan noch kin. Bereiche (DIS) berücksichtigt ohne mögliche produzierte Hadronen im *z*-Bereich

 \Rightarrow Zusätzlicher ν -Schnitt, um DIS-Ereignisse zu unterdrücken

Vergleich der semi-inklusiven Variablen:

Akzeptanz für nicht identifizierte Hadronen, Pionen und Kaonen

$$\Rightarrow M_h(x, y, z) = \frac{M_h(x, y, z)}{A_h(x, y, z)}$$

Ergebnisse der Multiplizitäten

Nicht identifizierte positiv und negativ geladene Hadronen

Valenzquarkzusammensetzung Proton (u, u, d)

Ergebnisse der Multiplizitäten

Positiv und negativ geladene Pionen

Ergebnisse der Multiplizitäten

Positiv und negativ geladene Kaonen

 \rightarrow Korrektur der PID-Effizienz meist vernachlässigbar \rightarrow wenn Hadronen großen Impuls \Rightarrow Einfluss etwa 40%

 \rightarrow Korrektur der PID-Effizienz meist vernachlässigbar \rightarrow wenn Hadronen großen Impuls \Rightarrow Einfluss etwa 40%

Zusammenfassung und Ausblick

• Verfahren zur Bestimmung von Multiplizitäten

Benötgte Korrekturen

- Datenselektion \Rightarrow Bestimmung der Korrekturen
- Anwendung der Korrekturen
- Einfluss der Korrektur auf das Ergebnis

Ausblick:

Systematische Studien

- \rightarrow Einfluss der PID-Effizienz auf Fehler
- \rightarrow Einfluss der Akzeptanz auf Fehler

• Korrektur auf diffraktiv produzierte Vektormesonen

 \rightarrow Aus simulierten Daten

Vielen Dank für die Aufmerksamkeit !!

BACKUP

```
Experimentell nicht \sigma_{1\gamma} sondern \sigma_{mess}
```

 $1\gamma\text{-}\mathsf{Austausch}$ und Beiträge aus NLO-QED:

Streuung	1γ-Austausch	Bremsstrahlung	Vertexkorrektur	Vakuumpolarisation	
elastisch (Kern oder Nukelon)					
inelastisch			North Contraction of the second secon		

⇒	Korrekturfaktor	n(x,	v)	=	$\sigma_{1\gamma}$
		(\mathbf{X})	, ,		σ_{mess}

- \rightarrow unterscheiden zwischen inklusiven und semi-inklusiven Korrekturen
- \rightarrow semi-inklusiven Fall entfallen elastische Anteile
- \Rightarrow DIS-Ereignis und Hadron mit einem Faktor wichtet

Φ -Zerfall

• $\Phi \rightarrow K^+K^-$

Zerfall der starken WW

⇒ Entstehungs- und Zerfallsvertex ununterscheidbar

K_0 - und $\Lambda_0/\overline{\Lambda}_0$ -Zerfall

• $K_0 \rightarrow \pi^+ \pi^-$

•
$$\Lambda_0/\overline{\Lambda}_0 \to \pi^- p/\pi^+ \overline{p}$$

Zerfälle der schwachen WW

- ⇒ Entstehungs- (p) und Zerfallsvertex (s) separat auflösbar
- → mehr Schnitte möglich

μ' /

Schnitte für K₀-Zerfall

Schnitte auf Daten

 $\Rightarrow {\sf Reduktion \ des} \\ {\sf Untergrunds}$

Beispiel für Schnitte:

- Sekundärer Vertex nur genau einem primären Vertex zugeordnet
- Sekundärer und primärer Vertex verbunden

Vergleich Schnitte für Λ- und Φ-Zerfall

∧-Zerfall

Φ-Zerfall

Teilchenidentifikation am RICH

genaue Kentnisse des Modells und Parameter d.h. Parameter vorgegeben

- \rightarrow LH-Funktion für jede Teilchenart
- \rightarrow Werte der LH-Funktionen abh. von Photonverteilung

$$L_N = \prod_{k=1}^{N^{photon}} [(1-\epsilon)G(\Theta_{rec,k}^{photon}, \phi_{rec,k}^{photon}) + \epsilon B(\Theta_{rec,k}^{photon})]$$

 \Rightarrow durch vgl. der Werte der LH-Funktionen \rightarrow Teilchenart

Fitmodelle

K_S^0 -Zerfall (schwacher Zerfall)

- Signal: 2 Gauß
- Untergund: Polynom (3. Grades)

$\Lambda^0/\overline{\Lambda}^0$ -Zerfall (schwacher Zerfall)

- Signal: 2 Gauß
- Untergund: $(x-t)^n e^{-a(x-t)} t = m_p + m_\pi$

Φ-Zerfall (starker Zerfall)

• Signal: Breit-Wigner \otimes Gauß

• Untergund:
$$(x-t)^n e^{-a(x-t)} t = 2m_K$$

Modell Parameter \rightarrow Anzahl der Hintergrund- und Signalereignisse

Zwangsbedingung:
$$N^t = \sum_i N^{t \to i} \to \mathsf{PID}\mathsf{-Eff.}$$
 auf 1 normiert

Einbinden der Zwangsbedingung in LH-Funktion \rightarrow erweiterte LH-Funktion \Rightarrow Kombinierter Fit pro Impuls- und Winkelintervall

Vergleich PID-Effizienz der Jahre 2011 und 2012

Einfluss der Strahlungskorrektur

→ nur kleine Korrektur (max. 7%) → elastischer Anteil im inklusiven Fall \Rightarrow Multiplizität tendenziell größer

 \rightarrow größte Korrektur (Faktor: 1.3-2.5)