Übungsaufgaben zur Vorlesung 08.128.121 im WS 17/18 "Theoretische Physik 2, Elektrodynamik"

Prof. Dr. Peter van Dongen

Institut für Physik, KOMET 7

Aufgabenblatt 04, Abgabe: Montag, 20.11.2017, 10:15 Uhr

Aufgabe 11. Die ein- bzw. zweidimensionale Lorentz-Gruppe (Präsenzaufgabe)

Die aus der Vorlesung bekannte "dreidimensionale" Lorentz-Gruppe \mathcal{L} besteht aus allen reellen, homogenen, linearen Koordinatentransformationen Λ , die den infinitesimalen Abstand $ds \equiv [c^2(dt)^2 - (d\mathbf{x})^2]^{1/2}$ mit $d\mathbf{x} = (dx_1, dx_2, dx_3)$ invariant lassen. Analog kann man die einund zweidimensionalen Lorentz-Gruppen $\mathcal{L}(1)$ bzw. $\mathcal{L}(2)$ betrachten, die die quadratischen Formen $c^2(dt)^2 - (dx_1)^2$ bzw. $c^2(dt)^2 - (dx_1)^2 - (dx_2)^2$ invariant lassen. Wie im Falle des dreidimensionalen Ortsraums kann man auch für $\mathcal{L}(1)$ eine eigentliche [mit $\det(\Lambda) = 1$] orthochrone (mit $\frac{\partial t'}{\partial t} \geq 1$) Untergruppe $\mathcal{L}_+^{\uparrow}(1)$ und analog für $\mathcal{L}(2)$ eine eigentliche orthochrone Untergruppe $\mathcal{L}_+^{\uparrow}(2)$ unterscheiden. Wir werden im Folgenden die Lie-Gruppen-Struktur von $\mathcal{L}_+^{\uparrow}(1)$ und $\mathcal{L}_+^{\uparrow}(2)$ untersuchen und hierbei der Einfachheit halber normale Matrixnotation verwenden.

- (a) Zeigen Sie, dass die Elemente von $\mathcal{L}_{+}^{\uparrow}(1)$ die Form $\Lambda(\phi) = e^{-\phi\sigma_1}$ mit $\phi \in \mathbb{R}$ und $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ besitzen. Berechnen Sie $\Lambda(\phi)$ explizit. Ist $\mathcal{L}_{+}^{\uparrow}(1)$ abelsch? Ist $\mathcal{L}_{+}^{\uparrow}(1)$ kompakt? Bestimmen Sie die Relation $\phi(\beta)$ für den Fall, dass Λ die Geschwindigkeitstransformation zwischen zwei Inertialsystemen K und K' mit $v_{\text{rel}}(K', K) = v$ und $\frac{v}{c} \equiv \beta$ beschreibt.
- (b) Zeigen Sie analog, dass die Elemente von $\mathcal{L}_+^{\uparrow}(2)$ die Form $\Lambda=e^{-i\alpha L-\phi_1 M_1-\phi_2 M_2}$ mit

$$L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad , \quad M_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad , \quad M_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

besitzen. Welche Vertauschungsbeziehungen erfüllen die Erzeuger L, M_1 und M_2 von $\mathcal{L}_+^{\uparrow}(2)$? Ist $\mathcal{L}_+^{\uparrow}(2)$ abelsch? Ist $\mathcal{L}_+^{\uparrow}(2)$ kompakt? Bestimmen Sie die Relationen $\phi_1(\beta)$ und $\phi_2(\beta)$ für den Fall, dass Λ die Geschwindigkeitstransformation zwischen zwei Inertialsystemen K und K' mit $\mathbf{v}_{\mathrm{rel}}(K',K) = v\hat{\mathbf{e}}_2$ und $\frac{v}{c} \equiv \beta$ beschreibt.

Aufgabe 12. Magnetostatik (Hausaufgabe, 4 Punkte)

Das Vektorpotential $\mathbf{A}(\mathbf{x})$ in der Magnetostatik ist (in der Coulomb-Eichung) bekanntlich durch

$$\mathbf{A}(\mathbf{x}) = \int d\mathbf{x}' \; \frac{\mu_0 \, \mathbf{j}(\mathbf{x}')}{4\pi |\mathbf{x} - \mathbf{x}'|}$$

gegeben. Hierbei stellt **j** die Stromdichte dar. In Aufgabe 9 wurde für $|\mathbf{x}| \gg |\mathbf{x}'|$ gezeigt:

$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{x} \left\{ 1 + \frac{\hat{\mathbf{x}} \cdot \mathbf{x}'}{x} + \frac{1}{2x^2} \hat{\mathbf{x}} \cdot \left[3\mathbf{x}'(\mathbf{x}')^{\mathrm{T}} - (x')^2 \mathbb{1} \right] \cdot \hat{\mathbf{x}} + \dots \right\} ,$$

wobei $\mathbf{x}'(\mathbf{x}')^{\mathrm{T}}$ als Dyade zu interpretieren ist. Betrachten wir nun einen stationären Strom $\mathbf{j} \neq \mathbf{0}$ in einem begrenzten Raumbereich nahe dem Ursprung. Bestimmen Sie $\mathbf{A}(\mathbf{x})$ für $x \to \infty$ bis einschließlich $\mathcal{O}\left(\frac{1}{x^3}\right)$. Was ist im Allgemeinen der führende Term in dieser Entwicklung? Wie verhält sich das Magnetfeld also typischerweise für $x \to \infty$? Bestimmen Sie das führende

Verhalten von $\mathbf{A}(\mathbf{x})$ für $x \to \infty$ explizit für einen rechteckigen Stromkreis in der x_1 - x_2 -Ebene:

$$\mathbf{j}(\mathbf{x}) = j \Big[\hat{\mathbf{e}}_1 \left(\delta(x_2 + b) - \delta(x_2 - b) \right) \Theta(a - |x_1|) + \hat{\mathbf{e}}_2 \left(\delta(x_1 - a) - \delta(x_1 + a) \right) \Theta(b - |x_2|) \Big] \delta(x_3) .$$

Hierbei gilt a, b > 0. $\Theta(x)$ ist die Stufenfunktion.

Aufgabe 13. Lorentz-Transformationen in linearer Ordnung (Hausaufgabe, 8 Punkte)

In dieser Aufgabe versuchen wir die Ideen nachzuvollziehen, die Hendrik Antoon Lorentz 1895 zu "seinen" Transformationen geführt haben. Wir wissen bereits, dass die Maxwell-Gleichungen nicht Galilei-invariant sind. Um die Invarianz-Eigenschaften der Maxwell-Theorie besser zu verstehen, untersuchen wir verallgemeinerte Transformationen der Form

$$\mathbf{x}' = \mathbf{x} - \boldsymbol{\beta}ct + \mathcal{O}(\beta^2) \quad , \quad t' = t - \frac{\lambda_1}{c}\boldsymbol{\beta} \cdot \mathbf{x} + \mathcal{O}(\beta^2) \; ,$$
 (1)

wobei (\mathbf{x}',t') und (\mathbf{x},t) die Koordinaten in den Inertialsystemen K' bzw. K sind und K' sich relativ zu K mit der Geschwindigkeit $\mathbf{v} = \boldsymbol{\beta} c$ bewegt. Für die Felder \mathbf{E} und \mathbf{B} erwartet man ein Transformationsverhalten der Form

$$\mathbf{E}' = \mathbf{E} + c\boldsymbol{\beta} \times \mathbf{B} + \mathcal{O}(\beta^2) \quad , \quad \mathbf{B}' = \mathbf{B} - \frac{\lambda_2}{c} \boldsymbol{\beta} \times \mathbf{E} + \mathcal{O}(\beta^2) , \qquad (2)$$

da die lineare Korrektur $\beta \times \mathbf{E}$ korrekterweise wie ein Pseudovektor transformiert wird. Analog erwartet man für die Ladungs- und Stromdichten:

$$\mathbf{j}' = \mathbf{j} - c\boldsymbol{\beta}\rho + \mathcal{O}(\beta^2) \quad \rho' = \rho - \frac{\lambda_3}{c}\boldsymbol{\beta} \cdot \mathbf{j} + \mathcal{O}(\beta^2) . \tag{3}$$

Die jeweils ersten Gleichungen in (1), (2) und (3) werden durch die entsprechende Galilei-Transformation [$\lambda_1 = 0$ in (1)] motiviert. **E'** und **E** sind Kurzformen für **E'**(\mathbf{x}', t') bzw. **E**(\mathbf{x}, t), und analog für **B'** und **B**, **j'** und **j** und ρ' und ρ . Terme von $\mathcal{O}(\beta^2)$ dürfen im Folgenden stets vernachlässigt werden.

- (a) Zeigen Sie, dass die homogenen Maxwell-Gleichungen nur dann unter der Transformation (1)+(2) forminvariant sind, falls $\lambda_1 = \lambda_2$ gilt.
- (b) Zeigen Sie, dass die inhomogenen Maxwell-Gleichungen nur dann unter der Transformation (1)+(2)+(3) forminvariant sind, falls $\lambda_1 = \lambda_2 = \lambda_3 = 1$ gilt.

Hiermit haben Sie die Lorentz-Invarianz der Maxwell-Theorie (zumindest in linearer Ordnung) nachgewiesen.