A New Method for Beam Particle Identification at the COMPASS Experiment

Tobias Weisrock

Institut für Kernphysik

Graduate School's New Year Celebration January 19, 2012

Why do we need beam particle identification?

- COMPASS hadron beam consists of different particles (mainly π and K)
- One needs to know the particle for physics analysis

Why do we need beam particle identification?

- COMPASS hadron beam consists of different particles (mainly π and K)
- One needs to know the particle for physics analysis

Why do we need a new method?

- COMPASS hadron beam is divergent
- Method used so far does not work for divergent beams

Outline

The COMPASS Experiment

Beam Particle Identification

Particle Identification using Likelihoods

Summary

COMPASS in General

- COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

The M2 Beamline

Different Beams possible for COMPASS

- positive Hadron (mainly Proton)
- negative Hadron
- ▶ Muon (μ^+ , μ^-)

Here: negative hadron beam @ 190 GeV/c

- ▶ 97% π[−],
- ► 2.4% K⁻,

► few **p**

COMPASS

The COMPASS Spectrometer

- Two-stage spectrometer
- Large angular acceptance
- Broad kinematical range

The COMPASS Muon Program

- Generalised Parton Distributions (GPD)
- Transverse Momentum Dependent Distibutions (TMD)
- Fragmentation Functions
- Gluon Polarisation

The COMPASS Hadron Program

- Mesonspectroscopy
- Baryonspectroscopy
- Central Production (\rightarrow Glueballs)
- Polarisabilities (π , K)
- Primakoff
- Drell-Yan

Example: 3π analysis

Observation of a $J^{PC} = 1^{-+}$ exotic resonance in diffractive dissociation of **190** GeV/c π^- into $\pi^-\pi^-\pi^+$, PRL **104**, 241803 (2010)

Example: $\mathbf{K}\pi\pi$ analysis

Analysis of diffractive dissociation of K^- into $K^-\pi^+\pi^-$ on a liquid hydrogen target at the COMPASS spectrometer, PhD Thesis P. Jasinski

CEDARs at COMPASS

- CEDAR = ČErenkov Differential counters with Acromatic Ring focus manual"
- Two CEDARs at COMPASS beamline about 30 m upstream of the target

How does a CEDAR work?

 \blacktriangleright Fast charged particles emit Čerenkov light with angle heta

$$\cos(\theta) = \frac{1}{\mathsf{n}\beta}$$

- Čerenkov light detected with 8 PMTs
- Particle identification using multiplicities, e.g. 6 of 8 PMTs

Influence of Beam Divergence

 \Rightarrow Multiplicity method does not work for divergent beams

Influence of Beam Divergence

 \Rightarrow Multiplicity method does not work for divergent beams

Goal

Find a better method to take divergence into account

Tobias Weisrock (Institut für Kernphysik)

General Idea

- Look at PMT response for Kaon and Pion seperately
- Take beam divergence into account
- Identify beam particles using likelihoods

General Idea

- Look at PMT response for Kaon and Pion seperately
- Take beam divergence into account
- Identify beam particles using likelihoods

5 steps to take

- 1. Measure beam divergence
- 2. Create a pure Kaonsample and a pure Pionsample
- 3. Determine probabilities to have hits in PMTs for Pion and Kaon
- 4. Calculate likelihoods from probabilities
- 5. Use likelihoods to identify particles

Step 1: Measure beam divergence

- Measure beam position in front of (x₁, y₁) and behind (x₂, y₂) CEDARs
- Calculate relative displacement $\Delta_x = \frac{x_2 x_1}{1283.4 \text{ cm}}$
- Divergence $\theta_x = \arctan(\Delta_x) \approx \Delta_x$

Events with at least 6 of 8 PMTs

Step 2: Create a pure Kaonsample and a pure Pionsample

Create a Kaonsample and a Pionsample

- ► Kaonsample
- ightarrow Use free Kaon decay ${f K}^-
 ightarrow \pi^-\pi^-\pi^+$
 - 3 outgoing particles with correct charged
 - Primary vertex outside of the target
 - Cut on beam momentum and Kaon mass
 - Pionsample
- ightarrow Use diffractive production $\pi^- {f p}
 ightarrow \pi^- \pi^- \pi^+ {f p}$
 - 3 outgoing particles with correct charge
 - Primary vertex inside the target
 - Small angle to beam direction
 - Similar momenta

In addition: Produce a Beamsample without any filtering for testing the method

Step 3: Determine probabilities to have hits in PMTs for π and K

Example: Probability that a particle with divergence θ_x, θ_y that produces a signal in PMT i is a Kaon

 \rightarrow Use Bayes' Theorem:

$$\mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) = \frac{\mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Kaon}) \cdot \mathsf{P}_{\theta_{x},\theta_{y}}(\mathsf{Kaon})}{\mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal})}$$

Here:

$\mathbf{P}_{\theta_x,\theta_y}^{i}$ (Signal Kaon):	Probability that Kaon at $ heta_{x}$, $ heta_{y}$	$(\rightarrow$ Kaonsample)
,	produces signal in PMT i	
P_{θ_x,θ_y} (Kaon):	Probability that Kaon has diver-	$(\rightarrow$ Kaonsample)
	gence θ_x and θ_y	
$\mathbf{P}_{\theta_{x},\theta_{y}}^{i}$ (Signal):	Probability that signal in PMT i ist	$(\rightarrow$ Beamsample)
· ~) · j	produced at θ_x , θ_y	

Step 3 continued

We know that Pions and Kaons have the same divergence distribution:

$$\mathsf{P}_{\theta_x,\theta_y}(\mathsf{Kaon}) = \mathsf{P}_{\theta_x,\theta_y}(\mathsf{Pion}) = \mathsf{P}_{\theta_x,\theta_y}(\mathsf{Beam})$$

 $\Rightarrow P^{i}_{\theta_{x},\theta_{y}}(Signal|Kaon)$ and $P^{i}_{\theta_{x},\theta_{y}}(Signal|Pion)$ have same normalization

factor
$$\frac{P_{\theta_x,\theta_y}(\text{Beam})}{P^i_{\theta_x,\theta_y}(\text{Signal})}$$
, thus

$$\begin{array}{l} \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) \propto \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Kaon}) \\ \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Pion}|\mathsf{Signal}) \propto \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Pion}) \end{array}$$

Also calculate

$$\mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Kaon}|\overline{\mathsf{Signal}}) \text{ and } \mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Pion}|\overline{\mathsf{Signal}})$$

COMPASS

$P_{xy}^{i}(Signal|Pion) \propto P_{xy}^{i}(Pion|Signal)$

$P^i_{xy}(\text{Signal}|\text{Kaon}) \propto P^i_{xy}(\text{Kaon}|\text{Signal})$

Step 4: Calculate likelihoods from probabilities

To obtain the log likelihood just add logarithms of probabilities

$$\begin{split} \log \mathsf{L}(\mathsf{Kaon}) &= \sum_{i=1}^{8} \mathsf{log} \, \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) \cdot \eta^{i} \\ &+ \sum_{i=1}^{8} \mathsf{log} \, \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\overline{\mathsf{Signal}}) \cdot (1 - \eta^{i}) \end{split}$$

Where:

$$\eta^{i} = egin{cases} \mathbf{1} & ext{Signal in PMT i} \\ \mathbf{0} & ext{ no Signal in PMT i} \end{cases}$$

Kaonsample

\$5

Pionsample

55

Beamsample

55

Step 5: Use likelihoods to identify particles

- Compare log likelihoods to get an ID for each CEDAR:
 - $\log L^{K} > \log L^{\pi} + A \Rightarrow PID K$
 - ▶ $\log L^{\pi} > \log L^{K} + B \Rightarrow PID \pi$
 - else no PID given
- Combine CEDARs afterwards

C2 \setminus^{C1}	?	π	K
?	?	π	K
π	π	π	?
K	K	?	K

- ► Tune **A** and **B** due to efficiency/purity.
- Preliminary choice: A = B = 0.1 in the following slides, equivalent to Pⁱ(Kaon) = 1.01 · Pⁱ(Pion) (and vice versa)

Comparing Likelihood ID and Majority ID

82723 Events \Rightarrow 1985 Kaons expected (2.4%)

Comparing Likelihood ID and Majority ID

82723 Events \Rightarrow 1985 Kaons expected (2.4%)

Likelihood ID for Majority Kaons

932 Majority Kaons (1.1%)

Comparing Likelihood ID and Majority ID

82723 Events \Rightarrow 1985 Kaons expected (2.4%)

Where are the additional Kaons?

S

Summary

- COMPASS hadron beam consists of 97% Pions and 2.4% Kaons
- Pions and Kaons have to be identified for analyses
- Majority method identifies 45% of the Kaons
 - Problems with divergent beams
- Likelihood method improves identification for divergent beams
 - Identifies 80% of the Kaons

