Tobias Weisrock

Trigger Meeting Bonn 17. Dezember 2013

Inhalt

Idee

Ereignisselektion

Auf dem Weg zur PWA

Tobias Weisrock (JGU Mainz)

Idee

- 2009 Datennahme mit Protonstrahl (h⁺-Strahl)
- Untersuchung diffraktiver Anregungen des Strahlprotons
- Beschränkung auf 2-Teilchen Endzustände (hier $p\pi^0$ und $p\eta$)

Basisselektion

- 1. DT0-Trigger
- 2. genau ein primärer Vertex im Target
- 3. einlaufendes Proton in mind. einem CEDAR registriert (kein Pion in beiden CEDARs)
- 4. rekonstruiertes Rückstoßproton
- 5. ein auslaufendes geladenes Teilchen
- 6. mit Ladung +1
- 7. genau zwei Photonen in den ECALs
 - ► Energie mindestens (1,2) GeV in ECAL (1,2)
 - LED/Laser Korrekturen
 - weitere Korrekturen aus der OZI Analyse (J. Bernhard, K. Schoenning)
 - runs 77594, 77595 und 77598 haben keine Korrekturen und werden ausgelassen

π^0/η Selektion

- \blacktriangleright invariante $\gamma\gamma$ Masse innerhalb 2σ um die PDG Masse
- ightarrow skaliere Photonenergie um π^0/η auf die PDG Masse zu schieben

π^0/η Selektion

- \blacktriangleright invariante $\gamma\gamma$ Masse innerhalb 2σ um die PDG Masse
- ightarrow skaliere Photonenergie um π^0/η auf die PDG Masse zu schieben

Finale Selektion

- 8. rekonstruiertes π^0 oder η
- 9. Exclusivität ((191 \pm 5) GeV)
- 10. Koplanarität (± 0.26 rad)
- 11. Impulsübertrag $0.1~{\rm GeV}^2/c^2 < t' < 1.0~{\rm GeV}^2/c^2$

Finale Selektion

- 8. rekonstruiertes π^0 oder η
- 9. Exclusivität ((191 \pm 5) GeV)
- 10. Koplanarität (± 0.26 rad)
- 11. Impulsübertrag $0.1~{\rm GeV^2}/c^2 < t' < 1.0~{\rm GeV^2}/c^2$

Finale Selektion

- 8. rekonstruiertes π^0 oder η
- 9. Exclusivität ((191 \pm 5) GeV)
- 10. Koplanarität (± 0.26 rad)
- 11. Impulsübertrag $0.1~{\rm GeV}^2/c^2 < t' < 1.0~{\rm GeV}^2/c^2$

Invariante Massen nach allen Schnitten

Konzept

Theorie

Produktion

Theorie

- Akzeptanzkorrektur für $\mathbf{p}\pi^0$ und $\mathbf{p}\eta$ für beide Parametrisierungen
- PWA Fitter entwickelt
 - beide Parametrisierungen möglich
 - Fit in (beliebigen) Massenbins
 - verschiedene Fitalgorithmen möglich
- Gespräch mit Spezialisten in Mainz
 - welche Parametrisierung ist die vernünftigste?
 - wie geht man mit Ambiguitäten um?
 - wie erklärt sich die φ -Abhängigkeit bei einer unpolarisierten Messung?
 - Antwort im Januar erwartet

Starting Point

2009 $\mathbf{p}\mathbf{p}\to\mathbf{p}\pi^{_0}\mathbf{p}$ data released in May 2013

 target/recoil proton does not participate in the reaction

pfast

- target/recoil proton does not participate in the reaction
- switch to 'target pomeron'

- target/recoil proton does not participate in the reaction
- switch to 'target pomeron'
- transform to \mathcal{B}^+ rest frame

- target/recoil proton does not participate in the reaction
- switch to 'target pomeron'
- transform to \mathcal{B}^+ rest frame
- s-channel proton pomeron scattering

- target/recoil proton does not participate in the reaction
- switch to 'target pomeron'
- ▶ transform to B⁺ rest frame
- s-channel proton pomeron scattering

Some Constraints

- Neglect everything but spin-0 pomeron exchange
- Concentrate on spin-0 mesons (π^0, η)

2-Particle Scattering

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\mathsf{s},\theta,\varphi) = \frac{1}{64\pi^2 \mathsf{s}} \frac{|\vec{\mathsf{q}}_{\,\mathsf{i}}|}{|\vec{\mathsf{q}}_{\,\mathsf{f}}|} \left| \langle \mathsf{f} |\mathsf{T}|\mathsf{i} \rangle \right|^2$$

with

• $\mathbf{s} = \mathbf{M}_{ab}^2 = \mathbf{M}_{cd}^2$ • $|\mathbf{i}\rangle = |\mathbf{q}_{\mathbf{i}}, \theta_{\mathbf{i}}, \phi_{\mathbf{i}}, \lambda_{\mathbf{a}}, \lambda_{\mathbf{b}}\rangle$

2-Particle Scattering

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\mathsf{s},\theta,\varphi) = \frac{1}{64\pi^2\mathsf{s}} \frac{|\vec{\mathsf{q}}_{\,\mathrm{i}}|}{|\vec{\mathsf{q}}_{\,\mathrm{f}}|} \left|\langle\mathsf{f}|\mathsf{T}|\mathsf{i}\rangle\right|^2$$

with

$$\blacktriangleright s = M_{ab}^2 = M_{cd}^2$$

$$|\mathbf{i}\rangle = |\mathbf{q}_{\mathbf{i}}, \theta_{\mathbf{i}}, \phi_{\mathbf{i}}, \lambda_{\mathbf{a}}, \lambda_{\mathbf{b}}\rangle$$

$a \xrightarrow{\vec{q}_i} \varphi \xrightarrow{\theta} \varphi \xrightarrow{\vec{q}_i} b$ $d \xrightarrow{-\vec{q}_i} b$

Unpolarised Measurement

- ▶ No φ dependence
- Only two remaining variables: $M_{p\pi^0}$ and $cos(\theta)$
- \rightarrow Do acceptance correction in these variables

Monte Carlo

- Same Monte Carlo chain as in OZI analysis (Thanks to Karin)
- So far 17M events generated
- 2.5M events accepted

Acceptance in $M_{p\pi^0}$

Acceptance in $cos(\theta)$

Acceptance in $M_{p\pi^0}$ vs. $cos(\theta)$

Acceptance in $M_{p\pi^0}$ vs. $cos(\theta)$

Explaining the Structures

Look at momentum of \mathbf{p}_{fast} and π^0 :

Full Data

18.1% of events have reconstructed π^0

Explaining the Structures

Look at momentum of $\mathbf{p}_{\mathsf{fast}}$ and π^0 :

 $0.5 < \cos(\theta) < 0.9$ (good acceptance)

22.9% of events have reconstructed π^0

Explaining the Structures

Look at momentum of $\mathbf{p}_{\mathsf{fast}}$ and π^0 :

 $-0.5 > \cos(\theta) > -0.9$ (bad acceptance)

12.7% of events have reconstructed π^0

2-Particle Scattering Amplitudes

Cross Section

11/

$$\frac{d\sigma}{d\Omega}(\mathbf{s},\theta,\varphi) = \frac{1}{64\pi^2 \mathbf{s}} \frac{|\vec{\mathbf{q}}_i|}{|\vec{\mathbf{q}}_f|} \left| \langle \mathbf{f} | \mathbf{T} | \mathbf{i} \rangle \right|^2$$
with
$$\mathbf{s} = \mathbf{M}_{ab}^2 = \mathbf{M}_{cd}^2$$

$$\mathbf{i} \rangle = |\mathbf{q}_i,\theta_i,\phi_i,\lambda_a,\lambda_b\rangle$$

Partial Wave Decomposition

$$\begin{split} \langle f|T|i\rangle &= 4\pi \sqrt{\frac{s}{q_i q_f}} \sum_{J=0}^\infty (2J+1) {D^*}^J_{\lambda_i \lambda_f}(\varphi,\theta,0) \mathsf{T}^J_{\lambda_a \lambda_b \lambda_c \lambda_d}(s) \\ \text{with } \lambda_i &= \lambda_a - \lambda_b \text{ and } \lambda_f = \lambda_c - \lambda_d \end{split}$$

¶́f∕C

b

2-Particle Scattering Amplitudes

Partial Wave Decomposition

with

$$\begin{split} \langle f|T|i\rangle &= 4\pi \sqrt{\frac{s}{q_iq_f}} \sum_{J=0}^{\infty} (2J+1) D^{*J}_{\lambda_i\lambda_f}(\varphi,\theta,0) T^{J}_{\lambda_a\lambda_b\lambda_c\lambda_d}(s) \\ &= \lambda_i = \lambda_a - \lambda_b \text{ and } \lambda_f = \lambda_c - \lambda_d \end{split}$$

For
$$\mathbf{p}\mathbb{P} \to \mathbf{p}\pi^0$$
:
 $\lambda_b = \lambda_d = 0 \Rightarrow \lambda_i = \lambda_a \text{ and } \lambda_f = \lambda_c$
 $\lambda_{i,f} = \pm \frac{1}{2}$
 $J = L \pm \frac{1}{2}$

$$\langle \mathbf{f} | \mathbf{T} | \mathbf{i}
angle = 4\pi \sqrt{\frac{s}{q_i q_f}} \sum_{J=0}^{\infty} (2J+1) D^{*J}_{\lambda_i \lambda_f}(\varphi, \theta, 0) \mathbf{T}^{J}_{\lambda_i \lambda_f}(s)$$

2-Particle Scattering Amplitudes

- \blacktriangleright unpolarized beam and target \Rightarrow average over initial state spins
- final state spins not measured \Rightarrow sum over final state spins

Full Cross Section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(s,\theta,\varphi) = \frac{1}{4} \frac{1}{|\vec{\mathfrak{q}}_{\mathsf{f}}|^2} \frac{1}{2} \sum_{\substack{\lambda_i = \pm \frac{1}{2} \\ \lambda_f = \pm \frac{1}{2}}} \left| \sum_{\mathsf{J}=0}^{\infty} (2\mathsf{J}+1) \mathsf{D}^{*\mathsf{J}}_{\lambda_i\lambda_f}(\varphi,\theta,0) \mathsf{T}^{\mathsf{J}}_{\lambda_i\lambda_f}(s) \right|^2$$

 \Rightarrow Four complex amplitudes for each ${\bf J}$

2-Particle Scattering Amplitudes

Full cross section in single mass bin (simplified notation):

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\mathsf{s},\theta,\varphi) = \frac{1}{4} \frac{1}{\left|\vec{\mathfrak{q}}_{\,\mathrm{f}}\right|^2} \frac{1}{2} \sum_{\substack{\lambda_i = \pm \frac{1}{2} \\ \lambda_f = \pm \frac{1}{2}}} \left| \sum_{\mathsf{J}=0}^{\infty} (\mathsf{2}\mathsf{J}+1) \mathsf{D}^{*\mathsf{J}}_{\lambda_i\lambda_f}(\varphi,\theta,0) \mathsf{T}^{\mathsf{J}}_{\lambda_i\lambda_f}(\mathsf{s}) \right|^2$$

Single mass bin (simplified notation):

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta,\varphi) = \frac{1}{8\left|\vec{\mathsf{q}}_{\mathsf{f}}\right|^2} \sum_{\lambda} \left|\sum_{\mathsf{J}=0}^{\infty} (\mathsf{2}\mathsf{J}+\mathsf{1})\mathsf{D}^*_{\mathsf{J}\lambda}(\varphi,\theta,0)\mathsf{T}_{\mathsf{J}\lambda}\right|^2$$

Work out modulus square

Write amplitude as $T_{JK} = t_{JK} \exp(i\phi_{JK})$:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\theta) = \frac{1}{8\left|\vec{\mathfrak{q}}_{\mathsf{f}}\right|^2} \sum_{\mathsf{J},\mathsf{J}',\lambda} (\mathsf{2}\mathsf{J}+1)(\mathsf{2}\mathsf{J}'+1)\mathsf{d}_{\mathsf{J}\lambda}(\theta)\mathsf{d}_{\mathsf{J}'\lambda}(\theta)\mathsf{t}_{\mathsf{J}\lambda}\mathsf{t}_{\mathsf{J}'\lambda}\cos(\phi_{\mathsf{J}\lambda}-\phi_{\mathsf{J}'\lambda})$$

First Tests

- ▶ Fit on uncorrected histograms in 50 MeVmass bins
- Fit up to $J = \frac{5}{2}$
- Look at amplitudes with and without spin-flip of the proton

Example for Fit: 1450 ${\bf MeV}mass$ bin

First Tests

Do 3 fits using different starting values and compare outcome

Difficult to see anything \rightarrow Draw lines

First Tests

Do 3 fits using different starting values and compare outcome

Difficult to see anything \rightarrow Draw lines

First Tests

All 6 amplitudes

Central Production

What is the contribution from central production?

 \longrightarrow Use central production cut by Alex as an anticut: $p(p_f) < 140~{\rm GeV}$

Central Production

What is the contribution from central production? \rightarrow Use central production cut by Alex as an anticut: $p(p_f) < 140 \text{ GeV}$

- Finish and include acceptance correction (extended likelihood fit)
- Get handle on fit ambiguities
- Control contribution from central production

Flat Wave

COMPASS

Baryonspektroskopie bei COMPASS

All Fits

Baryonspektroskopie bei COMPASS

All Fits

All Fits

Baryonspektroskopie bei COMPASS

All Fits

All Fits

Gottfried-Jackson Frame

- Rest frame of $\mathbf{p}_{\mathbf{f}} \pi^{\mathbf{0}}$;
- y-axis: orthogonal to production plane (beam imes $\mathbf{p}_{\mathbf{f}}\pi^{0}$)
- z-axis: along beam direction
- x-axis: follows from right-handed coordinate system

Baryonspektroskopie bei COMPASS

$\mathbf{pp} ightarrow \mathbf{p}_{ m rec} \pi^0 \mathbf{p_f}$ – Gottfried-Jackson Angles

Polar angle $cos(\theta)$ vs. invariant mass

Baryonspektroskopie bei COMPASS

$\mathbf{pp} ightarrow \mathbf{p}_{ m rec} \pi^0 \mathbf{p}_{ m f}$ – Gottfried-Jackson Angles

Azimuthal angle φ vs. invariant mass

Parametrisierung

- \blacktriangleright Wir betrachten nur ${\sf X} \longrightarrow {\sf p} \pi^0$
- Zerfall im Schwerpunktsystem

$$rac{\mathrm{d}\Gamma}{\mathrm{d}\Omega} = rac{1}{32\pi^2} rac{|\mathbf{p}|}{\mathsf{M}^2} \left|\mathcal{M}
ight|^2$$

Partialwellenzerlegung

$$\left|\mathcal{M}\right|^{2} = \sum_{\lambda} \left| \sum_{J,M_{J}} \sqrt{\frac{2J+1}{4\pi}} A_{JM_{J}\lambda} D^{J}_{M_{J}\lambda}(\Omega) \right|^{2}$$

mit

$$\mathsf{D}^{\mathsf{J}}_{\mathsf{J}\mathsf{M}_{\mathsf{J}}\lambda}^{*}(\Omega) = \mathsf{e}^{\mathsf{i}\mathsf{M}_{\mathsf{J}}\varphi}\mathsf{d}^{\mathsf{J}}_{\mathsf{J}\mathsf{M}_{\mathsf{J}}\lambda}(\theta)$$

 Abhängigkeit von φ und θ (keine Mittelung über Spins der einlaufenden Teilchen)

OMPASS

OMPASS

Tobias Weisrock (JGU Mainz)

OMPASS

COMPASS

Akzeptanzen π^0

Tobias Weisrock (JGU Mainz)

17. Dezember 2013 40 / 10

Akzeptanzen π^0

Tobias Weisrock (JGU Mainz)

Akzeptanzen π^0

Tobias Weisrock (JGU Mainz)

17. Dezember 2013 41 / 10

Tobias Weisrock (JGU Mainz)