Theoretische Physik 2 Elektrodynamik

Peter van Dongen

Institut für Physik Johannes Gutenberg-Universität, Mainz

Kursvorlesung im WS 2017/18

Theoretische Physik 2: Elektrodynamik

Inhaltsverzeichnis

	Organisatorisches	► Organisatorisches
1.	Einführung in die Elektrodynamik	1
2.	Spezielle Relativitätstheorie	2
3.	Kanonischer Formalismus	• 3
4.	Die Dynamik der Teilchen	4
5.	Das Noether-Theorem in der Elektrodynamik	> 5
6.	Statische elektromagnetische Felder	6
7.	Die Dynamik der Felder - elektromagnetische Weller	1 7
8.	Ausstrahlung elektromagnetischer Wellen	▶ 8
	Anhang: Hintergrundinformation, einige Beweise	► Anhang
	Anhang: Spezielle Relativitätstheorie in Bildern	▶ SRTBilder

Organisatorisches

Allgemeines
Schein-Kriterien & Zeitaufwand
Modalitäten der Übung
Übungsleitung & Klausur
Vorlesungsinhalte
Literatur

Theoretische Physik 2: Elektrodynamik

└─ Organisatorisches

Allgemeines

Dozent:

▶ Name: Peter G.J. van Dongen

► Zimmer: 03-123 (Physikgebäude)

► Tel.: (39)25609

► E-Mail: Peter.vanDongen@uni-mainz.de

Sekretariat: Elvira Helf, Tel.: (39)25171, Zimmer 03-128

Vorlesung:

► Zeit und Ort: Mo 8-10 HS C 02

Mi 12-14, SR 2 Kph (am 8.11.: HS N6)

- Zielgruppe: Physik- & Mathematikstudierende ab dem 3. Semester
- Geforderte Vorkenntnisse:

MRM, Theoretische Physik 1, Mathematik für Physiker 1/2(a/b)

Schein-Kriterien:

- Scheinvergabe aufgrund der Teilnahme an Übungen & Klausur
- ▶ ≥ 60% der Punkte aus der Übung (Prüfungsvorleistung)
- ▶ ≥ 55% der Punkte aus der Klausur (Modulprüfung)

Stundenzahl Vorlesung & Übung:

- ▶ 4V (+Vor/Nacharbeiten, ungefähr 2 Std./Woche)
- ▶ 2Ü (+Probleme Bearbeiten, bis ungefähr 6 Std./Woche)
- Zum Vor/Nacharbeiten: Es wird ein Skriptum herausgegeben [Tipp: lieber mitdenken als mitschreiben!]

Skript, Handout und Übungsblätter auf der Webseite: http://www.komet337.physik.uni-mainz.de/716_DEU_HTML.php Zugang: einfach mit Ihrem ZDV-Benutzername & -Passwort (wird auf Campus aber nicht benötigt)

Theoretische Physik 2: Elektrodynamik

└─ Organisatorisches

└Modalitäten der Übung

Modalitäten der Übung?

- Übungsblätter werden am Montag während der Vorlesung auf der Webseite eingestellt.
- ▶ Jedes Übungsblatt enthält einen *Präsenzaufgaben* und einen *Hausaufgaben*anteil. 1. Übung in der 2. Woche (mit 2 *Präsenzaufgaben*).
- ► Abgabe von Lösungen des in der vorangegangen Woche verteilten Übungsblatts am Montag bis 10.15 Uhr (Postfach).
- Korrigierte Lösungen werden in der Übung zurückgegeben.
- Jeder gibt die eigenen handschriftlich erstellten Lösungen der Übungsaufgaben ab. Jedoch:
- Die Teilnehmer können Übungen zu zweit abgeben, falls beide an der Übungsstunde teilnehmen.
- ► Fragen an Übungsgruppenleiter über neue Aufgaben möglich und erwünscht.
- ▶ Die Anwesenheit in den Übungen ist erwünscht.
- Vorrechnen durch Teilnehmer von gelösten Übungsaufgaben in der Übung ist erwünscht (→ wissenschaftliche Präsentationen!).

Übungsleitung & Klausur

Übungsleitung: Peter G. J. van Dongen (Kontaktdaten s. oben)

Übungsgruppen(leiter): (E-Mail: X@students.uni-mainz.de)

Gr. 1. Mo. 12-14 SR C, Niklas Keil (X = nikeil, Postfach 31)

Gr. 2. Di. 14-16 SR C, Sascha Kromin (X = skromin, Postfach 32)

Gr. 3. Mi. 16-18 SR D, Jan Rothörl (X = jrothoer, Postfach 33)

Zeit/Ort der Klausur & Klausureinsicht:

- Klausur: Freitag, 23.2.2018, 9-12 Uhr (Hörsaal C03)
- Klausureinsicht: Mittwoch, 28.2.2018, 14-16 Uhr (Newton-Raum)

Theoretische Physik 2: Elektrodynamik

└─ Organisatorisches

└─ Vorlesungsinhalte

Kurze Inhaltsangabe der Vorlesung:

- ▶ Einführung: Die Dynamik von Teilchen und Feldern, Wellen!!
- Kovariante Formulierung der Elektrodynamik: SRT
- Extremalprinzipien: Elektrodynamik als klassische Feldtheorie
- Symmetrien und Invarianzen der Maxwell-Gleichungen, Erhaltungsgrößen
- ► Elektrodynamik makroskopischer Körper, Anwendungen
- ► Ausstrahlung elektromagnetischer Wellen, Anwendungen

Empfehlenswerte Literatur I

L.D. Landau, E.M. Lifschitz

Lehrbuch der Theoretischen Physik Band II (Klassische Feldtheorie)

Akademie-Verlag (Berlin, 1987)

L.D. Landau, E.M. Lifschitz

Lehrbuch der Theoretischen Physik Band VIII (Elektrodynamik der Kontinua)

Akademie-Verlag (Berlin, 1985)

M. Schwartz

Principles of Electrodynamics

Dover Publications (New York, 1987)

Theoretische Physik 2: Elektrodynamik

Organisatorisches

Literatur

Empfehlenswerte Literatur II

J.D. Jackson

Klassische Elektrodynamik

De Gruyter (Berlin, 1983)

H. Römer, M. Forger

Elementare Feldtheorie

VCH (Weinheim, 1993)

W. Pauli

Theory of Relativity

Dover Publications (New York, 1981)

Kapitel 1: Einführung in die Elektrodynamik

▶ Inhaltsverzeichnis

- 1.0 Einführende Bemerkungen
- 1.1 Die Maxwell-Gleichungen
- ▶ 1.2 Statische elektromagnetische Felder
- ▶ 1.3 Elektromagnetische Wellen und der statische Grenzfall
- ▶ 1.4 Elektromagnetische Potentiale
- ▶ 1.5 Sind die Maxwell-Gleichungen Galilei-kovariant?

Theoretische Physik 2: Elektrodynamik

1.0 Einführende Bemerkungen

Basisprinzipien

Basisprinzipien:

Elektrodynamik:

elektromagnetische Felder $\stackrel{\mathrm{WW}}{\longleftrightarrow}$ geladene materielle Teilchen

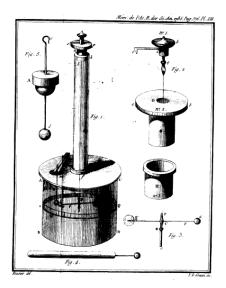
Lorentz-Kovarianz: (SRT!)

Elektrizität + Magnetismus < Elektromagnetismus

Extremalprinzipien:

Klassische Mechanik für Teilchen Klassische Feldtheorie für elektromagnetische Felder

Basisgesetze der Statik: Elektrostatik



Coulombs Drehwaage ("elektrische Balance")

Charles-Augustin de Coulomb (1785)

$$\mathbf{F}_1 = \frac{q_1 q_2}{4\pi\varepsilon_0 x_{12}^2} \hat{\mathbf{x}}_{12} \quad , \quad \mathbf{x}_{12} \equiv \mathbf{x}_1 - \mathbf{x}_2$$

$$\mathbf{F}_2 = -\mathbf{F}_1 \quad , \quad \hat{\mathbf{x}}_{12} \equiv \frac{\mathbf{x}_{12}}{x_{12}} \quad , \quad x_{12} \equiv |\mathbf{x}_{12}|$$

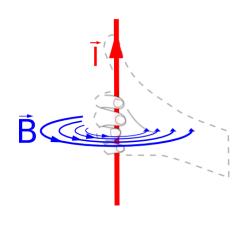
▶ SI-Einheiten

Theoretische Physik 2: Elektrodynamik

1.0 Einführende Bemerkungen

Basisgesetze der Statik

Basisgesetze der Statik: Magnetostatik



B-Feld eines geraden Stromdrahts

Jean-Baptiste Biot, Felix Savart (≃1820)

$$d\mathbf{B} = \frac{\mu_0 I}{4\pi} \frac{d\ell \times \hat{\mathbf{x}}}{\mathbf{x}^2} \quad , \quad \mathbf{x} \equiv x\hat{\mathbf{x}}$$

 $\begin{array}{c} \text{Magnetfeld eines} & \left(\begin{array}{c} \text{unendlich} \\ \text{langen,} \\ \text{geraden} \end{array} \right) \text{ Stromdrahts?} \end{array}$

$$\mathbf{B} = rac{\mu_0 I}{2\pi x_{\perp}} \hat{\mathbf{I}} imes \hat{\mathbf{x}}_{\perp} \quad , \quad x_{\perp} = |\mathbf{x}_{\perp}|$$

($\mathbf{x}_{\perp} \perp \mathbf{I}$ ist Relativvektor zum Stromdraht)

Basisgesetze der Dynamik:

► Hans Christian Ørsted (1820):

Elektrische Ströme \rightarrow Magnetfelder

Michael Faraday (1831):

Zeitlich veränderliche Magnetfelder -> Ströme in Stromkreisen

James Clerk Maxwell (1864):

Zeitlich veränderliche elektrische Felder \rightarrow Magnetfelder

Weitere Vorhersage der Maxwell-Theorie:

Existenz elektromagnetischer Wellen (Experiment: Heinrich Hertz, 1887)

► Hendrik Antoon Lorentz (1892/95/99, 1906):

Lorentz-Kraft, Entwicklung der SRT, "Medium" ↔ "Vakuum"

Theoretische Physik 2: Elektrodynamik

└ 1.1 Die Dynamik der Felder

Maxwell-Gleichungen "im Vakuum"

Maxwell-Gleichungen "im Vakuum":

▶ Warum "Vakuum"?

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$

II.
$$\nabla \cdot \mathbf{B} = 0$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

IV.
$$\mathbf{
abla} imes\mathbf{B}-arepsilon_0\mu_0rac{\partial\mathbf{E}}{\partial t}=\mu_0\mathbf{j}$$

Allgemeine Eigenschaften der Maxwell-Theorie:

- ▶ Logik: (ρ, \mathbf{j}) vorgegeben \rightarrow (\mathbf{E}, \mathbf{B}) zu bestimmen
- Falls (**E**, **B**)-Felder $(\partial_t \rho, \partial_t \mathbf{j})$ beeinflussen: dann sind weitere dynamische Gleichungen für (ρ, \mathbf{j}) benötigt!
- ▶ Maxwell-Gleichungen linear in ρ , **j** − daher: Superpositionsprinzip!
- ► Maxwell-Gln. I + IV \rightarrow Ladungserhaltung: $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$
- Maxwell-Theorie = klassische Feldtheorie [$\mathbf{E}(\mathbf{x},t)$, $\mathbf{B}(\mathbf{x},t) \in \mathbb{R}^3$]
- Maxwell-Theorie stark von H. A. Lorentz mit geprägt, daher manchmal "Maxwell-Lorentz-Gleichungen" (A. Einstein)
- ► Maxwell-Theorie invariant unter *Lorentz-/Poincaré-Gruppe*: Bestandteil einer *relativistischen* Elektrodynamik!

Interpretation der Maxwell-Gleichungen:

▶ Maxwell-Gl. I: $\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$ (verallgemeinertes Coulomb-Gesetz)

$$rac{1}{arepsilon_0} \int_{\mathcal{D}} d\mathbf{x} \;
ho(\mathbf{x},t) = \int_{\mathcal{D}} d\mathbf{x} \; oldsymbol{
abla} \cdot \mathbf{E}(\mathbf{x},t) = \int_{\partial \mathcal{D}} d\mathbf{S} \; \cdot \mathbf{E}(\mathbf{x},t)$$

Wähle: $\rho(\mathbf{x}, t) = q_2 \delta(\mathbf{x})$, $\mathcal{D} = {\mathbf{x} \mid |\mathbf{x}| \leq r}$

Konsequenz: Coulomb-Gesetz $\mathbf{E}(\mathbf{r}) = \frac{q_2}{4\pi\varepsilon_0 r^2} \hat{\mathbf{r}}$, $|\mathbf{r}| = r$

▶ Maxwell-Gl. II: $\nabla \cdot \mathbf{B} = 0$ (keine magnetischen "Monopole")

$$\int_{\partial \mathcal{D}} d\mathbf{S} \cdot \mathbf{B}(\mathbf{x}, t) = 0$$

▶ Magnetische Monopole

Theoretische Physik 2: Elektrodynamik

1.1 Die Dynamik der Felder

Interpretation der Maxwell-Gleichungen

Interpretation der Maxwell-Gleichungen:

▶ Maxwell-Gl. III: $\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$ → Konsequenz:

$$\frac{d\Phi_{\mathcal{F}}}{dt} = \frac{d}{dt} \int_{\mathcal{F}} d\mathbf{S} \cdot \mathbf{B}(\mathbf{x}, t) = -\int_{\mathcal{F}} d\mathbf{S} \cdot (\mathbf{\nabla} \times \mathbf{E}) = -\oint_{\partial \mathcal{F}} d\mathbf{x} \cdot \mathbf{E}(\mathbf{x}, t)$$

Fazit: Zeitliche Änderung des magnetischen Flusses durch $\mathcal{F} \to \mathsf{Induktionsspannung}$ in Schleife $\partial \mathcal{F}$ ("Faraday'sches Induktionsgesetz")

▶ Maxwell-Gl. IV: $\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}$ \rightarrow Konsequenz:

$$\mu_0 \int_{\mathcal{F}} d\mathbf{S} \cdot \left(\mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) = \int_{\mathcal{F}} d\mathbf{S} \cdot (\mathbf{\nabla} \times \mathbf{B}) = \oint_{\partial \mathcal{F}} d\mathbf{x} \cdot \mathbf{B}$$

Fazit: Elektrische Ströme/zeitlich veränderliche elektrische Felder \rightarrow Magnetfelder ("Ampère'sches Durchflutungsgesetz"; Ørsted, Maxwell)

Maxwell-Gleichungen "im Medium"

Herleitung der Maxwell-Gleichungen "im Medium" durch räumliche Mittelung der Gleichungen "im Vakuum":

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$

II.
$$\nabla \cdot \mathbf{B} = 0$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$
 IV. $\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}$

über Bereiche $\simeq (10^2 \, \rm \mathring{A})^3$

Effekte der { Polarisation **P** | Magnetisierung **M** Im Medium:

Definiere Hilfsfelder:
$$\mathbf{D} \equiv \varepsilon_0 \mathbf{E} + \mathbf{P}$$
, $\mathbf{H} \equiv \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$ \Rightarrow

I.
$$\nabla \cdot \mathbf{D} = \rho$$

II.
$$\nabla \cdot \mathbf{B} = 0$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$
 IV. $\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{j}$

Theoretische Physik 2: Elektrodynamik

└ 1.1 Die Dynamik der Felder

└ Materialgleichungen

Materialgleichungen

Polarisation, Magnetisierung in linearen, isotropen Medien:

$$\left. egin{aligned} \mathbf{H} &= rac{1}{\mu_0} \mathbf{B} - \mathbf{M} \\ \mathbf{D} &= arepsilon_0 \mathbf{E} + \mathbf{P} \end{aligned}
ight. \qquad \mathrm{mit} \qquad \mathbf{M} &= oldsymbol{\chi}_\mathrm{m} \mathbf{H} \quad , \quad rac{1}{arepsilon_0} \mathbf{P} &= oldsymbol{\chi}_\mathrm{e} \mathbf{E} \end{aligned}$$

$$\mathsf{M} = oldsymbol{\chi}_\mathrm{m} \mathsf{H} \quad , \quad rac{1}{arepsilon_0} \mathsf{P} = oldsymbol{\chi}_\mathrm{e} \mathsf{E}$$

(χ_{m} , $\chi_{\mathrm{e}}=$ magnetische bzw. dielektrische Suszeptibilität)

$$\text{Konsequenz:} \quad \frac{1}{\mu_0} \mathbf{B} = (1 + \chi_\mathrm{m}) \mathbf{H} \equiv \textcolor{red}{\mu_\mathrm{r}} \mathbf{H} \quad , \quad \frac{1}{\varepsilon_0} \mathbf{D} = (1 + \chi_\mathrm{e}) \mathbf{E} \equiv \textcolor{red}{\varepsilon_\mathrm{r}} \mathbf{E}$$

(relative Permeabilität $\mu_{\rm r}$, relative Dielektrizitätskonstante $\varepsilon_{\rm r}$)

Beziehung Maxwell-Gleichungen "im Medium" und "im Vakuum":

Ersetze: $\mu_0 \to \mu \equiv \mu_r \mu_0$, $\varepsilon_0 \to \varepsilon \equiv \varepsilon_r \varepsilon_0$ \to Konsequenz:

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon} \rho$$
 IV. $\nabla \times \mathbf{B} - \varepsilon \mu \frac{\partial \mathbf{E}}{\partial t} = \mu \mathbf{j}$

1.2 Statische elektromagnetische Felder

Maxwell-Gleichungen "im Vakuum":

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$

II.
$$\nabla \cdot \mathbf{B} = 0$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$
 IV. $\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}$

Streng zeit*un*abhängige Felder $\mathbf{E}(\mathbf{x})$, $\mathbf{B}(\mathbf{x})$ nur falls $\begin{cases} \partial_t \rho = 0 \\ \partial_t \mathbf{i} = \mathbf{0} \end{cases} \Rightarrow$

$$\left(oldsymbol{
abla}\cdotoldsymbol{\mathsf{E}}
ight)\left(oldsymbol{\mathsf{x}}
ight)=rac{1}{arepsilon_0}
ho(oldsymbol{\mathsf{x}})$$

$$oldsymbol{
abla} imes oldsymbol{\mathsf{E}}=oldsymbol{\mathsf{0}}$$

$$\mathbf{\nabla}\cdot\mathbf{B}=0$$

$$(\mathbf{\nabla} \times \mathbf{B})(\mathbf{x}) = \mu_0 \mathbf{j}(\mathbf{x})$$

Viel interessanter:

zeitgemitteltes Verhalten von (E,B) für (ρ,j) räumlich begrenzt

Theoretische Physik 2: Elektrodynamik

1.2 Statische elektromagnetische Felder

Gleichungen der Statik durch Zeitmittelung

Statische elektromagnetische Felder

Zeitmittelung:

$$\frac{\overline{\partial \mathbf{E}}}{\partial t} \equiv \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, \frac{\partial \mathbf{E}}{\partial t}(\mathbf{x}, t) = \lim_{T \to \infty} \frac{\mathbf{E}(\mathbf{x}, T) - \mathbf{E}(\mathbf{x}, 0)}{T} = \mathbf{0}$$

Analog: $\frac{\overline{\partial \mathbf{B}}}{\overline{\partial t}} = \mathbf{0} \rightarrow \mathsf{Maxwell-Gleichungen}$:

$$\begin{split} \left(\nabla \cdot \overline{\mathbf{E}}\right)(\mathbf{x}) &= \overline{\left(\nabla \cdot \mathbf{E}\right)(\mathbf{x})} = \frac{1}{\varepsilon_0} \overline{\rho}(\mathbf{x}, t) \equiv \frac{1}{\varepsilon_0} \overline{\rho}(\mathbf{x}) \\ \nabla \times \overline{\mathbf{E}} &= \overline{\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t}} = \mathbf{0} \\ \nabla \cdot \overline{\mathbf{B}} &= \overline{\nabla \cdot \mathbf{B}} = \mathbf{0} \\ \nabla \times \overline{\mathbf{B}} &= \overline{\nabla \times \mathbf{B} - \varepsilon_0 \mu_0} \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \overline{\mathbf{j}}(\mathbf{x}, t) \equiv \mu_0 \overline{\mathbf{j}}(\mathbf{x}) \end{split}$$

 $(\overline{\mathbf{E}}, \overline{\mathbf{B}}, \overline{\rho}, \overline{\mathbf{j}})$ erfüllen Gleichungen der Elektro- bzw. Magnetostatik! Fazit:

Statische elektromagnetische Felder

"Wirbelgleichungen": Vektoridentität $\nabla \times (\nabla \times \mathbf{a}) = \nabla (\nabla \cdot \mathbf{a}) - \Delta \mathbf{a} \rightarrow$

$$\mathbf{0} = \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \overline{\boldsymbol{\mathsf{E}}}) = \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \overline{\boldsymbol{\mathsf{E}}}) - \Delta \overline{\boldsymbol{\mathsf{E}}}$$

$$\nabla \times (\mu_0 \overline{\mathbf{j}}) = \nabla \times (\nabla \times \overline{\mathbf{B}}) = \nabla (\nabla \cdot \overline{\mathbf{B}}) - \Delta \overline{\mathbf{B}}$$

Daher:

$$\Delta \overline{\mathbf{E}} = \mathbf{\nabla} \left(\mathbf{\nabla} \cdot \overline{\mathbf{E}} \right) = \frac{1}{\varepsilon_0} \mathbf{\nabla} \bar{\rho} \quad , \quad \Delta \overline{\mathbf{B}} = \mathbf{\nabla} \left(\mathbf{\nabla} \cdot \overline{\mathbf{B}} \right) - \mu_0 \mathbf{\nabla} \times \overline{\mathbf{j}} = -\mu_0 \mathbf{\nabla} \times \overline{\mathbf{j}}$$

Fazit: $(\overline{E}, \overline{B})$ - Komponenten erfüllen Poisson-Gleichungen:

$$(\Delta u)(\mathbf{x}) = -q(\mathbf{x})$$
 [$u(\mathbf{x})$ Feld , $q(\mathbf{x})$ Quelle des Feldes]

Poisson-Gleichung i. A. nicht eindeutig lösbar:

- ▶ $u(\mathbf{x})$ Lösung \Rightarrow $(\forall \mathbf{a} \in \mathbb{R}^3, \lambda \in \mathbb{R})$ auch $\tilde{u}(\mathbf{x}) \equiv u(\mathbf{x}) + \mathbf{a} \cdot \mathbf{x} + \lambda$ Lösung
- ▶ Fordere daher: $u(x) \rightarrow 0 \quad (|x| \rightarrow \infty)$

Explizite Form der Lösung mit $u \to 0$ für $|\mathbf{x}| \to \infty$:

$$u(\mathbf{x}) = \frac{1}{4\pi} \int d\mathbf{x}' \, \frac{q(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}$$
 (Behauptung)

Theoretische Physik 2: Elektrodynamik

└─1.2 Statische elektromagnetische Felder

Gleichungen der Statik durch Zeitmittelung

Statische elektromagnetische Felder

Lösung von $(\Delta u)(\mathbf{x}) = -q(\mathbf{x})$ mit $u \to 0$ für $|\mathbf{x}| \to \infty$:

$$u(\mathbf{x}) = \frac{1}{4\pi} \int d\mathbf{x}' \, \frac{q(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}$$
 (Behauptung)

Beweis:

1. Bedingung $u \to 0$ $(x \to \infty)$ ist erfüllt:

$$u(\mathbf{x}) \sim rac{1}{4\pi x} \int d\mathbf{x}' \; q(\mathbf{x}')
ightarrow 0 \quad (x
ightarrow \infty)$$

da

$$Q \equiv \int d\mathbf{x}' \; q(\mathbf{x}') < \infty$$
 [Quellen lokalisiert]

2. Es gilt:

$$\Delta\left(-\frac{1}{4\pi x}\right) = \delta(\mathbf{x}) \quad , \quad \Delta = \sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}} \qquad (\mathsf{Behauptung})$$

[Dirac'sche Deltafunktion: $\int d\mathbf{x}' \ f(\mathbf{x}') \delta(\mathbf{x}' - \mathbf{x}) = f(\mathbf{x})$] und daher:

$$\Delta u = rac{1}{4\pi} \int d\mathbf{x}' \; q(\mathbf{x}') \Delta rac{1}{|\mathbf{x} - \mathbf{x}'|} \stackrel{!}{=} - \int d\mathbf{x}' \; q(\mathbf{x}') \delta(\mathbf{x} - \mathbf{x}') = -q(\mathbf{x})$$

Statische elektromagnetische Felder

Beweis von $\Delta\left(-\frac{1}{4\pi x}\right) = \delta(\mathbf{x})$: Für alle $\mathbf{x} \neq \mathbf{0}$ gilt

$$\Delta \frac{1}{x} = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} \left(-\frac{1}{x^2} \frac{\partial x}{\partial x_i} \right) = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} \left(-\frac{x_i}{x^3} \right) = \sum_{i=1}^{3} \left(-\frac{1}{x^3} + \frac{3x_i}{x^4} \frac{\partial x}{\partial x_i} \right)$$

$$= -\frac{3}{x^3} + 3\sum_{i=1}^{3} \frac{x_i^2}{x^5} = 0$$

Außerdem, mit $\mathcal{D}_{\varepsilon} \equiv \{\mathbf{x} \mid |\mathbf{x}| \leq \varepsilon, \, \varepsilon > 0\}$:

$$\begin{split} \int_{\mathcal{D}_{\varepsilon}} d\mathbf{x} \; \Delta \left(-\frac{1}{4\pi x} \right) \; &= \int_{\mathcal{D}_{\varepsilon}} d\mathbf{x} \; \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \left(-\frac{1}{4\pi x} \right) \; = \int_{\partial \mathcal{D}_{\varepsilon}} d\mathbf{S} \cdot \boldsymbol{\nabla} \left(-\frac{1}{4\pi x} \right) \\ &= \int_{\partial \mathcal{D}_{\varepsilon}} d\mathbf{S} \cdot \frac{\hat{\mathbf{x}}}{4\pi x^2} = \frac{1}{4\pi \varepsilon^2} \int_{\partial \mathcal{D}_{\varepsilon}} d\mathbf{S} \cdot \hat{\mathbf{x}} = 1 \end{split}$$

Daher:

[Deltafunktion ist verallgemeinerte Funktion, Funktional]

$$\int d\mathbf{x} \ f(\mathbf{x}) \Delta \left(-\frac{1}{4\pi x} \right) = \lim_{\varepsilon \downarrow 0} \int_{\mathcal{D}_{\varepsilon}} d\mathbf{x} \ f(\mathbf{x}) \Delta \left(-\frac{1}{4\pi x} \right) = f(\mathbf{0}) \lim_{\varepsilon \downarrow 0} \int_{\mathcal{D}_{\varepsilon}} d\mathbf{x} \ \Delta \left(-\frac{1}{4\pi x} \right)$$
$$= f(\mathbf{0}) \lim_{\varepsilon \downarrow 0} 1 = f(\mathbf{0}) \qquad \Box$$

Theoretische Physik 2: Elektrodynamik

1.2 Statische elektromagnetische Felder

Lösung der Gleichungen der Statik

Lösung der Gleichungen der Statik

Resultate:

Konsequenzen für $\overline{\mathbf{E}}$ - und $\overline{\mathbf{B}}$ -Felder:

$$\overline{\mathbf{E}}(\mathbf{x}) = -rac{1}{4\piarepsilon_0}\int d\mathbf{x}'\;rac{(oldsymbol{
abla}ar{
ho})(\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|}\quad,\quad \overline{\mathbf{B}}(\mathbf{x}) = rac{\mu_0}{4\pi}\int d\mathbf{x}'\;rac{\left(oldsymbol{
abla} imesar{\mathbf{j}}
ight)(\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|}$$

(Allgemeines Problem der Elektro-/Magnetostatik vollständig gelöst!)

Partielle Integration:

$$\overline{\mathbf{E}}(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int d\mathbf{x}' \; \bar{\rho}(\mathbf{x}') \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^3}$$
 (Coulomb-Gesetz)

$$\overline{\mathbf{B}}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int d\mathbf{x}' \, \frac{\overline{\mathbf{j}}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3}$$
 (Biot-Savart-Gesetz)

Analogie zum Gravitationsgesetz

Massendichte $ho(\mathbf{x},t)
ightarrow \mathsf{Gravitationskraft}$

Beispiel: Gravitationskraft auf Punktteilchen der schweren Masse m

$$m\ddot{\mathbf{x}} = m\mathbf{g}(\mathbf{x}, t)$$

mit

$$\mathbf{g}(\mathbf{x},t) = \mathcal{G} \int \!\! d\mathbf{x}' \; \rho(\mathbf{x}',t) \frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3} = \mathcal{G} \!\! \int \!\! d\mathbf{x}' \; \rho(\mathbf{x}',t) \boldsymbol{\nabla} \frac{1}{|\mathbf{x} - \mathbf{x}'|} = \mathcal{G} \!\! \int \!\! d\mathbf{x}' \; \frac{(\boldsymbol{\nabla} \rho)(\mathbf{x}',t)}{|\mathbf{x} - \mathbf{x}'|}$$

Einerseits:

$$(\Delta \mathbf{g})(\mathbf{x}, t) = \mathcal{G} \int d\mathbf{x}' (\nabla \rho)(\mathbf{x}', t) \Delta \frac{1}{|\mathbf{x} - \mathbf{x}'|} = -4\pi \mathcal{G} \int d\mathbf{x}' (\nabla \rho)(\mathbf{x}', t) \delta(\mathbf{x} - \mathbf{x}')$$
$$= -4\pi \mathcal{G}(\nabla \rho)(\mathbf{x}, t)$$

Andererseits:

$$\begin{aligned} \left(\boldsymbol{\nabla} \cdot \mathbf{g} \right) (\mathbf{x}, t) &= \boldsymbol{\nabla} \cdot \left[\mathcal{G} \int d\mathbf{x}' \; \rho(\mathbf{x}', t) \boldsymbol{\nabla} \frac{1}{|\mathbf{x} - \mathbf{x}'|} \right] = \mathcal{G} \int d\mathbf{x}' \; \rho(\mathbf{x}', t) \Delta \frac{1}{|\mathbf{x} - \mathbf{x}'|} \\ &= -4\pi \mathcal{G} \int d\mathbf{x}' \; \rho(\mathbf{x}', t) \delta(\mathbf{x} - \mathbf{x}') = -4\pi \mathcal{G} \rho(\mathbf{x}, t) \end{aligned}$$

Theoretische Physik 2: Elektrodynamik

____1.2 Statische elektromagnetische Felder

Analogie zum Gravitationsgesetz

Analogie zum Gravitationsgesetz

Einerseits:

$$(\Delta \mathbf{g})(\mathbf{x},t) = -4\pi \mathcal{G}(\mathbf{\nabla}
ho)(\mathbf{x},t)$$

Andererseits:

$$(\mathbf{\nabla} \cdot \mathbf{g})(\mathbf{x},t) = -4\pi \mathcal{G} \rho(\mathbf{x},t)$$

Fazit: Analogie Gravitationstheorie \leftrightarrow Elektrostatik!

$$(\mathbf{g}, m, \mathcal{G}, \rho) \qquad \leftrightarrow \qquad (\overline{\mathbf{E}}, q, -\frac{1}{4\pi\varepsilon_0}, \overline{\rho})$$

$$\Delta \mathbf{g} = -4\pi \mathcal{G} \mathbf{\nabla}
ho \qquad \leftrightarrow \qquad \Delta \overline{\mathbf{E}} = \frac{1}{arepsilon_0} \mathbf{\nabla} ar{
ho}$$

$$\mathbf{\nabla}\cdot\mathbf{g} = -4\pi\mathcal{G}
ho \qquad \leftrightarrow \qquad \mathbf{\nabla}\cdot\overline{\mathbf{E}} = \frac{1}{arepsilon}ar{
ho}$$

[Unterschied: Zeitabhängigkeit von $\mathbf{g}(\mathbf{x}, t)$ und $\rho(\mathbf{x}, t)$ grundsätzlich beliebig]

1.3 Elektromagnetische Wellen und der statische Grenzfall

Maxwell-Gleichungen:

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$

III.
$$\mathbf{
abla} imes \mathbf{E} + rac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

II.
$$\nabla \cdot \mathbf{B} = 0$$

IV.
$$\nabla imes \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}$$

Konsequenz für B-Feld: [Vektoridentität
$$\nabla \times (\nabla \times \mathbf{a}) = \nabla (\nabla \cdot \mathbf{a}) - \Delta \mathbf{a}$$
]

$$\frac{1}{c^2}\frac{\partial^2 \mathbf{B}}{\partial t^2} = -\varepsilon_0 \mu_0 \mathbf{\nabla} \times \frac{\partial \mathbf{E}}{\partial t} = \mathbf{\nabla} \times (\mu_0 \mathbf{j} - \mathbf{\nabla} \times \mathbf{B}) = \mu_0 \mathbf{\nabla} \times \mathbf{j} + \Delta \mathbf{B}$$

Definition des d'Alembert-Operators:

$$\Box \equiv rac{1}{c^2}rac{\partial^2}{\partial t^2} - \Delta \quad \Rightarrow \quad \Box \, \mathbf{B} = \mu_0 oldsymbol{
abla} imes \mathbf{j}$$

Analog für **E**-Feld:

[Wellengleichungen! (Maxwell, Hertz)]

$$\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \frac{\partial}{\partial t} \left(\mathbf{\nabla} \times \mathbf{B} - \mu_0 \mathbf{j} \right) = -\mathbf{\nabla} \times \left(\mathbf{\nabla} \times \mathbf{E} \right) - \mu_0 \frac{\partial \mathbf{j}}{\partial t}
= \Delta \mathbf{E} - \mathbf{\nabla} \left(\mathbf{\nabla} \cdot \mathbf{E} \right) - \mu_0 \frac{\partial \mathbf{j}}{\partial t} \quad \Rightarrow \quad \Box \mathbf{E} = -\frac{1}{\varepsilon_0} \left(\mathbf{\nabla} \rho + \frac{1}{c^2} \frac{\partial \mathbf{j}}{\partial t} \right)$$

Theoretische Physik 2: Elektrodynamik

1.3 Elektromagnetische Wellen und der statische Grenzfall

Wellengleichungen und der statische Grenzfall

Wellengleichungen und der statische Grenzfall

 $\Box \mathbf{B} = \mu_0 \mathbf{\nabla} \times \mathbf{j}$, $\Box \mathbf{E} = -\frac{1}{\varepsilon_0} \left(\mathbf{\nabla} \rho + \frac{1}{c^2} \frac{\partial \mathbf{j}}{\partial t} \right)$ Wellengleichungen:

Streng zeitunabhängige Ladungen und Ströme

- E, B ebenfalls zeitunabhängig
- **E**, **B** erfüllen Poisson-Gleichungen:

$$\Delta \mathbf{E} = rac{1}{arepsilon_0} \mathbf{
abla}
ho \qquad , \quad \Delta \mathbf{B} = -\mu_0 \mathbf{
abla} imes \mathbf{j}$$

Viel interessanter: langsam in der Zeit variierende Ladungen und Ströme

- **b** Betrachte räumlich lokalisierte, mit typischer Frequenz ω oszillierende Quelle
- Ausbreitungsgeschwindigkeit der elektromagnetischen Wellen im Vakuum: c
- **E**, **B** durch typische Wellenlänge $\lambda = \frac{2\pi c}{\omega}$ charakterisiert
- Typische Ausdehnung der Quelle: a
- Typischer Abstand des Experimentators von der Quelle: x
- ► Falls ω klein $(a \ll \lambda, x \ll \lambda)$ \Rightarrow Wellennatur des Feldes nicht sichtbar!
- Stattdessen: zeitlich langsam veränderliches Feld einer effektiv statischen Ladungs- und Stromverteilung!

Wellengleichungen und der statische Grenzfall

Formal: Wellengleichungen \rightarrow Poisson-Gleichungen:

$$(\Delta \mathbf{E})(\mathbf{x},t) = rac{1}{arepsilon_0}(\mathbf{
abla}
ho)(\mathbf{x},t) \quad , \quad (\Delta \mathbf{B})(\mathbf{x},t) = -\mu_0\left(\mathbf{
abla} imes\mathbf{j}
ight)(\mathbf{x},t)$$

Coulomb-Gesetz: [ρ zeitlich langsam veränderlich]

$$\mathbf{E}(\mathbf{x},t) = \frac{1}{4\pi\varepsilon_0} \int d\mathbf{x}' \; \rho(\mathbf{x}',t) \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^3}$$

Biot-Savart-Gesetz: [j zeitlich langsam veränderlich]

$$\mathsf{B}(\mathsf{x},t) = \frac{\mu_0}{4\pi} \int d\mathsf{x}' \, \frac{\mathsf{j}(\mathsf{x}',t) \times (\mathsf{x}-\mathsf{x}')}{|\mathsf{x}-\mathsf{x}'|^3}$$

Raumbereich $\{x \mid |x| \ll \lambda\}$: Nahzone, instantane Wechselwirkungen!

► Elektromagnetische Potentiale

Theoretische Physik 2: Elektrodynamik

1.4 Elektromagnetische Potentiale

Existenz elektromagnetischer Potentiale

1.4 Elektromagnetische Potentiale

Maxwell-Gln. II + III \rightarrow (**E**, **B**) mit Potentialen (Φ , **A**) darstellbar:

$$\mathbf{E} = -\mathbf{\nabla}\Phi - \frac{\partial \mathbf{A}}{\partial t}$$
 , $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$

denn:

▶ Maxwell-Gleichung II $(\nabla \cdot \mathbf{B} = 0)$ \Leftrightarrow

$$\mathbf{B} = \mathbf{\nabla} imes \int d\mathbf{x}' \; rac{(\mathbf{\nabla} imes \mathbf{B})(\mathbf{x}',t)}{4\pi \, |\mathbf{x} - \mathbf{x}'|} \quad o \quad \mathbf{B} = \mathbf{\nabla} imes \mathbf{A}$$

► Einsetzen von $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$ in Maxwell-Gl. III $(\mathbf{\nabla} \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0})$ \rightarrow $\mathbf{\nabla} \times (\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t}) = \mathbf{0}$ \Rightarrow $\mathbf{\nabla} \times \mathbf{e} = \mathbf{0}$, $\mathbf{e} \equiv \mathbf{E} + \frac{\partial \mathbf{A}}{\partial t}$

Generell:

$$\mathbf{\nabla} \times \mathbf{e} = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{e} = -\mathbf{\nabla} \int d\mathbf{x}' \, \frac{(\mathbf{\nabla} \cdot \mathbf{e})(\mathbf{x}',t)}{4\pi \, |\mathbf{x} - \mathbf{x}'|} \quad \rightarrow \quad \mathbf{e} = -\mathbf{\nabla} \Phi$$

[Beweis: verwende Identität $\Delta\left(-\frac{1}{4\pi \times}\right) = \delta(\mathbf{x})$]

Verallgemeinerung für allgemeine Vektorfelder $\mathbf{a}(\mathbf{x}, t)$

Satz (Stokes 1849, Helmholtz 1858)

 $\mathbf{a}(\mathbf{x},t)$ differenzierbar/integrierbar, für $|\mathbf{x}| \to \infty$ genügend schnell abfallend \Rightarrow

$$\mathbf{a}(\mathbf{x},t) = -\nabla \int d\mathbf{x}' \; \frac{(\nabla \cdot \mathbf{a})(\mathbf{x}',t)}{4\pi \, |\mathbf{x} - \mathbf{x}'|} \; + \nabla \times \int d\mathbf{x}' \; \frac{(\nabla \times \mathbf{a})(\mathbf{x}',t)}{4\pi \, |\mathbf{x} - \mathbf{x}'|}$$

Beweis.

Basiert wiederum auf $\Delta\left(-\frac{1}{4\pi x}\right) = \delta(\mathbf{x})$. (Siehe Übung!)

Theoretische Physik 2: Elektrodynamik

_____1.4 Elektromagnetische Potentiale

L Eichungen

Eichungen

Potentiale (\mathbf{A}, Φ) nicht eindeutig durch (\mathbf{E}, \mathbf{B}) bestimmt:

Äquivalente Potentiale: $\widetilde{\mathbf{A}} = \mathbf{A} - \frac{1}{c} \nabla \Lambda$, $\widetilde{\Phi} = \Phi + \frac{1}{c} \frac{\partial \Lambda}{\partial t}$

denn:
$$\widetilde{\mathbf{E}} = -\nabla \widetilde{\Phi} - \frac{\partial \widetilde{\mathbf{A}}}{\partial t} = \mathbf{E}$$
, $\widetilde{\mathbf{B}} = \nabla \times \widetilde{\mathbf{A}} = \mathbf{B}$

Kommentare:

- ► Eichinvarianz ≘ Gesetz der Ladungserhaltung
- Oft vorteilhaft: Zusatzbedingung an (A, Φ) ("Eichung")
- Beispiele: Coulomb-Eichung, Lorenz-Eichung, ...

Beispiel: Coulomb-Eichung (daher auch: Transversalitätsbedingung)

$$\nabla \cdot \mathbf{A}(\mathbf{x},t) = 0$$

[Vorteil z. B. bei Fourier-Entwicklung: $\mathbf{k} \cdot \mathbf{A}(\mathbf{k}, t) = 0$]

Beispiel: Coulomb-Eichung (Transversalitätsbedingung)

Coulomb-Eichung: (auch: Transversalitätsbedingung)

$$\nabla \cdot \mathbf{A}(\mathbf{x},t) = 0$$

[Vorteil z. B. bei Fourier-Entwicklung: $\mathbf{k} \cdot \mathbf{A}(\mathbf{k}, t) = 0$]

Coulomb-Eichung lässt sich immer realisieren:

$$\mathbf{
abla}\cdot\tilde{\mathbf{A}}
eq 0 \quad \Rightarrow \quad \chi(\mathbf{x},t) \equiv -rac{c}{4\pi}\int d\mathbf{x}'\;rac{(\mathbf{
abla}\cdot\tilde{\mathbf{A}})(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|}$$

Die neuen Potentiale $\mathbf{A} \equiv \tilde{\mathbf{A}} - \frac{1}{c} \mathbf{\nabla} \chi$, $\Phi \equiv \tilde{\Phi} + \frac{1}{c} \frac{\partial \chi}{\partial t}$ erfüllen:

- ► Transversalitätsbedingung $\nabla \cdot \mathbf{A} = 0$ [verwende $\Delta \frac{1}{x} = -4\pi \delta(\mathbf{x})$]
- lacktriangle Poisson-Gleichung $\Delta\Phi=-rac{1}{arepsilon_0}
 ho({f x},t)$

Fordere $\Phi(\mathbf{x},t) \to 0$ für $|\mathbf{x}| \to \infty$ \Rightarrow eindeutige Lösung:

$$\Phi(\mathbf{x},t) = \frac{1}{4\pi\varepsilon_0} \int d\mathbf{x}' \; \frac{\rho(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|} \qquad \qquad \text{(instantanes Coulomb-Potential)}$$

Theoretische Physik 2: Elektrodynamik

1.5 Sind die Maxwell-Gleichungen Galilei-kovariant?

Transformationsverhalten von Ableitungen

1.5 Sind die Maxwell-Gleichungen Galilei-kovariant?

Lorentz'sche Bewegungsgleichung invariant unter

$$\mathbf{x}' = \sigma R(\alpha)^{-1} (\mathbf{x} - \mathbf{v}_{\alpha} t - \boldsymbol{\xi}_{\alpha})$$
, $t' = t - \tau$

falls:

$$\mathbf{E}'(\mathbf{x}',t') = \sigma R(\alpha)^{-1} \left[\mathbf{E}(\mathbf{x},t) + \mathbf{v}_{\alpha} \times \mathbf{B}(\mathbf{x},t) \right]$$

 $\mathbf{B}'(\mathbf{x}',t') = R(\alpha)^{-1} \mathbf{B}(\mathbf{x},t)$

Zu untersuchen: Kovarianz der Maxwell-Gleichungen?

Ableitungen: wegen $\mathbf{x} = \sigma R(\alpha)\mathbf{x}' + \mathbf{v}_{\alpha}(t'+\tau) + \boldsymbol{\xi}_{\alpha}$, $t = t' + \tau$ gilt

$$\frac{\partial}{\partial x_i'} = \frac{\partial x_j}{\partial x_i'} \frac{\partial}{\partial x_i} = \sigma \left[R(\alpha) \right]_{ji} \frac{\partial}{\partial x_i} = \sigma \left[R(\alpha)^{-1} \right]_{ij} \frac{\partial}{\partial x_i} \quad \Rightarrow \quad \nabla' = \sigma R(\alpha)^{-1} \nabla$$

und

$$\frac{\partial}{\partial t'} = \frac{\partial}{\partial t} + \mathbf{v}_{\alpha} \cdot \mathbf{\nabla}$$

Kovarianz der homogenen Maxwell-Gleichungen

Homogene Maxwell-Gleichungen:

$$0 \stackrel{?}{=} \nabla' \cdot \mathbf{B}' = \left[\sigma R(\alpha)^{-1} \nabla \right] \cdot \left[R(\alpha)^{-1} \mathbf{B} \right] = \sigma \nabla \cdot \mathbf{B} \stackrel{!}{=} 0$$

$$0 \stackrel{?}{=} \nabla' \times \mathbf{E}' + \frac{\partial \mathbf{B}'}{\partial t'} = \left[\sigma R(\alpha)^{-1} \nabla \right] \times \left\{ \sigma R(\alpha)^{-1} \left[\mathbf{E}(\mathbf{x}, t) + \mathbf{v}_{\alpha} \times \mathbf{B}(\mathbf{x}, t) \right] \right\}$$

$$+ R(\alpha)^{-1} \frac{\partial \mathbf{B}}{\partial t'}$$

$$= R(\alpha)^{-1} \left\{ \nabla \times \left[\mathbf{E}(\mathbf{x}, t) + \mathbf{v}_{\alpha} \times \mathbf{B}(\mathbf{x}, t) \right] + \frac{\partial \mathbf{B}}{\partial t} + (\mathbf{v}_{\alpha} \cdot \nabla) \mathbf{B} \right\}$$

$$= R(\alpha)^{-1} \left[\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} \right] = R(\alpha)^{-1} \mathbf{0} \stackrel{!}{=} \mathbf{0}$$

mit:

$$oldsymbol{
abla} imes (oldsymbol{\mathsf{v}}_lpha imes oldsymbol{\mathsf{B}}) = (oldsymbol{
abla} \cdot oldsymbol{\mathsf{B}}) oldsymbol{\mathsf{v}}_lpha - (oldsymbol{\mathsf{v}}_lpha \cdot oldsymbol{
abla}) oldsymbol{\mathsf{B}} = - (oldsymbol{\mathsf{v}}_lpha \cdot oldsymbol{
abla}) oldsymbol{\mathsf{B}}$$

Fazit: homogene Maxwell-Gleichungen mit Galilei-Kovarianz verträglich!

Theoretische Physik 2: Elektrodynamik

1.5 Sind die Maxwell-Gleichungen Galilei-kovariant?

Transformationsverhalten der Ladungen und Ströme

Transformationsverhalten der Ladungen und Ströme

Quellen ρ und **j**:

$$ho \equiv \sum_i q_i \, \delta(\mathbf{x} - \mathbf{x}_i(t)) \quad , \quad \mathbf{j} \equiv \sum_i q_i \, \dot{\mathbf{x}}_i(t) \, \delta(\mathbf{x} - \mathbf{x}_i(t))$$

Recherregel: $\delta(A\mathbf{x} + \mathbf{b}) = \frac{1}{|\det(A)|} \delta(\mathbf{x} + A^{-1}\mathbf{b}) \Rightarrow$

$$\delta(\mathbf{x}_1' - \mathbf{x}_2') = \delta(\sigma R(\boldsymbol{\alpha})^{-1}(\mathbf{x}_1 - \mathbf{x}_2)) = \delta(\mathbf{x}_1 - \mathbf{x}_2)$$

Konsequenzen:

$$\rho'(\mathbf{x}',t') = \sum_{i} q_{i} \,\delta\big(\mathbf{x}' - \mathbf{x}'_{i}(t')\big) = \sum_{i} q_{i} \,\delta\big(\mathbf{x} - \mathbf{x}_{i}(t)\big) = \rho(\mathbf{x},t) \quad , \quad \rho' = \rho$$

$$\mathbf{j}'(\mathbf{x}',t') = \sum_{i} q_{i} \,\dot{\mathbf{x}}'_{i}(t') \,\delta\big(\mathbf{x}' - \mathbf{x}'_{i}(t')\big) = \sum_{i} q_{i} \,\sigma R(\alpha)^{-1} \left[\dot{\mathbf{x}}_{i}(t) - \mathbf{v}_{\alpha}\right] \,\delta\big(\mathbf{x} - \mathbf{x}_{i}(t)\big)$$

$$= \sigma R(\alpha)^{-1} \left[\sum_{i} q_{i} \,\dot{\mathbf{x}}_{i}(t) \,\delta\big(\mathbf{x} - \mathbf{x}_{i}(t)\big) - \mathbf{v}_{\alpha} \sum_{i} q_{i} \,\delta\big(\mathbf{x} - \mathbf{x}_{i}(t)\big)\right]$$

$$= \sigma R(\alpha)^{-1} \left[\mathbf{j}(\mathbf{x},t) - \mathbf{v}_{\alpha} \rho(\mathbf{x},t)\right] \quad , \quad \mathbf{j}' = \sigma R(\alpha)^{-1} (\mathbf{j} - \mathbf{v}_{\alpha} \rho)$$

Kontinuitätsgleichung erfüllt?

Transformationsverhalten der Ladungen und Ströme, kurz:

$$\rho' = \rho$$
 , $\mathbf{j}' = \sigma R(\alpha)^{-1} (\mathbf{j} - \mathbf{v}_{\alpha} \rho)$

Orthogonale Transformation $(\mathbf{v}_{\alpha} = \mathbf{0} \; , \; \boldsymbol{\xi}_{\alpha} = \mathbf{0}) \; \Rightarrow \; \begin{cases} \rho \; \mathsf{Skalar} \\ \mathbf{j} \; \mathsf{echter} \; \mathsf{Vektor} \end{cases}$

Kovarianz der Kontinuitätsgleichung:

$$0 \stackrel{?}{=} \frac{\partial \rho'}{\partial t'} + \nabla' \cdot \mathbf{j}' = \left(\frac{\partial}{\partial t} + \mathbf{v}_{\alpha} \cdot \nabla\right) \rho + \left[\sigma R(\alpha)^{-1} \nabla\right] \cdot \left[\sigma R(\alpha)^{-1} (\mathbf{j} - \mathbf{v}_{\alpha} \rho)\right]$$
$$= \frac{\partial \rho}{\partial t} + \mathbf{v}_{\alpha} \cdot (\nabla \rho) + \nabla \cdot \mathbf{j} - \mathbf{v}_{\alpha} \cdot (\nabla \rho)$$
$$= \frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} \stackrel{!}{=} 0$$

Fazit:

Konzept von $\left\{\begin{array}{c} Ladungs-\\ Strom- \end{array}\right\}$ dichten an sich mit Galilei-Kovarianz verträglich!

Theoretische Physik 2: Elektrodynamik

1.5 Sind die Maxwell-Gleichungen Galilei-kovariant?

Kovarianz der inhomogenen Maxwell-Gleichungen?

Kovarianz der inhomogenen Maxwell-Gleichungen?

Transformation der inhomogenen Maxwell-Gleichungen:

$$\frac{1}{\varepsilon_0} \rho' \stackrel{?}{=} \nabla' \cdot \mathbf{E}' = \left[\sigma R(\alpha)^{-1} \nabla \right] \cdot \left[\sigma R(\alpha)^{-1} (\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B}) \right]
= \nabla \cdot (\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B}) = \nabla \cdot \mathbf{E} - \mathbf{v}_{\alpha} \cdot (\nabla \times \mathbf{B})
= \frac{1}{\varepsilon_0} \rho - \mathbf{v}_{\alpha} \cdot (\nabla \times \mathbf{B}) \neq \frac{1}{\varepsilon_0} \rho'$$

und:

$$\mu_{0}\mathbf{j}' \stackrel{?}{=} \mathbf{\nabla}' \times \mathbf{B}' - \varepsilon_{0}\mu_{0} \frac{\partial \mathbf{E}'}{\partial t'} = \left(\sigma R^{-1}\mathbf{\nabla}\right) \times \left(R^{-1}\mathbf{B}\right)$$

$$- \varepsilon_{0}\mu_{0}\sigma R^{-1} \left(\frac{\partial}{\partial t} + \mathbf{v}_{\alpha} \cdot \mathbf{\nabla}\right) \left(\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B}\right)$$

$$= \sigma R^{-1} \left[\mathbf{\nabla} \times \mathbf{B} - \varepsilon_{0}\mu_{0} \left(\frac{\partial}{\partial t} + \mathbf{v}_{\alpha} \cdot \mathbf{\nabla}\right) \left(\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B}\right)\right]$$

$$= \sigma R^{-1} \left\{\mu_{0}\mathbf{j} - \varepsilon_{0}\mu_{0} \left[\mathbf{v}_{\alpha} \times \frac{\partial \mathbf{B}}{\partial t} + (\mathbf{v}_{\alpha} \cdot \mathbf{\nabla})\mathbf{E} + (\mathbf{v}_{\alpha} \cdot \mathbf{\nabla})(\mathbf{v}_{\alpha} \times \mathbf{B})\right]\right\}$$

Kovarianz der inhomogenen Maxwell-Gleichungen?

Transformation der inhomogenen Maxwell-Gleichungen:

$$\mathbf{
abla}'\cdot\mathbf{E}'=rac{1}{arepsilon_0}
ho-\mathbf{v}_lpha\cdot(\mathbf{
abla} imes\mathbf{B})
eqrac{1}{arepsilon_0}
ho'$$

und

[verwende
$$\mathbf{j} = \sigma R(\boldsymbol{\alpha})\mathbf{j}' + \mathbf{v}_{\alpha}\rho$$
]

$$\mu_{0}\mathbf{j}' \stackrel{?}{=} \mathbf{\nabla}' \times \mathbf{B}' - \varepsilon_{0}\mu_{0} \frac{\partial \mathbf{E}'}{\partial t'}$$

$$= \sigma R^{-1} \left\{ \mu_{0}\mathbf{j} - \varepsilon_{0}\mu_{0} \left[\mathbf{v}_{\alpha} \times \frac{\partial \mathbf{B}}{\partial t} + (\mathbf{v}_{\alpha} \cdot \mathbf{\nabla})\mathbf{E} + (\mathbf{v}_{\alpha} \cdot \mathbf{\nabla})(\mathbf{v}_{\alpha} \times \mathbf{B}) \right] \right\}$$

$$= \mu_{0}\mathbf{j}' + \varepsilon_{0}\mu_{0}\sigma R^{-1} \left[\frac{1}{\varepsilon_{0}}\mathbf{v}_{\alpha}\rho + \mathbf{v}_{\alpha} \times (\mathbf{\nabla} \times \mathbf{E}) - (\mathbf{v}_{\alpha} \cdot \mathbf{\nabla})\mathbf{E} - (\mathbf{v}_{\alpha} \cdot \mathbf{\nabla})(\mathbf{v}_{\alpha} \times \mathbf{B}) \right] \neq \mu_{0}\mathbf{j}'$$

Fazit: Inhomogene Maxwell-Gleichungen unverträglich mit Galilei-Kovarianz!

Gesucht: Konstruktion einer einheitlichen Theorie von Teilchen und Feldern

Gefunden: Spezielle Relativitätstheorie! (S. Kapitel 2)

Theoretische Physik 2: Elektrodynamik

Kapitel 2: Spezielle Relativitätstheorie

▶ Inhaltsverzeichnis

- ▶ 2.1 Die Postulate und einige erste Konsequenzen
- 2.2 Der Abstand und die Eigenzeit
- ▶ 2.3 4-Schreibweise und Lorentz-Transformationen
- 2.4 Physikalische Konsequenzen der Lorentz-Invarianz
- ▶ 2.5 4-Vektoren
- 2.6 Masse und Energie
- ▶ 2.7 Die Lorentz-Kraft und elektromagnetische Felder

Die Postulate

Postulate der Speziellen Relativitätstheorie (SRT):

- 1. Relativitätspostulat (wie für Newton'sche Mechanik)
- 2. Die Lichtgeschwindigkeit im Vakuum hat in allen Inertialsystemen denselben Wert $c = 299792458 \,\text{m/s}$

Alternativ:

2. Der infinitesimale Abstand $ds = [c^2(dt)^2 - (dx)^2]^{1/2}$ ist in der SRT eine *absolute* (d.h. beobachterunabhängige) Größe

Weitere (implizite) Annahmen der SRT:

- ▶ (nicht-gekrümmte) vierdimensionale Raum-Zeit ⇒
 - Anwendungsbereich: nur elektromagnetische Kräfte
 - Maxwell-Gleichungen! Lorentz'sche Bewegungsgleichung!
- Punktteilchen
- Homogenität/Isotropie/Inversionssymmetrie des Raums

Theoretische Physik 2: Elektrodynamik

____2.1 Die Postulate und einige erste Konsequenzen

└ Die Postulate

Fine Kurze Geschichte der Raum-Zeit

[Quelle: Abraham Pais, "Subtle is the Lord" (Oxford University Press, 1982)]

- ► Lorentz-Transformation in linearer Ordnung (Lorentz, 1895)
- Larmor, 1898; Lorentz 1899; Poincaré, 1905)
- ► (Fitzgerald-)Lorentz-Kontraktion (Fitzgerald, 1889; Lorentz, 1892)
- ► Lorentz-Kraft (Lorentz, 1895)
- ► Kovariante Formulierung der Elektrodynamik (Lorentz, 1904)
- ▶ Poincaré, 1905:
 - Gruppenstruktur der Lorentz-Transformationen
 - ► Relativitätsprinzip
 - Invarianz der Eigenzeit
 - Additionsgesetz für Geschwindigkeiten
- ► Einstein, 1905:
 - Reduktion der Theorie auf zwei Postulate
 - Transversaler Doppler-Effekt
 - "Zwillingsparadoxon"
 - Fresnel-Formel $c' = \frac{c}{n} + v \left(1 \frac{1}{n^2}\right)$

Erste Konsequenzen der Postulate

Direkte Konsequenzen: ("Gedankenexperimente")

[Bezugssysteme K' und K mit Relativgeschwindigkeit $\mathbf{v}_{\mathrm{rel}}(K',K) = \mathbf{v}$]

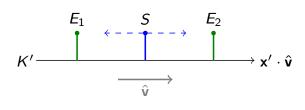
- Beobachterabhängigkeit der Gleichzeitigkeit
- ▶ Invarianz von Längen ⊥ v
- ► Transformation von Zeitintervallen ("Zeitdilatation")
- ▶ Transformation von Längen || v ("Lorentz-Kontraktion")

Theoretische Physik 2: Elektrodynamik

2.1 Die Postulate und einige erste Konsequenzen

Erste Konsequenzen der Postulate

Beobachterabhängigkeit der Gleichzeitigkeit

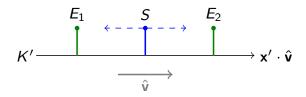


Gedankenexperiment mit Sender und Empfängern [Bezugssysteme K' und K mit Relativgeschwindigkeit $\mathbf{v}_{rel}(K', K) = \mathbf{v}$]

Gedankenexperiment:

- → ∃ in K':
 - ein Sender S (ruht)
 - zwei Empfänger E₁ und E₂
 (ruhen in gleichem Abstand von S in ŷ-Richtung)
- Zur Zeit t = 0:
 S sendet zwei Lichtsignale aus,
 eins zu E₁ und eins zu E₂

Wer empfängt das Signal zuerst?



Gedankenexperiment mit Sender und Empfängern

2. Postulat:

Lichtgeschwindigkeit = c in K und K'

- ⇒ Gedankenmessergebnis:
 - Beide Empfänger erhalten ihre Signale gleichzeitig in K'
 - ► In K erhält E₁ sein Signal zuerst, da E₁ sich auf das Licht zubewegt

Fazit:

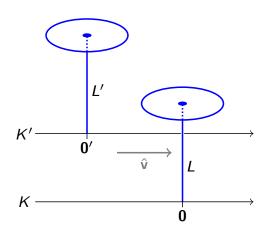
- Gleichzeitige Ereignisse in K' sind i.A. nicht gleichzeitig in K
- ► Gleiche Zeitintervalle in K' sind i.A. ungleich in K

Theoretische Physik 2: Elektrodynamik

____2.1 Die Postulate und einige erste Konsequenzen

Erste Konsequenzen der Postulate

Invarianz von Längen \perp **v**



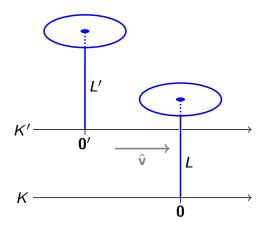
Invarianz einer Länge senkrecht zur Geschwindigkeitsrichtung

[Bezugssysteme K' und K mit Relativgeschwindigkeit $\mathbf{v}_{\mathrm{rel}}(K',K) = \mathbf{v}$]

Gedankenexperiment:

- ▶ \exists in Ursprüngen von K und K':
 - jeweils 1 Latte (L bzw. L'), Ruhelänge ℓ , Ausrichtung $\perp \mathbf{v}$, Kreissäge am oberen Ende
- ▶ **0** und **0**′ fallen für t = t' = 0 zusammen

Welche Latte wird abgesägt?



Invarianz einer Länge senkrecht zur Geschwindigkeitsrichtung

1. Postulat: (Relativitätsprinzip) Alle physikalischen Gesetze für Beobachter in K und K' gleich

- \Rightarrow Gedankenmessergebnis in K:
 - ► L' nicht kürzer als L
 - ► L' nicht länger als L

Fazit: L und L' gleich lang!

Theoretische Physik 2: Elektrodynamik

2.1 Die Postulate und einige erste Konsequenzen

Erste Konsequenzen der Postulate

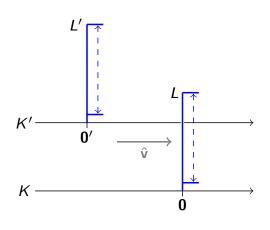
Transformation von Zeitintervallen ("Zeitdilatation")

[Bezugssysteme K' und K mit Relativgeschwindigkeit $\mathbf{v}_{rel}(K', K) = \mathbf{v}$]

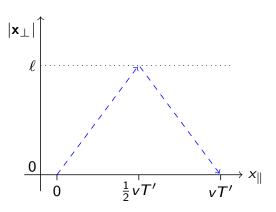
- ▶ \exists in Ursprüngen von K und K':
 - jeweils 1 Latte $\perp \mathbf{v}$ (L bzw. L'), Ruhelänge ℓ , mit jeweils 1 Spiegel am oberen & unteren Ende
- ▶ sende Lichtstrahl hin und her zwischen beiden Spiegeln (→ 2 identische Uhren)
- Periode dieser Uhren im jeweiligen Ruhesystem: $T = 2\ell/c$

Gesucht:

Periode T' der bewegten Uhr in K' aus der Sicht eines Beobachters in K



Zwei identische Uhren in den Inertialsystemen K und K'



Berechnung der Periode einer sich relativ zum Beobachter mit der Geschwindigkeit *v* bewegenden Uhr

2. Postulat:

Lichtgeschwindigkeit = c in K und K'

- \Rightarrow Gedankenmessergebnis in K:
 - ▶ In 1 Periode vom Licht aus der Sicht des Beobachters in K zurückgelegter Weg:

$$2\sqrt{\ell^2 + \left(\frac{1}{2}vT'\right)^2} \stackrel{!}{=} cT'$$

ightharpoonup Lichtgeschwindigkeit = c in K \rightarrow

$$T' = rac{2\ell/c}{\sqrt{1-\left(rac{arphi}{c}
ight)^2}} \equiv rac{T}{\sqrt{1-eta^2}} \equiv \gamma\, T$$

Fazit: T' > T \Rightarrow bewegte Uhren laufen langsamer! (Zeitdilatation)

Theoretische Physik 2: Elektrodynamik

2.1 Die Postulate und einige erste Konsequenzen

Erste Konsequenzen der Postulate

Transformation von Längen | v ("Lorentz-Kontraktion")

[Bezugssysteme K' und K mit Relativgeschwindigkeit $\mathbf{v}_{rel}(K',K) = \mathbf{v}$]

Gedankenexperiment:

- ∃ in K':
 - ▶ 1 Latte $\parallel \mathbf{v}$ (also nur L'), Ruhelänge ℓ , "Uhr" mit 2 Spiegeln, Periode in K'und K ist T bzw. T'
- Definition:

[Reisezeiten eines Lichtstrahls zwischen beiden Spiegeln (in K-Zeit)]

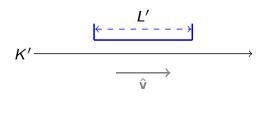
$$t_{
m LR}^\prime$$
 bzw. $t_{
m RL}^\prime$ $(t_{
m LR}^\prime + t_{
m RL}^\prime = {\cal T}^\prime)$

Zur Lorentz-Kontraktion

K

Gesucht:

Länge ℓ' der Uhr (gemessen in K)



Zur Lorentz-Kontraktion

2. Postulat:

Lichtgeschwindigkeit = c in K und K'

 \Rightarrow Gedankenmessergebnis in K:

$$egin{align} t_{
m LR}' &= rac{\ell' + v t_{
m LR}'}{c} &, & t_{
m RL}' &= rac{\ell' - v t_{
m RL}'}{c} \ t_{
m LR}' &= rac{\ell'/c}{1-eta} &, & t_{
m RL}' &= rac{\ell'/c}{1+eta} \end{array}$$

Daher Periode in K-Zeit:

$$egin{align} \gamma T &= T' = t'_{
m LR} + t'_{
m RL} = rac{\ell'}{c} \left(rac{1}{1-eta} + rac{1}{1+eta}
ight) \ &= rac{2\ell'/c}{1-eta^2} = rac{2\gamma^2\ell'}{c} \end{aligned}$$

Fazit: $\ell' = \frac{Tc}{2\gamma} = \frac{\ell}{\gamma} \implies$

bewegte Längen $\parallel \mathbf{v}$ sind $\textit{verk\"{u}rzt}$ im

Vergleich zur Ruhelänge! (Lorentz-Kontraktion)

Theoretische Physik 2: Elektrodynamik

_____2.2 Der Abstand und die Eigenzeit

L Definition des Abstandes

Der Abstand

Lichtsignal im Inertialsystem K: $(\mathbf{x}_1, t_1) \rightarrow (\mathbf{x}_2, t_2) \Rightarrow$ $c^2(t_2 - t_1)^2 - (\mathbf{x}_2 - \mathbf{x}_1)^2 = 0$

Koordinaten in K' mit $\mathbf{v}_{rel}(K', K) = \mathbf{v}$: $(\mathbf{x}_1', t_1') \rightarrow (\mathbf{x}_2', t_2')$ $\Rightarrow \text{ analog: } c^2(t_2' - t_1')^2 - (\mathbf{x}_2' - \mathbf{x}_1')^2 = 0$

Definition des Abstands zwischen Ereignissen bei (x_1, t_1) und (x_2, t_2) :

$$s \equiv [c^2(t_2 - t_1)^2 - (\mathbf{x}_2 - \mathbf{x}_1)^2]^{\frac{1}{2}}$$

Aufgrund der Postulate: Aussage s=0 beobachterunabhängig (d.h. gültig in allen Inertialsystemen, falls in irgendeinem)

Der infinitesimale Abstand

Definition: Abstand infinitesimal benachbarter Ereignisse bei (\mathbf{x}, t) und $(\mathbf{x} + d\mathbf{x}, t + dt)$ in K:

$$ds = \sqrt{c^2(dt)^2 - (d\mathbf{x})^2}$$
 (kein exaktes Differential!)

[alternativ: Linienelement, differentielles (Raum-Zeit-)Intervall]

Analog in K': $ds' = \sqrt{c^2(dt')^2 - (d\mathbf{x}')^2}$

Aufgrund der Postulate: ds = 0 in $K \Rightarrow ds' = 0$ $(\forall K')$

Geometrische Interpretation in K: $(\frac{d\mathbf{x}}{dt} \equiv \mathbf{u}, \frac{\mathbf{u}}{c} \equiv \boldsymbol{\beta}_u)$

$$(ds)^2 = c^2 (dt)^2 - (dx)^2 = c^2 (dt)^2 \left(1 - \frac{\mathbf{u}^2}{c^2}\right) = c^2 (dt)^2 (1 - \beta_u^2)$$

Daher: ds=0 in $K\Leftrightarrow \boldsymbol{\beta}_u$ auf Kugel mit $\left\{egin{array}{c} \mathsf{Radius}\ 1 \\ \mathsf{Mittelpunkt}\ oldsymbol{0} \end{array}\right\}\Leftrightarrow |\mathbf{u}|=c$

Theoretische Physik 2: Elektrodynamik

2.2 Der Abstand und die Eigenzeit

Geometrische Interpretation von ds' = 0 in K'

Geometrische Interpretation von ds' = 0 in K'

Annahme:
$$\mathbf{x}' = \mathbf{x}'(\mathbf{x}, t; \mathbf{v})$$
 und $t' = t'(\mathbf{x}, t; \mathbf{v}) \Rightarrow$

$$\begin{pmatrix} c \ dt' \\ d\mathbf{x}' \end{pmatrix} = \Lambda \begin{pmatrix} c \ dt \\ d\mathbf{x} \end{pmatrix} \quad , \quad \Lambda(\mathbf{x}, t; \mathbf{v}) \equiv \begin{pmatrix} \frac{\partial t'}{\partial t} & c \left(\frac{\partial t'}{\partial \mathbf{x}} \right)^{\mathrm{T}} \\ \frac{1}{c} \frac{\partial \mathbf{x}'}{\partial t} & \frac{\partial \mathbf{x}'}{\partial \mathbf{x}} \end{pmatrix}$$
 (reell)

Konsequenz:

$$(ds')^{2} = c^{2} (dt')^{2} - (d\mathbf{x}')^{2} = \begin{pmatrix} c \ dt' \\ d\mathbf{x}' \end{pmatrix}^{T} \begin{pmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & -1 \end{pmatrix} \begin{pmatrix} c \ dt' \\ d\mathbf{x}' \end{pmatrix}$$

$$= \begin{pmatrix} c \ dt \\ d\mathbf{x} \end{pmatrix}^{T} B \begin{pmatrix} c \ dt \\ d\mathbf{x} \end{pmatrix} = c^{2} (dt)^{2} \begin{pmatrix} 1 \\ \beta_{u} \end{pmatrix}^{T} B \begin{pmatrix} 1 \\ \beta_{u} \end{pmatrix}$$

mit

$$B(\mathbf{x},t;\mathbf{v}) \equiv \stackrel{\sim}{\Lambda} \begin{pmatrix} \mathbf{1} & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & -1 \end{pmatrix} \Lambda$$
 (reell, symmetrisch)

Fordere nun:

 $ds' = 0 \Leftrightarrow Gleichung für <math>\beta_u$ in K' ist Kugel mit Radius 1, Mittelpunkt $\mathbf{0}$!

Geometrische Interpretation von ds' = 0 in K'

Forderung: ds' = 0 in $K' \Leftrightarrow \beta_u \in \text{Kugel mit Radius 1, Mittelpunkt } \mathbf{0}$

$$\text{Konsequenz:} \qquad B = \frac{1}{\varepsilon} \begin{pmatrix} 1 & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & -1 \!\!\! 1 \end{pmatrix} \quad , \quad \varepsilon = \varepsilon(\mathbf{x},t;\mathbf{v}) \in \mathbb{R} \backslash \{0\}$$

Daher infinitesimaler Abstand in K':

$$(ds')^2 = rac{1}{arepsilon}c^2(dt)^2(1-oldsymbol{eta}_u^2) = rac{1}{arepsilon}(ds)^2 \quad \Rightarrow \quad \left(rac{ds}{ds'}
ight)^2 = arepsilon(\mathbf{x},t;\mathbf{v})$$

Homogenität des Raums und der Zeit, Isotropie des Raums \rightarrow

$$(ds)^2 = \varepsilon(v)(ds')^2$$

Umgekehrt: Transformation $K' \to K$ mit $\mathbf{v}_{\mathrm{rel}}(K, K') = -\mathbf{v} \to K$

$$(ds')^2 = \varepsilon(v)(ds)^2 \quad \Rightarrow \quad (ds)^2 = [\varepsilon(v)]^2(ds)^2 \quad \Rightarrow \quad [\varepsilon(v)]^2 = 1$$

Kontinuität $\rightarrow \varepsilon(v) = 1 \Rightarrow (ds)^2 = (ds')^2!$

Theoretische Physik 2: Elektrodynamik

2.2 Der Abstand und die Eigenzeit

Lorentz-Transformationen und das Uhrenparadoxon

Konsequenzen

▶ Bestimmungsgleichung für Koordinatentransformationen:

$$\varepsilon = 1 \quad \Rightarrow \quad B = \begin{pmatrix} \mathbf{1} & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} = \overset{\sim}{\Lambda} \begin{pmatrix} \mathbf{1} & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \Lambda \qquad \begin{pmatrix} \text{Lorentz-} \\ \text{Transformationen!} \end{pmatrix}$$

▶ Invarianter infinitesimaler Abstand ds \Leftrightarrow $\begin{pmatrix} \text{invariante infinite-} \\ \text{simale Zeit } d\tau \end{pmatrix}$:

$$d au \equiv rac{ds}{c} = \sqrt{1 - rac{1}{c^2} \left(rac{d\mathbf{x}}{dt}
ight)^2} dt = \sqrt{1 - \left(rac{u}{c}
ight)^2} dt = \sqrt{1 - eta_u^2} dt = rac{dt}{\gamma_u}$$

Nomenklatur: au ist "Eigenzeit" des bewegten Bezugssystems

Integration $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$

$$au_2 - au_1 = \int_{t_1}^{t_2} \!\! dt \; \sqrt{1 - eta_u(t)^2} = \int_{t_1}^{t_2} \!\! dt \; rac{1}{\gamma_u(t)}$$

Einstein (1905): "Theorem" , populär: $\begin{cases} Uhren-\\ Zwillings- \end{cases}$ paradoxon

4-Schreibweise

Startpunkt: invarianter Abstand infinitesimal benachbarter Ereignisse:

$$(ds)^{2} = c^{2}(dt)^{2} - (d\mathbf{x})^{2} = \begin{pmatrix} d(ct) \\ d\mathbf{x} \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} 1 & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} d(ct) \\ d\mathbf{x} \end{pmatrix} = \begin{pmatrix} d(ct) \\ d(-\mathbf{x}) \end{pmatrix} \cdot \begin{pmatrix} d(ct) \\ d\mathbf{x} \end{pmatrix}$$

Definitionen:

kontravarianter 4-Ortsvektor:

$$x^{\mu} \equiv (ct, \mathbf{x})$$
 $(\mu = 0, 1, 2, 3)$

metrischer Tensor:

$$g_{\mu
u} = g^{\mu
u} \equiv egin{pmatrix} 1 & \mathbf{0}^{\mathrm{T}} \ \mathbf{0} & -1 \end{pmatrix}$$

kovarianter 4-Ortsvektor:

$$x_{\mu} \equiv g_{\mu\nu} x^{
u} = (ct, -\mathbf{x})$$

Eigenschaften des metrischen Tensors:

$$g_{\mu\nu}g^{
u
ho}=g_{\mu}^{
ho}\equiv\delta_{\mu}^{
ho}$$
 , $g^{\mu\nu}g_{
u
ho}=g_{\rho}^{}=\delta_{\rho}^{}$ ($\delta_{\mu}^{
ho},\ \delta_{\rho}^{\mu}$: Kronecker- δ)

Theoretische Physik 2: Elektrodynamik

2.3 Die 4-Schreibweise und Lorentz-Transformationen

4-Schreibweise

4-Schreibweise - Fortsetzung

- kontravarianter 4-Ortsvektor: $x^{\mu} \equiv (ct, \mathbf{x}) \quad (\mu = 0, 1, 2, 3)$
- lacktriangledown metrischer Tensor: $g_{\mu
 u} = g^{\mu
 u} \equiv egin{pmatrix} 1 & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & -1 \end{pmatrix}$
- kovarianter 4-Ortsvektor: $x_{\mu} \equiv g_{\mu\nu} x^{\nu} = (ct, -\mathbf{x})$
- $lackbr{lack}$ Eigenschaften: $g_{\mu
 u} g^{
 u
 ho} = g_{\mu}^{
 ho} \equiv \delta_{\mu}^{
 ho}$, $g^{\mu
 u} g_{
 u
 ho} = g_{
 ho}^{} = \delta_{
 ho}^{}$

Ko- bzw. kontravariante Ableitungen:

$$\partial_{\mu} \equiv rac{\partial}{\partial x^{\mu}} \quad , \quad \partial^{\mu} = \mathsf{g}^{\mu
u} \partial_{
u} \stackrel{!}{=} rac{\partial}{\partial x_{\mu}}$$

d'Alembert-Operator $\square = \mathsf{Skalarprodukt} \ \partial_{\mu} \partial^{\mu}$:

$$\Box = rac{1}{c^2}rac{\partial^2}{\partial t^2} - \Delta = oldsymbol{g}^{\mu
u}\partial_{\mu}\partial_{
u} = \partial_{\mu}\partial^{\mu}$$

Quadrat des Raum-Zeit-Intervalls ds:

$$c^{2}(d\tau)^{2}=(ds)^{2}=c^{2}(dt)^{2}-(d\mathbf{x})^{2}=g_{\mu\nu}dx^{\mu}dx^{\nu}=dx_{\mu}dx^{\mu}$$

Poincaré- oder inhomogene Lorentz-Transformationen

... sind lineare Transformationen von x^{μ} , die $d\tau$ invariant lassen:

$$x^{\mu} \rightarrow (x')^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu}$$

mit $\Lambda^{\mathrm{T}}g\Lambda=g$, denn:

$$c^2(d au)^2 = g_{\mu
u}dx^\mu dx^
u = g_{\mu
u}d(x')^\mu d(x')^
u = g_{\mu
u}\Lambda^\mu_{
ho}\Lambda^
u_{\sigma}dx^
ho dx^\sigma \stackrel{!}{=} g_{
ho\sigma}dx^
ho dx^\sigma$$
 $\Rightarrow g_{
ho\sigma} = g_{\mu
u}\Lambda^\mu_{
ho}\Lambda^
u_{\sigma} \equiv (\Lambda^{
m T})^\mu_{
ho}g_{\mu
u}\Lambda^
u_{\sigma} \Rightarrow g = \Lambda^{
m T}g\Lambda$

Inverse Lorentz-Transformation: $\Lambda^{-1} = g\Lambda^{T}g \Rightarrow$

$$(\Lambda^{-1})^{\mu}_{\ \nu} = (g\Lambda^{\mathrm{T}}g)^{\mu}_{\ \nu} = g^{\mu}_{\ \rho}(\Lambda^{\mathrm{T}})^{\rho}_{\ \sigma}g^{\sigma}_{\ \nu} = (\Lambda^{\mathrm{T}})^{\mu}_{\ \nu} = \Lambda_{\nu}^{\ \mu}$$

Achtung:

$$[\,\mathsf{daher}\colon\, \mathsf{det}(\Lambda^{\mathrm{T}}) = \mathsf{det}(\tilde{\Lambda}) = \mathsf{det}(\Lambda)\,]$$

transponiert
$$[(\Lambda^{\mathrm{T}})^{\mu}_{\ \nu} \equiv \Lambda_{\nu}^{\ \mu} = g_{\nu\rho}g^{\mu\sigma}\Lambda^{\rho}_{\ \sigma}] \neq \text{gespiegelt } [(\tilde{\Lambda})^{\mu}_{\ \nu} \equiv \Lambda^{\nu}_{\ \mu}]$$

Beziehung Poincaré- \leftrightarrow Lorentz-Transformationen:

$$\mbox{Poincar\'e-Transformation} = \begin{pmatrix} \mbox{Lorentz-Transformation} \\ + \\ \mbox{Translation} \end{pmatrix}$$

Theoretische Physik 2: Elektrodynamik

2.3 Die 4-Schreibweise und Lorentz-Transformationen

Poincaré- und Lorentz-Transformationen

Lorentz-Transformationen als Gruppe

Lorentz-Transformationen bilden Gruppe: die Lorentz-Gruppe £

$$g \stackrel{?}{=} (\Lambda_2^{\mathrm{T}} \Lambda_1^{\mathrm{T}}) g(\Lambda_1 \Lambda_2) = \Lambda_2^{\mathrm{T}} (\Lambda_1^{\mathrm{T}} g \Lambda_1) \Lambda_2 = \Lambda_2^{\mathrm{T}} g \Lambda_2 \stackrel{!}{=} g$$

- $\blacktriangleright \ \, \Lambda^{\mathrm{T}} g \Lambda = g \quad \Rightarrow \quad \left[\mathsf{det}(\Lambda) \right]^2 = 1 \quad \Rightarrow \quad \mathsf{det}(\Lambda) = \pm 1$
- Untergruppe: $[1 = g_0^0 = (\Lambda^T)_{\rho}^0 g_{\sigma}^{\rho} \Lambda^{\sigma}_0 = (\Lambda^0_0)^2 \sum_{i=1}^3 (\Lambda^i_0)^2]$ eigentliche orthochrone Lorentz-Gruppe \mathcal{L}_+^{\uparrow} mit $\Lambda^0_0 \geq 1$ und $\det(\Lambda) = 1$

 \mathcal{L}_+^{\uparrow} enthält ...

1. die Drehungen $\Lambda_{\mathrm{R}}(\alpha)$ um eine feste Achse $\hat{\alpha}$:

$$\Lambda_{\mathrm{R}}(\boldsymbol{lpha}) = \left(egin{array}{cc} 1 & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & R(\boldsymbol{lpha}) \end{array}
ight)$$

mit

$$R(\alpha)\mathbf{x} = \hat{\alpha}(\hat{\alpha} \cdot \mathbf{x}) - \hat{\alpha} \times (\hat{\alpha} \times \mathbf{x})\cos(\alpha) + (\hat{\alpha} \times \mathbf{x})\sin(\alpha)$$

2.3 Die 4-Schreibweise und Lorentz-Transformationen

 \sqsubseteq Untergruppe \mathcal{L}^{\uparrow}

$\mathcal{L}_{+}^{\uparrow}$ enthält

- 1. die Drehungen $\Lambda_{\mathrm{R}}(lpha)$ um eine feste Achse \hat{lpha}
- 2. die Geschwindigkeitstransformationen $\Lambda_{\rm B}(\phi,\hat{\boldsymbol{\beta}})$ ("boosts"):

$$egin{aligned} & \Lambda_{\mathrm{B}}(\phi,\hat{oldsymbol{eta}}) = 1 + egin{pmatrix} [\cosh(\phi)-1] & -\sinh(\phi)\hat{oldsymbol{eta}}^{\mathrm{T}} \ -\sinh(\phi)\hat{oldsymbol{eta}} & [\cosh(\phi)-1]\hat{oldsymbol{eta}}\hat{oldsymbol{eta}}^{\mathrm{T}} \end{pmatrix} \quad , \quad \mathbf{v} = c \tanh(\phi)\hat{oldsymbol{eta}} \end{aligned}$$

Explizite Form der Geschwindigkeitstransformation:

▶ Konsequenzen

$$\begin{pmatrix} ct' \\ \mathbf{x}' \end{pmatrix} = \begin{pmatrix} \cosh(\phi)ct - \sinh(\phi)(\mathbf{x} \cdot \hat{\boldsymbol{\beta}}) \\ -\sinh(\phi)ct\hat{\boldsymbol{\beta}} + [\mathbf{x} - (\mathbf{x} \cdot \hat{\boldsymbol{\beta}})\hat{\boldsymbol{\beta}}] + \cosh(\phi)(\mathbf{x} \cdot \hat{\boldsymbol{\beta}})\hat{\boldsymbol{\beta}} \end{pmatrix}$$

 $\text{Vereinfachung:} \quad \text{Relation } \cosh(\phi) = \left[1 - \tanh^2(\phi)\right]^{-1/2} = \left[1 - \beta^2\right]^{-1/2} = \gamma \ \, \rightarrow \ \,$

$$egin{pmatrix} egin{pmatrix} ct' \ \mathbf{x}' \end{pmatrix} = egin{pmatrix} 0 \ \mathbf{x}_{\perp} \end{pmatrix} + \gamma egin{pmatrix} ct - eta x_{\parallel} \ (x_{\parallel} - vt) \hat{oldsymbol{eta}} \end{pmatrix} \quad , \quad x_{\parallel} \equiv \mathbf{x} \cdot \hat{oldsymbol{eta}} \quad , \quad \mathbf{x}_{\perp} \equiv \mathbf{x} - x_{\parallel} \hat{oldsymbol{eta}} \end{pmatrix}$$

Limes $c \to \infty$: Galilei-Transformation! t' = t , $\mathbf{x}' = \mathbf{x} - \mathbf{v}t$

Theoretische Physik 2: Elektrodynamik

2.3 Die 4-Schreibweise und Lorentz-Transformationen

Untergruppe $\mathcal{L}_{\perp}^{\uparrow}$

Eigenschaften der Untergruppe $\mathcal{L}_{+}^{\uparrow}$

Untergruppe $\mathcal{L}_{+}^{\uparrow}$: kontinuierliche Gruppe (Lie-Gruppe)

$$\Lambda_{\mathrm{R}}(oldsymbol{lpha}) = \left[\Lambda_{\mathrm{R}}\left(rac{oldsymbol{lpha}}{n}
ight)
ight]^n \quad , \quad \Lambda_{\mathrm{B}}(\phi,\hat{oldsymbol{eta}}) = \left[\Lambda_{\mathrm{B}}\left(rac{\phi}{n},\hat{oldsymbol{eta}}
ight)
ight]^n \quad (n\in\mathbb{N})$$

 $\phi = \operatorname{artanh}(v/c) \in \mathbb{R} \quad \Rightarrow \quad \operatorname{Lorentz-Gruppe} \text{ nicht kompakt:}$

$$\Lambda = e^{-ioldsymbol{lpha}\cdot \mathbf{L} - oldsymbol{\phi}\cdot \mathbf{M}} \quad , \quad oldsymbol{\phi} \equiv \phi \hat{oldsymbol{eta}} \quad , \quad L_k = egin{pmatrix} \mathbf{0} & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & \ell_k \end{pmatrix} \quad , \quad M_k = egin{pmatrix} \mathbf{0} & \hat{\mathbf{e}}_k^{\mathrm{T}} \\ \hat{\mathbf{e}}_k & \emptyset_3 \end{pmatrix}$$

$$\boldsymbol{\ell} = (\ell_1,\,\ell_2,\,\ell_3)$$
: Drehmatrizen ; $\emptyset_3:3 imes3 ext{-Nullmatrix}$

Drehmatrizen:

$$\ell_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad , \quad \ell_2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \quad , \quad \ell_3 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Erzeuger **L** und **M** von $\mathcal{L}_{+}^{\uparrow}$ erfüllen Vertauschungsrelationen:

$$[L_i, L_j] = i\varepsilon_{ijk}L_k$$
 , $[M_i, M_j] = i\varepsilon_{ijk}L_k$, $[L_i, M_j] = i\varepsilon_{ijk}M_k$

 $\Lambda^\dagger \neq \Lambda^{-1} \ \ \, \Rightarrow \ \ \, (\mathsf{nicht\text{-}kompakte!}) \; \mathsf{Lie\text{-}Gruppe} \; \mathcal{L}_+^\uparrow \; \mathsf{nicht\text{-}unit\"{a}r} \, !$

Physikalische Konsequenzen der Lorentz-Invarianz

Invariante Eigenzeit \leftrightarrow Lorentz-Transformationen:

$$c^2(d\tau)^2 = (ds)^2 = c^2(dt)^2 - (d\mathbf{x})^2 = dx^{\mu}dx_{\mu}$$

Betrachte: Geschwindigkeitstransformation K, K' mit $\mathbf{v}_{\mathrm{rel}}(K',K) = \mathbf{v}$, Koordinatenursprünge fallen zur Zeit t = t' = 0 zusammen \Rightarrow

 \mathbf{x}_{\perp} -Komponenten invariant \Rightarrow wähle 2-dimensionale Darstellung:

$$\begin{pmatrix} ct' \\ x_{||}' \end{pmatrix} = \gamma \begin{pmatrix} 1 & -\beta \\ -\beta & 1 \end{pmatrix} \begin{pmatrix} ct \\ x_{||} \end{pmatrix} = \begin{pmatrix} \cosh(\phi) & -\sinh(\phi) \\ -\sinh(\phi) & \cosh(\phi) \end{pmatrix} \begin{pmatrix} ct \\ x_{||} \end{pmatrix}$$

Theoretische Physik 2: Elektrodynamik

2.4 Physikalische Konsequenzen der Lorentz-Invarianz

Lorentz-Kontraktion

Lorentz-Kontraktion

Explizite Form der 2-dimensionalen Darstellung:

$$egin{array}{c} t' &= \gamma(t-rac{v}{c^2}x_\parallel) \ x'_\parallel &= \gamma(x_\parallel-vt) \end{array} \hspace{0.5cm} ext{bzw.} \hspace{0.5cm} egin{array}{c} t &= \gamma(t'+rac{v}{c^2}x'_\parallel) \ x_\parallel &= \gamma(x'_\parallel+vt') \end{array}$$

Konsequenz: Lorentz-Kontraktion!

Was ist das? Maßstab $\parallel \hat{\beta}$ in K hat laut K' kleinere Länge: $\ell' < \ell$

Was misst K? Betrachte ruhenden Stab in K zwischen $x_{||}^{(1)}$ und $x_{||}^{(2)} = x_{||}^{(1)} + \ell$

Was misst K'? Messung der Länge des Stabs zur Zeit t' in $K' \rightarrow$

$$\ell' = x_{\parallel}^{\prime(2)} - x_{\parallel}^{\prime(1)} = \left(\frac{1}{\gamma}x_{\parallel}^{(2)} - vt'\right) - \left(\frac{1}{\gamma}x_{\parallel}^{(1)} - vt'\right) = \frac{\ell}{\gamma}$$

Korollar:

ruhendes Volumen V in K ist laut K' um Faktor $\frac{1}{\gamma} = \sqrt{1-eta^2}$ kleiner

Zeitdilatation

Noch einmal: die 2-dimensionale Darstellung:

$$\begin{vmatrix} t' = \gamma(t - \frac{v}{c^2}x_{\parallel}) \\ x'_{\parallel} = \gamma(x_{\parallel} - vt) \end{vmatrix}$$
 bzw.
$$\begin{vmatrix} t = \gamma(t' + \frac{v}{c^2}x'_{\parallel}) \\ x_{\parallel} = \gamma(x'_{\parallel} + vt') \end{vmatrix}$$

Konsequenz: Zeitdilatation!

Was ist das? Bewegte Uhren laufen langsamer!

Was misst K'? Betrachte in K' ruhende Uhr \Rightarrow zwischen zwei Ereignissen [beide am Ort $(x_{\parallel}', \mathbf{x}_{\perp}')$ in K'] vergangene Zeit: $\Delta t' = t_2' - t_1'$

Was misst K? Für Beobachter in K vergangene Zeit:

$$\Delta t = t_2 - t_1 = \gamma (t_2' + \frac{v}{c^2} x_{\parallel}') - \gamma (t_1' + \frac{v}{c^2} x_{\parallel}') = \gamma \Delta t'$$

Fazit: K kommt zum Schluss, dass Uhr in K' nachgeht!

Theoretische Physik 2: Elektrodynamik

2.4 Physikalische Konsequenzen der Lorentz-Invarianz

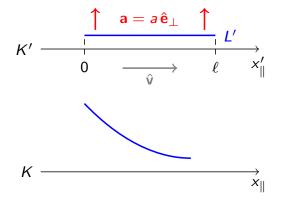
Deformation "starrer" Körper

Deformation "starrer" Körper

Die 2-dimensionale Darstellung:

$$\begin{vmatrix} t' = \gamma(t - \frac{v}{c^2}x_{\parallel}) \\ x'_{\parallel} = \gamma(x_{\parallel} - vt) \end{vmatrix}$$

$$\begin{vmatrix} t' = \gamma(t - \frac{v}{c^2}x_{\parallel}) \\ x'_{\parallel} = \gamma(x_{\parallel} - vt) \end{vmatrix}$$
bzw.
$$\begin{vmatrix} t = \gamma(t' + \frac{v}{c^2}x'_{\parallel}) \\ x_{\parallel} = \gamma(x'_{\parallel} + vt') \end{vmatrix}$$



Was ist das? Beschleunigte Körper in K'sind in K deformiert

Was misst K'? Einen geraden Stab mit $\mathbf{x}_{\perp}' = rac{1}{2}a(t')^2\hat{\mathbf{e}}_{\perp}$ zum Zeitpunkt t'

Was misst K? Einen Körper mit $\mathbf{x}_{\perp}=rac{1}{2}a\gamma^{2}(t-rac{v}{c^{2}}x_{\parallel})^{2}\hat{\mathbf{e}}_{\perp}$, also eine Parabel, zum Zeitpunkt t

Tachyonen?

Die 2-dimensionale Darstellung:

$$\begin{vmatrix} t' = \gamma(t - \frac{v}{c^2}x_{\parallel}) \\ x'_{\parallel} = \gamma(x_{\parallel} - vt) \end{vmatrix} & \& \begin{vmatrix} \Delta t' = \gamma(\Delta t - \frac{v}{c^2}\Delta x_{\parallel}) \\ \Delta x'_{\parallel} = \gamma(\Delta x_{\parallel} - v\Delta t) \end{vmatrix} \text{ mit } \begin{pmatrix} c\Delta t \\ \Delta \mathbf{x} \end{pmatrix} \equiv \begin{pmatrix} ct_1 \\ \mathbf{x}_1 \end{pmatrix} - \begin{pmatrix} ct_2 \\ \mathbf{x}_2 \end{pmatrix}$$

$$\mathsf{Daher:} \quad \tfrac{\Delta x_{\parallel}}{\Delta t} > c \quad \Rightarrow \quad \underline{\Delta t'} = \gamma \Delta t \left(1 - \tfrac{v}{c^2} \tfrac{\Delta x_{\parallel}}{\Delta t} \right) < \mathbf{0} \quad \mathsf{für} \quad \tfrac{c^2}{\Delta x_{\parallel}/\Delta t} < v < c$$

Gibt es Tachyonen?

- ► Annahme: \exists Kanone mit $\frac{\Delta x_{\parallel}}{\Delta t} > c$
- Schreibe einen Brief in K'
- Verschicke den Brief sofort in K_- mit $v_{\rm rel}(K', K_-) = v$
- ▶ Retourniere den Brief sofort in K_+ mit $v_{\text{rel}}(K', K_+) = -v$
- ► Empfang in K' des retournierten Briefs $2|\Delta t'|$ vor Versand!
- Verletzung der Kausalität!

Theoretische Physik 2: Elektrodynamik

2.4 Physikalische Konsequenzen der Lorentz-Invarianz

Additionsgesetz für Geschwindigkeiten

Additionsgesetz für (parallele) Geschwindigkeiten

Generell: Geschwindigkeitstransformationen nicht-kommutativ, z.B.:

$$\Lambda_{\mathrm{B}}(\phi_{1},\hat{\mathbf{e}}_{1})\Lambda_{\mathrm{B}}(\phi_{2},\hat{\mathbf{e}}_{2}) \neq \Lambda_{\mathrm{B}}(\phi_{2},\hat{\mathbf{e}}_{2})\Lambda_{\mathrm{B}}(\phi_{1},\hat{\mathbf{e}}_{1})$$

Ausnahme: Boosts mit $\hat{\beta}_1 = \hat{\beta}_2$:

$$\beta = \tanh(\phi)$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

 \dots denn Matrixmultiplikation \rightarrow

(2-dimensionale Darstellung)

$$\begin{pmatrix} \cosh(\phi_2) & -\sinh(\phi_2) \\ -\sinh(\phi_2) & \cosh(\phi_2) \end{pmatrix} \begin{pmatrix} \cosh(\phi_1) & -\sinh(\phi_1) \\ -\sinh(\phi_1) & \cosh(\phi_1) \end{pmatrix} = \begin{pmatrix} \cosh(\phi_1+\phi_2) & -\sinh(\phi_1+\phi_2) \\ -\sinh(\phi_1+\phi_2) & \cosh(\phi_1+\phi_2) \end{pmatrix}$$

Daher Beziehung zwischen Geschwindigkeiten $\beta_1, \beta_2, \beta_{1+2}$:

$$\beta_{1+2} = \tanh(\phi_1 + \phi_2) = \tanh[\operatorname{artanh}(\beta_1) + \operatorname{artanh}(\beta_2)] = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$$

[Additionsgesetz für (parallel ausgerichtete) Geschwindigkeiten!]

Verallgemeinertes Additionsgesetz ($oldsymbol{eta}_1 eq oldsymbol{eta}_2$)

Betrachte K und K' mit $\mathbf{v}_{rel}(K',K) = \mathbf{v} \implies$

$$\begin{pmatrix} ct \\ \mathbf{x} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{x}'_{\perp} \end{pmatrix} + \gamma \begin{pmatrix} 1 & \beta \\ \boldsymbol{\beta} & \hat{\boldsymbol{\beta}} \end{pmatrix} \begin{pmatrix} ct' \\ \mathbf{x}'_{\parallel} \end{pmatrix}$$

Definition der Geschwindigkeiten:

$$\mathbf{u} \equiv \frac{d\mathbf{x}}{dt}$$
 , $\mathbf{u}' \equiv \frac{d\mathbf{x}'}{dt'}$

Geschwindigkeitskomponenten:

$$u_{\parallel} = \mathbf{u} \cdot \hat{\boldsymbol{\beta}}$$
 , $\mathbf{u}_{\perp} = \mathbf{u} - u_{\parallel} \hat{\boldsymbol{\beta}}$ (& analog für \mathbf{u}')

Beziehung zwischen \mathbf{u} und \mathbf{u}' :

$$\begin{split} \frac{dt}{dt'} &= \gamma \left(1 + \frac{\beta}{c} \frac{d \mathbf{x}_{||}'}{dt'} \right) \quad \text{bzw.} \quad \frac{dt'}{dt} = \frac{1}{\gamma \left(1 + \frac{1}{c^2} \mathbf{v} \mathbf{u}_{||}' \right)} \\ \mathbf{u} &= \frac{d \mathbf{x}}{dt} = \left[\frac{d \mathbf{x}_{\perp}'}{dt'} + \gamma \left(\beta c + \frac{d \mathbf{x}_{||}'}{dt'} \right) \hat{\boldsymbol{\beta}} \right] \frac{dt'}{dt} = \frac{\mathbf{u}_{\perp}' + \gamma (\mathbf{v} + \mathbf{u}_{||}') \hat{\boldsymbol{\beta}}}{\gamma \left(1 + \frac{1}{c^2} \mathbf{v} \mathbf{u}_{||}' \right)} \end{split}$$

Theoretische Physik 2: Elektrodynamik

2.4 Physikalische Konsequenzen der Lorentz-Invarianz

Transformationsverhalten von Winkeln

Verallgemeinertes Additionsgesetz $(oldsymbol{eta}_1 eq oldsymbol{eta}_2)$

Komponentenweise:

$$\mathbf{u} = \frac{\mathbf{u}_{\perp}' + \gamma(\mathbf{v} + \mathbf{u}_{\parallel}')\hat{\boldsymbol{\beta}}}{\gamma\left(1 + \frac{1}{c^2}\mathbf{v}\mathbf{u}_{\parallel}'\right)} \quad \Rightarrow \quad u_{\parallel} = \frac{u_{\parallel}' + \mathbf{v}}{1 + \frac{1}{c^2}\mathbf{v}\mathbf{u}_{\parallel}'} \quad , \quad \mathbf{u}_{\perp} = \frac{\mathbf{u}_{\perp}'}{\gamma\left(1 + \frac{1}{c^2}\mathbf{v}\mathbf{u}_{\parallel}'\right)}$$

[allgemeines Additionsgesetz für Geschwindigkeiten]

Korollar: Transformationsverhalten von Winkeln:

- ▶ Betrachte Teilchen in K mit Geschwindigkeit \mathbf{u} (in K' mit \mathbf{u}')
- Definiere:

$$egin{aligned} u_{\parallel} &= u \cos(artheta) &, & \mathbf{u}_{\perp} &= u \sin(artheta) \hat{\mathbf{u}}_{\perp} \ u'_{\parallel} &= u' \cos(artheta') &, & \mathbf{u}'_{\perp} &= u' \sin(artheta') \hat{\mathbf{u}}_{\perp} \end{aligned}$$

Einsetzen \rightarrow $u\cos(\vartheta) = \frac{u'\cos(\vartheta') + v}{1 + \frac{1}{2}vu'\cos(\vartheta')} \quad , \quad u\sin(\vartheta) = \frac{u'\sin(\vartheta')}{\gamma\left[1 + \frac{1}{2}vu'\cos(\vartheta')\right]}$

ullet Beziehung $artheta \leftrightarrow artheta'$: $an(artheta) = rac{u'\sin(artheta')}{\gamma[u'\cos(artheta')+v]}$

Transformationsverhalten von Winkeln

▶ Beziehung $\vartheta \leftrightarrow \vartheta'$:

$$\tan(\vartheta) = \frac{u'\sin(\vartheta')}{\gamma[u'\cos(\vartheta') + v]}$$

Spezialfall: "Teilchen" = Photon/Lichtstrahl (u = u' = c) \Rightarrow

$$\tan(\vartheta) = \frac{\sin(\vartheta')}{\gamma[\cos(\vartheta') + \beta]}$$

⇒ Richtungsänderung des Lichts bei Übergang auf anderes Inertialsystem! Aberration! (1725, James Bradley)

Für kleine β -Werte:

$$[\vartheta = \vartheta' + (\vartheta - \vartheta')]$$

$$\begin{split} \frac{\vartheta - \vartheta'}{\cos^2(\vartheta')} \sim \left[\tan(\vartheta) - \tan(\vartheta') \right] \sim \tan(\vartheta') \left[\left(1 - \frac{\beta}{\cos(\vartheta')} \right) - 1 \right] \sim -\frac{\beta \tan(\vartheta')}{\cos(\vartheta')} \\ \Rightarrow \quad \Delta\vartheta \equiv \vartheta' - \vartheta \sim \beta \sin(\vartheta') + O(\beta^2) \quad (\widehat{=} \text{ Bradley}) \end{split}$$

Theoretische Physik 2: Elektrodynamik

└2.5 4-Vektoren

└ Definitionen

2.5 4-Vektoren

Definitionen:

kontravarianter 4-Vektor: jede physikalische Größe $a^{\mu}=(a^0, a^1, a^2, a^3)$, die unter Lorentz-Transformationen transformiert wird wie x^{μ} :

$$(a')^{\mu} = \Lambda^{\mu}_{\nu} a^{\nu}$$

kovarianter 4-Vektor: jede Größe a_{μ} , die wie x_{μ} transformiert wird:

$$(a')_{\mu} = \Lambda_{\mu}^{\nu} a_{\nu} \quad , \quad \Lambda_{\mu}^{\nu} = g_{\mu\rho} \, g^{\nu\sigma} \Lambda^{\rho}_{\sigma}$$

Umwandlung kovariant \leftrightarrow kontravariant: $a^{\mu} = g^{\mu\nu} a_{\nu}$

Quadrat eines 4-Vektors:

$$a^2 \equiv a^\mu a_\mu$$

Nomenklatur:

Vektoren mit $a^2 > 0$, $a^2 = 0$ oder $a^2 < 0$ heißen zeit-, licht- oder raumartig

"Weltbild" mit Lichtkegel: $s^2 > 0$, $s^2 = 0$, $s^2 < 0$

Quadrat eines Relativ-4-Ortsvektors:

$$s^2 = c^2(t_2 - t_1)^2 - (\mathbf{x}_2 - \mathbf{x}_1)^2$$

= $(ct_{21})^2 - (\mathbf{x}_{21})^2$

Nomenklatur: $\begin{pmatrix} t_1 \stackrel{\frown}{=} \text{ Ereignis } 1 \\ t_2 \stackrel{\frown}{=} \text{ Ereignis } 2 \end{pmatrix}$

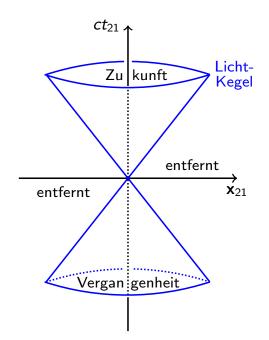
$$s^2 > 0$$
, $t_2 > t_1$ (Zukunft)

$$s^2 > 0$$
, $t_2 < t_1$ (Vergangenheit)

$$s^2 = 0$$
 (Lichtkegel)

$$s^2 < 0$$
 (entfernt)

$$s^2 = 0$$
, $t_2 = t_1$ (hier & jetzt)



Theoretische Physik 2: Elektrodynamik

L_{2.5} 4-Vektoren

└ Definitionen

Weitere Definitionen ...

- ► (Lorentz-) Skalar: jede Invariante unter Lorentz-Transformationen
 - ▶ Beispiel: das "Skalarprodukt" zweier 4-Vektoren:

$$a \cdot b \equiv a^{\mu} b_{\mu} = a_{\mu} b^{\mu}$$

ist Lorentz-invariant und somit ein Skalar:

$$(a')_{\mu}(b')^{\mu}=g_{\mu\nu}(a')^{\nu}(b')^{\mu}=\Lambda^{\mu}_{\sigma}\,g_{\mu\nu}\Lambda^{\nu}_{\rho}\,b^{\sigma}a^{\rho} \ =(\Lambda^{\mathrm{T}}g\Lambda)_{\sigma\rho}\,b^{\sigma}a^{\rho}=g_{\sigma\rho}b^{\sigma}a^{\rho}=a_{\sigma}\,b^{\sigma}$$

Korollar:

$$\varphi(x)$$
 Skalar \Rightarrow 4-Gradient = kovarianter 4-Vektor!

$$\partial_{\mu} \varphi = rac{\partial arphi}{\partial x^{\mu}} = \left(rac{1}{c}rac{\partial arphi}{\partial t}, oldsymbol{
abla} arphi
ight)$$

Analog: wegen $(\partial')^{\nu}=\Lambda^{\nu}{}_{\mu}\partial^{\mu}$ ist $\partial^{\mu}\varphi$ ein kontravarianter 4-Vektor

Weitere Definitionen ...

► 4-Divergenz:

$$\frac{\partial a^{\mu}}{\partial x^{\mu}} = \partial_{\mu} a^{\mu} = \partial^{\mu} a_{\mu} \equiv \partial \cdot a \qquad \text{(Lorentz-invariant} \quad \Rightarrow \quad \mathsf{Skalar)}$$

4-Geschwindigkeit:

3-Geschwindigkeit $\mathbf{u}(t)$ in $K \rightarrow 4$ -Geschwindigkeit u^{μ} :

$$u^{\mu} \equiv rac{dx^{\mu}}{ds} \quad , \quad ds = cdt \sqrt{1 - \left(rac{u}{c}
ight)^2}$$

Explizite Form von u^{μ} :

$$u^{\mu} = rac{rac{d}{dt}(ct,\mathbf{x})}{c\sqrt{1-\left(rac{u}{c}
ight)^2}} = rac{1}{\sqrt{1-\left(rac{u}{c}
ight)^2}}\left(1,rac{\mathbf{u}}{c}
ight) \, \equiv \gamma_u\left(1,oldsymbol{eta}_u
ight)$$

Konsequenz: $u^2=u^\mu u_\mu=1$ [alternativ aus $dx^\mu dx_\mu=(ds)^2$]

▶ 4-Beschleunigung $\equiv \frac{du^{\mu}}{ds}$: $u^{\mu}u_{\mu} = 1 \Rightarrow \frac{du^{\mu}}{ds}u_{\mu} = 0$

Theoretische Physik 2: Elektrodynamik

L_{2.5} 4-Vektoren

└ Definitionen

Weitere Definitionen ...

► 4-Stromdichte:

experimentelles Faktum: elektrische Ladung = Lorentz-Skalar

Konsequenz:

Ladungs dichte wird wie $\rho' = \gamma_{\rm v} \rho_0$ transformiert, denn:

$$ho_0 dV =
ho' dV'$$
 mit $dV' = rac{dV}{\gamma_V}$

[ρ_0 im Ruhesystem K, ρ' in K' mit $\mathbf{v}_{\mathrm{rel}}(K',K) = \mathbf{v}$]

Verallgemeinerung:

Ladungsdichte bewegt sich in K mit Geschwindigkeit ${\bf u}$

$$\Rightarrow$$
 ruht in K' mit $\mathbf{v}_{rel}(K',K) = \mathbf{u}$

$$\Rightarrow \quad \text{in K gemessene} \begin{cases} \mathsf{Ladungsdichte:} & \rho = \gamma_u \rho_0 \text{ mit } \gamma_u \equiv (1 - \frac{u^2}{c^2})^{-1/2} \\ \mathsf{Stromdichte:} & \mathbf{j} = \rho \mathbf{u} = \gamma_u \rho_0 \mathbf{u} \end{cases}$$

$$\Rightarrow \quad j^{\mu} \equiv (c
ho,\mathbf{j}) =
ho_0 c \gamma_u \left(1,rac{\mathbf{u}}{c}
ight) =
ho_0 c \gamma_u (1,oldsymbol{eta}_u) =
ho_0 c u^{\mu}$$

[wird wie 4-Vektor transformiert: 4-Stromdichte]

Allgemeine 4-Stromdichte

Für allgemeine Ladungs- + Stromdichte: Überlagerung!

Fazit:

 $j^{\mu} = (c\rho, \mathbf{j})$ wird i. A. wie kontravarianter 4-Vektor transformiert!

Ladungserhaltung in kovarianter Form:

Erhaltungsgesetz für Gesamtladung $\widehat{=}$ Kontinuitätsgleichung, in 4-Schreibweise:

$$\mathbf{0} = rac{\partial
ho}{\partial t} + \mathbf{
abla} \cdot \mathbf{j} = rac{\partial (c
ho)}{\partial (ct)} + rac{\partial}{\partial x^i} j^i = rac{\partial}{\partial x^0} j^0 + rac{\partial}{\partial x^i} j^i = \partial_\mu j^\mu = \partial \cdot j$$

Theoretische Physik 2: Elektrodynamik

└2.5 4-Vektoren

 \sqsubseteq Das 4-Potential A^{μ}

Das 4-Potential

Weiterer 4-Vektor: Φ und $\mathbf{A} \rightarrow \mathbf{4-Potential} A^{\mu} = (\Phi, c\mathbf{A})$

Argument:

homogene Maxwell-Gleichungen $\ m{
abla}\cdot m{B}=0$, $\ m{
abla}\times m{E}+rac{\partial m{B}}{\partial t}=m{0}$ ightarrow

$$\mathbf{E} = -\mathbf{\nabla}\Phi - \frac{\partial \mathbf{A}}{\partial t}$$
 , $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$

Außerdem: inhomogene Maxwell-Gleichungen ightarrow

$$\begin{split} \frac{1}{\varepsilon_0 c}(c\rho) &= \frac{1}{\varepsilon_0} \rho = \boldsymbol{\nabla} \cdot \mathbf{E} = -\Delta \Phi - \frac{\partial}{\partial t} \boldsymbol{\nabla} \cdot \mathbf{A} \\ &= \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \Delta \right) \Phi - \frac{\partial}{\partial t} \left(\boldsymbol{\nabla} \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} \right) \\ &= \Box \Phi - \frac{\partial}{\partial (ct)} \left[\boldsymbol{\nabla} \cdot (c\mathbf{A}) + \frac{\partial \Phi}{\partial (ct)} \right] = \Box \Phi - \frac{\partial}{\partial (ct)} (\partial_{\nu} A^{\nu}) \end{split}$$

Das 4-Potential

Inhomogene Maxwell-Gleichungen \rightarrow

sowie
$$j^{\mu} = (c\rho, \mathbf{j}) \quad , \quad \frac{1}{\varepsilon_0 c} (c\rho) = \Box \Phi - \frac{\partial}{\partial (ct)} (\partial_{\nu} A^{\nu}) \quad , \quad A^{\nu} = (\Phi, c\mathbf{A})$$

$$\frac{1}{\varepsilon_0 c} \mathbf{j} = \mu_0 c \mathbf{j} = c \left(\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$

$$= c \left[\nabla \times (\nabla \times \mathbf{A}) - \frac{1}{c^2} \left(-\nabla \frac{\partial \Phi}{\partial t} - \frac{\partial^2 \mathbf{A}}{\partial t^2} \right) \right]$$

$$= c \left[\nabla (\nabla \cdot \mathbf{A}) - \Delta \mathbf{A} + \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} + \frac{1}{c^2} \nabla \frac{\partial \Phi}{\partial t} \right]$$

$$= \nabla \left[\nabla \cdot (c\mathbf{A}) + \frac{\partial \Phi}{\partial (ct)} \right] + \Box (c\mathbf{A}) = \Box (c\mathbf{A}) - \frac{\partial}{\partial (-\mathbf{x})} (\partial_{\nu} A^{\nu})$$

Kombination \rightarrow in 4-Schreibweise:

$$\frac{1}{\varepsilon_0 c} j^\mu = \Box A^\mu - \partial^\mu (\partial_\nu A^\nu)$$

linke Seite = 4-Vektor \Rightarrow auch rechte Seite = 4-Vektor , aber

Hilfreich: Eichtransformation $A^{\mu} \longrightarrow \tilde{A}^{\mu} \equiv A^{\mu} + \partial^{\mu} \Lambda$

Theoretische Physik 2: Elektrodynamik

L_{2.5} 4-Vektoren

 \Box Das 4-Potential A^{μ}

Das 4-Potential

Bisheriges Ergebnis: $\frac{1}{\varepsilon_0 c} j^\mu = \Box A^\mu - \partial^\mu (\partial_\nu A^\nu) \Rightarrow \text{W\"{a}hle Lorenz-Eichung}$:

$$\partial_{\nu}A^{\nu}=0 \qquad \Rightarrow \qquad \Box A^{\mu}=rac{1}{arepsilon_{0}c}j^{\mu} \qquad ext{(elektromagnetische Wellen!)}$$

Lorenz-Eichung immer realisierbar: $\partial_{\nu}\bar{A}^{\nu}\neq 0 \Rightarrow \text{definiere } (\chi, A^{\mu}) \text{ mit:}$

$$\Box \chi \equiv -\partial_{\mu} \bar{A}^{\mu}$$

$$A^{\mu} \equiv \bar{A}^{\mu} + \partial^{\mu} \chi \quad \Rightarrow \quad \partial_{\mu} A^{\mu} = 0$$

Lorenz-Bedingung legt A^{μ} nicht eindeutig fest! Alternatives 4-Potential:

$$\tilde{A}^{\mu} = A^{\mu} + \partial^{\mu} \Lambda$$
 , $\Box \Lambda = 0$

 \Rightarrow A^{μ} in Lorenz-Eichung bis auf Lösung der Wellengleichung bestimmt

Spezialfall: $j^{\mu} = 0 \Rightarrow \Box A^{\mu} = 0 \Rightarrow \text{ im Inertial system } K$:

$$A^{\mu}(x) = (A_0)^{\mu} e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)} = (A_0)^{\mu} e^{-i(\frac{\omega}{c}ct - \mathbf{k} \cdot \mathbf{x})}$$
$$= (A_0)^{\mu} e^{-ik_{\nu}x^{\nu}} = (A_0)^{\mu} e^{-i\varphi(x)}$$

Der 4-Wellenvektor

Ebene Welle: $A^{\mu}(x) = (A_0)^{\mu} e^{-ik_{\nu}x^{\nu}} \Rightarrow \text{Definitionen}$:

$$\varphi(x) = k_{\nu} x^{\nu}$$
 , $\omega = c |\mathbf{k}|$, $k^{\nu} = \left(\frac{\omega}{c}, \mathbf{k}\right)$ (Phase, Frequenz 4-Wellenvektor)

In K' mit $\mathbf{v}_{rel}(K',K) = \mathbf{v}$ gilt:

$$(A')^{\mu}(x') = \Lambda^{\mu}_{\ \nu}A^{\nu}(x) = \Lambda^{\mu}_{\ \nu}(A_0)^{\nu}e^{-i\varphi(x)} = (A'_0)^{\mu}e^{-i\varphi'(x')}$$

mit $(A_0')^\mu \equiv \Lambda^\mu_{\nu} (A_0)^\nu$ und

$$\varphi'(x') \equiv \varphi(x) = k_{\nu} x^{\nu} = k_{\nu} (\Lambda^{-1})^{\nu}{}_{\mu} (x')^{\mu} = k_{\nu} \Lambda_{\mu}{}^{\nu} (x')^{\mu} \equiv (k')_{\mu} (x')^{\mu}$$

Fazit: $(A_0)^\mu=$ 4-Vektor , $\varphi(x)=$ Lorentz-Skalar , $k^\mu=$ 4-Vektor:

$$(k')_{\mu} = \Lambda_{\mu}^{\ \nu} k_{\nu} \qquad , \qquad (k')^{\mu} = \Lambda_{\ \nu}^{\mu} k^{\nu}$$

Quantenmechanik \rightarrow für Photonen: $\mathbf{p} = \hbar \mathbf{k}$, $\mathcal{E} = \hbar \omega$

⇒ Impuls und Energie (für Photonen) bilden 4-Vektor!

$$p^{\mu} \equiv \left(\frac{\mathcal{E}}{\epsilon}, \mathbf{p}\right) = \hbar \left(\frac{\omega}{\epsilon}, \mathbf{k}\right) = \hbar k^{\mu}$$
 (später: gilt auch allgemeiner)

Theoretische Physik 2: Elektrodynamik

└2.5 4-Vektoren

__ Transformationsverhalten von Winkeln

Der 4-Wellenvektor

Lorentz-Transformation für $k^{\mu}=\left(\frac{\omega}{c},\mathbf{k}\right)$:

$$\begin{pmatrix} \omega'/c \\ \mathbf{k}' \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{k}_{\perp} \end{pmatrix} + \gamma \begin{pmatrix} 1 & -\beta \\ -\beta & \hat{\beta} \end{pmatrix} \begin{pmatrix} \omega/c \\ k_{\parallel} \end{pmatrix} \qquad \begin{bmatrix} k_{\parallel} \equiv \mathbf{k} \cdot \hat{\beta} \equiv k \cos(\vartheta) \\ \mathbf{k}_{\perp} \equiv \mathbf{k} - k_{\parallel} \hat{\beta} \equiv k \sin(\vartheta) \hat{\mathbf{k}}_{\perp} \end{bmatrix}$$

ightarrow Transformationsverhalten der Frequenz ω :

$$\omega' = \gamma(\omega - eta c k_{\parallel}) = \gamma \omega \left(1 - eta rac{k_{\parallel}}{k}
ight) = \gamma \omega [1 - eta \cos(artheta)]$$

... und des Winkels ϑ :

$$\tan(\vartheta') = \frac{|\mathbf{k}_{\perp}'|}{k_{\parallel}'} = \frac{|\mathbf{k}_{\perp}|}{\gamma\left(k_{\parallel} - \beta\frac{\omega}{\epsilon}\right)} = \frac{|\mathbf{k}_{\perp}|/k}{\gamma\left(\frac{k_{\parallel}}{k} - \beta\right)} = \frac{\sin(\vartheta)}{\gamma[\cos(\vartheta) - \beta]}$$

oder umgekehrt:

$$\tan(\vartheta) = \frac{\sin(\vartheta')}{\gamma[\cos(\vartheta') + \beta]}$$

[wie vorher für Aberration von Sternenlicht, relativistischer Doppler-Effekt!]

Longitudinaler/transversaler Doppler-Effekt

Transformationsverhalten der Frequenz ω :

$$\omega' = \gamma \omega [1 - \beta \cos(\vartheta)]$$

Longitudinaler Doppler-Effekt: $(\vartheta = 0 \text{ bzw. } \vartheta = \pi)$

$$\omega' = \sqrt{rac{1-eta}{1+eta}} \; \omega \qquad (artheta = 0) \qquad , \qquad \omega' = \sqrt{rac{1+eta}{1-eta}} \; \omega \qquad (artheta = \pi)$$

Transversaler Doppler-Effekt: $(\vartheta = \frac{\pi}{2}) \rightarrow \text{Rotverschiebung}$

$$\omega = \frac{1}{\gamma_{\nu}}\omega' < \omega'$$
 (Konsequenz der Zeitdilatation)

Theoretische Physik 2: Elektrodynamik

2.6 Masse und Energie

Masse und Energie, die Idee

2.6 Masse und Energie

[A. Einstein, Annalen der Physik 17, 639 (1905)]

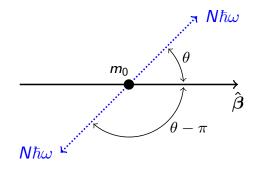
Energie von N Photonen im Inertialsystem K:

$$\mathcal{E} = N\hbar\omega$$

Transformationsgesetz für die Energie elektromagnetischer Strahlung:

$$\mathcal{E}' = N\hbar\omega' = \gamma N\hbar\omega[1 - \beta\cos(\vartheta)]$$
$$= \gamma \mathcal{E}[1 - \beta\cos(\vartheta)]$$

[
$$\mathcal{E}'$$
 = Energie im Inertialsystem K'
mit $\mathbf{v}_{rel}(K',K) = \mathbf{v} = v\hat{\boldsymbol{\beta}}$]



Definitionen:

- ▶ Energie des Körpers in K vor Emission $\equiv \mathcal{E}(0)$ [in K': $\equiv \mathcal{E}(v)$]
- ► Energie des Körpers in K nach Emission $\equiv \mathcal{E}^{(0)}(0)$ [in K': $\equiv \mathcal{E}^{(0)}(v)$]
- ▶ $2N\hbar\omega \equiv \varepsilon \Rightarrow \text{Energieerhaltung in } K$:

$$\mathcal{E}(0) = \mathcal{E}^{(0)}(0) + \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \mathcal{E}^{(0)}(0) + \varepsilon$$

Äquivalenz von Masse und Energie

Definitionen:

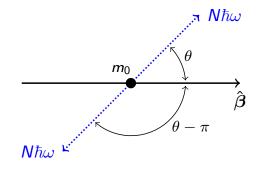
- ▶ Energie des Körpers in K vor Emission $\equiv \mathcal{E}(0)$ [in K': $\equiv \mathcal{E}(v)$]
- ▶ Energie des Körpers in K nach Emission $\equiv \mathcal{E}^{(0)}(0)$ [in K': $\equiv \mathcal{E}^{(0)}(v)$]
- ▶ $2N\hbar\omega \equiv \varepsilon$ ⇒ Energieerhaltung in K: $\mathcal{E}(0) = \mathcal{E}^{(0)}(0) + \varepsilon$

Energieerhaltung in K':

$$\mathcal{E}(v) = \mathcal{E}^{(0)}(v) + \frac{1}{2}\varepsilon\gamma[1 - \beta\cos(\vartheta)] + \frac{1}{2}\varepsilon\gamma[1 - \beta\cos(\vartheta - \pi)] = \mathcal{E}^{(0)}(v) + \varepsilon\gamma$$

Definiere:

$$egin{aligned} \mathcal{E}_{\mathrm{kin}}(v) &\equiv \mathcal{E}(v) - \mathcal{E}(0) \ \mathcal{E}_{\mathrm{kin}}^{(0)}(v) &\equiv \mathcal{E}^{(0)}(v) - \mathcal{E}^{(0)}(0) \ \mathcal{E}_{\mathrm{kin}}^{(0)}(v) & ext{ für } eta &= rac{v}{c} \ll 1 \,: \ \mathcal{E}_{\mathrm{kin}}^{(0)}(v) &= \mathcal{E}_{\mathrm{kin}}(v) - arepsilon(\gamma - 1) \ &\sim rac{1}{2} m_0 v^2 - rac{1}{2} arepsilon eta^2 \ &= rac{1}{2} \left(m_0 - rac{arepsilon}{c^2}
ight) v^2 = rac{1}{2} m_0^{(0)} v^2 \end{aligned}$$



Äquivalenz: Massendefizit $\mu_0 \equiv m_0 - m_0^{(0)} = \frac{\varepsilon}{c^2} \stackrel{\frown}{=}$ Energie $\varepsilon = \mu_0 c^2$

Theoretische Physik 2: Elektrodynamik

____2.6 Masse und Energie

4-Impulsvektor = 4-Vektor

Äquivalenz von Masse und Energie

Bisherige Ergebnisse:

$$\mathcal{E}(0) = \mathcal{E}^{(0)}(0) + \varepsilon \quad , \quad \mathcal{E}(v) = \mathcal{E}^{(0)}(v) + \varepsilon \gamma \quad , \quad \mu_0 \equiv m_0 - m_0^{(0)} = \frac{\varepsilon}{c^2}$$

Wandle ganze Ruhemasse in Strahlung um: $\left[\, \mathcal{E}^{(0)}(0) = \mathcal{E}^{(0)}(v) = m_0^{(0)} c^2 = 0 \, \right]$

$$\Rightarrow$$
 $\mathcal{E}(0) = \varepsilon = m_0 c^2$, $\mathcal{E}(v) = \varepsilon \gamma = \gamma m_0 c^2 = mc^2$ $(m \equiv \gamma m_0)$

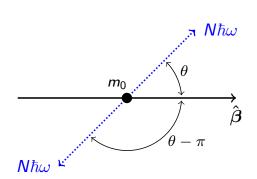
Fazit: Masse und Energie äquivalent!

Außerdem nun auch für Teilchen:

4-Impulsvektor = 4-Vektor!

... denn:

$$egin{aligned} egin{aligned} eta^{\mu} &\equiv \left(rac{\mathcal{E}}{c}, m \mathbf{u}
ight) = m c \left(1, rac{\mathbf{u}}{c}
ight) \ &= m_0 c \gamma_u (1, oldsymbol{eta}_u) = m_0 c u^{\mu} \end{aligned}$$



Tensoren höherer Stufe

Allgemeine Begriffe:

▶ Das dyadische Produkt $D^{\mu\nu}$ zweier 4-Vektoren a^{μ} und b^{ν} :

$$D^{\mu\nu} \equiv a^{\mu}b^{\nu}$$

... wird wie folgt transformiert:

$$(D')^{\mu
u} = (a')^{\mu} (b')^{
u} = \Lambda^{\mu}_{
ho} \Lambda^{
u}_{ \sigma} a^{
ho} b^{\sigma} = \Lambda^{\mu}_{
ho} \Lambda^{
u}_{ \sigma} D^{
ho\sigma}$$

Nomenklatur:

- Dyade $D^{\mu\nu}$: kontravariant
- Dyade $D_{\mu
 u} = g_{\mu
 ho} g_{
 u \sigma} D^{
 ho \sigma} = a_{\mu} b_{
 u}$: kovariant
- lacksquare Dyaden $D_{\mu}^{\
 u}=g_{\mu
 ho}D^{
 ho
 u}$, $D_{\
 u}^{\mu}=g_{
 u\sigma}D^{\mu\sigma}$: gemischt

Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

Tensoren höherer Stufe

Tensoren höherer Stufe

Allgemeine Begriffe:

Verallgemeinerung:

$$D^{\nu_1\nu_2\cdots\nu_n} \equiv a_1^{\nu_1}a_2^{\nu_2}\cdots a_n^{\nu_n} \qquad \text{(kontravariant)}$$

Transformationsverhalten:

$$(D')^{\mu_1\mu_2\cdots\mu_n} = \Lambda^{\mu_1}_{\ \nu_1}\Lambda^{\mu_2}_{\ \nu_2}\cdots\Lambda^{\mu_n}_{\ \nu_n}D^{\nu_1\nu_2\cdots\nu_n}$$

- Verallgemeinerung: Tensoren
 - Wird $T^{\mu\nu}$ genauso transformiert wie $D^{\mu\nu}$ \Rightarrow (kontravarianter) Tensor 2. Stufe
 - ► Wird $T^{\nu_1\nu_2...\nu_n}$ genauso transformiert wie $D^{\nu_1\nu_2...\nu_n}$ ⇒ (kontravarianter) Tensor *n*-ter Stufe
- ightharpoonup Bildung von Skalarprodukten ightharpoonup "Verjüngung" eines Tensors:

$$d^\mu \equiv D^{\mu
u} c_
u = a^\mu b^
u c_
u \quad , \quad t^\mu \equiv T^{\mu
u} c_
u \qquad ext{(kontravariante 4-Vektoren)}$$

Der elektromagnetische Feldtensor

Ableitungen des 4-Potentials nach dem 4-Ortsvektor:

$$F^{\mu\nu} \equiv \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$$
 (Differenz zweier Dyaden)

⇒ antisymmetrischer, kontravarianter 4-Tensor 2. Stufe:

$$(F')^{\mu\nu} = \Lambda^{\mu}_{\rho} \Lambda^{\nu}_{\sigma} F^{\rho\sigma}$$

Komponenten von $F^{\mu\nu}$:

$$egin{aligned} F^{\mu\mu} &= 0 \ F^{i0} &= \partial^i A^0 - \partial^0 A^i = \left[-oldsymbol{
abla} \Phi - rac{\partial oldsymbol{A}}{\partial t}
ight]_i = E_i \ F^{ij} &= arepsilon_{ijk} (-cB_k) = -carepsilon_{ijk} B_k \end{aligned}$$

Als Matrix:

$$F^{\mu\nu} = egin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \ E_1 & 0 & -cB_3 & cB_2 \ E_2 & cB_3 & 0 & -cB_1 \ E_3 & -cB_2 & cB_1 & 0 \end{pmatrix}$$

Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

Der elektromagnetische Feldtensor

Transformationsverhalten unter Raumspiegelungen

Transformationsverhalten von $F^{\mu\nu}$ unter Raumspiegelungen:

$$F^{\mu
u}
ightarrow (F')^{\mu
u} = egin{pmatrix} 0 & E_1 & E_2 & E_3 \ -E_1 & 0 & -cB_3 & cB_2 \ -E_2 & cB_3 & 0 & -cB_1 \ -E_3 & -cB_2 & cB_1 & 0 \end{pmatrix}$$

Raumspiegelungen:

$$\Lambda^{\mu}_{\nu} = \sigma(\mu) \delta^{\mu}_{\nu} \quad {\sf mit} \quad \sigma(0) = 1 \,,\; \sigma(1) = \sigma(2) = \sigma(3) = -1$$

Transformationsverhalten echter Tensoren unter Raumspiegelungen:

$$(F')^{\mu\nu} = \Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}F^{\rho\sigma} = \sigma(\mu)\sigma(\nu)F^{\mu\nu}$$

Allgemeine antisymmetrische Tensoren 2. Stufe

Allgemeine Darstellung antisymmetrischer Tensoren 2. Stufe $A^{\mu\nu}$:

$$A^{\mu
u} = egin{pmatrix} 0 & -p_1 & -p_2 & -p_3 \ p_1 & 0 & -a_3 & a_2 \ p_2 & a_3 & 0 & -a_1 \ p_3 & -a_2 & a_1 & 0 \end{pmatrix} \equiv (\mathbf{p}, \mathbf{a})$$

Polarer (oder echter) Vektor **p**, axialer (oder Pseudo-)Vektor **a**:

$$\mathbf{p}' = R(\alpha)\mathbf{p}$$
 , $\mathbf{a}' = R(\alpha)\mathbf{a}$

In dieser Notation gilt: $F^{\mu\nu} = (\mathbf{E}, c\mathbf{B})$

Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

Transformationsverhalten der E- und B-Felder

Transformationsverhalten des E-Feldes

Beziehung $\mathbf{E}' \leftrightarrow (F')^{\mu\nu}$:

$$(E')_i = (F')^{i0} = \Lambda^i_{\ \rho} \Lambda^0_{\ \sigma} F^{\rho\sigma}$$

= $\Lambda^i_{\ i} \Lambda^0_{\ 0} F^{j0} + \Lambda^i_{\ 0} \Lambda^0_{\ i} F^{0j} + \Lambda^i_{\ i} \Lambda^0_{\ k} F^{jk}$ (da $F^{00} = 0$)

Explizite Form von Λ^{μ}_{ν} :

$$oldsymbol{\Lambda}^{\mu}_{
u} = egin{pmatrix} \gamma & -\gammaoldsymbol{eta}^{\mathrm{T}} \ -\gammaoldsymbol{eta} & 1\!\!1_3 + (\gamma-1)\hat{oldsymbol{eta}}\hat{oldsymbol{eta}}^{\mathrm{T}} \end{pmatrix}$$

Daher für **E**-Feld:

$$\begin{split} (E')_{i} &= \gamma [\delta_{ij} + (\gamma - 1)\hat{\beta}_{i}\hat{\beta}_{j}]E_{j} + (-\gamma\beta_{i})(-\gamma\beta_{j})(-E_{j}) \\ &+ [\delta_{ij} + (\gamma - 1)\hat{\beta}_{i}\hat{\beta}_{j}](-\gamma\beta_{k})\varepsilon_{jkl}(-cB_{l}) \\ &= \gamma (E_{i} + \varepsilon_{ikl}v_{k}B_{l}) + [\gamma(\gamma - 1) - \gamma^{2}\beta^{2}]\hat{\beta}_{i}(\hat{\boldsymbol{\beta}} \cdot \mathbf{E}) \end{split}$$

Identität
$$\gamma^2(1-\beta^2)=1$$
 \rightarrow

$$\mathbf{E}' = \gamma (\mathbf{E} + \mathbf{v} imes \mathbf{B}) - (\gamma - 1) (\hat{oldsymbol{eta}} \cdot \mathbf{E}) \hat{oldsymbol{eta}}$$

Transformationsverhalten der E- und B-Felder

Transformationsverhalten des **E**-Feldes:

$$\mathbf{E}' = \gamma (\mathbf{E} + \mathbf{v} \times \mathbf{B}) - (\gamma - 1)(\hat{\boldsymbol{\beta}} \cdot \mathbf{E})\hat{\boldsymbol{\beta}}$$

Analog für **B**-Feld:

$$\mathbf{B}' = \gamma \left(\mathbf{B} - \frac{1}{\epsilon} \boldsymbol{\beta} \times \mathbf{E} \right) - (\gamma - 1) (\hat{\boldsymbol{\beta}} \cdot \mathbf{B}) \hat{\boldsymbol{\beta}}$$

Komponentenweise:

$$egin{aligned} E_{\parallel}' &= E_{\parallel} & B_{\parallel}' &= B_{\parallel} \ E_{\perp}' &= \gamma (\mathbf{E}_{\perp} + \mathbf{v} imes \mathbf{B}_{\perp}) & B_{\perp}' &= \gamma (\mathbf{B}_{\perp} - rac{1}{\epsilon} oldsymbol{eta} imes \mathbf{E}_{\perp}) \end{aligned}$$

Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

Relativistische Formulierung der Lorentz-Kraft

Relativistische Formulierung der Lorentz-Kraft

Definiere 4-Vektor:

$$K^{\mu} \equiv q F^{\mu \nu} u_{\nu}$$

Explizite Berechnung:

$$egin{aligned} \mathcal{K}^{\mu} &= q(F^{\mu 0}u_0 + F^{\mu j}u_j) = q\gamma_u[F^{\mu 0} + F^{\mu j}(-eta_j)] \ &= q\gamma_u(\mathbf{E}\cdotoldsymbol{eta}\,,\,\mathbf{E}+\mathbf{u} imes\mathbf{B}) \end{aligned}$$

[mit
$$F^{ij}(-\beta_j) = (-\varepsilon_{ijk}cB_k)(-\beta_j) = c(\boldsymbol{\beta} \times \mathbf{B})_i = (\mathbf{u} \times \mathbf{B})_i$$
]

Fazit: K^{μ} relativistische Verallgemeinerung der Lorentz-Kraft!

Relativistische Formulierung der Lorentz-Kraft

Betrachte nun die Bewegungsgleichung:

$$m_0 rac{d^2 x^\mu}{d au^2} = \mathcal{K}^\mu \quad , \quad d au = rac{dt}{\gamma_\mu}$$

Eigenschaften:

► Sicherlich korrekt im momentanen Ruhesystem des Teilchens:

$$\left(0\,,\,m_0\frac{d^2\mathbf{x}}{dt^2}\right)=\left(0\,,\,q\mathbf{E}\right)$$

- Lorentz-kovariant formuliert!
 - ⇒ nach Relativitätsprinzip gültig in *jedem* Inertialsystem!
 - ⇒ relativistische Formulierung der Lorentz'schen Bewegungsgleichung!

4-Kraft $K^{\mu} \perp u^{\mu}$:

$$u_{\mu} \frac{du^{\mu}}{d\tau} = u_{\mu} \left(\frac{1}{m_0 c} K^{\mu} \right) = \frac{q}{m_0 c} u_{\mu} F^{\mu \nu} u_{\nu} = 0$$

Theoretische Physik 2: Elektrodynamik

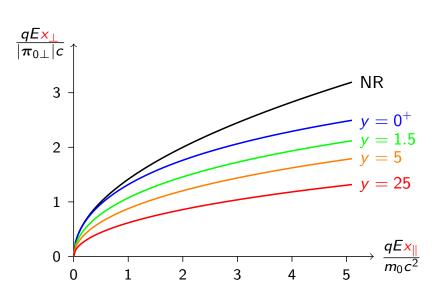
2.7 Die Lorentz-Kraft und elektromagnetische Felder

Relativistische Formulierung der Lorentz-Kraft

Beispiel für die Wirkung der Lorentz-Kraft: Bahn eines relativistischen Teilchens in einem konstanten **E**-Feld

Definitionen:

$$egin{aligned} oldsymbol{\pi} &= \gamma_u m_0 \mathbf{u} \ \pi_{0\parallel} &\equiv oldsymbol{\pi}(0) \cdot \hat{\mathbf{E}} \stackrel{!}{=} 0 \ oldsymbol{\pi}_{0\perp} &= oldsymbol{\pi}(0) - \pi_{0\parallel} \hat{\mathbf{E}} \stackrel{!}{=} oldsymbol{\pi}(0) \ \hat{oldsymbol{\pi}}_{0\perp} &\equiv oldsymbol{\pi}_{0\perp} / |oldsymbol{\pi}_{0\perp}| \ oldsymbol{y} &\equiv (oldsymbol{\pi}_{0\perp} / m_0 c)^2 \ \chi_{\parallel} &\equiv oldsymbol{x} \cdot \hat{\mathbf{E}} \ \chi_{\perp} &\equiv oldsymbol{x} \cdot \hat{oldsymbol{\pi}}_{0\perp} \end{aligned}$$



Geschwindigkeit eines Teilchens im elektrischen Feld

Definitionen:

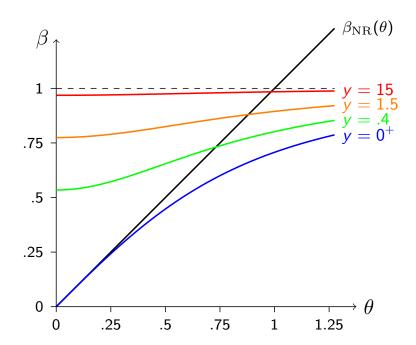
$$\mathbf{u} \equiv \frac{d\mathbf{x}}{dt}$$

$$\beta = \frac{\mathsf{u}}{c}$$

$$|\boldsymbol{\beta}| \equiv \beta(\theta; \mathbf{y})$$

$$y \equiv (\pi_{0\perp}/m_0c)^2$$

$$\beta_{\mathrm{NR}}(\theta) \equiv \lim_{\substack{y \downarrow 0}} \beta_{\mathrm{Newton}}(\theta; y)$$



Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

Relativistische Formulierung der Lorentz-Kraft

Energiegewinn eines Teilchens im elektrischen Feld

Definitionen:

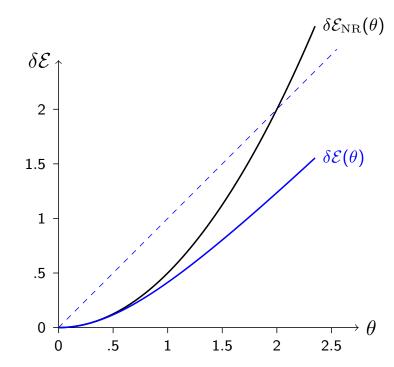
$$\mathcal{E}(\theta) = \gamma_{u}(t) m_{0} c^{2}$$

$$\delta \mathcal{E}(\theta) \equiv \frac{\mathcal{E} - \mathcal{E}(0)}{\mathcal{E}(0)}$$

$$\mathcal{E}_{\mathrm{NR}}(\theta) \equiv m_0 c^2 + \frac{1}{2} m_0 \mathbf{u}^2$$

$$\delta \mathcal{E}_{\mathrm{NR}}(heta) \equiv \lim_{y \downarrow 0} rac{\mathcal{E}_{\mathrm{NR}} - \mathcal{E}_{\mathrm{NR}}(0)}{\mathcal{E}_{\mathrm{NR}}(0)}$$

$$y \equiv (\pi_{0\perp}/m_0c)^2$$



Kovariante Form der inhomogenen Maxwell-Gleichungen

Explizite Form von $F^{\mu\nu}$ \rightarrow

$$\partial_{\mu}F^{\mu0} = \mathbf{\nabla}\cdot\mathbf{E} = \frac{1}{arepsilon_{0}}
ho = \frac{1}{arepsilon_{0}}c
ho = \mu_{0}cj^{0}$$

und

$$\partial_{\mu}F^{\mu j} = \partial_{0}F^{0j} + \partial_{i}F^{ij} = \frac{\partial(-E_{j})}{\partial(ct)} + \frac{\partial}{\partial x_{i}}(-c\varepsilon_{ijk}B_{k})
= c\left(\varepsilon_{jik}\frac{\partial}{\partial x_{i}}B_{k} - \frac{1}{c^{2}}\frac{\partial E_{j}}{\partial t}\right) = c\left(\nabla \times \mathbf{B} - \varepsilon_{0}\mu_{0}\frac{\partial \mathbf{E}}{\partial t}\right)_{j} = \mu_{0}cj^{j}$$

Daher insgesamt:

$$\partial_{\mu}F^{\mu\nu}=\mu_{0}cj^{\nu}$$

(relativistisch kovariante Form der inhomogenen Maxwell-Gleichungen)

Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

Spezielle Tensoren

Spezielle Tensoren (benötigt für homogene Maxwell-Gleichungen)

• Kronecker-Delta $g^{\mu}_{\ \nu}=\delta^{\mu}_{\ \nu}$ ist ein Tensor:

$$\Lambda^{\mu}_{\rho}\Lambda^{\sigma}_{\delta}\delta^{\rho}_{\sigma}=\Lambda^{\mu}_{\rho}\Lambda^{\rho}_{}=\Lambda^{\mu}_{\rho}(\Lambda^{-1})^{\rho}_{\nu}=\delta^{\mu}_{\nu}$$

▶ ⇒ "metrischer Tensor" ist echter kontravarianter Tensor 2. Stufe:

$$\Lambda^{\mu}_{\rho}\Lambda^{\nu}_{\sigma}g^{\rho\sigma}=g^{\nu\tau}(\Lambda^{\mu}_{\rho}\Lambda_{\tau}^{\sigma}g^{\rho}_{\sigma})=g^{\nu\tau}g^{\mu}_{\tau}=g^{\mu\nu}$$

Analog: $g_{\mu\nu}$ ist kovarianter Tensor

- Nulltensor: $N^{\mu\nu}=0$
- Levi-Civita-Tensor $\varepsilon^{\mu\nu\rho\sigma}$:

$$arepsilon^{\mu
u
ho\sigma} \equiv egin{cases} \mathrm{sgn}(\mathrm{P}) & \mathrm{falls}\ (\mu
u
ho\sigma) = (P0,P1,P2,P3) \\ 0 & \mathrm{sonst} \end{cases}$$

mit $(\varepsilon')^{\mu\nu\rho\sigma} \equiv \varepsilon^{\mu\nu\rho\sigma}$ (in allen Inertialsystemen gleich)

Zum Levi-Civita-Tensor $\varepsilon^{\mu\nu\rho\sigma}$

Konsistenzcheck:

$$\Lambda^{\mu}_{\ \mu'}\Lambda^{\nu}_{\ \nu'}\Lambda^{\rho}_{\ \rho'}\Lambda^{\sigma}_{\ \sigma'}\varepsilon^{\mu'\nu'\rho'\sigma'}=C(\Lambda)\varepsilon^{\mu\nu\rho\sigma}\quad (\forall \Lambda\in\mathcal{L}_{+}^{\uparrow})$$

wähle
$$(\mu\nu\rho\sigma) = (0123)$$
 \Rightarrow $C(\Lambda) = \det(\Lambda) = 1$

Raumspiegelung am Ursprung:

Erwartung für echten Tensor:

$$(\varepsilon')^{\mu\nu\rho\sigma} = \det(\Lambda)\varepsilon^{\mu\nu\rho\sigma} = -\varepsilon^{\mu\nu\rho\sigma}$$

Tatsächlich (per definitionem):

$$(\varepsilon')^{\mu\nu\rho\sigma} \equiv \varepsilon^{\mu\nu\rho\sigma} \quad \Rightarrow \quad \mathsf{Pseudotensor!}$$

Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

☐ Dualitätstransformationen

Dualitätstransformationen

Levi-Civita-Tensor \rightarrow Erzeugung neuer Tensoren:

$$\tilde{\mathbf{a}}^{\mu
u
ho}=arepsilon^{\mu
u
ho\sigma}\mathbf{a}_{\sigma}\quad,\quad \tilde{\mathbf{a}}^{\mu
u}=rac{1}{2}arepsilon^{\mu
u
ho\sigma}\mathbf{a}_{
ho\sigma}\quad,\quad \tilde{\mathbf{a}}^{\mu}=rac{1}{6}arepsilon^{\mu
u
ho\sigma}\mathbf{a}_{
u
ho\sigma}$$

(nur antisymmetrische Tensoren/Pseudotensoren $a^{\rho\sigma}$, $a^{\nu\rho\sigma}$)

$$a^{\sigma}$$
 Tensor \Rightarrow $\tilde{a}^{\mu\nu\rho}$ Pseudotensor (& umgekehrt)

[Analog für
$$(a^{\rho\sigma}, \tilde{a}^{\mu\nu})$$
 und $(a^{\nu\rho\sigma}, \tilde{a}^{\mu})$]

Nomenklatur:

$$(a^\sigma, \tilde{a}^{\mu
u
ho})$$
 , $(a^{
ho \sigma}, \, \tilde{a}^{\mu
u})$, $(a^{
u
ho \sigma}, \, \tilde{a}^\mu)$ heißen *dual* zueinander

Dualitätstransformation umkehrbar:

$$ilde{ ilde{a}}^{\mu}=a^{\mu}\;\;,\;\; ilde{ ilde{a}}^{\mu
u}=-a^{\mu
u}\;\;,\;\; ilde{ ilde{a}}^{\mu
u
ho}=a^{\mu
u
ho}$$

Insbesondere: Eine Dualitätstransformation

.... für echte antisymmetrische Tensoren zweiter Stufe:

$$A^{\mu
u} = (\mathbf{p},\mathbf{a}) \quad \Rightarrow \quad \tilde{A}^{\mu
u} = (\mathbf{a},-\mathbf{p}) \quad \Rightarrow \quad \tilde{\tilde{A}}^{\mu
u} = (-\mathbf{p},-\mathbf{a}) = -A^{\mu
u}$$

Satz von Helmholtz für antisymmetrische Tensoren zweiter Stufe:

$$\partial_{\mu}A^{\mu\nu} = 0 \quad \Leftrightarrow \quad \exists \xi^{\mu} \text{ mit } A^{\mu\nu} = \varepsilon^{\mu\nu\rho\sigma}\partial_{\rho}\xi_{\sigma}$$

Resultat:

$$A^{\mu\nu} = (\mathbf{p}, \mathbf{a}) = (\mathbf{\nabla} \times \boldsymbol{\xi}, \partial_0 \boldsymbol{\xi} + \mathbf{\nabla} \xi_0) = \varepsilon^{\mu\nu\rho\sigma} \partial_\rho \xi_\sigma$$

Daher nach Dualitätstransformation:

$$\tilde{A}^{\mu\nu} = (\mathbf{a}, -\mathbf{p}) = (\partial_0 \boldsymbol{\xi} + \nabla \xi_0, -\nabla \times \boldsymbol{\xi}) = -(\partial^\mu \xi^\nu - \partial^\nu \xi^\mu)$$

Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

L Der duale Feldtensor

Der duale Feldtensor

$$ilde{F}^{\mu
u}=rac{1}{2}arepsilon^{\mu
u
ho\sigma}F_{
ho\sigma}=egin{pmatrix} 0 & -c\mathbf{B}^{\mathrm{T}} \ 0 & E_3 & -E_2 \ c\mathbf{B} & -E_3 & 0 & E_1 \ E_2 & -E_1 & 0 \end{pmatrix}$$
 (dualer Feldtensor)

 $[F^{\mu\nu}]$ "echter" Tensor, $\varepsilon^{\mu\nu\rho\sigma}$ Pseudotensor \Rightarrow $\tilde{F}^{\mu\nu}$ Pseudotensor

4-Divergenz von $\tilde{F}^{\mu\nu}$:

$$\partial_{\mu} \tilde{\boldsymbol{F}}^{\mu 0} = \boldsymbol{\nabla} \cdot (c \mathbf{B}) = c (\boldsymbol{\nabla} \cdot \mathbf{B}) = 0$$

und

$$egin{aligned} \partial_{\mu} ilde{\mathbf{F}}^{\mu j} &= \partial_{0} ilde{\mathbf{F}}^{0 j} + \partial_{i} ilde{\mathbf{F}}^{i j} = \partial_{0} (-c B_{j}) + \partial_{i} (arepsilon_{i j k} E_{k}) \ &= - \left(rac{\partial \mathbf{B}}{\partial t} + \mathbf{\nabla} imes \mathbf{E}
ight)_{j} = 0 \end{aligned}$$

Daher insgesamt: $\partial_{\mu} \tilde{F}^{\mu\nu} = 0$

(homogene Maxwell-Gleichungen in kovarianter Form)

Die homogenen Maxwell-Gleichungen:

Kompakte Formulierung:

$$\partial_{\mu}\tilde{F}^{\mu\nu}=0$$

Alternativform:

$$\frac{1}{2}\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu}F_{\rho\sigma}=0\quad\Rightarrow\quad\partial_{\mu}F_{\rho\sigma}+\partial_{\rho}F_{\sigma\mu}+\partial_{\sigma}F_{\mu\rho}=0$$

Achtung: $\partial_{\mu} \tilde{F}^{\mu\nu} = 0$ ist

- nicht-trivial für $\tilde{F}^{\mu\nu} = (c\mathbf{B}, -\mathbf{E})$
- ▶ trivial für $\tilde{F}^{\mu\nu} = \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$ mit $F^{\mu\nu} = \partial^{\mu} A^{\nu} \partial^{\nu} A^{\mu}$: $\frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} \partial_{\mu} (\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho}) = \varepsilon^{\mu\nu\rho\sigma} \partial_{\mu} \partial_{\rho} A_{\sigma} = 0$

(Annahme der Existenz eines 4-Potentials ⇔ homogene Maxwell-Gleichungen)

Theoretische Physik 2: Elektrodynamik

2.7 Die Lorentz-Kraft und elektromagnetische Felder

^L Zusammenfassung

Der elektromagnetische Feldtensor, Zusammenfassung

Definition: $F^{\mu\nu}[A] \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$

Eigenschaften: $F^{\mu\nu}[A] = (\mathbf{E}, c\mathbf{B}) \equiv F^{\mu\nu}(\mathbf{E}, \mathbf{B})$, $\partial_{\mu}F^{\mu\nu}(\mathbf{E}, \mathbf{B}) = \mu_0 c j^{\nu}$

Verhalten unter Lorentz-Transformationen:

- ▶ In Lorenz-Eichung: $(F')^{\mu\nu}[A'] = \Lambda^{\mu}_{\ \rho}\Lambda^{\nu}_{\ \sigma}F^{\rho\sigma}[A]$
- ▶ Daher als Funktion der Felder: $(F')^{\mu\nu}(\mathbf{E}',\mathbf{B}') = \Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}F^{\rho\sigma}(\mathbf{E},\mathbf{B})$

Äquivalenz: HomMaxwGln \Leftrightarrow Existenz A^{μ}

$$\Rightarrow$$
 Wähle $egin{cases} ext{entweder:} & ext{HomMaxwGIn} & , & 0 = \partial_{\mu} \tilde{F}^{\mu
u}(\mathbf{E}, \mathbf{B}) \\ ext{oder:} & ext{Existenz } A^{\mu} & , & F^{\mu
u}[A] = \partial^{\mu} A^{
u} - \partial^{
u} A^{\mu} \end{cases}$

Frage: Kovariante Form für Maxwell-Theorie +

- magnetische Monopole ?

Kapitel 3: Kanonischer Formalismus

► Inhaltsverzeichnis

- 3.0 Einführende Bemerkungen
- ▶ 3.1 Kräftefreie Teilchen
- 3.2 Wechselwirkung mit dem elektromagnetischen Feld
- 3.3 Das Wirkungsfunktional der Felder
- 3.4 Invarianten des elektromagnetischen Feldes
- 3.5 Energie und Impuls des elektromagnetischen Feldes

▶ 3.0

Theoretische Physik 2: Elektrodynamik

☐3.0 Einführende Bemerkungen

Zentrale Fragestellung: Wirkung? Eigenschaften?

Zentrale Fragestellung: Wirkung? Eigenschaften?

Gibt es für das Gesamtsystem von { relativistischen Teilchen und } elektromagnetischen Feldern } :

- eine "Lagrange-Funktion"?
- einen "kanonisch konjugierten Impuls"?
- eine "Hamilton-Funktion"?
- ein "Hamilton'sches Prinzip"?
- eine "Wirkung"?

Struktur der gesuchten Wirkung: $S = S_{\rm M} + S_{\rm WW} + S_{\rm F}$

Diese Wirkung soll also beschreiben:

sowohl die Dynamik der Teilchen:

$$m_0 rac{d^2 x^\mu}{d au^2} = q F^{\mu
u} u_
u$$

als auch die Dynamik der Felder:

$$\partial_{\mu} F^{\mu
u} = \mu_0 c j^{\mu} \quad , \quad \partial_{\mu} \tilde{F}^{\mu
u} = 0$$

3.1 Kräftefreie Teilchen

Bewegungsgleichung eines Teilchens für $F^{\mu\nu}=0$:

$$m_0 \frac{d^2 x^{\mu}}{d\tau^2} = 0 \quad \Rightarrow \quad \frac{dx^{\mu}}{d\tau} = \gamma_u \frac{dx^{\mu}}{dt} = \text{konstant}$$

Lösung:

$$\gamma_u \mathbf{u} = \text{konst.} \quad \Rightarrow \quad \mathbf{u} = \text{konst.} \quad \text{(geradlinig-gleichförmige Bewegung)}$$

Energie:

$$\mathcal{E} = \gamma_u m_0 c^2 = mc^2$$

Geeignetes Wirkungsfunktional: (Lorentz-invariant, 1906, Max Planck)

$$S_{
m M} = S_{
m 1}^2[x] = -m_0 c \int_{
m 1}^2 ds = -m_0 c^2 \int_{
m t_1}^{
m t_2} dt' rac{1}{\gamma_u(t')}$$
 ${
m 1} \ \widehat{=} \ x_1^\mu = (ct_1,{
m x}_1) \ , \ \ {
m 2} \ \widehat{=} \ x_2^\mu = (ct_2,{
m x}_2)$
(bei Variation von S festzuhalten!)

Physikalische Bahn durch Minimierung von $S_{
m M}$ bestimmt!

Theoretische Physik 2: Elektrodynamik

└3.1 Kräftefreie Teilchen

Das Planck'sche Wirkungsfunktional

Kräftefreie Teilchen

Geeignetes Wirkungsfunktional: (Max Planck, 1906)

$$S_{
m M}=S_1^2[x]=-m_0c\int_1^2ds=-m_0c^2\int_{t_1}^{t_2}dt'rac{1}{\gamma_u(t')}$$

Physikalische Bahn durch Minimierung von $S_{
m M}$ bestimmt:

$$\mathbf{0} = rac{\delta \mathcal{S}_{ ext{M}}}{\delta \mathbf{x}(t)} \quad , \quad \mathcal{S}_{ ext{M}} = \int_{t_1}^{t_2} dt' \; \mathit{L}(\mathbf{x}, \dot{\mathbf{x}}; t')$$

mit

$$L(\mathbf{x}, \dot{\mathbf{x}}; t) = -\frac{m_0 c^2}{\gamma_u(t)} = -m_0 c^2 \sqrt{1 - \left(\frac{\mathbf{u}(t)}{c}\right)^2} = -m_0 c^2 \sqrt{1 - \left(\frac{\dot{\mathbf{x}}(t)}{c}\right)^2}$$

Nicht-relativistischer Limes:

$$L(\mathbf{x},\dot{\mathbf{x}};t)\sim -m_0c^2\left[1-rac{1}{2}\left(rac{\dot{\mathbf{x}}}{c}
ight)^2-rac{1}{8}\left(rac{\dot{\mathbf{x}}^2}{c^2}
ight)^2+\cdots
ight] \sim rac{1}{2}m_0\dot{\mathbf{x}}^2+\left(egin{array}{c} ext{vollständige} \ ext{Zeitableitung}
ight)$$

Bewegungsgleichung des kräftefreien Teilchens:

$$\mathbf{0} = \frac{\partial L}{\partial \mathbf{x}} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{x}}} \right) = -\frac{d}{dt} \left[-m_0 c^2 \frac{\left(-\dot{\mathbf{x}}/c^2 \right)}{\sqrt{1 - \left(\dot{\mathbf{x}}^2/c^2 \right)}} \right] = -m_0 \frac{d}{dt} \left(\gamma_u \frac{d\mathbf{x}}{dt} \right)$$

Kräftefreie Teilchen

Bewegungsgleichung des kräftefreien Teilchens: $\mathbf{0} = -m_0 \frac{d}{dt} \left(\gamma_u \frac{d\mathbf{x}}{dt} \right)$

Lösung: $\mathbf{u} = \frac{d\mathbf{x}}{dt} = \text{konstant} \Rightarrow \gamma_u = \text{konstant} \Rightarrow 0 = \gamma_u \frac{d}{dt} \left[\gamma_u \frac{d}{dt} \left(ct, \mathbf{x} \right) \right] = \frac{d}{d\tau} \left(\frac{dx^{\mu}}{d\tau} \right) = \frac{d^2 x^{\mu}}{d\tau^2}$

Hamilton-Formulierung:

$$\mathbf{p} = \frac{\partial L}{\partial \dot{\mathbf{x}}} = \frac{m_0 \dot{\mathbf{x}}}{\sqrt{1 - (\dot{\mathbf{x}}^2/c^2)}} = \gamma_u m_0 \mathbf{u} \qquad (\mathbf{u} \equiv \dot{\mathbf{x}})$$

Beziehung 3-Impuls \leftrightarrow 4-Geschwindigkeit $u^{\mu} = \gamma_u(1, \beta_u)$:

$$p_i = m_0 \gamma_u u_i = m_0 c u^i$$

Energie des Teilchens:

$$\mathcal{E}(\dot{\mathbf{x}}) = \mathbf{p} \cdot \dot{\mathbf{x}} - L = \frac{m_0 \dot{\mathbf{x}} \cdot \dot{\mathbf{x}}}{\sqrt{1 - (\dot{\mathbf{x}}^2/c^2)}} - \left(-m_0 c^2 \sqrt{1 - \frac{\dot{\mathbf{x}}^2}{c^2}}\right)$$

$$= \gamma_u m_0 c^2 [\boldsymbol{\beta}^2 + (1 - \boldsymbol{\beta}^2)] = \gamma_u m_0 c^2 = m_0 c^2 u^0$$

Kombination \rightarrow (kontra- bzw. kovarianter) 4-Vektor: 4-Impuls $p^{\mu} \equiv \left(\frac{\mathcal{E}}{c}, \ \mathbf{p}\right) = m_0 c u^{\mu}$ bzw. $p_{\mu} = \left(\frac{\mathcal{E}}{c}, \ -\mathbf{p}\right) = m_0 c u_{\mu}$

Theoretische Physik 2: Elektrodynamik

☐3.1 Kräftefreie Teilchen

Hamilton-Funktion & -Gleichungen des kräftefreien Teilchens

Kräftefreie Teilchen

Kombination \rightarrow (kontra- bzw. kovarianter) 4-Vektor: 4-Impuls

$$p^{\mu} \equiv \left(rac{arepsilon}{c}, \; \mathbf{p}
ight) = m_0 c u^{\mu} \;\;\; ext{bzw}. \;\;\; p_{\mu} = \left(rac{arepsilon}{c}, \; -\mathbf{p}
ight) = m_0 c u_{\mu}$$

Normierung $u_{\mu}u^{\mu}=1$ \rightarrow

$$(m_0c)^2 = (m_0c)^2 u_\mu u^\mu = p_\mu p^\mu = \left(\frac{\varepsilon}{c}\right)^2 - \mathbf{p}^2 \quad \Rightarrow \quad \mathcal{E}(\mathbf{p}) = \sqrt{\mathbf{p}^2c^2 + m_0^2c^4}$$

Nicht-relativistischer Limes:

$$\mathcal{E}(\dot{\mathbf{x}}) = m_0 c^2 + \frac{1}{2} m_0 \dot{\mathbf{x}}^2 + \cdots , \quad \mathcal{E}(\mathbf{p}) = m_0 c^2 + \frac{\mathbf{p}^2}{2m_0} + \cdots$$

Hamilton-Funktion eines kräftefreien Teilchens:

$$H(\mathbf{x}, \mathbf{p}; t) = \sqrt{\mathbf{p}^2 c^2 + m_0^2 c^4}$$

Hamilton-Gleichungen:

$$\dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{x}} = \mathbf{0} \quad , \quad \dot{\mathbf{x}} = \frac{\partial H}{\partial \mathbf{p}} = \frac{\mathbf{p}c^2}{\sqrt{\mathbf{p}^2c^2 + m_0^2c^4}} \quad \Rightarrow \quad \begin{pmatrix} \text{geradlinig-gleichförmige} \\ \text{gleichförmige} \\ \text{Bewegung} \end{pmatrix}$$

Kanonischer Formalismus in manifest kovarianter Form

Wirkung:

$$S_{
m M}=-m_0c\int_1^2ds$$

Hamilton'sches Prinzip:

$$(\delta x_1^\mu = \delta x_2^\mu = 0)$$

$$\delta S_{
m M} = -m_0 c \int_1^2 \delta(ds) = -m_0 c \int_1^2 \delta(\sqrt{dx_\mu dx^\mu}) = -m_0 c \int_1^2 \frac{dx^\mu}{ds} \delta(dx_\mu)$$
 $= -m_0 c \int_1^2 u^\mu d(\delta x_\mu) = -m_0 c u^\mu \delta x_\mu \Big|_1^2 + m_0 c \int_1^2 \delta x_\mu \frac{du^\mu}{ds} ds \stackrel{!}{=} 0$

Konsequenz für Bewegungsgleichung:

$$\delta S_{\rm M} = m_0 c \int_1^2 \delta x_\mu \frac{du^\mu}{ds} ds = 0 \quad \Rightarrow \quad \frac{du^\mu}{ds} = 0$$

Lösung:

 $x_{\phi}^{\mu} \, \widehat{=} \,$ geradlinig-gleichförmige Bewegung

▶ Drehimpuls

Theoretische Physik 2: Elektrodynamik

└3.1 Kräftefreie Teilchen

Kanonischer Formalismus in manifest kovarianter Form

Hamilton'sche Wirkungsfunktion

Definition:

$$\Sigma(x) \equiv S_{x_1}^x[x_{\phi}] \qquad [x_1 = (ct_1, \mathbf{x}_1) \text{ fest}]$$

4-Ortsableitung von Σo 4-Impulsvektor:

$$m_0 c u^\mu = p^\mu \quad \Rightarrow \quad \delta \Sigma = -p^\mu \delta x_\mu \quad \Rightarrow \quad \frac{\partial \Sigma}{\partial x_\mu} = \partial^\mu \Sigma = -p^\mu$$

Normierung des 4-Impulses \rightarrow Bestimmungsgleichung für $\Sigma(x)$:

$$(m_0c)^2 = p_\mu p^\mu = (\partial_\mu \Sigma)(\partial^\mu \Sigma) = rac{1}{c^2} \left(rac{\partial \Sigma}{\partial t}
ight)^2 - \left(rac{\partial \Sigma}{\partial \mathbf{x}}
ight)^2 \quad \left(egin{array}{c} \mathsf{Hamilton-} \\ \mathsf{Jacobi-} \\ \mathsf{Gleichung} \end{array}
ight)$$

nicht-relativistischer Limes:

$$-\frac{\partial \Sigma_{\rm NR}}{\partial t} = \mathcal{E}_{\rm NR} = \mathcal{E} - m_0 c^2 = -\frac{\partial}{\partial t} (\Sigma + m_0 c^2 t) \quad , \quad \Sigma = -m_0 c^2 t + \Sigma_{\rm NR}$$

Im Limes
$$c \to \infty$$
: $\frac{\partial \Sigma}{\partial t} + H\left(\frac{\partial \Sigma}{\partial x}\right) = 0$ mit $H(\mathbf{p}) = \mathbf{p}^2/2m$

Der relativistische Drehimpuls

Nicht-relativistisch: auch Drehimpuls eines kräftefreien Teilchens erhalten!

$$\frac{d\mathbf{L}}{dt} = \mathbf{0} \quad , \quad \mathbf{L} \equiv \mathbf{x} \times \mathbf{p} = \begin{pmatrix} x_2 p_3 - x_3 p_2 \\ x_3 p_1 - x_1 p_3 \\ x_1 p_2 - x_2 p_1 \end{pmatrix} \quad , \quad L_i = \varepsilon_{ijk} x_j p_k$$

Relativistische Verallgemeinerung:

$$L^{\mu\nu} = x^{\mu}p^{\nu} - x^{\nu}p^{\mu}$$
 [(echter) antisymmetrischer Tensor 2. Stufe]

Bewegungsgleichung:

$$\frac{dL^{\mu\nu}}{ds} = \frac{dx^{\mu}}{ds}p^{\nu} + x^{\mu}\frac{dp^{\nu}}{ds} - \frac{dx^{\nu}}{ds}p^{\mu} - x^{\nu}\frac{dp^{\mu}}{ds}$$
$$= u^{\mu}p^{\nu} - u^{\nu}p^{\mu} = m_{0}c(u^{\mu}u^{\nu} - u^{\nu}u^{\mu}) = 0$$

 $L^{\mu\nu}$ ist Erhaltungsgröße: $\left[ext{auch } \mathbf{X} \text{ erhalten: } \mathbf{x} = rac{c}{\mathcal{E}} \mathbf{X} + \mathbf{u}t \;,\; \mathbf{u} = rac{c^2}{\mathcal{E}} \mathbf{p} = rac{\mathbf{p}}{\gamma_u m_0}
ight]$

$$L^{\mu\nu} = \begin{pmatrix} 0 & -\mathbf{X}^{\mathrm{T}} \\ 0 & L_{3} & -L_{2} \\ \mathbf{X} & -L_{3} & 0 & L_{1} \\ L_{2} & -L_{1} & 0 \end{pmatrix} = (\mathbf{X}, -\mathbf{L}) , \quad \mathbf{X} \equiv \frac{\mathcal{E}}{c} \mathbf{x} - \mathbf{p}ct$$

Theoretische Physik 2: Elektrodynamik

3.1 Kräftefreie Teilchen

Der relativistische Drehimpuls

System N kräftefreier Teilchen

Gesamt-4-Impuls N kräftefreier Teilchen:

$$p_{\mathrm{M}}^{\mu} = \left(rac{\mathcal{E}_{\mathrm{M}}}{c}, \mathbf{p}_{\mathrm{M}}
ight) \quad , \quad \mathbf{p}_{\mathrm{M}} = \sum_{l=1}^{N} \mathbf{p}_{l} \quad , \quad \mathcal{E}_{\mathrm{M}} = \sum_{l=1}^{N} \mathcal{E}_{l} \quad , \quad \mathcal{E}_{l} = \sqrt{\mathbf{p}_{l}^{2}c^{2} + m_{0l}^{2}c^{4}}$$

Gesamtdrehimpuls-4-Tensor:

$$L_{\mathrm{M}}^{\mu
u} = (\mathbf{X}_{\mathrm{M}}, -\mathbf{L}_{\mathrm{M}}) \quad , \quad \mathbf{X}_{\mathrm{M}} = \sum_{l=1}^{N} \left(\frac{\mathcal{E}_{l}}{c} \mathbf{x}_{l} - \mathbf{p}_{l} c t \right) \quad , \quad \mathbf{L}_{\mathrm{M}} = \sum_{l=1}^{N} \mathbf{L}_{l}$$

Erhaltungsgesetze:

$$rac{dp_{
m M}^{\mu}}{dt}=0 \quad , \quad rac{dL_{
m M}^{\mu
u}}{dt}=0$$

Erhaltungsgesetz für X_{M} impliziert:

$$rac{1}{\mathcal{E}_{\mathrm{M}}} \sum_{l=1}^{N} \mathcal{E}_{l} \mathbf{x}_{l} = rac{c}{\mathcal{E}_{\mathrm{M}}} \mathbf{X}_{\mathrm{M}} + \mathbf{u}_{\mathrm{M}} t \quad , \quad \mathbf{u}_{\mathrm{M}} = rac{c^{2}}{\mathcal{E}_{\mathrm{M}}} \mathbf{p}_{\mathrm{M}}$$

Interpretation:

Schwerpunkt des Gesamtsystems hat konstante Geschwindigkeit u_{M}

3.2 Wechselwirkung mit dem elektromagnetischen Feld

Wechselwirkungsterm in der nicht-relativistischen Wirkung:

$$S_{\text{WW}} = q \int_{t_1}^{t_2} dt \left[\mathbf{u} \cdot \mathbf{A}(\mathbf{x}, t) - \Phi(\mathbf{x}, t) \right]$$

 $S_{\rm WW}$ ist bereits Lorentz-invariant! Mit $u_{\mu}=\gamma_u(1,-oldsymbol{eta})$ und $A^{\mu}=(\Phi,c\mathbf{A})$:

$$S_{\mathrm{WW}} = q \int\limits_{t_1}^{t_2} rac{dt}{\gamma_u} \left[\gamma_u oldsymbol{eta} \cdot (c oldsymbol{\mathsf{A}}) - \gamma_u \Phi
ight] = -rac{q}{c} \int\limits_1^2 ds \; u_
u A^
u$$

Gesamtwirkung für Wechselwirkungsproblem:

$$egin{align} S_{ ext{M+WW}} &= \int\limits_{1}^{2} ds \left(-m_0 c - rac{q}{c} u_
u A^
u
ight) \ &= \int\limits_{t_1}^{t_2} dt \left(-m_0 c^2 \sqrt{1 - rac{\mathbf{u}^2}{c^2}} + q \mathbf{u} \cdot \mathbf{A} - q \Phi
ight) \end{aligned}$$

Theoretische Physik 2: Elektrodynamik

_3.2 Wechselwirkung mit dem elektromagnetischen Feld

Die Hamilton-Funktion

Impuls, Hamilton-Funktion und Energie

kanonischer Impuls:
$$\mathbf{p} = \frac{\partial L}{\partial \mathbf{u}} = \gamma_u m_0 \mathbf{u} + q \mathbf{A} = \pi + q \mathbf{A}$$
 kinetischer Impuls: $\pi \equiv \mathbf{p} - q \mathbf{A} = \gamma_u m_0 \mathbf{u}$ \Rightarrow 4-Vektoren :

$$p^{\mu} = m_0 c u^{\mu} + rac{q}{c} A^{\mu} = \pi^{\mu} + rac{q}{c} A^{\mu} \quad , \quad \pi^{\mu} \equiv p^{\mu} - rac{q}{c} A^{\mu} = m_0 c u^{\mu}$$

Hamilton-Funktion:

$$H = \mathbf{u} \cdot \frac{\partial L}{\partial \mathbf{u}} - L = \mathbf{u} \cdot (\gamma_u m_0 \mathbf{u} + q \mathbf{A}) - \left(\frac{-m_0 c^2}{\gamma_u} + q \mathbf{u} \cdot \mathbf{A} - q \Phi\right)$$
$$= \gamma_u m_0 c^2 \left(\frac{\mathbf{u}^2}{c^2} + \frac{1}{\gamma_u^2}\right) + q \Phi = \gamma_u m_0 c^2 + q \Phi(\mathbf{x}, t) \stackrel{!}{=} c p^0$$

ersetze u durch p:

$$H(\mathbf{x},\mathbf{p};t) = \sqrt{\pi^2c^2 + m_0^2c^4} + q\Phi = \sqrt{(\mathbf{p} - q\mathbf{A})^2c^2 + m_0^2c^4} + q\Phi$$

Summe von kinetischer Energie und Ruheenergie:

$$\mathcal{E}(\mathbf{u}) = \gamma_u m_0 c^2 = \frac{m_0 c^2}{\sqrt{1 - \mathbf{u}^2/c^2}}$$
 (i. A. keine Erhaltungsgröße)

Lorentz'sche Bewegungsgleichung (relativistisch)

Identität
$$ds = \sqrt{dx_{\mu}dx^{\mu}} + \text{Hamilton'sches Prinzip} \rightarrow 0 = \delta S_{\text{M+WW}} = \delta \int_{1}^{2} \left(-m_{0}c \, ds - \frac{q}{c}A^{\nu}dx_{\nu} \right)$$

$$= \int_{1}^{2} \left[-m_{0}c \frac{dx^{\mu}}{ds} d(\delta x_{\mu}) - \frac{q}{c}A^{\nu}d(\delta x_{\nu}) - \frac{q}{c}(\partial^{\mu}A^{\nu})(\delta x_{\mu})dx_{\nu} \right]$$

$$= -(m_{0}cu^{\mu} + \frac{q}{c}A^{\mu})\delta x_{\mu} \Big|_{1}^{2}$$

$$+ \int_{1}^{2} \delta x_{\mu} \left[m_{0}c \frac{d^{2}x^{\mu}}{ds^{2}} + \frac{q}{c}(\partial^{\nu}A^{\mu}) \frac{dx_{\nu}}{ds} - \frac{q}{c}(\partial^{\mu}A^{\nu}) \frac{dx_{\nu}}{ds} \right] ds$$

Bewegungsgleichung durch Minimierung von S_{M+WW} :

$$m_0 rac{d^2 x^\mu}{d au^2} = m_0 c^2 rac{d^2 x^\mu}{ds^2} = q u_
u (\partial^\mu A^
u - \partial^
u A^\mu) = q u_
u F^{\mu
u} = K^\mu$$

⇒ überspringe "Wirkungsfunktior

Theoretische Physik 2: Elektrodynamik

3.2 Wechselwirkung mit dem elektromagnetischen Feld

3.2.1 Bewegungsgleichung für relativistisches geladenes Teilchen im elektromagnetischen Feld

Hamilton'sche Wirkungsfunktion

Definition:

$$\Sigma(x) = S_{x_1}^x[x_{\phi}]$$

Ableiten nach 4-Ortsvektor:

$$p^{\mu}=-rac{\partial\Sigma}{\partial x_{\mu}}=m_{0}cu^{\mu}+rac{q}{c}A^{\mu}=\pi^{\mu}+rac{q}{c}A^{\mu}$$

Identität $\pi^{\mu}\pi_{\mu}=(m_0c)^2u^{\mu}u_{\mu}=(m_0c)^2$ Hamilton-Jacobi-Gleichung:

$$egin{align} (m_0c)^2 &= (-\pi^\mu)(-\pi_\mu) = (\partial^\mu\Sigma + rac{q}{c}A^\mu)(\partial_\mu\Sigma + rac{q}{c}A_\mu) \ &= rac{1}{c^2}\left(rac{\partial\Sigma}{\partial t} + q\Phi
ight)^2 - (oldsymbol{
abla}\Sigma - qoldsymbol{A})^2 \end{split}$$

[Substitution $\Sigma = -m_0c^2t + \Sigma_{\mathrm{NR}} o \mathsf{nicht}$ -relativistische Variante]

Relativistische Bewegungsgleichung

Explizite Form der Bewegungsgleichung:

$$m_0 \frac{d^2 x^{\mu}}{d\tau^2} = m_0 \gamma_u \frac{d}{dt} (cu^{\mu}) = \gamma_u \frac{d\pi^{\mu}}{dt}$$

= $K^{\mu} = q \gamma_u (\mathbf{E} \cdot \boldsymbol{\beta}_u, \mathbf{E} + \mathbf{u} \times \mathbf{B})$

 $\pi^{\mu} = m_0 c u^{\mu} = \gamma_u m_0 c(1, \beta_u) \rightarrow \text{komponentenweise}$: Beziehung:

$$rac{d\pi}{dt} = q(\mathbf{E} + \mathbf{u} imes \mathbf{B}) \quad , \quad \pi = \gamma_u m_0 \mathbf{u}$$

und

$$\frac{d\mathcal{E}}{dt} = \frac{d}{dt}(\gamma_u m_0 c^2) = \frac{d}{dt}(\pi^0 c) = q \mathbf{E} \cdot \mathbf{u} \quad , \quad \mathcal{E} = \gamma_u m_0 c^2 = \sqrt{\pi^2 c^2 + m_0^2 c^4}$$

 $\frac{d\mathcal{E}}{dt}$ -Gleichung übrigens redundant wegen:

$$\frac{d\mathcal{E}}{dt} = \frac{c^2 \boldsymbol{\pi} \cdot \frac{d\boldsymbol{\pi}}{dt}}{\sqrt{\boldsymbol{\pi}^2 c^2 + m_0^2 c^4}} = \frac{q}{\gamma_u m_0} \boldsymbol{\pi} \cdot (\mathbf{E} + \mathbf{u} \times \mathbf{B}) = q \mathbf{E} \cdot \mathbf{u}$$

Theoretische Physik 2: Elektrodynamik

3.2 Wechselwirkung mit dem elektromagnetischen Feld

 igspace 3.2.1 Bewegungsgleichung für relativistisches geladenes Teilchen im elektromagnetischen Feld

Diskrete/kontinuierliche Symmetrien

Bewegungsgleichungen:

$$rac{d\pi}{dt} = q(\mathbf{E} + \mathbf{u} imes \mathbf{B}) \quad , \quad rac{d\mathcal{E}}{dt} = q\mathbf{E} \cdot \mathbf{u}$$

diskrete Symmetrien der Bewegungsgleichungen:

- **Zeitumkehr** $[(\pi, t, \mathbf{u}, \mathbf{B}) \rightarrow (-\pi, -t, -\mathbf{u}, -\mathbf{B}); (q, \mathbf{E}) \text{ invariant}]$ **Raumspiegelung am Ursprung** $(\mathbf{E} \rightarrow -\mathbf{E}, \mathbf{B} \rightarrow \mathbf{B})$

kontinuierliche Symmetrien der Wirkung/Bewegungsgleichungen:

- Lorentz-Invarianz der Wirkung , -Kovarianz der Bewegungsgleichungen
- Bewegungsgleichungen manifest eichinvariant Eichinvarianz der Wirkung? $(A')^{\mu} \equiv A^{\mu} + \partial^{\mu} \Lambda$, $\Lambda = \text{Lorentz-} Skalar \rightarrow$

$$S \to S' = \int_{1}^{2} \left[-m_0 c \, ds - \frac{q}{c} dx_{\nu} (A^{\nu} + \partial^{\nu} \Lambda) \right]$$
$$= S - \frac{q}{c} \int_{1}^{2} (\partial^{\nu} \Lambda) dx_{\nu} = S - \frac{q}{c} \int_{1}^{2} d\Lambda = S - \frac{q}{c} [\Lambda(2) - \Lambda(1)]$$

3.3 Das Wirkungsfunktional der Felder

Wirkungsfunktional, Erwartung:

$$S_{
m F}=\int\limits_{t_1}^{t_2}dt\; L_{
m F}(t)=\int\limits_{t_1}^{t_2}dt\int d{\sf x}\; {\cal L}_{
m F}$$

Lagrange-Dichte \mathcal{L}_{F} :

$$\mathcal{L}_{\mathrm{F}} = \mathcal{L}[A^{\mu}, \partial^{\nu} A^{\mu}]$$

(Homogenität der Raum-Zeit \Rightarrow \mathcal{L}_{F} nicht explizit x^{μ} -abhängig)

Herleitung der Euler-Lagrange-Gleichungen:

$$\begin{split} 0 &= \delta S_{\mathrm{F}} = \int\limits_{t_{1}}^{t_{2}} dt \int d\mathbf{x} \left[\frac{\partial \mathcal{L}_{\mathrm{F}}}{\partial A^{\mu}} \delta A^{\mu} + \frac{\partial \mathcal{L}_{\mathrm{F}}}{\partial (\partial^{\nu} A^{\mu})} \partial^{\nu} (\delta A^{\mu}) \right] \\ &= \int\limits_{t_{1}}^{t_{2}} dt \int d\mathbf{x} \left[\frac{\partial \mathcal{L}_{\mathrm{F}}}{\partial A^{\mu}} - \partial^{\nu} \left(\frac{\partial \mathcal{L}_{\mathrm{F}}}{\partial (\partial^{\nu} A^{\mu})} \right) \right] \delta A^{\mu} + \frac{\partial \mathcal{L}_{\mathrm{F}}}{\partial (\partial_{t} A^{\mu})} \delta A^{\mu} \bigg|_{t_{1}}^{t_{2}} \end{split}$$

Variation der "Bahnen" an den Endpunkten ($t = t_1$, $t = t_2$) festhalten!

Theoretische Physik 2: Elektrodynamik

☐3.3 Das Wirkungsfunktional der Felder

Mögliche Struktur des Wirkungsfunktionals

Variation der "Bahnen" an den Endpunkten ($t = t_1, t = t_2$) festhalten:

$$\delta A(ct_1, \mathbf{x}) = 0 = \delta A(ct_2, \mathbf{x})$$

Konsequenz:

$$\frac{\partial \mathcal{L}_{\mathrm{F}}}{\partial A^{\mu}} - \partial^{\nu} \left(\frac{\partial \mathcal{L}_{\mathrm{F}}}{\partial (\partial^{\nu} A^{\mu})} \right) = 0$$

Maxwell-Gleichungen linear in $\partial^{\mu}\mathbf{E}$, $\partial^{\mu}\mathbf{B}$, $\partial^{\mu}\partial^{\nu}A^{\rho}$ \Rightarrow Form von \mathcal{L}_{F} :

$$\mathcal{L}_{\mathrm{F}} = \mathsf{a}_{\mu
u,
ho \sigma} (\partial^{\mu} \mathsf{A}^{
u}) (\partial^{
ho} \mathsf{A}^{\sigma}) \qquad (\mathsf{a}_{\mu
u,
ho \sigma} = \mathsf{a}_{
ho \sigma, \mu
u})$$

Fordere Invarianz von \mathcal{L}_{F} unter Eichtransformation $A^{\mu} \to \tilde{A}^{\mu} \equiv A^{\mu} + \partial^{\mu} \Lambda$:

$$0 = a_{\mu\nu,\rho\sigma} [(\partial^{\mu}\tilde{A}^{\nu})(\partial^{\rho}\tilde{A}^{\sigma}) - (\partial^{\mu}A^{\nu})(\partial^{\rho}A^{\sigma})]$$

$$= a_{\mu\nu,\rho\sigma} [(\partial^{\mu}\partial^{\nu}\Lambda)(\partial^{\rho}A^{\sigma}) + (\partial^{\mu}A^{\nu})(\partial^{\rho}\partial^{\sigma}\Lambda) + (\partial^{\mu}\partial^{\nu}\Lambda)(\partial^{\rho}\partial^{\sigma}\Lambda)]$$

$$= a_{\mu\nu,\rho\sigma} [2(\partial^{\mu}A^{\nu})(\partial^{\rho}\partial^{\sigma}\Lambda) + (\partial^{\mu}\partial^{\nu}\Lambda)(\partial^{\rho}\partial^{\sigma}\Lambda)]$$

Fordere daher:

$$a_{\mu\nu,\rho\sigma}(\partial^{\rho}\partial^{\sigma}\Lambda)=0 \qquad (\forall \mu,\nu)$$

 $\Box \Lambda = 0 \text{, ansonsten } \Lambda = \textit{beliebiger Lorentz-Skalar} \quad \Rightarrow \quad \textit{a}_{\mu\nu,\rho\sigma} = -\textit{a}_{\mu\nu,\sigma\rho} \quad \Rightarrow \quad$

$$egin{aligned} \mathcal{L}_{\mathrm{F}} &= rac{1}{4} \mathsf{a}_{\mu
u,
ho\sigma} (\partial^{\mu} \mathsf{A}^{
u} - \partial^{
u} \mathsf{A}^{\mu}) (\partial^{
ho} \mathsf{A}^{\sigma} - \partial^{\sigma} \mathsf{A}^{
ho}) \ &= rac{1}{4} \mathsf{a}_{\mu
u,
ho\sigma} \mathsf{F}^{\mu
u} \mathsf{F}^{
ho\sigma} \end{aligned}$$

Lagrange-Dichte:

$$\mathcal{L}_{ ext{F}} = rac{1}{4} extbf{a}_{\mu
u,
ho\sigma} extbf{F}^{\mu
u} extbf{F}^{
ho\sigma}$$

Fordere Lorentz-Invarianz der Wirkung; Invarianz des Volumenelements:

$$dt \ d\mathbf{x} \to dt' \ d\mathbf{x}' = \left| \det \left(\frac{\partial x'^{\nu}}{\partial x^{\mu}} \right) \right| dt \ d\mathbf{x} = |\det(\Lambda)| \ dt \ d\mathbf{x} = dt \ d\mathbf{x}$$

 \Rightarrow \mathcal{L}_{F} Lorentz-invariant \Rightarrow $a_{\mu\nu,\rho\sigma}$ echter Tensor unter Lorentz-Transformationen

Weitere Einschränkungen:

- $ightharpoonup a_{\mu\nu,\rho\sigma}$ unabhängig vom Koordinatensystem!
- $ightharpoonup a_{\mu\nu,\rho\sigma}$ aus $g^{\mu\nu},g^{\mu}_{\ \nu}$ aufgebaut!

⇒ Lagrange-Dichte:

$$\mathcal{L}_{\mathrm{F}} = -rac{1}{8}arepsilon(g_{\mu
ho}g_{
u\sigma}-g_{
u
ho}g_{\mu\sigma})F^{\mu
u}F^{
ho\sigma} = -rac{1}{4}arepsilon F^{\mu
u}F_{\mu
u}$$

Im Folgenden: Gültigkeit der inhomogenen Maxwell-Gleichungen erfordert $\varepsilon=\varepsilon_0$

Theoretische Physik 2: Elektrodynamik

☐3.3 Das Wirkungsfunktional der Felder

Mögliche Struktur des Wirkungsfunktionals

Wechselwirkungsterm im Wirkungsfunktional

Ladungs- und Stromdichten:

$$\rho(\mathbf{x},t) = \sum_{l=1}^{N} q_l \delta(\mathbf{x} - \mathbf{x}_l(t)) \quad , \quad \mathbf{j}(\mathbf{x},t) = \sum_{l=1}^{N} q_l \dot{\mathbf{x}}_l(t) \delta(\mathbf{x} - \mathbf{x}_l(t))$$

Für N-Teilchen-System:

$$L_{\mathrm{WW}} = \sum_{l=1}^{N} q_l [\dot{\mathbf{x}}_l \cdot \mathbf{A}(\mathbf{x}_l(t), t) - \Phi(\mathbf{x}_l(t), t)] = \int d\mathbf{x} \ (\mathbf{j} \cdot \mathbf{A} -
ho \Phi) = -rac{1}{c} \int d\mathbf{x} \ j_\mu A^\mu$$

Form der Wirkung S_{WW}:

$$S_{
m WW} = \int\limits_{t_1}^{t_2} dt \int d{f x} \; {\cal L}_{
m WW} \quad , \quad {\cal L}_{
m WW} = -rac{1}{c} j_\mu A^\mu$$

Insgesamt: $[j_{\mu}(x) \text{ fest vorgegeben}]$

$$S_{ ext{F+WW}} = \int\limits_{t}^{t_2} dt \int d extbf{x} \; \mathcal{L}_{ ext{F+WW}} \quad , \quad \mathcal{L}_{ ext{F+WW}} = -rac{1}{4}arepsilon F^{\mu
u} F_{\mu
u} - rac{1}{c} j_{\mu} A^{\mu}$$

Euler-Lagrange-Gleichungen für A^{μ} :

$$0 = \frac{\partial \mathcal{L}}{\partial A^{\rho}} - \partial^{\sigma} \left(\frac{\partial \mathcal{L}}{\partial (\partial^{\sigma} A^{\rho})} \right) = -\frac{1}{c} j_{\rho} - \left(-\frac{1}{4} \varepsilon \right) \partial^{\sigma} (2F_{\sigma\rho} - 2F_{\rho\sigma})$$
$$= -\frac{1}{c} j_{\rho} + \varepsilon \partial^{\sigma} F_{\sigma\rho} \quad \Rightarrow \quad \partial_{\sigma} F^{\sigma\rho} = \frac{1}{\varepsilon c} j^{\rho}$$

Vergleich mit inhomogenen Maxwell-Gleichungen:

$$\partial_{\sigma}F^{\sigma\rho} = \mu_0cj^{\rho} = \frac{1}{\varepsilon_0c}j^{\rho} \quad \Rightarrow \quad \varepsilon = \varepsilon_0$$

Fazit: Gesamtwirkung eines N-Teilchensystems + elektromagnetisches Feld:

$$S = \int\limits_{t_1}^{t_2} dt \; L, \; L = L_{
m M} + \int d\mathbf{x} \left(\mathcal{L}_{
m F} + \mathcal{L}_{
m WW}
ight) \ L_{
m M} = -\sum_{l=1}^N m_{0l} c^2 \sqrt{1-\left(rac{\dot{\mathbf{x}}_l}{c}
ight)^2} \; , \; \mathcal{L}_{
m F} = -rac{1}{4}arepsilon_0 F^{\mu
u} F_{\mu
u} \quad , \quad \mathcal{L}_{
m WW} = -rac{1}{c} j_\mu A^\mu$$

Bewegungsgleichungen folgen alle aus dem Hamilton-Prinzip $\delta S=0$

Theoretische Physik 2: Elektrodynamik

__3.3 Das Wirkungsfunktional der Felder

__3.3.1 Eichinvarianz der Wirkung des Gesamtsystems

Eichinvarianz der Wirkung des Gesamtsystems

Verhalten der Wirkung unter Eichtransformationen?

$$A^{\mu}
ightarrow (A')^{\mu} \equiv A^{\mu} + \partial^{\mu} \Lambda$$
 ($\Lambda = ext{Lorentz-Skalar})$

Nur Lagrange-Funktion $L_{\rm WW} = \int d\mathbf{x} \, \mathcal{L}_{\rm WW}$ ändert sich:

$$egin{aligned} \mathcal{L}_{\mathrm{WW}}' - \mathcal{L}_{\mathrm{WW}} &= -rac{1}{c} \int d\mathbf{x} \ j_{\mu} \partial^{\mu} \Lambda = -rac{1}{c} \int d\mathbf{x} \left[\partial^{0} (j_{0} \Lambda) - \Lambda (\partial^{\mu} j_{\mu})
ight] \ &= rac{1}{c} \int d\mathbf{x} \ \Lambda (\partial^{\mu} j_{\mu}) - rac{1}{c^{2}} rac{d}{dt} \int d\mathbf{x} \ j_{0} \Lambda \end{aligned}$$

⇒ Änderung der Wirkung:

$$S'-S=\int_{t_1}^{t_2}dt\;(L'_{
m WW}-L_{
m WW})$$
 $=rac{1}{c}\int_{t_1}^{t_2}dt\;\int d{f x}\;\Lambda(\partial^\mu j_\mu)+\;{
m Konstante}$

Eichinvarianz ⇔ Ladungserhaltung??

Änderung der Wirkung unter Eichtransformationen:

$$S'-S=rac{1}{c}\int_{t_1}^{t_2}dt\,\int d{\sf x}\,\,\Lambda(\partial^\mu j_\mu)+\,\,{\sf Konstante}$$

Daher:

- \leftarrow Die Forderung: in Wirkungsfunktional nur Bahnen (j^{μ},A^{μ}) mit $\partial^{\mu}j_{\mu}=0$ impliziert Eichinvarianz der Wirkung (Ladungserhaltung $\stackrel{\wedge}{=}$ Zwangsbedingung)
- ⇒ Die Forderung nach Eichinvarianz der Wirkung:

$$\frac{\delta S'}{\delta \Lambda(x)} = 0 \qquad (ct_1 < x^0 < ct_2)$$

impliziert Ladungserhaltung für alle erlaubten $(\delta j^{\mu}, \delta A^{\mu})$

(Nur) in diesem Sinne: Eichinvarianz \Leftrightarrow Ladungserhaltung

Theoretische Physik 2: Elektrodynamik

_3.4 Invarianten des elektromagnetischen Feldes

Bereits bekannte Invarianten

3.4 Invarianten des elektromagnetischen Feldes

Bereits bekannte Invariante: (

Lagrange-Dichte des e.m. Feldes)

$$F^{\mu\nu}F_{\mu\nu} = F^{0i}F_{0i} + F^{i0}F_{i0} + F^{ij}F_{ij}$$

$$= (-E_i)E_i + E_i(-E_i) + (-\varepsilon_{ijk}cB_k)(-\varepsilon_{ijl}cB_l)$$

$$= 2c^2\delta_{kl}B_kB_l - 2\mathbf{E}^2 = -2[\mathbf{E}^2 - (c\mathbf{B})^2]$$

Zweite Invariante:

$$F^{\mu\nu}\tilde{F}_{\mu\nu} = F^{0i}\tilde{F}_{0i} + F^{i0}\tilde{F}_{i0} + F^{ij}\tilde{F}_{ij}$$

$$= (-E_i)cB_i + E_i(-cB_i) + (-\varepsilon_{ijk}cB_k)(\varepsilon_{ijl}E_l)$$

$$= -2\mathbf{E} \cdot (c\mathbf{B}) - 2\delta_{kl}(cB_k)E_l = -4\mathbf{E} \cdot (c\mathbf{B})$$

Dritte Möglichkeit:

$$\tilde{F}^{\mu\nu}\tilde{F}_{\mu\nu} = \frac{1}{2}\varepsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}\tilde{F}_{\mu\nu} = F_{\rho\sigma}\left(\frac{1}{2}\varepsilon^{\rho\sigma\mu\nu}\tilde{F}_{\mu\nu}\right)
= F_{\rho\sigma}\tilde{\tilde{F}}^{\rho\sigma} = -F_{\rho\sigma}F^{\rho\sigma} = 2[\mathbf{E}^2 - (c\mathbf{B})^2]$$

Fazit:

- ▶ $I_1 \equiv \mathbf{E}^2 (c\mathbf{B})^2$ und $I_2 \equiv \mathbf{E} \cdot (c\mathbf{B})$ invariant unter $\Lambda \in \mathcal{L}_{\perp}^{\uparrow}$
- $ightharpoonup I_1$ echter Skalar, invariant unter \mathcal{L} ; I_2 Pseudoskalar
- ▶ $I_{1,2}$ lokal definiert: $I'_1(x',t') = I_1(x,t)$, $I'_2(x',t') = I_2(x,t)$

Weitere Invarianten? Nein!

▶ Beweis

Längenquadrat von $\mathbf{F} = \mathbf{E} + ic\mathbf{B}$:

$$\mathbf{F}^2 = \mathbf{F} \cdot \mathbf{F} = [\mathbf{E}^2 - (c\mathbf{B})^2] + 2i\mathbf{E} \cdot (c\mathbf{B}) = I_1 + 2iI_2$$

Spezialfälle:

- ightharpoonup $\mathbf{F}^2 = 0 \Rightarrow E = cB \land \mathbf{E} \cdot (c\mathbf{B}) = 0$
- Alternativ für $\mathbf{F}^2 \neq 0$:

$$\mathsf{F} = F\hat{\mathsf{f}} \qquad (\hat{\mathsf{f}}\cdot\hat{\mathsf{f}} = 1 \quad, \quad F\in\mathbb{C})$$

Wähle α, ϕ so, dass $R(\alpha - i\phi)\hat{\mathbf{f}} = \hat{\mathbf{e}} \implies$

$$\mathbf{E}' + ic\mathbf{B}' = \mathbf{F}' = R\mathbf{F} = FR\hat{\mathbf{f}} = F\hat{\mathbf{e}}$$

 \Rightarrow $\mathbf{E}' = \operatorname{Re}(F)\hat{\mathbf{e}} \text{ und } c\mathbf{B}' = \operatorname{Im}(F)\hat{\mathbf{e}} \text{ parallel}$

Theoretische Physik 2: Elektrodynamik

_3.4 Invarianten des elektromagnetischen Feldes

Interpretation des komplexen Einheitsvektors f

Interpretation von $R\hat{\mathbf{f}} = \hat{\mathbf{e}}$

Schreibe
$$\hat{\mathbf{f}} = \mathbf{f}_{\mathrm{R}} + i\mathbf{f}_{\mathrm{I}}$$
 mit $\mathbf{f}_{\mathrm{I}} \in \mathbb{R}^3$ \Rightarrow

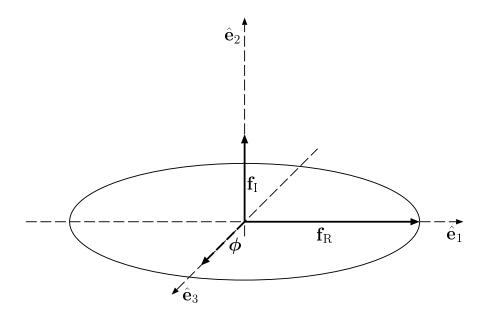
$$\hat{\textbf{f}}\cdot\hat{\textbf{f}}=(\textbf{f}_{\mathrm{R}}^{2}-\textbf{f}_{\mathrm{I}}^{2})+2i\textbf{f}_{\mathrm{R}}\cdot\textbf{f}_{\mathrm{I}}=1\quad\Rightarrow\quad\textbf{f}_{\mathrm{R}}\perp\textbf{f}_{\mathrm{I}}\;\mathsf{mit}\;|\textbf{f}_{\mathrm{R}}|=\sqrt{1+\textbf{f}_{\mathrm{I}}^{2}}$$

Kommentare:

- lacktriangle Speziell: $oldsymbol{f}_{\mathrm{I}} = oldsymbol{0}$ \Rightarrow $oldsymbol{f}_{\mathrm{R}}$ auf Einheitskugel
- Allgemein durchläuft f eine 4-dimensionale Menge
- ightharpoonup Wähle $\mathbf{f}_{\mathrm{R}}=x_{1}\hat{\mathbf{e}}_{1}$, $\mathbf{f}_{\mathrm{I}}=x_{2}\hat{\mathbf{e}}_{2}$ \Rightarrow

$$egin{aligned} R\hat{\mathbf{f}} &= \hat{\mathbf{e}} & \operatorname{mit} & R &= R(-i\phi) \ \phi &= \operatorname{artanh}\left(\frac{\mathbf{x}_2}{\mathbf{x}_1}\right)\hat{\mathbf{e}}_3 & \operatorname{und} & \hat{\mathbf{e}} &= \hat{\mathbf{e}}_1 \end{aligned} \Rightarrow \mathbf{E}' \;,\; \mathbf{B}' \parallel \hat{\mathbf{e}}_1$$

Geometrische Darstellung des komplexen Einheitsvektors $\hat{\mathbf{f}}$



Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

Bewegungsgleichungen für Energie/Impuls eines Teilchens

3.5 Energie und Impuls des elektromagnetischen Feldes

Erwartung: Gesamtimpuls, Gesamtenergie von Teilchen + Felder erhalten

[Energie eines Teilchens = kinetische Energie + Ruheenergie]

Bewegungsgleichung für *Energie* eines Teilchens:

$$\frac{d\mathcal{E}}{dt} = q\mathbf{E}(\mathbf{x}, t) \cdot \mathbf{u} \quad , \quad \mathcal{E} = \gamma_u m_0 c^2$$

Bewegungsgleichung für kinetischen Impuls eines Teilchens:

$$\frac{d\pi}{dt} = q[\mathbf{E}(\mathbf{x},t) + \mathbf{u} \times \mathbf{B}(\mathbf{x},t)]$$
 , $\pi = \gamma_u m_0 \mathbf{u}$

Verallgemeinerung für Vielteilchensysteme:

$$rac{d\mathcal{E}_{\mathrm{M}}}{dt} = \sum_{l=1}^{N} q_l \mathbf{E}(\mathbf{x}_l, t) \cdot \mathbf{u}_l \quad , \quad \mathcal{E}_{\mathrm{M}} = \sum_{l=1}^{N} \mathcal{E}_l \quad , \quad \mathcal{E}_l = \gamma_{u_l} m_{0l} c^2$$

und

$$\frac{d\boldsymbol{\pi}_{\mathrm{M}}}{dt} = \sum_{l=1}^{N} q_{l} [\mathbf{E}(\mathbf{x}_{l}, t) + \mathbf{u}_{l} \times \mathbf{B}(\mathbf{x}_{l}, t)] \quad , \quad \boldsymbol{\pi}_{\mathrm{M}} = \sum_{l=1}^{N} \boldsymbol{\pi}_{l} \quad , \quad \boldsymbol{\pi}_{l} = \gamma_{u_{l}} m_{0l} \mathbf{u}_{l}$$

Alternative Formulierung mit Strom-/Ladungsdichten

Bewegungsgleichungen:

$$rac{d\mathcal{E}_{ ext{M}}}{dt} = \sum_{I=1}^{N} q_I \mathsf{E}(\mathsf{x}_I,t) \cdot \mathsf{u}_I \quad , \quad rac{doldsymbol{\pi}_{ ext{M}}}{dt} = \sum_{I=1}^{N} q_I [\mathsf{E}(\mathsf{x}_I,t) + \mathsf{u}_I imes \mathsf{B}(\mathsf{x}_I,t)]$$

Strom- und Ladungsdichten:

$$\rho(\mathbf{x},t) = \sum_{l=1}^{N} q_l \delta(\mathbf{x} - \mathbf{x}_l) \quad , \quad \mathbf{j}(\mathbf{x},t) = \sum_{l=1}^{N} q_l \mathbf{u}_l \delta(\mathbf{x} - \mathbf{x}_l)$$

⇒ Alternative Formulierungen:

$$rac{d\mathcal{E}_{\mathrm{M},\mathcal{D}}}{dt} = \int\limits_{\mathcal{D}} d\mathbf{x} \; \mathbf{E} \cdot \mathbf{j} \quad , \quad rac{doldsymbol{\pi}_{\mathrm{M},\mathcal{D}}}{dt} = \int\limits_{\mathcal{D}} d\mathbf{x} \; \mathbf{f}_{\mathrm{Lor}} \quad , \quad \mathbf{f}_{\mathrm{Lor}} =
ho \mathbf{E} + \mathbf{j} imes \mathbf{B}$$

 $(\mathbf{E} \cdot \mathbf{j} = \textit{Dichte} \text{ der vom Feld am Teilchen verrichteten Leistung})$ $(\mathbf{f}_{Lor} = \text{Lorentz-Kraft} \textit{dichte})$

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

Bilanzgleichung für Energie

Bilanzgleichung für Energie

Alternative Formulierung der Leistungsdichte mit:

- ▶ Identität $\nabla \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot (\nabla \times \mathbf{a}) \mathbf{a} \cdot (\nabla \times \mathbf{b})$
- Maxwell-Gleichungen III/IV:

$$\begin{split} -\,\mathbf{E}\cdot\mathbf{j} &= -\mathbf{E}\cdot\left(\frac{1}{\mu_0}\boldsymbol{\nabla}\times\mathbf{B} - \varepsilon_0\frac{\partial\mathbf{E}}{\partial t}\right) \\ &= \boldsymbol{\nabla}\cdot\left(\frac{\mathbf{E}\times\mathbf{B}}{\mu_0}\right) - \frac{1}{\mu_0}\mathbf{B}\cdot(\boldsymbol{\nabla}\times\mathbf{E}) + \varepsilon_0\mathbf{E}\cdot\frac{\partial\mathbf{E}}{\partial t} \\ &= \boldsymbol{\nabla}\cdot\mathbf{S} + \frac{1}{\mu_0}\mathbf{B}\cdot\frac{\partial\mathbf{B}}{\partial t} + \varepsilon_0\mathbf{E}\cdot\frac{\partial\mathbf{E}}{\partial t} = \,\boldsymbol{\nabla}\cdot\mathbf{S} + \frac{\partial\rho_{\mathcal{E}}}{\partial t} \end{split}$$

Definitionen:

► Energiedichte:

$$ho_{\mathcal{E}} \equiv rac{1}{2} arepsilon_0 (\mathbf{E}^2 + c^2 \mathbf{B}^2)$$

Poynting-Vektor:

$$\mathbf{S} \equiv \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}$$
 (Interpretation: *Energiestromdichte*!)

Das Poynting-Theorem

Leistungsdichte:

$$-\mathbf{E}\cdot\mathbf{j} = \mathbf{\nabla}\cdot\mathbf{S} + \frac{\partial\rho_{\mathcal{E}}}{\partial t}$$

Gauß'scher Satz \rightarrow Integraldarstellung:

$$\begin{split} \frac{d\mathcal{E}_{\mathrm{M},\mathcal{D}}}{dt} &= \int\limits_{\mathcal{D}} d\mathbf{x} \; \mathbf{E} \cdot \mathbf{j} = -\int\limits_{\mathcal{D}} d\mathbf{x} \left(\mathbf{\nabla} \cdot \mathbf{S} + \frac{\partial \rho_{\mathcal{E}}}{\partial t} \right) \\ &\Rightarrow \frac{d}{dt} \left(\mathcal{E}_{\mathrm{M},\mathcal{D}} + \int\limits_{\mathcal{D}} d\mathbf{x} \; \rho_{\mathcal{E}} \right) = -\int\limits_{\partial \mathcal{D}} d\mathbf{F} \cdot \mathbf{S} \end{split}$$

Spezialfall: $\mathcal{D}=\mathbb{R}^3 \ \Rightarrow \ rac{d}{dt}\left(\mathcal{E}_{\mathrm{M},\mathbb{R}^3}+\int_{\mathbb{R}^3}d\mathbf{x}\
ho_{\mathcal{E}}
ight)=0$

[Energieerhaltungsgesetz! Poynting-Theorem]

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

Bilanzgleichung für Impuls

Analog: Impulserhaltung?

$$\begin{split} -\,\mathbf{f}_{\mathrm{Lor}} &= -(\rho \mathbf{E} + \mathbf{j} \times \mathbf{B}) = -\varepsilon_0 (\mathbf{\nabla} \cdot \mathbf{E}) \mathbf{E} - \left(\frac{1}{\mu_0} \mathbf{\nabla} \times \mathbf{B} - \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) \times \mathbf{B} \\ &= \varepsilon_0 [-(\mathbf{\nabla} \cdot \mathbf{E}) \mathbf{E} - c^2 (\mathbf{\nabla} \times \mathbf{B}) \times \mathbf{B}] + \varepsilon_0 \left[\frac{\partial}{\partial t} (\mathbf{E} \times \mathbf{B}) - \mathbf{E} \times \frac{\partial \mathbf{B}}{\partial t} \right] \\ &= \varepsilon_0 [-(\mathbf{\nabla} \cdot \mathbf{E}) \mathbf{E} + \mathbf{E} \times (\mathbf{\nabla} \times \mathbf{E}) - c^2 (\mathbf{\nabla} \cdot \mathbf{B}) \mathbf{B} + c^2 \mathbf{B} \times (\mathbf{\nabla} \times \mathbf{B})] + \frac{1}{c^2} \frac{\partial \mathbf{S}}{\partial t} \end{split}$$

Identität: $\mathbf{a} \times (\nabla \times \mathbf{a}) = \frac{1}{2} \nabla (\mathbf{a}^2) - (\mathbf{a} \cdot \nabla) \mathbf{a} \rightarrow$

$$-(\mathbf{f}_{\mathrm{Lor}})_{j} = \frac{1}{c^{2}} \frac{\partial S_{j}}{\partial t} + \varepsilon_{0} [-E_{j} \partial_{i} E_{i} - c^{2} B_{j} \partial_{i} B_{i} - E_{i} \partial_{i} E_{j} - c^{2} B_{i} \partial_{i} B_{j} + \frac{1}{2} \partial_{j} (\mathbf{E}^{2} + c^{2} \mathbf{B}^{2})]$$

$$= \frac{1}{c^{2}} \frac{\partial S_{j}}{\partial t} + \varepsilon_{0} \partial_{i} [-E_{i} E_{j} - c^{2} B_{i} B_{j} + \frac{1}{2} \delta_{ij} (\mathbf{E}^{2} + c^{2} \mathbf{B}^{2})]$$

Definition: $T_{ij}^{\text{Mw}} \equiv \varepsilon_0 [E_i E_j + c^2 B_i B_j - \frac{1}{2} \delta_{ij} (\mathbf{E}^2 + c^2 \mathbf{B}^2)]$ (Maxwell'scher Spannungstensor)

Notation: $(\nabla \cdot T^{\text{Mw}})_j \equiv \partial_i T^{\text{Mw}}_{ii} \Rightarrow -\mathbf{f}_{\text{Lor}} = \frac{1}{c^2} \frac{\partial \mathbf{S}}{\partial t} + \nabla \cdot (-T^{\text{Mw}})$

3.5 Energie und Impuls des elektromagnetischen Feldes

Bilanzgleichung für Impuls

Lorentz-Kraftdichte: $-\mathbf{f}_{\mathrm{Lor}} = \frac{1}{c^2} \frac{\partial \mathbf{S}}{\partial t} + \mathbf{\nabla} \cdot (-T^{\mathrm{Mw}})$

⇒ Bewegungsgleichungen:

$$\frac{d\pi_{\mathrm{M},\mathcal{D}}}{dt} = \int\limits_{\mathcal{D}} d\mathbf{x} \, \mathbf{f}_{\mathrm{Lor}} = -\int\limits_{\mathcal{D}} d\mathbf{x} \left[\frac{1}{c^2} \frac{\partial \mathbf{S}}{\partial t} + \mathbf{\nabla} \cdot (-T^{\mathrm{Mw}}) \right] \quad \Rightarrow$$

$$\left[rac{d}{dt} \left[m{\pi}_{\mathrm{M},\mathcal{D}} + \int\limits_{\mathcal{D}} d\mathbf{x} \left(rac{1}{c^2} \mathbf{S}
ight)
ight] \ = - \int\limits_{\mathcal{D}} d\mathbf{x} \; m{
abla} \cdot (-T^{\mathrm{Mw}}) = - \int\limits_{\partial \mathcal{D}} d\mathbf{F} \cdot (-T^{\mathrm{Mw}})$$

Interpretation: $\frac{1}{c^2}$ **S** = Impulsdichte ; $-T^{\text{Mw}}$ = Impulsstromdichte

Spezialfall: $\mathcal{D} = \mathbb{R}^3 \Rightarrow$

$$rac{d}{dt}\left[oldsymbol{\pi}_{\mathrm{M},\mathbb{R}^3}+\int\limits_{\mathbb{R}^3}d\mathsf{x}\left(rac{1}{c^2}\mathsf{S}
ight)
ight]=\mathbf{0}$$

[Erhaltung des Gesamtimpulses des Systems!]

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

^L-4-Darstellung der Bilanzgleichungen für Energie bzw. Impuls

4-Darstellung der Bilanzgleichungen für Energie/Impuls

Bilanzgleichungen:

$$-\mathbf{E}\cdot\mathbf{j} = \mathbf{
abla}\cdot\mathbf{S} + rac{\partial
ho_{\mathcal{E}}}{\partial t} \quad ; \quad -\mathbf{f}_{\mathrm{Lor}} = rac{1}{c^2}rac{\partial\mathbf{S}}{\partial t} + \mathbf{
abla}\cdot(-T^{\mathrm{Mw}})$$

linke Glieder: bilden 4-Vektor (4-Lorentz-Kraftdichte)

$$egin{aligned} f^{\mu} &\equiv rac{1}{c}F^{\mu
u}j_{
u} = rac{1}{c}(F^{\mu0}j_{0} + F^{\mu k}j_{k}) \ &= rac{1}{c}\left((-E_{k})(-j_{k})\;,\; E_{i}c
ho + (-carepsilon_{ikl}B_{l})(-j_{k})
ight) \ &= \left(rac{1}{c}\mathbf{E}\cdot\mathbf{j}\;,\;
ho\mathbf{E}+\mathbf{j} imes\mathbf{B}
ight) = \left(rac{1}{c}\mathbf{E}\cdot\mathbf{j}\;,\;\mathbf{f}_{\mathrm{Lor}}
ight) \end{aligned}$$

rechte Glieder: bilden 4-Divergenz eines symmetrischen 4-Tensors 2. Stufe!

$$-f^{\mu} = \partial_{
u} T^{\mu
u} = \partial_{
u} T^{
u\mu} \quad , \quad T^{\mu
u} = \begin{pmatrix}
ho_{\mathcal{E}} & rac{1}{c} \mathbf{S}^{\mathrm{T}} \\ rac{1}{c} \mathbf{S} & -T^{\mathrm{Mw}} \end{pmatrix}$$

[Energie-Impuls-Tensor, (symmetrischer) Spannungstensor]

Energie-Impuls-Tensor 1

Energie-Impuls-Tensor, (symmetrischer) Spannungstensor:

$$\mathcal{T}^{\mu
u} = egin{pmatrix}
ho_{\mathcal{E}} & rac{1}{c}\mathbf{S}^{\mathrm{T}} \ rac{1}{c}\mathbf{S} & -\mathcal{T}^{\mathrm{Mw}} \end{pmatrix}$$

Manifest kovariante Form für $T^{\mu\nu}$:

$$T^{\mu\nu} = -\varepsilon_0 F^{\mu\rho} F^{\nu}_{\rho} - g^{\mu\nu} \mathcal{L}_{\mathrm{F}} = \varepsilon_0 (-F^{\mu\rho} F^{\nu}_{\rho} + \frac{1}{4} g^{\mu\nu} F^{\rho\sigma} F_{\rho\sigma})$$

Zeitlich-zeitliche Komponente:

$$T^{00} = \varepsilon_0 [-F^{0i}F^0_i + \frac{1}{4}(-2)(\mathbf{E}^2 - c^2\mathbf{B}^2)]$$

= $\varepsilon_0 [-(-E_i)E_i - \frac{1}{2}\mathbf{E}^2 + \frac{1}{2}c^2\mathbf{B}^2] = \frac{1}{2}\varepsilon_0(\mathbf{E}^2 + c^2\mathbf{B}^2) = \rho_{\mathcal{E}}$

► Räumlich-zeitliche Komponenten:

$$T^{i0} = -\varepsilon_0 F^{i\rho} F^0_{\ \rho} = -\varepsilon_0 F^{ij} F^0_{\ j} = -\varepsilon_0 (-c\varepsilon_{ijk} B_k) E_j = \frac{1}{\mu_0 c} (\mathbf{E} \times \mathbf{B})_i = \frac{1}{c} S_i$$

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

– 4-Darstellung der Bilanzgleichungen für Energie bzw. Impuls

Energie-Impuls-Tensor 2

Energie-Impuls-Tensor, (symmetrischer) Spannungstensor:

$$\mathcal{T}^{\mu
u} = egin{pmatrix}
ho_{\mathcal{E}} & rac{1}{c}\mathbf{S}^{\mathrm{T}} \ rac{1}{c}\mathbf{S} & -\mathcal{T}^{\mathrm{Mw}} \end{pmatrix}$$

Räumlich-räumliche Komponenten:

$$T^{ij} = \varepsilon_{0}[-F^{i\rho}F^{j}_{\rho} - (-\frac{1}{2})\delta_{ij}(\mathbf{E}^{2} - c^{2}\mathbf{B}^{2})]$$

$$= \varepsilon_{0}[-F^{i0}F^{j}_{0} - F^{ik}F^{j}_{k} + \frac{1}{2}\delta_{ij}(\mathbf{E}^{2} - c^{2}\mathbf{B}^{2})]$$

$$= \varepsilon_{0}[-E_{i}E_{j} - (-c\varepsilon_{ikl}B_{l})(c\varepsilon_{jkm}B_{m}) + \frac{1}{2}\delta_{ij}(\mathbf{E}^{2} - c^{2}\mathbf{B}^{2})]$$

$$= \varepsilon_{0}[-E_{i}E_{j} + c^{2}(\delta_{ij}\delta_{lm} - \delta_{im}\delta_{jl})B_{l}B_{m} + \frac{1}{2}\delta_{ij}(\mathbf{E}^{2} - c^{2}\mathbf{B}^{2})]$$

$$= \varepsilon_{0}[-E_{i}E_{j} - c^{2}B_{i}B_{j} + \frac{1}{2}\delta_{ij}(\mathbf{E}^{2} + c^{2}\mathbf{B}^{2})]$$

$$= (-T^{Mw})_{ii}$$

 $T^{\mu}_{\ \nu}$ spurlos: $T^{\mu}_{\ \mu} = g_{\mu\nu} T^{\mu\nu} = \varepsilon_0 (-F^{\mu\rho} F_{\mu\rho} + \frac{1}{4} g_{\mu\nu} g^{\mu\nu} F^{\rho\sigma} F_{\rho\sigma}) = 0$

Für freie Felder: $(f^{\mu} = 0)$

Energie-Impuls-Erhaltungsgesetz für freie Felder: $(f^{\mu} = 0)$

$$0 = \partial_{\nu} T^{\mu\nu} = \partial_{\nu} T^{\nu\mu}$$

explizit, Kontinuitätsgleichungen:

$$\mathbf{0} = rac{\partial
ho_{\mathcal{E}}}{\partial t} + \mathbf{
abla} \cdot \mathbf{S} \quad , \quad \mathbf{0} = rac{1}{c^2} rac{\partial \mathbf{S}}{\partial t} + \mathbf{
abla} \cdot (-T^{\mathrm{Mw}})$$

Integration über Ortsraum ightarrow

$$0 = \frac{d}{dt} \int d\mathbf{x} \ T^{\mu 0} = \frac{d}{dt} \int d\mathbf{x} \ T^{0\mu}$$

$$\Rightarrow \quad 0 = \frac{d}{dt} \int d\mathbf{x} \ \rho_{\mathcal{E}} \quad , \quad \mathbf{0} = \frac{d}{dt} \int d\mathbf{x} \ \mathbf{S}$$

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

Drehimpuls des elektromagnetischen Feldes

Drehimpuls des elektromagnetischen Feldes

Analog zu $L_{\rm M}^{\mu\nu}=x^{\mu}p^{\nu}-x^{\nu}p^{\mu}$ konstruieren wir

$$L_{\rm F}^{\mu\nu\rho} \equiv \frac{1}{c} (x^{\mu} T^{\nu\rho} - x^{\nu} T^{\mu\rho})$$
 $\begin{pmatrix} L_{\rm F}^{\mu\nu\rho} = \text{Tensor der} \\ \text{Drehimpuls} \text{dichte} \\ \text{des e.m. Feldes} \end{pmatrix}$

$$\begin{split} f^{\mu} &= 0 \;,\; T^{\mu\nu} = T^{\nu\mu} \quad \Rightarrow \\ \partial_{\rho}(L_{\mathrm{F}}^{\mu\nu\rho}) &= \frac{1}{c} [(\partial_{\rho}x^{\mu})T^{\nu\rho} + x^{\mu}(\partial_{\rho}T^{\nu\rho}) - (\partial_{\rho}x^{\nu})T^{\mu\rho} - x^{\nu}(\partial_{\rho}T^{\mu\rho})] \\ &= \frac{1}{c} (\delta^{\mu}_{\;\;\rho}T^{\nu\rho} - \delta^{\nu}_{\;\;\rho}T^{\mu\rho}) = \frac{1}{c} (T^{\nu\mu} - T^{\mu\nu}) = 0 \end{split}$$

Integration über Ortsraum ightarrow

$$rac{d L_{
m F}^{\mu
u}}{dt} = 0$$
 , $L_{
m F}^{\mu
u} \equiv \int d{\sf x} \; L_{
m F}^{\mu
u 0}$ $\left(egin{array}{c} L_{
m F}^{\mu
u} = ext{4-Drehimpulstensor} \\ ext{impulstensor} \\ ext{des e.m. Feldes} \end{array}
ight)$

[Erhaltungsgesetz des 4-Drehimpulstensors!]

4-Drehimpulstensor:

$$L_{
m F}^{\mu
u} \equiv \int d{f x} \; L_{
m F}^{\mu
u0} \quad , \quad L_{
m F}^{\mu
u
ho} \equiv {1\over c} (x^\mu T^{
u
ho} - x^
u T^{\mu
ho})$$

Bedeutung der einzelnen Komponenten von $L_{\rm F}^{\mu\nu}$:

- lacktriangle Antisymmetrie ightarrow $\mathcal{L}_{
 m F}^{\mu\mu}=$ 0, $\mathcal{L}_{
 m F}^{00}=$ 0 (zeitlich-zeitliche Komponente)
- Räumlich-räumliche Komponenten:

$$\begin{split} L_{\mathrm{F}}^{ij} &= \frac{1}{c} \int d\mathbf{x} \, (\mathbf{x}^i T^{j0} - \mathbf{x}^j T^{i0}) = \int d\mathbf{x} \left[\mathbf{x}_i \left(\frac{1}{c^2} S_j \right) - \mathbf{x}_j \left(\frac{1}{c^2} S_i \right) \right] \\ &= \varepsilon_{ijk} \int d\mathbf{x} \left[\mathbf{x} \times \left(\frac{1}{c^2} \mathbf{S} \right) \right]_k = \varepsilon_{ijk} (\mathbf{L}_{\mathrm{F}})_k \end{split}$$

Definition:

$$\mathbf{L}_{\mathrm{F}} \equiv \int d\mathbf{x} \ \mathbf{x} \times \left(\frac{1}{c^2}\mathbf{S}\right)$$
 $\begin{pmatrix} \mathbf{L}_{\mathrm{F}} = 3\text{-dim.} \\ \text{Drehimpulsvektor} \\ \text{des e.m. Feldes} \end{pmatrix}$

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

Drehimpuls des elektromagnetischen Feldes

4-Drehimpulstensor:

$$L_{
m F}^{\mu
u} \equiv \int d{\sf x} \; L_{
m F}^{\mu
u0} \quad , \quad L_{
m F}^{\mu
u
ho} \equiv {1\over c} (x^\mu T^{
u
ho} - x^
u T^{\mu
ho})$$

Räumlich-zeitliche Komponenten:

$$L_{\rm F}^{i0} = \frac{1}{c} \int d{\bf x} \, (x^i T^{00} - x^0 T^{i0}) = \frac{1}{c} \int d{\bf x} \, (x_i \rho_{\mathcal{E}} - t S_i)$$

Notation: $\mathcal{E}_{\mathrm{F}} \equiv \int d\mathbf{x} \; \rho_{\mathcal{E}}, \; \boldsymbol{\mathcal{P}}_{\mathrm{F}} \equiv \int d\mathbf{x} \; \left(\frac{1}{c^2}\mathbf{S}\right), \; \langle \mathbf{x} \rangle \equiv \frac{1}{\mathcal{E}_{\mathrm{F}}} \int d\mathbf{x} \; \mathbf{x} \rho_{\mathcal{E}} \quad \Rightarrow$

$$L_{
m F}^{i0} = \int d{\sf x} \; L_{
m F}^{i00} = \left[rac{{\cal E}_{
m F}}{c}\langle {\sf x}
angle - ct{\cal P}_{
m F}
ight]_i \equiv X_{
m F}i \quad \Rightarrow \quad L_{
m F}^{\mu
u} = ({\sf X}_{
m F}, -{\sf L}_{
m F})$$

[echter Vektor \textbf{X}_{F} , Pseudovektor \textbf{L}_{F}]

Interpretation von $\frac{dL_{\rm F}^{i0}}{dt} = 0$:

Schwerpunkt $\langle \mathbf{x} \rangle$ des freien elektromagnetischen Feldes bewegt sich mit konstanter Geschwindigkeit $\mathbf{u}_{\mathrm{F}} \equiv c^2 \mathcal{P}_{\mathbf{F}} / \mathcal{E}_{\mathrm{F}}$

Energie-Impuls-Tensor für materielle Teilchen

Definition:

$$\Theta^{\mu
u} \equiv \sum_{l=1}^N m_{0l} c^2(u_l)^\mu (u_l)^
u rac{1}{\gamma_{u_l}} \delta(\mathbf{x} - \mathbf{x}_l) \quad , \quad u^\mu = \gamma_u (1, oldsymbol{eta})$$

Komponenten:

$$\Theta^{00} = \sum_{l=1}^{N} \gamma_{u_l} m_{0l} c^2 \delta(\mathbf{x} - \mathbf{x}_l) = \sum_{l=1}^{N} \mathcal{E}_l \delta(\mathbf{x} - \mathbf{x}_l) \qquad \text{(Energiedichte)}$$

$$\begin{pmatrix} \Theta^{01} \\ \Theta^{02} \\ \Theta^{03} \end{pmatrix} = \frac{1}{c} \sum_{l=1}^{N} \mathcal{E}_l \mathbf{u}_l \delta(\mathbf{x} - \mathbf{x}_l) \equiv \frac{1}{c} \mathbf{S}_{\mathrm{M}} = \sum_{l=1}^{N} c \boldsymbol{\pi}_l \delta(\mathbf{x} - \mathbf{x}_l) = \begin{pmatrix} \Theta^{10} \\ \Theta^{20} \\ \Theta^{30} \end{pmatrix}$$

$$\Theta^{ij} = \sum_{l=1}^{N} \gamma_{u_l} m_{0l} c^2 \beta_{li} \beta_{lj} \delta(\mathbf{x} - \mathbf{x}_l) = \frac{1}{2} \sum_{l=1}^{N} (\mathbf{u}_l \boldsymbol{\pi}_l^{\mathrm{T}} + \boldsymbol{\pi}_l \mathbf{u}_l^{\mathrm{T}})_{ij} \delta(\mathbf{x} - \mathbf{x}_l)$$

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

Energie-Impuls-Tensor für materielle Teilchen

Eigenschaften des Energie-Impuls-Tensors der Materie

Definition und einige Komponenten:

$$\Theta^{\mu\nu} \equiv \sum_{l=1}^{N} m_{0l} c^2(u_l)^{\mu} (u_l)^{\nu} \frac{1}{\gamma_{u_l}} \delta(\mathbf{x} - \mathbf{x}_l) \quad , \quad u^{\mu} = \gamma_u(1, \boldsymbol{\beta})$$

$$\Theta^{00} = \sum_{l=1}^{N} \mathcal{E}_l \delta(\mathbf{x} - \mathbf{x}_l) \quad , \quad \Theta^{i0} = \sum_{l=1}^{N} c(\boldsymbol{\pi}_l)_i \delta(\mathbf{x} - \mathbf{x}_l)$$

Eigenschaften:

$$\int\limits_{\mathcal{D}} d\mathbf{x} \; (\partial_{\nu} \Theta^{0\nu}) = \frac{1}{c} \frac{d}{dt} \int\limits_{\mathcal{D}} d\mathbf{x} \; \Theta^{00} = \frac{1}{c} \frac{d}{dt} \sum_{\{\mathbf{x}_l \in \mathcal{D}\}} \mathcal{E}_l = \frac{1}{c} \frac{d\mathcal{E}_{\mathrm{M},\mathcal{D}}}{dt}$$

und

$$\int\limits_{\mathcal{D}} d\mathbf{x} \left(\partial_{\nu} \Theta^{i\nu} \right) = \frac{1}{c} \frac{d}{dt} \int\limits_{\mathcal{D}} d\mathbf{x} \; \Theta^{i0} = \frac{d}{dt} \sum_{\{\mathbf{x}_I \in \mathcal{D}\}} (\boldsymbol{\pi}_I)_i = \left(\frac{d\boldsymbol{\pi}_{\mathrm{M},\mathcal{D}}}{dt} \right)_i$$

Kombination mit Bilanzgleichungen

Eigenschaften:

$$\int\limits_{\mathcal{D}}d\mathbf{x}\left(\partial_{
u}\Theta^{0
u}
ight)=rac{1}{c}rac{d\mathcal{E}_{\mathrm{M},\mathcal{D}}}{dt}\quad,\quad\int\limits_{\mathcal{D}}d\mathbf{x}\left(\partial_{
u}\Theta^{i
u}
ight)=\left(rac{doldsymbol{\pi}_{\mathrm{M},\mathcal{D}}}{dt}
ight)_{i}$$

⇒ Bilanzgleichungen

$$rac{1}{c}rac{d\mathcal{E}_{\mathrm{M},\mathcal{D}}}{dt} = rac{1}{c}\int\limits_{\mathcal{D}}d\mathbf{x}\;\mathbf{E}\cdot\mathbf{j} = -\int\limits_{\mathcal{D}}d\mathbf{x}\;(\partial_{
u}T^{0
u})$$

$$\left(\frac{d\pi_{\mathrm{M},\mathcal{D}}}{dt}\right)_{i}=\int\limits_{\mathcal{D}}d\mathbf{x}\,(\mathbf{f}_{\mathrm{Lor}})_{i}=-\int\limits_{\mathcal{D}}d\mathbf{x}\,(\partial_{
u}T^{i
u})$$

alternativ $\forall \mathcal{D}$ darstellbar als:

$$\int\limits_{\mathcal{D}}d\mathbf{x}\left(\partial_{
u}\mathcal{T}^{\mu
u}
ight)=0\quad,\quad\mathcal{T}^{\mu
u}\equiv\Theta^{\mu
u}+\mathcal{T}^{\mu
u}$$

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

Energie-Impuls-Tensor für materielle Teilchen

Interpretation

Integraldarstellung: $(\forall \mathcal{D}!)$

$$\int\limits_{\mathcal{D}}d\mathbf{x}\left(\partial_{
u}\mathcal{T}^{\mu
u}
ight)=0\quad,\quad\mathcal{T}^{\mu
u}\equiv\Theta^{\mu
u}+\mathcal{T}^{\mu
u}$$

Konsequenz: $\partial_{
u} \mathcal{T}^{\mu
u} = 0 \ o \ ext{Interpretation von:}$

- $ightharpoonup \Theta^{\mu\nu}$ als Energie-Impuls-Tensor der Materie
- $ightharpoonup \mathcal{T}^{\mu\nu}$ als Gesamt-Energie-Impuls-Tensor des Systems

 $T^{\mu}_{\ \mu} = 0 \quad \Rightarrow \quad \text{Spur des Tensors } \mathcal{T}$:

$$\mathcal{T}^{\mu}_{\mu} = \Theta^{\mu}_{\mu} = \sum_{l=1}^{N} m_{0l} c^{2} (u_{l})^{\mu} (u_{l})_{\mu} \frac{1}{\gamma_{u_{l}}} \delta(\mathbf{x} - \mathbf{x}_{l})$$
$$= \sum_{l=1}^{N} m_{0l} c^{2} \sqrt{1 - \left(\frac{\mathbf{u}_{l}}{c}\right)^{2}} \delta(\mathbf{x} - \mathbf{x}_{l})$$

Drehimpulserhaltung

Drehimpulsdichte $\mathcal{L}^{\mu
u
ho}$ des Gesamtsystems:

$$\mathcal{L}^{\mu
u
ho} \equiv \frac{1}{c} (x^{\mu} \mathcal{T}^{
u
ho} - x^{
u} \mathcal{T}^{\mu
ho})$$

Divergenzfreiheit ($\partial_{
u}\mathcal{T}^{\mu
u}=0$) des Energie-Impuls-Tensors $\mathcal{T}^{\mu
u}$ ightarrow

$$\partial_{\rho}\mathcal{L}^{\mu\nu\rho}=0$$

⇒ Erhaltungsgesetz:

$$rac{d\mathcal{L}^{\mu
u}}{dt}=0 \quad , \quad \mathcal{L}^{\mu
u}\equiv \int d\mathbf{x} \; \mathcal{L}^{\mu
u 0}$$

Drehimpulserhaltungsgesetz des Gesamtsystems von Teilchen und Feldern!

Denn:
$$\mathcal{L}^{\mu\nu}\stackrel{!}{=} \mathcal{L}_{\mathrm{F}}^{\mu\nu} + \mathcal{L}_{\mathrm{M}}^{\mu\nu}$$
 , $\mathcal{L}_{\mathrm{M}}^{\mu\nu} = (\mathbf{X}_{\mathrm{M}}, -\mathbf{L}_{\mathrm{M}})$

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

└3.5.1 Drehimpulserhaltung

Komponenten des 4-Drehimpulstensors der Materie

Zu überprüfen:

$$\int d\mathbf{x} \, \frac{1}{c} (x^{\mu} \Theta^{\nu 0} - x^{\nu} \Theta^{\mu 0}) \stackrel{?}{=} L_{\mathrm{M}}^{\mu \nu} = (\mathbf{X}_{\mathrm{M}}, -\mathbf{L}_{\mathrm{M}})$$

Komponenten:

$$\begin{split} L_{\mathrm{M}}^{\mu\mu} &= 0 \quad , \quad \text{insbesondere:} \quad L_{\mathrm{M}}^{00} = 0 \\ L_{\mathrm{M}}^{i0} &= \int d\mathbf{x} \; \frac{1}{c} (\mathbf{x}^i \Theta^{00} - ct \Theta^{i0}) = \frac{1}{c} \sum_{l=1}^N \gamma_{u_l} m_{0l} c^2 (\mathbf{x}_{li} - ct \beta_{li}) \\ &= \sum_{l=1}^N \left(\frac{\mathcal{E}_l}{c} \mathbf{x}_l - \boldsymbol{\pi}_l ct \right)_i = (\mathbf{X}_{\mathrm{M}})_i \\ L_{\mathrm{M}}^{ij} &= \int d\mathbf{x} \; \frac{1}{c} (\mathbf{x}^i \Theta^{j0} - \mathbf{x}^j \Theta^{i0}) = \frac{1}{c} \sum_{l=1}^N \gamma_{u_l} m_{0l} c^2 (\mathbf{x}_{li} \beta_{lj} - \mathbf{x}_{lj} \beta_{li}) \\ &= \sum_{l=1}^N (\mathbf{x}_{li} \pi_{lj} - \mathbf{x}_{lj} \pi_{li}) \quad \Rightarrow \quad L_{\mathrm{M}} = \sum_{l=1}^N (\mathbf{x}_l \boldsymbol{\pi}_l^{\mathrm{T}} - \boldsymbol{\pi}_l \mathbf{x}_l^{\mathrm{T}}) \end{split}$$

Fazit:
$$\int d\mathbf{x} \, \frac{1}{c} (x^{\mu} \Theta^{\nu 0} - x^{\nu} \Theta^{\mu 0}) \stackrel{!}{=} L_{\mathrm{M}}^{\mu \nu} = (\mathbf{X}_{\mathrm{M}}, -\mathbf{L}_{\mathrm{M}})$$

Virialsatz für abgeschlossene Systeme

 ${\sf Zeitmittelung} \ \to \\$

$$\overline{A(t)} \equiv \lim_{T \to \infty} \frac{1}{T} \int_{0}^{t} dt \ A(t)$$

Anwendung auf Gleichung $\partial_{\nu}\mathcal{T}^{i\nu}=0$:

$$0 = \overline{\partial_0 \mathcal{T}}^{i0} + \partial_j \overline{\mathcal{T}}^{ij} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \ (\partial_0 \mathcal{T}^{i0}) + \partial^j \overline{\mathcal{T}}^i{}_j$$
$$= \lim_{T \to \infty} \frac{\mathcal{T}^{i0}(T) - \mathcal{T}^{i0}(0)}{cT} + \partial^j \overline{\mathcal{T}}^i{}_j = \partial^j \overline{\mathcal{T}}^i{}_j$$

Konsequenz:

 $(\mathcal{E} = \mathsf{Gesamtenergie} \ \mathsf{des} \ \mathsf{Systems})$

$$\begin{split} 0 &= \int d\mathbf{x} \; x_i \partial^j \overline{\mathcal{T}}^i_{\;j} = - \int d\mathbf{x} \; \delta^j_{\;i} \overline{\mathcal{T}}^i_{\;j} = - \int d\mathbf{x} \; \overline{\mathcal{T}}^i_{\;i} \\ &= \int d\mathbf{x} \; \overline{\mathcal{T}}^0_{\;\;0} - \int d\mathbf{x} \; \overline{\mathcal{T}}^\mu_{\;\;\mu} = \mathcal{E} - \sum_{l=1}^N m_{0l} c^2 \overline{\sqrt{1 - \left(\frac{\mathbf{u}_l}{c}\right)^2}} \end{split}$$

Theoretische Physik 2: Elektrodynamik

3.5 Energie und Impuls des elektromagnetischen Feldes

└─Virialsatz für *abgeschlossene* Systeme

Resultat:

$$0 = \mathcal{E} - \sum_{l=1}^{N} m_{0l} c^{2} \overline{\sqrt{1 - \left(\frac{\mathbf{u}_{l}}{c}\right)^{2}}}$$

⇒ Kinetische Energie der Materie + Feldenergie:

$$\mathcal{E} - \sum_{l=1}^{N} m_{0l} c^2 = \sum_{l=1}^{N} m_{0l} c^2 \left[\overline{\sqrt{1 - \left(rac{\mathbf{u}_l}{c}
ight)^2}} - 1
ight]$$

nicht-relativistischer Limes:

$$\mathcal{E}_{\mathrm{NR}} = -\sum_{l=1}^{N} \frac{1}{2} m_{0l} \overline{(\mathbf{u}_l)^2} = -\mathcal{E}_{\mathrm{kin}}$$

Definition: $\mathcal{E}_{pot} \equiv \mathcal{E}_{NR} - \mathcal{E}_{kin} \Rightarrow$

$$\mathcal{E}_{\mathrm{pot}} = -2\mathcal{E}_{\mathrm{kin}} = 2\mathcal{E}_{\mathrm{NR}}$$

 $[\ \stackrel{\wedge}{=}\ \mathsf{Virialtheorem}\ \mathsf{f\"ur}\ -|x_{12}|^{-1}\text{-Potential}\ \ (\Rightarrow \mathsf{Coulomb\text{-}Potential!})\]$

Kapitel 4: Die Dynamik der Teilchen

► Inhaltsverzeichnis

- ▶ 4.1 Räumlich homogene, zeitunabhängige **E** und **B**-Felder
- ▶ 4.2 Das Coulomb-Problem für ein einzelnes Teilchen
- ▶ 4.3 Coulomb-Wechselwirkung als Vielteilchenproblem

▶ 4.1

Theoretische Physik 2: Elektrodynamik

4.1 Räumlich homogene, zeitunabhängige E- und B-Felder

Fallunterscheidungen

4.1 Räumlich homogene, zeitunabhängige E- und B-Felder

Für konstante Felder:

$$\partial_{\mu}\mathbf{E} = \mathbf{0}$$
 , $\partial_{\mu}\mathbf{B} = \mathbf{0}$

Invarianten des elektromagnetischen Feldes:

$$\mathbf{E} \cdot c\mathbf{B}$$
 , $\mathbf{E}^2 - c^2\mathbf{B}^2$

Daher nur vier Möglichkeiten:

(i)
$$\mathbf{E} \cdot c\mathbf{B} = 0$$
, $E > cB$ \Rightarrow $\exists \Lambda \text{ mit } E' = \sqrt{E^2 - c^2 B^2}$, $B' = 0$

(ii)
$$\mathbf{E} \cdot c\mathbf{B} = 0$$
, $\mathbf{E} < c\mathbf{B}$ \Rightarrow $\exists \Lambda \text{ mit } cB' = \sqrt{c^2B^2 - E^2}$, $E' = 0$

(iii)
$$\mathbf{E} \cdot c\mathbf{B} = 0$$
, $E = cB$ (gilt dann in jedem Inertialsystem)

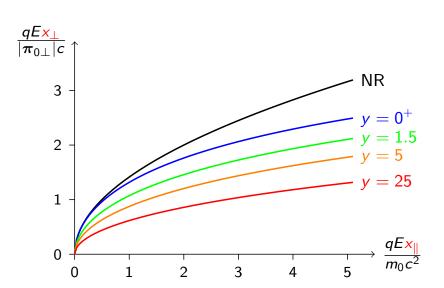
(iv)
$$\mathbf{E} \cdot c\mathbf{B} \neq 0$$
 \Rightarrow $\exists \Lambda \text{ mit } \mathbf{E}' \parallel \mathbf{B}', \ E' \neq 0, \ B' \neq 0$

Übung: (i) und (ii), hier: (iii) und (iv)

Fall (i): Bahn eines Teilchens im konstanten E-Feld

Definitionen:

$$egin{aligned} oldsymbol{\pi} &= \gamma_u m_0 \mathbf{u} \ \pi_{0\parallel} &\equiv oldsymbol{\pi}(0) \cdot \hat{\mathbf{E}} \stackrel{!}{=} 0 \ oldsymbol{\pi}_{0\perp} &= oldsymbol{\pi}(0) - \pi_{0\parallel} \hat{\mathbf{E}} \stackrel{!}{=} oldsymbol{\pi}(0) \ \hat{oldsymbol{\pi}}_{0\perp} &\equiv oldsymbol{\pi}_{0\perp} / |oldsymbol{\pi}_{0\perp}| \ oldsymbol{y} &\equiv (oldsymbol{\pi}_{0\perp} / m_0 c)^2 \ \chi_{\parallel} &\equiv oldsymbol{x} \cdot \hat{oldsymbol{E}} \ \chi_{\perp} &\equiv oldsymbol{x} \cdot \hat{oldsymbol{\pi}}_{0\perp} \end{aligned}$$



Theoretische Physik 2: Elektrodynamik

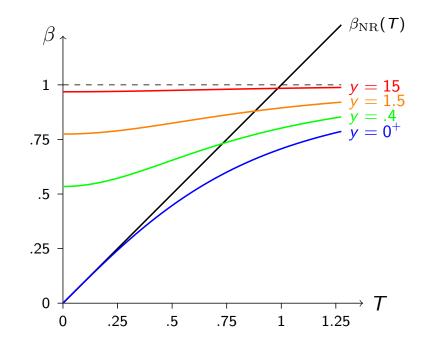
4.1 Räumlich homogene, zeitunabhängige E- und B-Felder

Fallunterscheidungen

Fall (i): Geschwindigkeit eines Teilchens im E-Feld

Definitionen:

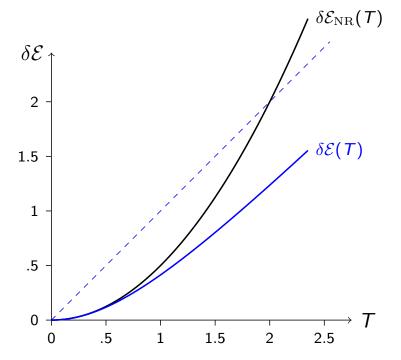
$$egin{aligned} \mathbf{u} &\equiv rac{d\mathbf{x}}{dt} \ eta &= rac{\mathbf{u}}{c} \ |oldsymbol{eta}| &\equiv eta(T; oldsymbol{y}) \ egin{aligned} \mathbf{y} &\equiv (oldsymbol{\pi}_{0\perp}/m_0 c)^2 \ eta_{\mathrm{NR}}(T) &\equiv \lim_{oldsymbol{y} \downarrow 0} eta_{\mathrm{Newton}}(T; oldsymbol{y}) \ T &\equiv rac{qEt}{m_0 c} \end{aligned}$$



Fall (i): Energiegewinn eines Teilchens im E-Feld

Definitionen:

$$\mathcal{E}(T) = \gamma_u(T) m_0 c^2$$
 $\delta \mathcal{E}(T) \equiv \frac{\mathcal{E} - \mathcal{E}(0)}{\mathcal{E}(0)}$
 $\mathcal{E}_{\mathrm{NR}}(T) \equiv m_0 c^2 + \frac{1}{2} m_0 \mathbf{u}^2$
 $\delta \mathcal{E}_{\mathrm{NR}}(T) \equiv \lim_{y \downarrow 0} \frac{\mathcal{E}_{\mathrm{NR}} - \mathcal{E}_{\mathrm{NR}}(0)}{\mathcal{E}_{\mathrm{NR}}(0)}$
 $y \equiv (\pi_{0\perp}/m_0 c)^2$
 $T \equiv \frac{qEt}{m_0 c}$



Theoretische Physik 2: Elektrodynamik

4.1 Räumlich homogene, zeitunabhängige E- und B-Felder

Fall (iii): $\mathbf{E} \cdot c\mathbf{B} = 0$, E = cB

Fall (iii): $\mathbf{E} \cdot c\mathbf{B} = 0$, E = cB

Bewegungsgleichungen:

$$\begin{split} &\frac{1}{m_0c}\frac{d\pi}{dt} = \frac{q}{m_0c}(\mathbf{E} + \mathbf{u} \times \mathbf{B}) \quad , \quad \boldsymbol{\pi} = \gamma_u m_0 \mathbf{u} \\ &\frac{1}{m_0c^2}\frac{d\mathcal{E}}{dt} = \frac{q}{m_0c^2}\mathbf{E} \cdot \mathbf{u} \quad , \quad \mathcal{E} = \gamma_u m_0c^2 = \sqrt{\pi^2c^2 + m_0^2c^4} \end{split}$$

 $\frac{d\mathcal{E}}{dt}$ -Gleichung redundant wegen:

$$rac{d\mathcal{E}}{dt} = rac{c^2 oldsymbol{\pi} \cdot rac{doldsymbol{\pi}}{dt}}{\sqrt{oldsymbol{\pi}^2 c^2 + m_0^2 c^4}} = rac{q}{\gamma_u m_0} oldsymbol{\pi} \cdot (oldsymbol{\mathsf{E}} + oldsymbol{\mathsf{u}} imes oldsymbol{\mathsf{B}}) = q oldsymbol{\mathsf{E}} \cdot oldsymbol{\mathsf{u}}$$

Definition: $T \equiv \frac{qEt}{m_0c}$ (dimensionslose Zeit)

Wähle
$$\hat{\mathbf{E}} \equiv \hat{\mathbf{e}}_1$$
, $\hat{\mathbf{B}} \equiv \hat{\mathbf{e}}_2 \perp \hat{\mathbf{e}}_1 \Rightarrow \frac{d(\gamma_u \boldsymbol{\beta})}{dT} = \hat{\mathbf{e}}_1 + \boldsymbol{\beta} \times \hat{\mathbf{e}}_2$, $\frac{d\gamma_u}{dT} = \hat{\mathbf{e}}_1 \cdot \boldsymbol{\beta}$

Nicht-relativistischer Limes $(m{\pi} ightarrow m_0 \mathbf{u})$

Bewegungsgleichung:

$$rac{d}{dT}egin{pmatrix}eta_1\eta_2\eta_3\end{pmatrix}=rac{doldsymbol{eta}}{dT}=\hat{f e}_1+oldsymbol{eta} imes\hat{f e}_2=egin{pmatrix}1-eta_3\0eta_1\end{pmatrix}$$

Komponentenweise:

$$\frac{d^2\beta_1}{dT^2} = -\beta_1$$
 , $\beta_2 = \beta_2(0)$, $\frac{d^2}{dT^2}(1-\beta_3) = -(1-\beta_3)$

Lösungen oszillierend:

$$eta_1(T) = eta_1(0)\cos(T) + rac{deta_1}{dT}(0)\sin(T) \ 1 - eta_3(T) = [1 - eta_3(0)]\cos(T) - rac{deta_3}{dT}(0)\sin(T)$$

Fazit:

- lacktriangle zeitliche Mittelwerte: $\overline{eta_1(T)}=0$, $\overline{eta_3(T)}=1$
- ▶ Daher Driftbewegung in ê₃-Richtung mit *mittlerer* Geschwindigkeit *c*!
- lacktriangle Für $T\gtrsim 1$ bzw. $t\gtrsim rac{m_0c}{qE}$ relativistisch korrekte Lösung erforderlich!

Theoretische Physik 2: Elektrodynamik

4.1 Räumlich homogene, zeitunabhängige E- und B-Felder

Fall (iii): $\mathbf{E} \cdot c\mathbf{B} = 0$, E = cB

Die relativistische Bewegungsgleichung

$$rac{d(\gamma_uoldsymbol{eta})}{dT} = \hat{\mathbf{e}}_1 + oldsymbol{eta} imes \hat{\mathbf{e}}_2 \quad , \quad rac{d\gamma_u}{dT} = \hat{\mathbf{e}}_1 \cdot oldsymbol{eta}$$

Komponentenweise:

$$rac{d(\gammaeta_1)}{dT}=1-eta_3$$
 , $rac{d(\gammaeta_2)}{dT}=0$, $rac{d(\gammaeta_3)}{dT}=eta_1$, $rac{d\gamma}{dT}=eta_1$

Lösungsmethode:

(wegen
$$\frac{d[\gamma(1-\beta_3)]}{dT}=0$$
)

$$\frac{\gamma(1-\beta_3)}{\gamma(0)} = \gamma(0)(1-\beta_3(0)) \equiv \frac{\alpha}{2} > 0$$
$$\gamma\beta_2 = \gamma(0)\beta_2(0) \equiv \pm \sqrt{\varepsilon^2 - 1} \qquad (\varepsilon \ge 1)$$

Identität: $\gamma^2 = (\gamma \beta)^2 + 1 \rightarrow$

$$egin{aligned} \gamma(1+eta_3) &= rac{\gamma^2(1-eta_3^2)}{\gamma(1-eta_3)} = rac{1}{lpha}[(\gammaeta)^2 + 1 - \gamma^2eta_3^2] \ &= rac{1}{lpha}[(\gammaeta_1)^2 + (\gammaeta_2)^2 + 1] = rac{1}{lpha}[(\gammaeta_1)^2 + arepsilon^2] \end{aligned}$$

Daher: γ , β_3 explizit als Funktionen von β_1 bekannt!

Lösung als Funktion von β_1

 γ , β_3 explizit als Funktionen von β_1 bekannt:

$$\frac{\gamma(1-\beta_3)}{\gamma(1+\beta_3)} = \gamma(0)(1-\beta_3(0)) \equiv \alpha > 0$$
$$\gamma(1+\beta_3) = \frac{1}{\alpha}[(\gamma\beta_1)^2 + \varepsilon^2]$$

Daher:

$$\gamma = \frac{1}{2} [\gamma (1 - \beta_3) + \gamma (1 + \beta_3)] = \frac{1}{2} \alpha + \frac{1}{2\alpha} [(\gamma \beta_1)^2 + \varepsilon^2]
\beta_3 = \frac{1}{2\gamma} [-\gamma (1 - \beta_3) + \gamma (1 + \beta_3)] = -\frac{\alpha}{2\gamma} + \frac{1}{2\alpha\gamma} [(\gamma \beta_1)^2 + \varepsilon^2]$$

Außerdem:

$$\left[\operatorname{mit} \, rac{d(\gamma eta_1)}{dT} = 1 - eta_3
ight]$$

$$\alpha = \gamma(1 - \beta_3) = \gamma \frac{d(\gamma \beta_1)}{dT} = \left[\left(\frac{1}{2} \alpha + \frac{\varepsilon^2}{2\alpha} \right) + \frac{(\gamma \beta_1)^2}{2\alpha} \right] \frac{d(\gamma \beta_1)}{dT}$$
$$= \frac{d}{dT} \left[\left(\frac{1}{2} \alpha + \frac{\varepsilon^2}{2\alpha} \right) \gamma \beta_1 + \frac{(\gamma \beta_1)^3}{6\alpha} \right]$$

Lösung für $T(\beta_1)$ bzw. $\beta_1(T)$:

$$T - T_0 = \left(\frac{1}{2} + \frac{\varepsilon^2}{2\alpha^2}\right)\gamma\beta_1 + \frac{(\gamma\beta_1)^3}{6\alpha^2}$$

Theoretische Physik 2: Elektrodynamik

4.1 Räumlich homogene, zeitunabhängige **E**- und **B**-Felder

Fall (iii): $\mathbf{E} \cdot c\mathbf{B} = 0$, E = cB

Zeitabhängige Lösung und Langzeitlimes $(T \to \infty)$

Lösungen für γ , β_3 und $T(\beta_1)$ bzw. $\beta_1(T)$:

$$\begin{split} \gamma &= \frac{1}{2}\alpha + \frac{1}{2\alpha}[(\gamma\beta_1)^2 + \varepsilon^2] \quad , \quad \beta_3 &= -\frac{\alpha}{2\gamma} + \frac{1}{2\alpha\gamma}[(\gamma\beta_1)^2 + \varepsilon^2] \\ \mathcal{T} &- \mathcal{T}_0 &= \left(\frac{1}{2} + \frac{\varepsilon^2}{2\alpha^2}\right)\gamma\beta_1 + \frac{(\gamma\beta_1)^3}{6\alpha^2} \end{split}$$

Langzeitlimes ($T \to \infty$):

$$\gamma \beta_1 \sim (6\alpha^2 T)^{1/3} \to \infty \quad \Rightarrow \quad \gamma \sim \frac{1}{2\alpha} (\gamma \beta_1)^2 \sim \frac{1}{2\alpha} (6\alpha^2 T)^{2/3} \to \infty$$

Daher:

$$\left[\mathsf{mit} \ \gamma(1-\beta_3) = \alpha \ , \ \gamma\beta_2 = \gamma(0)\beta_2(0) \right]$$

$$eta_3 = \left(1 - rac{lpha}{\gamma}
ight) \uparrow 1 \quad , \quad eta_2 = \gamma(0)eta_2(0)/\gamma o 0 \ eta_1 = (\gammaeta_1)/\gamma \sim 2lpha(6lpha^2T)^{-1/3} o 0$$

Fazit:

- **k**ein oszillierendes Verhalten der β_1 und β_3 -Komponenten!
- ▶ Allerdings: Driftbewegung in $\hat{\mathbf{e}}_3$ -Richtung mit $\beta_3 \uparrow 1!$

Fall (iii): Geschwindigkeit im kombinierten E-B-Feld

Definitionen:

$$T \equiv rac{qEt}{m_0c}$$
 , $E = cB$

$$\hat{\textbf{e}}_1 \equiv \hat{\textbf{E}} \perp \hat{\textbf{B}} \equiv \hat{\textbf{e}}_2$$

$$\beta(0)=0 \ , \ \gamma(0)=1$$

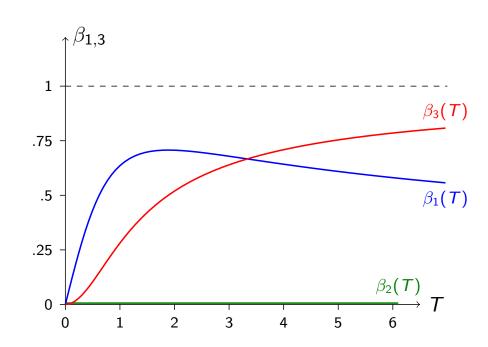
$$\alpha = \varepsilon = 1$$
 , $T_0 = 0$

$$T = \gamma \beta_1 + \frac{1}{6} (\gamma \beta_1)^3$$

$$\gamma = 1 + \frac{1}{2} (\gamma \beta_1)^2$$

$$\beta_2 = 0$$

$$\beta_3 = \frac{(\gamma \beta_1)^2}{2 + (\gamma \beta_1)^2}$$



Theoretische Physik 2: Elektrodynamik

4.1 Räumlich homogene, zeitunabhängige **E**- und **B**-Felder

Fall (iii): $\mathbf{E} \cdot c\mathbf{B} = 0$, E = cB

Fall (iii): Energiegewinn im kombinierten E-B-Feld

Definitionen:

$$T \equiv \frac{qEt}{m_0c}$$
 , $E = cB$

$$\hat{\textbf{e}}_1 = \hat{\textbf{E}} \perp \hat{\textbf{B}} \equiv \hat{\textbf{e}}_2$$

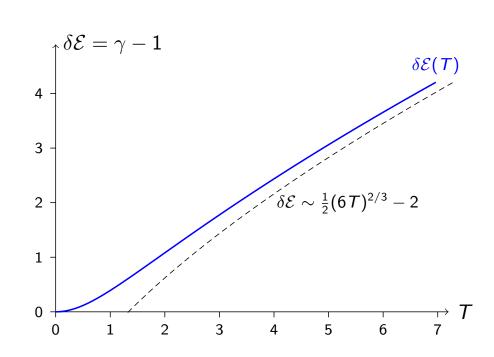
$$eta(0) = 0$$
 , $\gamma(0) = 1$ $\alpha = \varepsilon = 1$, $T_0 = 0$

$$T = \gamma \beta_1 + \frac{1}{6} (\gamma \beta_1)^3$$

$$\gamma = 1 + \frac{1}{2} (\gamma \beta_1)^2$$

$$\beta_2 = 0$$

$$\beta_3 = \frac{(\gamma \beta_1)^2}{2 + (\gamma \beta_1)^2}$$



Fall (iv): $\mathbf{E} \cdot c\mathbf{B} \neq 0 \Rightarrow \exists \Lambda \text{ mit } \mathbf{E}' \parallel \mathbf{B}', E' \neq 0, B' \neq 0$

Bewegungsgleichungen:

(Definition:
$$T \equiv \frac{qEt}{m_0c}$$
)

$$egin{aligned} rac{d\pi}{dt} &= q(\mathbf{E} + \mathbf{u} imes \mathbf{B}) \quad, \quad \pi = \gamma_u m_0 \mathbf{u} \ rac{d\mathcal{E}}{dt} &= q \mathbf{E} \cdot \mathbf{u} \quad, \quad \mathcal{E} = \gamma_u m_0 c^2 = \sqrt{\pi^2 c^2 + m_0^2 c^4} \end{aligned}$$

Fall (iv):
$$\mathbf{E} \parallel \mathbf{B} \Rightarrow \text{ wähle } \hat{\mathbf{E}} = \hat{\mathbf{B}} = \hat{\mathbf{e}}_1 \text{ , } cB/E \equiv \mathbf{b} \Rightarrow \frac{d(\gamma \beta)}{dT} = \hat{\mathbf{e}}_1 + b\beta \times \hat{\mathbf{e}}_1 \text{ , } \frac{d\gamma}{dT} = \hat{\mathbf{e}}_1 \cdot \beta$$

Nicht-relativistische Näherung $\gamma \to 1 \quad \Rightarrow$

$$rac{deta_1}{dT}=1 \quad , \quad rac{d}{dT}inom{eta_2}{eta_3}=binom{eta_3}{-eta_2} \quad , \quad rac{d\gamma}{dT}=eta_1$$

Lösung:

$$\beta_1 = \beta_1(0) + T$$
 , $\gamma = \gamma(0) + \beta_1(0)T + \frac{1}{2}T^2$

- ▶ Außerdem: Oszillationen von (β_2, β_3) mit Frequenz |b| um (0,0)
- lacktriangle Fazit: nicht-relativistische Näherung für $T\gtrsim 1$ bzw. $t\gtrsim rac{m_0\,c}{qE}$ ungültig!

Theoretische Physik 2: Elektrodynamik

4.1 Räumlich homogene, zeitunabhängige E- und B-Felder

Fall (iv): $\mathbf{E} \cdot c\mathbf{B} \neq 0$, $\exists \Lambda$ mit $\mathbf{E}' \parallel \mathbf{B}'$, $E' \neq 0$, $B' \neq 0$

Relativistische Bewegungsgleichung

Fall (iv):
$$\mathbf{E} \parallel \mathbf{B} \Rightarrow \text{ wähle } \hat{\mathbf{E}} = \hat{\mathbf{B}} = \hat{\mathbf{e}}_1 \text{ , } cB/E \equiv \mathbf{b} \Rightarrow \frac{d(\gamma\beta)}{dT} = \hat{\mathbf{e}}_1 + \mathbf{b}\beta \times \hat{\mathbf{e}}_1 \text{ , } \frac{d\gamma}{dT} = \hat{\mathbf{e}}_1 \cdot \beta$$

Relativistisch korrekte Gleichungen:

$$rac{d(\gammaeta_1)}{dT}=1$$
 , $rac{d}{dT}inom{\gammaeta_2}{\gammaeta_3}=binom{eta_3}{-eta_2}$, $rac{d\gamma}{dT}=eta_1$

Lösungsmethode: $\gamma \beta_1 = \gamma(0)\beta_1(0) + T$

$$1=rac{2\gammaeta_1}{2\gamma}rac{d(\gammaeta_1)/dT}{d\gamma/dT}=rac{d[(\gammaeta_1)^2]}{d[\gamma^2]}\quad\Rightarrow\quad \gamma^2=(\gammaeta_1)^2+{\sf Konstante}$$

Kombination —

$$\gamma = \sqrt{\gamma(0)^2[1-\beta_1(0)^2] + [\gamma(0)\beta_1(0) + T]^2}$$

Gleichungen für $\gamma\beta_2$ und $\gamma\beta_3$:

$$\frac{d}{dT} \begin{pmatrix} \gamma \beta_2 \\ \gamma \beta_3 \end{pmatrix} = \frac{b}{\gamma} \begin{pmatrix} \gamma \beta_3 \\ -\gamma \beta_2 \end{pmatrix} \quad , \quad \text{Idee:} \quad \frac{dT}{\gamma(T)} \stackrel{!}{\equiv} d\vartheta \qquad \begin{pmatrix} \vartheta = \text{dimensions-loss Eigenzeit} \\ \log \text{Eigenzeit} \end{pmatrix}$$

Lösung als Funktion von Θ , ϑ

Bisher:

$$\begin{split} \gamma &= \sqrt{\gamma(0)^2[1-\beta_1(0)^2] + [\gamma(0)\beta_1(0) + T]^2} \\ \frac{d}{dT} \begin{pmatrix} \gamma\beta_2 \\ \gamma\beta_3 \end{pmatrix} &= \frac{b}{\gamma} \begin{pmatrix} \gamma\beta_3 \\ -\gamma\beta_2 \end{pmatrix} \quad \text{, Idee: } \frac{dT}{\gamma(T)} \stackrel{!}{\equiv} d\vartheta \end{split}$$

Definition:

(dimensionslose Zeitvariablen Θ , ϑ)

$$\Theta \equiv \frac{\gamma(0)\beta_1(0) + T}{\gamma(0)\sqrt{1 - \beta_1(0)^2}} \quad , \quad \vartheta \equiv \operatorname{arsinh}(\Theta) \quad , \quad \frac{d}{d\vartheta} \begin{pmatrix} \gamma\beta_2 \\ \gamma\beta_3 \end{pmatrix} = b \begin{pmatrix} \gamma\beta_3 \\ -\gamma\beta_2 \end{pmatrix}$$
$$\frac{dT}{\gamma(T)} = \frac{\gamma(0)\sqrt{1 - \beta_1(0)^2}d\Theta}{\gamma(0)\sqrt{1 - \beta_1(0)^2}\sqrt{1 + \Theta^2}} = \frac{d\Theta}{\sqrt{1 + \Theta^2}} = d[\operatorname{arsinh}(\Theta)] = d\vartheta$$

Oszillierende, monoton abklingende Lösungen für β_2 und β_3 :

$$eta_2 = rac{\gamma(0)eta_2(0)}{\gamma}\cos[b(artheta-artheta_0)] + rac{\gamma(0)eta_3(0)}{\gamma}\sin[b(artheta-artheta_0)] \ eta_3 = rac{\gamma(0)eta_3(0)}{\gamma}\cos[b(artheta-artheta_0)] - rac{\gamma(0)eta_2(0)}{\gamma}\sin[b(artheta-artheta_0)] \ eta_3 = rac{\gamma(0)-\gamma(0)eta_3(0)}{\gamma}\cos[b(artheta-artheta_0)] - rac{\gamma(0)eta_2(0)}{\gamma}\sin[b(artheta-artheta_0)]$$

mit

 $\vartheta_0 \equiv \vartheta(0) = \operatorname{arsinh}[\Theta(0)] = \operatorname{arsinh}\left[\frac{\beta_1(0)}{\sqrt{1-\beta_1(0)^2}}\right] = \operatorname{artanh}[\beta_1(0)]$

Theoretische Physik 2: Elektrodynamik

4.1 Räumlich homogene, zeitunabhängige E- und B-Felder

 \sqsubseteq Fall (iv): $\mathbf{E} \cdot c\mathbf{B} \neq 0$, $\exists \Lambda$ mit $\mathbf{E}' \parallel \mathbf{B}'$, $E' \neq 0$, $B' \neq 0$

Lösung für $\gamma(\vartheta)$, $\beta_1(\vartheta)$ und Langzeitlimes $(T \to \infty)$

Bisherige Ergebnisse für $\gamma(T)$, $\beta_1(T)$, $\vartheta(T)$:

$$\gamma = \sqrt{\gamma(0)^{2}[1 - \beta_{1}(0)^{2}] + [\gamma(0)\beta_{1}(0) + T]^{2}}$$

$$\gamma\beta_{1} = \gamma(0)\beta_{1}(0) + T$$

$$\Theta = \frac{\gamma(0)\beta_{1}(0) + T}{\gamma(0)\sqrt{1 - \beta_{1}(0)^{2}}} , \quad \vartheta = \operatorname{arsinh}(\Theta)$$

Lösung für γ , β_1 als Funktion von ϑ :

$$egin{aligned} \gamma &= \gamma(0)\sqrt{1-eta_1(0)^2}\sqrt{1+\Theta^2} &= \gamma(0)\sqrt{1-eta_1(0)^2}\cosh(artheta) \ eta_1 &= rac{\gammaeta_1}{\gamma} &= rac{\gamma(0)eta_1(0)+T}{\gamma} &= rac{\Theta}{\sqrt{1+\Theta^2}} &= anh(artheta) \end{aligned}$$

Langzeitverhalten:

$$\gamma o \infty \qquad , \qquad eta_1 \uparrow 1 \qquad ext{(} \ \mathcal{T} o \infty \ , \ artheta o \infty ext{)}$$

Fall (iv): Geschwindigkeit im kombinierten E-B-Feld

Definitionen:

$$T \equiv rac{qEt}{m_0c}$$
 $\hat{\mathbf{E}} = \hat{\mathbf{B}} = \hat{\mathbf{e}}_1$

$$\mathbf{c} = \mathbf{b} = \mathbf{e}_1$$

$$\frac{cB}{E} \equiv b \ , \ b = 1$$

$$\beta_1(0) = 0$$
 , $\beta_3(0) = 0$

$$\beta_2(0) = \frac{1}{2}\sqrt{3}$$
, $\gamma(0) = 2$

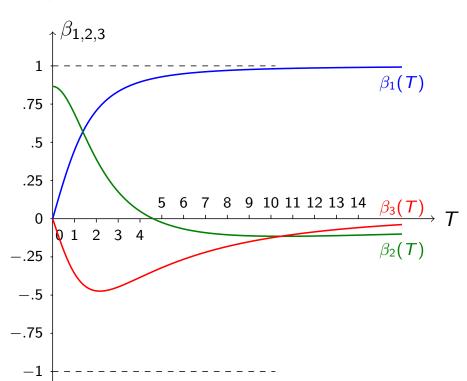
$$\Theta = \frac{T}{\gamma(0)} = \sinh(\vartheta)$$

$$\gamma = \gamma(0)\cosh(\vartheta)$$

$$\beta_1 = \tanh(\vartheta)$$

$$\beta_2 = \beta_2(0) \frac{\cos(\frac{b}{\vartheta})}{\cosh(\vartheta)}$$

$$\beta_3 = -\beta_2(0) \frac{\sin(b\vartheta)}{\cosh(\vartheta)}$$



Theoretische Physik 2: Elektrodynamik

4.1 Räumlich homogene, zeitunabhängige E- und B-Felder

Fall (iv): $\mathbf{E} \cdot c\mathbf{B} \neq 0$, $\exists \Lambda$ mit $\mathbf{E}' \parallel \mathbf{B}'$, $E' \neq 0$, $B' \neq 0$

Fall (iv): Energiegewinn im kombinierten E-B-Feld

Definitionen:

$$T \equiv \frac{qEt}{m_0c}$$

$$\hat{\mathbf{E}} = \hat{\mathbf{B}} = \hat{\mathbf{e}}_1$$

$$\frac{cB}{E} \equiv b \ , \ b = 1$$

$$\beta_1(0) = 0$$
 , $\beta_3(0) = 0$

$$\beta_2(0) = \frac{1}{2}\sqrt{3}$$
, $\gamma(0) = 2$

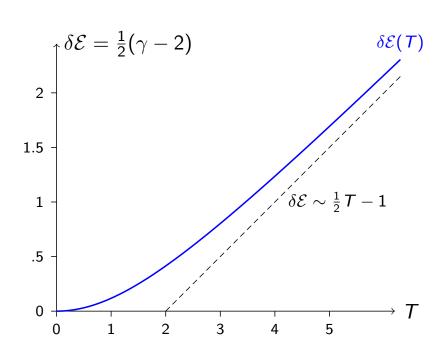
$$\Theta = \frac{T}{\gamma(0)} = \sinh(\vartheta)$$

$$\gamma = \gamma(0) \cosh(\vartheta)$$

$$\beta_1 = \mathsf{tanh}(\vartheta)$$

$$\beta_2 = \beta_2(0) \frac{\cos(\frac{b}{\vartheta})}{\cosh(\vartheta)}$$

$$\beta_3 = -\beta_2(0) \frac{\sin(b\theta)}{\cosh(\theta)}$$



Problemstellung und Bewegungsgleichung

Problemstellung:

- ightharpoonup geladenes relativistisches Teilchen (Ladung q, Ruhemasse m_0)
- ▶ Inertial system K mit Ursprung x = 0
- lacktriangle Zentralpotential $\Phi({f x})=rac{q_0}{4\piarepsilon_0{f x}}$, $x\equiv |{f x}|$; Vektorpotential: ${f A}({f x})={f 0}$
- \blacktriangleright $A^{\mu} = (\Phi, c\mathbf{A})$ erfüllt in K sowohl Coulomb- als auch Lorenz-Eichung

Bewegungsgleichung:

$$rac{d\pi}{dt} = q\mathbf{E}$$
 , $\mathbf{\pi} = \gamma_u m_0 \mathbf{u}$, $\mathbf{E} = -\mathbf{\nabla} \Phi = rac{q_0 \hat{\mathbf{x}}}{4\pi \varepsilon_0 x^2}$, $q\mathbf{E} = -rac{\mathbf{a}}{x^2} \hat{\mathbf{x}}$

Mindestens zwei Erhaltungsgrößen:

▶ Drehimpuls $\mathbf{L} = \mathbf{x} \times \boldsymbol{\pi}$:

$$\frac{d\mathbf{L}}{dt} = \frac{d}{dt}(\mathbf{x} \times \boldsymbol{\pi}) = \mathbf{u} \times \boldsymbol{\pi} + \mathbf{x} \times \frac{d\boldsymbol{\pi}}{dt} = \mathbf{x} \times (q\mathbf{E}) = \mathbf{0}$$

• Gesamtenergie $\mathcal{E}_{\rm g}=\sqrt{\pi^2c^2+m_0^2c^4}-\frac{a}{x}$ (mit $a\equiv\frac{-qq_0}{4\pi\varepsilon_0}$):

$$\frac{d\mathcal{E}_{g}}{dt} = \frac{c^{2}\boldsymbol{\pi} \cdot \frac{d\boldsymbol{\pi}}{dt}}{\sqrt{\boldsymbol{\pi}^{2}c^{2} + m_{0}^{2}c^{4}}} + \frac{a}{x^{2}}\frac{dx}{dt} = \frac{c^{2}\boldsymbol{\pi} \cdot (q\mathbf{E})}{\gamma m_{0}c^{2}} + \frac{a}{x^{2}}\frac{dx}{dt}$$

$$= \mathbf{u} \cdot \left(-\frac{a}{x^{2}}\hat{\mathbf{x}}\right) + \frac{a}{x^{2}}\frac{dx}{dt} = \frac{a}{x^{2}}\left(\frac{dx}{dt} - \mathbf{u} \cdot \hat{\mathbf{x}}\right) = 0$$

Theoretische Physik 2: Elektrodynamik

4.2 Das Coulomb-Problem für ein einzelnes Teilchen

Bewegungsgleichung und Erhaltungsgrößen

Das Coulomb-Problem für ein einzelnes Teilchen

Bewegungsgleichung:

$$rac{doldsymbol{\pi}}{dt} = q \mathbf{E} \quad , \quad oldsymbol{\pi} = \gamma_u m_0 \mathbf{u} \quad , \quad \mathbf{E} = -oldsymbol{
abla} \Phi = rac{q_0 \hat{\mathbf{x}}}{4\pi arepsilon_0 x^2} \quad , \quad q \mathbf{E} = -rac{a}{x^2} \hat{\mathbf{x}}$$

Mindestens zwei Erhaltungsgrößen:

- ▶ Drehimpuls $\mathbf{L} = \mathbf{x} \times \boldsymbol{\pi}$
- Gesamtenergie $\mathcal{E}_{\mathrm{g}}=\sqrt{\pi^2c^2+m_0^2c^4}-rac{a}{\kappa}$ (mit $a\equivrac{-qq_0}{4\piarepsilon_0}$)

Wirkung im relativistischen Fall:

$$S = \int_{t_1}^{t_2} dt \ L(\mathbf{x}, \dot{\mathbf{x}}, t) \quad , \quad L(\mathbf{x}, \dot{\mathbf{x}}, t) = -m_0 c^2 \sqrt{1 - \left(\frac{\dot{\mathbf{x}}}{c}\right)^2} - q \Phi(\mathbf{x})$$

Im nicht-relativistischen Grenzfall:

- $m{\mathcal{S}}_{
 m NR} = \int_{t_1}^{t_2} \!\! dt \, \left[rac{1}{2} m_0 \dot{m{x}}^2 q \Phi(m{x})
 ight]$
- dritte Erhaltungsgröße ("Lenz'scher Vektor"):

$$\mathbf{a} \equiv \mathbf{u} \times \mathbf{L} - a\hat{\mathbf{x}}$$
 , $\frac{d\mathbf{a}}{dt} = \mathbf{0}$, $\mathbf{a} \cdot \mathbf{L} = \mathbf{0}$

lacktriangle Für $\mathcal{E}_{\mathrm{g}}^{\mathrm{NR}} < 0$ alle Bahnen geschlossen

Lösung der relativistischen Bewegungsgleichungen

Wirkung im relativistischen Fall:

$$S = \int_{t_1}^{t_2} dt \ L(\mathbf{x}, \dot{\mathbf{x}}, t) \quad , \quad L(\mathbf{x}, \dot{\mathbf{x}}, t) = -m_0 c^2 \sqrt{1 - \left(\frac{\dot{\mathbf{x}}}{c}\right)^2} - q \Phi(\mathbf{x})$$

Wie im nicht-relativistischen Fall: wähle $\mathbf{L} \parallel \hat{\mathbf{e}}_3$ & Polarkoordinaten \Rightarrow

$$L = -m_0 c^2 \sqrt{1 - \frac{1}{c^2} (\dot{x}^2 + x^2 \dot{\varphi}^2)} + \frac{a}{x}$$

Zu (x, φ) konjugierte Impulse:

$$\pi_{x} = \frac{\partial L}{\partial \dot{x}} = \gamma m_{0} \dot{x} \quad , \quad \pi_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = \gamma m_{0} x^{2} \dot{\varphi}$$

Euler-Lagrange-Gleichungen:

$$\frac{d\pi_{x}}{dt} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x} = \gamma m_{0} x \dot{\varphi}^{2} - \frac{a}{x^{2}} \quad , \quad \frac{d\pi_{\varphi}}{dt} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) = \frac{\partial L}{\partial \varphi} \stackrel{!}{=} 0$$

Erhaltungsgröße π_{φ} ! ($\widehat{=}$ Drehimpuls) [wegen $\frac{\partial L}{\partial \varphi} = 0 \Rightarrow \varphi$ zyklisch]

$$\mathbf{L} = \mathbf{x} \times \boldsymbol{\pi} = \gamma m_0 \mathbf{x} \times \mathbf{u} = \gamma m_0 \mathbf{x} \times (\dot{x} \hat{\mathbf{e}}_x + x \dot{\varphi} \hat{\mathbf{e}}_\varphi)$$
$$= \gamma m_0 x^2 \dot{\varphi} (\hat{\mathbf{e}}_x \times \hat{\mathbf{e}}_\varphi) = \pi_\varphi \hat{\mathbf{e}}_3 \quad \Rightarrow \quad \pi_\varphi = |\mathbf{L}|$$

Theoretische Physik 2: Elektrodynamik

4.2 Das Coulomb-Problem für ein einzelnes Teilchen

Lösung der relativistischen Bewegungsgleichungen

Möglichkeit von Kreisbahnen?

Zu (x, φ) konjugierte Impulse:

$$\pi_{\mathsf{x}} = \gamma m_0 \dot{\mathsf{x}} \quad , \quad \pi_{\varphi} = \gamma m_0 x^2 \dot{\varphi}$$

Euler-Lagrange-Gleichungen:

$$rac{d\pi_{ imes}}{dt} = \gamma m_0 x \dot{arphi}^2 - rac{ extbf{a}}{ extbf{x}^2} \quad , \quad rac{d\pi_{arphi}}{dt} = 0 \qquad ext{mit} \qquad extbf{a} \equiv rac{-qq_0}{4\piarepsilon_0}$$

Definiere $\bar{a} \equiv \frac{a}{\pi_{\varphi}c} \Rightarrow Kreisbahnen$ möglich für $0 < \bar{a} < 1!$

Für Kreisbahnen gilt: (wegen $\pi_x = \gamma m_0 \dot{x} = 0 \Rightarrow \frac{d\pi_x}{dt} = 0$)

$$0 < \mathbf{a} = \gamma m_0 x^3 \dot{\varphi}^2 = \pi_{\varphi} x \dot{\varphi} = \pi_{\varphi} |\mathbf{u}| = \beta_{\mathbf{u}} \pi_{\varphi} c$$

und daher:

$$0 < \bar{a} = \beta_u < 1$$
 $(\bar{a} \in \mathbb{R})$

Radius der Kreisbahn: [daher $x \downarrow 0$ für $\bar{a} \uparrow 1$ bei festem |L|]

$$x = \frac{a}{\gamma m_0 |\mathbf{u}|^2} = \frac{\bar{a}|\mathbf{L}|c}{\gamma m_0 c^2 \beta_u^2} = \frac{|\mathbf{L}|}{m_0 c \bar{a}} \sqrt{1 - \bar{a}^2} \qquad (0 < \bar{a} < 1)$$

Berechnung allgemeiner Bahnen $(\mathcal{E}_{\mathrm{g}},\ \mathsf{L}\ \text{erhalten})$

Zu (x, φ) konjugierte Impulse:

$$\pi_{\mathsf{x}} = \gamma m_0 \dot{\mathsf{x}} \quad , \quad \pi_{\varphi} = \gamma m_0 x^2 \dot{\varphi}$$

Kinetischer Impuls:

$$\boldsymbol{\pi} = \gamma m_0 (\dot{x} \hat{\mathbf{e}}_x + x \dot{\varphi} \hat{\mathbf{e}}_{\varphi}) = \pi_x \hat{\mathbf{e}}_x + \frac{\pi_{\varphi}}{\mathbf{x}} \hat{\mathbf{e}}_{\varphi}$$

Gesamtenergie: (erhalten)

$$\mathcal{E}_{\mathrm{g}} = \sqrt{\pi^2 c^2 + m_0^2 c^4} - \frac{a}{x} = c \sqrt{(\pi_x)^2 + \frac{\mathbf{L}^2}{x^2} + (m_0 c)^2} - \frac{a}{x}$$

Impuls in radialer Richtung:

$$(\gamma m_0 \dot{x})^2 = (\pi_x)^2 = \frac{1}{c^2} \left(\mathcal{E}_{g} + \frac{a}{x} \right)^2 - \frac{\mathbf{L}^2}{x^2} - (m_0 c)^2$$

Dividiere durch $(\pi_{arphi})^2 = \mathbf{L}^2 \; \Rightarrow \;$ Bewegungsgleichung für $\frac{1}{\varkappa(arphi)}$:

$$\left(\frac{d(x^{-1})}{d\varphi}\right)^2 = \left(\frac{\gamma m_0 \dot{x}}{\gamma m_0 x^2 \dot{\varphi}}\right)^2 = \left(\frac{\pi_x}{\pi_{\varphi}}\right)^2 = \frac{1}{\pi_{\varphi}^2 c^2} \left(\mathcal{E}_{g} + \frac{a}{x}\right)^2 - \frac{1}{x^2} - \left(\frac{m_0 c}{\pi_{\varphi}}\right)^2$$

Theoretische Physik 2: Elektrodynamik

4.2 Das Coulomb-Problem für ein einzelnes Teilchen

Lösung der relativistischen Bewegungsgleichungen

Vereinfachung der Bewegungsgleichung

Bisheriges Resultat:

$$\left(\frac{d(x^{-1})}{d\varphi}\right)^2 = \frac{1}{\pi_{\varphi}^2 c^2} \left(\mathcal{E}_{g} + \frac{a}{x}\right)^2 - \frac{1}{x^2} - \left(\frac{m_0 c}{\pi_{\varphi}}\right)^2$$

Verwende Definition $\bar{a} \equiv \frac{a}{\pi_{cc}c}$ (dimensionslos) \Rightarrow

$$\begin{split} \left(\frac{d(x^{-1})}{d\varphi}\right)^2 &= \frac{\mathcal{E}_{g}^2 - (m_0c^2)^2}{(\pi_{\varphi}c)^2} - (1 - \bar{\mathsf{a}}^2) \frac{1}{x^2} + 2\frac{\mathcal{E}_{g}\bar{\mathsf{a}}}{\pi_{\varphi}c} \frac{1}{x} \\ &= \frac{\mathcal{E}_{g}^2 - (m_0c^2)^2}{(\pi_{\varphi}c)^2} - (1 - \bar{\mathsf{a}}^2) \left[\frac{1}{x} - \frac{\mathcal{E}_{g}\bar{\mathsf{a}}}{\pi_{\varphi}c(1 - \bar{\mathsf{a}}^2)}\right]^2 + \frac{\mathcal{E}_{g}^2\bar{\mathsf{a}}^2}{(\pi_{\varphi}c)^2(1 - \bar{\mathsf{a}}^2)} \\ &= \frac{\mathcal{E}_{g}^2 - (m_0c^2)^2(1 - \bar{\mathsf{a}}^2)}{(\pi_{\varphi}c)^2(1 - \bar{\mathsf{a}}^2)} - (1 - \bar{\mathsf{a}}^2) \left[\frac{1}{x} - \frac{\mathcal{E}_{g}\bar{\mathsf{a}}}{\pi_{\varphi}c(1 - \bar{\mathsf{a}}^2)}\right]^2 \end{split}$$

Weitere Definitionen:

$$\xi \equiv rac{|a|m_0x}{\pi_{arphi}^2} = rac{|ar{a}|m_0cx}{\pi_{arphi}} \qquad ext{(dimensionslose Länge)}$$
 $\eta \equiv rac{\mathcal{E}_{\mathrm{g}}}{m_0c^2} \quad , \quad arepsilon \equiv \sqrt{1-rac{1-\eta^2}{ar{a}^2}} \qquad ext{(dimensionslose Parameter)}$

Weitere Vereinfachung der Bewegungsgleichung

Bisheriges Resultat für Bewegungsgleichung:

$$\left(\frac{d(x^{-1})}{d\varphi}\right)^2 = \frac{\mathcal{E}_{\mathrm{g}}^2 - (m_0c^2)^2(1-\overline{\mathsf{a}}^2)}{(\pi_\varphi c)^2(1-\overline{\mathsf{a}}^2)} - (1-\overline{\mathsf{a}}^2)\left[\frac{1}{x} - \frac{\mathcal{E}_{\mathrm{g}}\overline{\mathsf{a}}}{\pi_\varphi c(1-\overline{\mathsf{a}}^2)}\right]^2$$

Definitionen:

$$a \equiv rac{-qq_0}{4\piarepsilon_0} \;\; , \;\; ar{a} \equiv rac{a}{\pi_{arphi}c} \;\; , \;\; \xi \equiv rac{|ar{a}|m_0cx}{\pi_{arphi}} \;\; , \;\; \eta \equiv rac{\mathcal{E}_{
m g}}{m_0c^2} \;\; , \;\; arepsilon \equiv \sqrt{1-rac{1-\eta^2}{ar{a}^2}}$$

Bewegungsgleichung für $\bar{a}^2 \neq 1$:

Bewegungsgleichung für
$$\bar{a}^2 = 1$$
:

$$\left(\frac{d\xi^{-1}}{d\varphi}\right)^2 = \frac{\varepsilon^2}{1-\bar{\mathsf{a}}^2} - (1-\bar{\mathsf{a}}^2) \left[\frac{1}{\xi} - \frac{\operatorname{sgn}(\bar{\mathsf{a}})\eta}{1-\bar{\mathsf{a}}^2}\right]^2 \qquad \left(\frac{d\xi^{-1}}{d\varphi}\right)^2 = \operatorname{sgn}(\bar{\mathsf{a}}) \frac{2\eta}{\xi} + \eta^2 - 1$$

$$\left(\frac{d\xi^{-1}}{d\varphi}\right)^2 = \operatorname{sgn}(\bar{a})\frac{2\eta}{\xi} + \eta^2 - 1$$

Lösung für $\bar{a} = 1$:

$$d\left[rac{1}{\eta}\sqrt{rac{2\eta}{\xi}-(1-\eta^2)}
ight]=rac{d(\xi^{-1})}{\sqrt{rac{2\eta}{\xi}-(1-\eta^2)}}=\pm darphi=d[\pm(arphi-arphi_0)]$$

$$rac{2\eta}{\xi}=\eta^2(arphi-arphi_0)^2+(1-\eta^2) \qquad ext{bzw}. \qquad \xi=rac{2\eta}{\eta^2(arphi-arphi_0)^2+(1-\eta^2)}$$

Theoretische Physik 2: Elektrodynamik

4.2 Das Coulomb-Problem für ein einzelnes Teilchen

Lösung der relativistischen Bewegungsgleichungen

Bewegungsgleichungen für Coulomb-Anziehung ($\bar{a} > 0$)

Bewegungsgleichung und Lösung für $\bar{a} = 1$:

$$\left(\frac{d\xi^{-1}}{d\varphi}\right)^2 = \frac{2\eta}{\xi} + \eta^2 - 1 \qquad , \qquad \xi = \frac{2\eta}{\eta^2(\varphi - \varphi_0)^2 + (1 - \eta^2)}$$

$$\xi = \frac{2\eta}{\eta^2(\varphi - \varphi_0)^2 + (1 - \eta^2)}$$

Möglichkeiten:

Für $\eta < 1$ folgt:

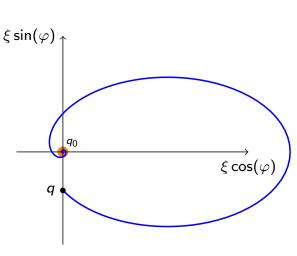
$$\xi(\varphi)\downarrow 0 \qquad (\varphi\to\infty)$$

Für n > 1, $\dot{x}(0) < 0$ folgt:

$$\xi(\varphi) \downarrow 0$$
 $(\varphi_0 < \varphi \to \infty)$

Für $\eta > 1$, $\dot{x}(0) > 0$ folgt:

$$\xi(\varphi(t)) \to \infty \quad (t \to \infty , \ \varphi < \varphi_0)$$



Lösung für
$$arphi_0=0$$
 und $\eta=\sqrt{2/3}<1$

Bewegungsgleichungen für Coulomb-Anziehung ($\bar{a} > 0$)

Bewegungsgleichung und Lösung für $\bar{a} = 1$:

$$\left(rac{d\xi^{-1}}{darphi}
ight)^2 = rac{2\eta}{\xi} + \eta^2 - 1 \qquad , \qquad \xi = rac{2\eta}{\eta^2(arphi - arphi_0)^2 + (1 - \eta^2)}$$

Möglichkeiten:

Für $\eta < 1$ folgt:

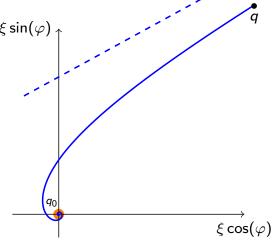
$$\xi(\varphi) \downarrow 0 \qquad (\varphi \to \infty)$$

Für $\eta > 1$, $\dot{x}(0) < 0$ folgt:

$$\xi(\varphi) \downarrow 0$$
 $(\varphi_0 < \varphi \to \infty)$

Für $\eta > 1$, $\dot{x}(0) > 0$ folgt:

$$\xi(\varphi(t)) \to \infty$$
 $(t \to \infty, \ \varphi < \varphi_0)$



Lösung für $\varphi_0=0$ und $\eta=2/\sqrt{3}>1$

Theoretische Physik 2: Elektrodynamik

4.2 Das Coulomb-Problem für ein einzelnes Teilchen

 igsqc Spezialfall: *attraktive* Coulomb-Wechselwirkung ($ar{a}>0$)

Lösung der Bewegungsgleichung für $0 < \bar{a} \neq 1$

Bewegungsgleichung für $0 < \bar{a} \neq 1$:

$$\left(\frac{d\xi^{-1}}{d\varphi}\right)^2 = \frac{\varepsilon^2}{1-\bar{a}^2} - (1-\bar{a}^2)\left(\xi^{-1} - \frac{\eta}{1-\bar{a}^2}\right)^2 \quad , \quad \varepsilon = \sqrt{1-\frac{1-\eta^2}{\bar{a}^2}}$$

Führe Hilfsvariablen ein:

$$m{X}^{-1} \equiv rac{|1-ar{ar{a}}^2|}{arepsilon} \left(m{\xi}^{-1} - rac{\eta}{1-ar{ar{a}}^2}
ight) \quad , \quad m{\Phi} \equiv \sqrt{|1-ar{ar{a}}^2|} \; m{arphi}$$

Bewegungsgleichung: (in Hilfsvariablen)

$$\left(\frac{dX^{-1}}{d\Phi}\right)^2 = \operatorname{sgn}(1 - \bar{a}^2)(1 - X^{-2})$$

Lösung für $0 < \bar{a} < 1$:

$$X^{-1} = \cos(\Phi - \Phi_0) \quad \Rightarrow \quad rac{1}{\xi} = rac{1}{1 - ar{a}^2} \left\{ \eta + arepsilon \cos\left[\sqrt{1 - ar{a}^2} \left(arphi - arphi_0
ight)
ight]
ight\}$$

 \dots und für $\bar{a}>1$:

$$X^{-1} = \cosh(\Phi - \Phi_0) \quad \Rightarrow \quad rac{1}{\xi} = rac{1}{ar{a}^2 - 1} \left\{ -\eta + arepsilon \cosh\left[\sqrt{ar{a}^2 - 1} \left(arphi - arphi_0
ight)
ight]
ight\}$$

Verhalten der Lösung für $\bar{a}>1$

Lösung für $\bar{a} > 1$:

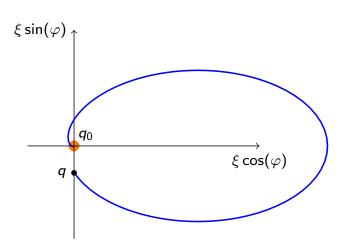
$$rac{1}{\xi} = rac{1}{ar{a}^2-1} \left\{ -\eta + arepsilon \cosh \left[\sqrt{ar{a}^2-1} \left(arphi - arphi_0
ight)
ight]
ight\} \quad , \quad arepsilon = \sqrt{1 - rac{1-\eta^2}{ar{a}^2}}$$

Verhalten für $\bar{a} > 1$:

• Generell für $\varphi(0) > \varphi_0$:

$$\xi \propto e^{-\sqrt{\bar{a}^2-1}arphi} \downarrow 0 \quad (arphi
ightarrow \infty)$$
 (auch für $\eta < 1 \ \Rightarrow \ \eta < arepsilon$)

- Benötigte Zeit, um in den Ursprung hineinzufallen ist endlich!
- Für $\eta \geq 1$, $\varphi(0) > \varphi_0$ gilt: $\xi \downarrow 0 \quad (\varphi \rightarrow \infty \ , \ \eta > \varepsilon)$
- Für $\eta \geq 1 \; , \; \varphi(0) < \varphi_0 \; {
 m gilt:}$ $\xi o \infty \; \; (t o \infty \; , \; \eta > arepsilon)$



Lösung für $arphi_0=$ 0, $ar{a}=\sqrt{3}$ und $\eta=rac{1}{2}<$ 1

Theoretische Physik 2: Elektrodynamik

4.2 Das Coulomb-Problem für ein einzelnes Teilchen

Spezialfall: attraktive Coulomb-Wechselwirkung ($\bar{a} > 0$)

Verhalten der Lösung für $\bar{a}>1$

Lösung für $\bar{a} > 1$:

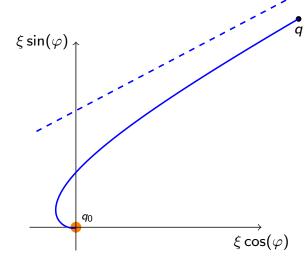
$$rac{1}{\xi} = rac{1}{ar{ a}^2 - 1} \left\{ - \eta + arepsilon \cosh \left[\sqrt{ar{ a}^2 - 1} \left(arphi - arphi_0
ight)
ight]
ight\} \quad , \quad arepsilon = \sqrt{1 - rac{1 - \eta^2}{ar{ a}^2}}$$

Verhalten für $\bar{a} > 1$:

• Generell für $\varphi(0) > \varphi_0$:

$$\xi \propto e^{-\sqrt{ar{a}^2-1}arphi} \downarrow 0 \quad (arphi
ightarrow \infty)$$
 (auch für $\eta < 1 \ \Rightarrow \ \eta < arepsilon$)

- Benötigte Zeit, um in den Ursprung hineinzufallen ist endlich!
- Für $\eta \geq 1$, $\varphi(0) > \varphi_0$ gilt: $\xi \downarrow 0 \quad (\varphi \to \infty, \ \eta > \varepsilon)$
- Für $\eta \geq 1$, $\varphi(0) < \varphi_0$ gilt: $\xi \to \infty$ $(t \to \infty, \eta > \varepsilon)$



Lösung für $arphi_0=$ 0, $\bar{a}=\sqrt{3}$ und $\eta=$ 2 > 1

Verhalten der Lösung für $0 < \bar{a} < 1$

Lösung für $0 < \bar{a} < 1$:

$$rac{1}{arepsilon} = rac{1}{1 - ar{ar{a}}^2} \left\{ \eta + arepsilon \cos \left[\sqrt{1 - ar{ar{a}}^2} \left(arphi - arphi_0
ight)
ight]
ight\} \quad , \quad arepsilon = \sqrt{1 - rac{1 - \eta^2}{ar{ar{a}}^2}}$$

Verhalten für $0 < \bar{a} < 1$:

▶ nicht-relativistischer Limes ($\bar{a} \to 0, \eta \to 1$) \to Kepler-Bahn:

$$\xi = \frac{x}{p} = \frac{1}{1 + \varepsilon \cos(\varphi - \varphi_0)} \qquad \left(p = \frac{\mathbf{L}^2}{m_0 a} \ , \ \varepsilon = \sqrt{1 + \frac{2\mathcal{E}_{\mathrm{NR}} \mathbf{L}^2}{m_0 a^2}}\right)$$

► Bindungszustände ↔ Streuzustände:

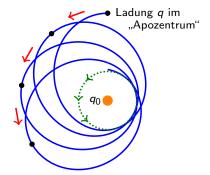
$$(\eta > \varepsilon)$$
 $\eta < 1$ \leftrightarrow $\eta \ge 1$ $(\eta < \varepsilon)$

▶ Relativistische Umlaufbahnen i. A. nicht geschlossen ⇒ nicht-periodisch:

$$\xi(\varphi + 2\pi) \neq \xi(\varphi)$$

Fazit: keine dritte Erhaltungsgröße! (analog zum Lenz'scher Vektor)

▶ Präzession des Apo- bzw. Perizentrums



Umlaufbahnen i. A. *nicht* geschlossen/periodisch

Theoretische Physik 2: Elektrodynamik

4.3 Coulomb-Wechselwirkung als Vielteilchenproblem

Wirkung und Hamilton-Funktion des Vielteilchensystems

Wirkung und Hamilton-Funktion des Vielteilchensystems

Wirkung des Vielteilchensystems:

$$S = \int_{t_1}^{t_2} dt \, \left(L_{\mathrm{M}} + L_{\mathrm{WW}} + \int d\mathbf{x} \, \mathcal{L}_{\mathrm{F}}
ight) \quad , \quad \mathcal{L}_{\mathrm{F}} = \frac{1}{2} arepsilon_0 (\mathbf{E}^2 - c^2 \mathbf{B}^2)$$
 $L_{\mathrm{M}} = -\sum_{l=1}^N m_{0l} c^2 \sqrt{1 - rac{\mathbf{u}_l^2}{c^2}} \quad , \quad L_{\mathrm{WW}} = \sum_{l=1}^N q_l [\mathbf{u}_l \cdot \mathbf{A}(\mathbf{x}_l, t) - \Phi(\mathbf{x}_l, t)]$

Gesamtenergie = Hamilton-Funktion:

$$H = \sum_{l=1}^{N} \sqrt{\pi_l^2 c^2 + m_{0l}^2 c^4} + \frac{1}{2} \varepsilon_0 \int d\mathbf{x} \left(\mathbf{E}^2 + c^2 \mathbf{B}^2 \right)$$
 $\pi_l = \mathbf{p}_l - q_l \mathbf{A}(\mathbf{x}_l, t) = \gamma_{u_l} m_{0l} \mathbf{u}_l$

Problem: S, H divergieren!

Berechnung von $\int d\mathbf{x} \mathbf{E}^2$

Hamilton-Funktion:

$$H = \sum_{l=1}^{N} \sqrt{\pi_{l}^{2} c^{2} + m_{0l}^{2} c^{4}} + \frac{1}{2} \varepsilon_{0} \int d\mathbf{x} \; (\mathbf{E}^{2} + c^{2} \mathbf{B}^{2})$$

- ▶ Wähle Coulomb-Eichung $\nabla \cdot \mathbf{A} = 0$
- ▶ Definiere $\mathbf{E} = \mathbf{E}_{\parallel} + \mathbf{E}_{\perp}$ mit

$$\mathbf{E}_{\parallel} \equiv -\mathbf{\nabla}\Phi$$
 $\mathbf{\nabla} \times \mathbf{E}_{\parallel} = \mathbf{0}$ $\mathbf{E}_{\perp} \equiv -\frac{\partial \mathbf{A}}{\partial t}$ $\mathbf{\nabla} \cdot \mathbf{E}_{\perp} = 0$

Aufspaltung des Integrals $\int d\mathbf{x} \mathbf{E}^2$:

$$\int d\mathbf{x} \, \mathbf{E}^{2} = \int d\mathbf{x} \, \left[\mathbf{E}_{\perp}^{2} - 2(\nabla \Phi) \cdot \mathbf{E}_{\perp} + \nabla \Phi \cdot \nabla \Phi \right]$$

$$= \int d\mathbf{x} \, \left[\mathbf{E}_{\perp}^{2} + 2\Phi(\nabla \cdot \mathbf{E}_{\perp}) + \nabla \cdot (\Phi \nabla \Phi) - \Phi \Delta \Phi \right]$$

$$= \int d\mathbf{x} \, \left[\mathbf{E}_{\perp}^{2} + \frac{1}{\varepsilon_{0}} \rho \Phi \right] = \int d\mathbf{x} \, \mathbf{E}_{\perp}^{2} + \frac{1}{\varepsilon_{0}} \sum_{l=1}^{N} q_{l} \Phi(\mathbf{x}_{l}, t)$$

Theoretische Physik 2: Elektrodynamik

4.3 Coulomb-Wechselwirkung als Vielteilchenproblem

Berechnung der Hamilton-Funktion

Berechnung der Hamilton-Funktion

Hamilton-Funktion: $\left(\text{mit }\mathbf{E}_{\perp}\equiv-\frac{\partial\mathbf{A}}{\partial t}\right)$

$$\begin{split} H &= \sum_{l=1}^{N} \sqrt{\pi_{l}^{2} c^{2} + m_{0l}^{2} c^{4}} + \frac{1}{2} \varepsilon_{0} \int \! d\mathbf{x} \; (\mathbf{E}^{2} + c^{2} \mathbf{B}^{2}) \;\;, \; \int \! d\mathbf{x} \; \mathbf{E}^{2} = \int \! d\mathbf{x} \; \mathbf{E}_{\perp}^{2} + \frac{1}{\varepsilon_{0}} \sum_{l=1}^{N} q_{l} \Phi(\mathbf{x}_{l}, t) \\ &= \sum_{l=1}^{N} \sqrt{\pi_{l}^{2} c^{2} + m_{0l}^{2} c^{4}} + \frac{1}{2} \sum_{l=1}^{N} q_{l} \Phi(\mathbf{x}_{l}, t) + \frac{1}{2} \varepsilon_{0} \int \! d\mathbf{x} \; \left[\left(\frac{\partial \mathbf{A}}{\partial t} \right)^{2} + c^{2} \left(\mathbf{\nabla} \times \mathbf{A} \right)^{2} \right] \end{split}$$

 $\Phi(\mathbf{x},t)$ explizit bekannt:

$$\Phi(\mathbf{x},t) = rac{1}{4\piarepsilon_0}\int d\mathbf{x}'\;rac{
ho(\mathbf{x}',t)}{|\mathbf{x}-\mathbf{x}'|} = rac{1}{4\piarepsilon_0}\sum_{m=1}^Nrac{q_m}{|\mathbf{x}-\mathbf{x}_m|} \ rac{1}{2}\sum_{l=1}^Nq_l\Phi(\mathbf{x}_l,t) = rac{1}{8\piarepsilon_0}\sum_{l
eq m}rac{q_lq_m}{|\mathbf{x}_l-\mathbf{x}_m|} + \sum_{l=1}^NS_l$$

"Selbstenergie"-Beiträge $S_l = \frac{1}{8\pi\varepsilon_0} \frac{q_l^2}{|\mathbf{x}_l - \mathbf{x}_l|}$ formal divergent (Lösung: QED)

Subtraktion der "Selbstenergie"

Hamilton-Funktion enthält elektrostatischen Beitrag:

$$\frac{1}{2}\sum_{l=1}^{N}q_{l}\Phi(\mathbf{x}_{l},t)=\frac{1}{8\pi\varepsilon_{0}}\sum_{l\neq m}\frac{q_{l}q_{m}}{|\mathbf{x}_{l}-\mathbf{x}_{m}|}+\sum_{l=1}^{N}S_{l}\qquad(S_{l}\text{ formal divergent})$$

Provisorische Lösung hier: ersetze

$$\sum_{l=1}^{N} S_l o$$
 endliche Konstante

Daher Hamilton-Funktion:

$$H = \sum_{l=1}^{N} \sqrt{\pi_{l}^{2} c^{2} + m_{0l}^{2} c^{4}} + \frac{1}{8\pi\varepsilon_{0}} \sum_{l \neq m} \frac{q_{l}q_{m}}{|\mathbf{x}_{l} - \mathbf{x}_{m}|} + \frac{1}{2}\varepsilon_{0} \int d\mathbf{x} \left[\left(\frac{\partial \mathbf{A}}{\partial t} \right)^{2} + c^{2} \left(\mathbf{\nabla} \times \mathbf{A} \right)^{2} \right]$$

Spezialfall:

Elektrostatik ($\mathbf{A} = \mathbf{0}, \; \boldsymbol{\pi}_I = \mathbf{0}$) \Rightarrow Gesamtenergie des Systems:

$$\mathcal{E}_{\mathrm{g}} = \sum_{l=1}^{N} m_{0l} c^2 + \frac{1}{8\pi\varepsilon_0} \sum_{l \neq m} \frac{q_l q_m}{|\mathbf{x}_l - \mathbf{x}_m|}$$

Theoretische Physik 2: Elektrodynamik

4.3 Coulomb-Wechselwirkung als Vielteilchenproblem

Berechnung der Wirkung

Analog: Berechnung der Wirkung

Hamilton-Funktion:

$$H = \sum_{l=1}^{N} \sqrt{\pi_{l}^{2} c^{2} + m_{0l}^{2} c^{4}} + \frac{1}{8\pi\varepsilon_{0}} \sum_{l \neq m} \frac{q_{l}q_{m}}{|\mathbf{x}_{l} - \mathbf{x}_{m}|} + \frac{1}{2}\varepsilon_{0} \int d\mathbf{x} \left[\left(\frac{\partial \mathbf{A}}{\partial t} \right)^{2} + c^{2} \left(\mathbf{\nabla} \times \mathbf{A} \right)^{2} \right]$$

Wirkung des Vielteilchensystems:

$$S = \int_{t_1}^{t_2} dt \, \left(L_{\mathrm{M}} + L_{\mathrm{WW}} + \int \! d\mathbf{x} \, \mathcal{L}_{\mathrm{F}}
ight) \quad , \quad \mathcal{L}_{\mathrm{F}} = \frac{1}{2} arepsilon_0 (\mathbf{E}^2 - c^2 \mathbf{B}^2)$$
 $L_{\mathrm{M}} = -\sum_{l}^{N} m_{0l} c^2 \sqrt{1 - rac{\mathbf{u}_l^2}{c^2}} \quad , \quad L_{\mathrm{WW}} = \sum_{l}^{N} q_l [\mathbf{u}_l \cdot \mathbf{A}(\mathbf{x}_l, t) - \Phi(\mathbf{x}_l, t)]$

Wirkung *S* endlich durch Ersetzung:

$$egin{aligned} L_{\mathrm{WW}} &= \sum_{l=1}^{N} q_l \mathbf{u}_l \cdot \mathbf{A}(\mathbf{x}_l,t) - rac{1}{8\piarepsilon_0} \sum_{l
eq m} rac{q_l q_m}{|\mathbf{x}_l - \mathbf{x}_m|} \ \int d\mathbf{x} \; \mathcal{L}_{\mathrm{F}} &= rac{1}{2}arepsilon_0 \! \int \! d\mathbf{x} \; (\mathbf{E}_{\perp}^2 - c^2 \mathbf{B}^2) \end{aligned}$$

Schlußbemerkungen

▶ Selbstenergie eines Teilchens \lesssim Ruheenergie, d.h. für Teilchen (Radius r):

$$rac{q^2}{4\piarepsilon_0 r}\lesssim m_0c^2 \qquad ext{bzw.} \qquad r\gtrsim rac{q^2}{4\piarepsilon_0 m_0c^2}\equiv r_q$$

Daher klassische Relativitätstheorie für $r \lesssim r_q$ inkonsistent!

ightharpoonup Speziell für Elektronen (q=e): [$r_e=$ "klassischer Radius des Elektrons"]

$$r_e = \frac{e^2}{4\pi\varepsilon_0 m_0 c^2} = \left(\frac{e^2}{4\pi\varepsilon_0 \hbar c}\right)^2 \frac{4\pi\varepsilon_0 \hbar^2}{m_0 e^2} = \alpha^2 a_{\rm B} \simeq 2.8 \cdot 10^{-15} {\rm m}$$

- Für $\mathcal{E}_{\mathrm{kin}} \gtrsim m_0 c^2$ bzw. $p \gtrsim m_0 c$ kann Paarerzeugung auftreten! \rightarrow Kriterium: Radius $r \lesssim \frac{\hbar}{m_0 c} = \grave{\chi}_{\mathrm{Compton}} = \alpha a_{\mathrm{B}}$ ("Zitterbewegung"!)
- **Parameter** Quanteneffekte (z. B. ψ in H-Atom, Längenskala $a_{\rm B}$)
- ▶ Vielteilchensysteme, klassische Näherung ungültig für $T \lesssim T_{\rm F} \equiv \frac{\hbar^2}{2mk_{\rm B}\ell^2}$ ($\ell = {\rm mittlerer\ Abstand\ zwischen\ Elektronen}$) bzw. $\ell \lesssim \lambda_T \equiv \frac{\hbar}{\sqrt{2\pi mk_{\rm B}T}}$

Theoretische Physik 2: Elektrodynamik

Kapitel 5: Das Noether-Theorem in der Elektrodynamik

▶ Inhaltsverzeichnis

- ▶ 5.1 Elektrodynamik als klassische Feldtheorie
- ▶ 5.2 Das Noether-Theorem

5.1 Elektrodynamik als klassische Feldtheorie

Hamilton-Prinzip für N-Teilchensystems im elektromagnetischen Feld:

$$\begin{split} \delta S = 0 \quad , \quad S = \int_{t_1}^{t_2} \!\!\! dt \; L \quad , \quad L = L_{\rm M} + \int \!\! d\mathbf{x} \; (\mathcal{L}_{\rm F} + \mathcal{L}_{\rm WW}) \\ L_{\rm M} = -\sum_{l=1}^N m_{0l} c^2 \sqrt{1 - \left(\frac{\dot{\mathbf{x}}_l}{c}\right)^2} \quad , \quad \mathcal{L}_{\rm F} = -\frac{1}{4} \varepsilon_0 F^{\mu\nu} F_{\mu\nu} \quad , \quad \mathcal{L}_{\rm WW} = -\frac{1}{c} j_\mu A^\mu \end{split}$$

Speziell: Hamilton-Prinzip für Maxwell-Gleichungen $[j_{\mu}(x)]$ fest vorgegeben

$$\delta S = 0$$
 , $S_{\mathrm{F+WW}} = \int_{t_1}^{t_2} \!\! dt \int \!\! d\mathbf{x} \; \mathcal{L}_{\mathrm{F+WW}}$, $\mathcal{L}_{\mathrm{F+WW}} = -rac{1}{4} arepsilon_0 F^{\mu
u} F_{\mu
u} - rac{1}{c} j_\mu A^\mu$

Noch spezieller: Hamilton-Prinzip für freies elektromagnetisches Feld

$$\delta S=0 \quad , \quad S_{
m F}=\int_{t_1}^{t_2}\!\!dt\int\!\!d{\sf x}\;{\cal L}_{
m F} \quad , \quad {\cal L}_{
m F}=-rac{1}{4}arepsilon_0 F^{\mu
u}F_{\mu
u} \quad , \quad F^{\mu
u}=\partial^\mu A^
u-\partial^
u A^\mu$$

 \mathcal{L}_{F} und $\mathcal{L}_{\mathrm{F+WW}}$ Spezialfälle der allgemeineren Form:

$$\mathcal{L} = \mathcal{L}(A, \partial A, x)$$
 , $A = A^{\mu}$, $x = x^{\mu}$, $(\partial A)^{\mu\nu} \equiv \partial^{\mu} A^{\nu}$

Herleitung der Euler-Lagrange-Gleichungen?

Theoretische Physik 2: Elektrodynamik

5.1 Elektrodynamik als klassische Feldtheorie

Lagrange-Theorie und Euler-Lagrange-Gleichungen

Lagrange-Theorie und Euler-Lagrange-Gleichungen

 \mathcal{L}_{F} und $\mathcal{L}_{\mathrm{F+WW}} = -\frac{1}{4} \varepsilon_0 F^{\mu\nu} F_{\mu\nu} - \frac{1}{c} j_\mu A^\mu$ Spezialfälle der allgemeineren Form:

$$\mathcal{L} = \mathcal{L}(A, \partial A, x)$$
 , $A = A^{\mu}$, $x = x^{\mu}$, $(\partial A)^{\mu\nu} \equiv \partial^{\mu} A^{\nu}$

Herleitung der Euler-Lagrange-Gleichungen:

$$\begin{split} 0 &= \delta S = \int_{t_1}^{t_2} \!\! dt \int \!\! d\mathbf{x} \left[\frac{\partial \mathcal{L}}{\partial A^{\mu}} \delta A^{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial^{\nu} A^{\mu})} \partial^{\nu} (\delta A^{\mu}) \right] \\ &= \int d\mathbf{x} \, \left\{ \int_{t_1}^{t_2} dt \left[\frac{\partial \mathcal{L}}{\partial A^{\mu}} - \partial^{\nu} \left(\frac{\partial \mathcal{L}}{\partial (\partial^{\nu} A^{\mu})} \right) \right] \delta A^{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_t A^{\mu})} \delta A^{\mu} \right|_{t_2}^{t_2} \right\} \end{split}$$

An den Endpunkten ($t=t_1$, $t=t_2$): $\delta A(ct_1,\mathbf{x})=0=\delta A(ct_2,\mathbf{x})$

Konsequenz: $\frac{\partial \mathcal{L}}{\partial A^{\mu}} - \partial^{\nu} \left(\frac{\partial \mathcal{L}}{\partial (\partial^{\nu} A^{\mu})} \right) = 0$ (Euler-Lagrange-Gleichungen)

Speziell: Euler-Lagrange-Gleichungen für $\mathcal{L}_{\mathrm{F+WW}}$ $(F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})$

$$0 = \frac{\partial \mathcal{L}}{\partial A^{\rho}} - \partial^{\sigma} \left(\frac{\partial \mathcal{L}}{\partial (\partial^{\sigma} A^{\rho})} \right) = -\frac{1}{c} j_{\rho} - \left(-\frac{1}{4} \varepsilon_{0} \right) \partial^{\sigma} (2F_{\sigma\rho} - 2F_{\rho\sigma})$$
$$= -\frac{1}{c} j_{\rho} + \varepsilon_{0} \partial^{\sigma} F_{\sigma\rho} \quad \Rightarrow \quad \partial_{\sigma} F^{\sigma\rho} = \frac{1}{\varepsilon_{0} c} j^{\rho} = \mu_{0} c j^{\rho}$$

Konjugierter Impuls und Jacobi-Integral

 \mathcal{L}_{F} und $\mathcal{L}_{\mathrm{F+WW}}$ Spezialfälle der allgemeineren Form:

$$\mathcal{L} = \mathcal{L}(A, \partial A, x)$$
 , $A = A^{\mu}$, $x = x^{\mu}$, $(\partial A)^{\mu\nu} \equiv \partial^{\mu} A^{\nu}$

Hamilton-Prinzip & Euler-Lagrange-Gleichungen:

$$0 = \delta S \quad o \quad rac{\partial \mathcal{L}}{\partial A^{\mu}} - \partial^{
u} \left[rac{\partial \mathcal{L}}{\partial (\partial^{
u} A^{\mu})}
ight] = 0$$

Definition des zu A^{μ} konjugierten Impulses:

$$\pi_{\mu}(A,\partial A,x)\equiv rac{\partial \mathcal{L}}{\partial(\partial_{t}A^{\mu})}=rac{1}{c}rac{\partial \mathcal{L}}{\partial(\partial^{0}A^{\mu})}\quad,\quad \pi^{\mu}(A,\partial A,x)\equiv rac{\partial \mathcal{L}}{\partial(\partial_{t}A_{\mu})}=rac{1}{c}rac{\partial \mathcal{L}}{\partial(\partial_{0}A_{\mu})}$$

Definition des Jacobi-Integrals: $(J_{\phi} \text{ Erhaltungsgr\"{o}Be?})$

$$J \equiv \int d\mathbf{x} \ \mathcal{J}(A, \partial A, x) \quad , \quad \mathcal{J}(A, \partial A, x) \equiv \pi_{\mu} \partial_{t} A^{\mu} - \mathcal{L} = \frac{\partial \mathcal{L}}{\partial (\partial^{0} A^{\mu})} \partial^{0} A^{\mu} - \mathcal{L}$$

$$\frac{dJ_{\phi}}{dct} = \int d\mathbf{x} \left\{ \left[\partial^{0} \frac{\partial \mathcal{L}}{\partial (\partial^{0} A^{\mu})} - \frac{\partial \mathcal{L}}{\partial A^{\mu}} \right] \partial^{0} A^{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial^{0} A^{\mu})} \partial^{0} \partial^{0} A^{\mu} - \frac{\partial \mathcal{L}}{\partial (\partial^{\nu} A^{\mu})} \partial^{0} \partial^{\nu} A^{\mu} - \frac{\partial \mathcal{L}}{\partial ct} \right\}_{\phi}$$

Fazit: Jacobi-Integral J_ϕ Erhaltungsgröße, falls $\left(rac{\partial \mathcal{L}}{\partial t}
ight)_\phi = 0$

Theoretische Physik 2: Elektrodynamik

5.1 Elektrodynamik als klassische Feldtheorie

Hamilton-Dichte und Energie-Impuls-Tensor

Hamilton-Dichte und Energie-Impuls-Tensor

Definition des Jacobi-Integrals: $\left[J_{\phi} \text{ Erhaltungsgröße, falls } \left(rac{\partial \mathcal{L}}{\partial t}
ight)_{\phi}=0
ight]$

$$J \equiv \int\!\!d{f x}\; {\cal J} \quad , \quad {\cal J} \equiv \pi_\mu \partial_t A^\mu - {\cal L} = rac{\partial {\cal L}}{\partial (\partial^0 A^\mu)} \partial^0 A^\mu - {\cal L} \quad , \quad rac{d J_\phi}{dt} = - \!\!\int\!\! d{f x} \left(\!rac{\partial {\cal L}}{\partial t}\!
ight)_\phi$$

Interpretiere (J, \mathcal{J}) als *Hamilton*-Funktion/Dichte (H, \mathcal{H}) :

Impulserhaltung? Idee: suche kovariante Verallgemeinerung von $\mathcal{H}!$

$${\cal H} = rac{\partial {\cal L}}{\partial (\partial_0 A^\mu)} \partial^0 A^\mu - {\cal L} = {\it T}_{
m kan}^{00} \quad , \quad {\it T}_{
m kan}^{
u
ho}(A,\partial A,x) \equiv rac{\partial {\cal L}}{\partial (\partial_
u A^\mu)} (\partial^
ho A^\mu) - {\it g}^{
u
ho} {\cal L}$$

 $T_{\mathrm{kan},\phi}^{
u
ho}$ ist divergenzfrei, falls $\left(rac{\partial\mathcal{L}}{\partial\mathsf{x}_{
ho}}
ight)_{\phi}=0\,!$ ("kanonischer Energie-Impuls-Tensor")

$$egin{aligned} \partial_{
u} \, T^{
u
ho}_{\mathrm{kan},\phi} &= \left\{ \partial_{
u} \left[rac{\partial \mathcal{L}}{\partial (\partial_{
u} A^{\mu})}
ight] (\partial^{
ho} A^{\mu}) + rac{\partial \mathcal{L}}{\partial (\partial_{
u} A^{\mu})} (\partial_{
u} \partial^{
ho} A^{\mu})
ight\}_{\!\!\phi} - \partial^{
ho} \mathcal{L}_{\phi} \ &= \left[rac{\partial \mathcal{L}}{\partial A^{\mu}} (\partial^{
ho} A^{\mu}) + rac{\partial \mathcal{L}}{\partial (\partial_{
u} A^{\mu})} \, \partial^{
ho} (\partial_{
u} A^{\mu})
ight]_{\!\!\phi} - \partial^{
ho} \mathcal{L}_{\phi} = - \left(rac{\partial \mathcal{L}}{\partial x_{
ho}}
ight)_{\!\!\phi} \end{aligned}$$

Klassische Feldtheorie: ein einfaches Beispiel

Idee: suche kovariante Verallgemeinerung von $\mathcal{H}!$

$$\mathcal{H} = \mathcal{T}_{\mathrm{kan}}^{00} \quad , \quad \mathcal{T}_{\mathrm{kan}}^{
u
ho}(A,\partial A,x) \equiv rac{\partial \mathcal{L}}{\partial (\partial_
u A^\mu)}(\partial^
ho A^\mu) - g^{
u
ho}\mathcal{L}$$

Einfaches Beispiel: $\mathcal{L} = \frac{1}{2}\varepsilon(\partial^{\mu}A)(\partial_{\mu}A) = \frac{1}{2}\varepsilon[(\partial_{0}A)^{2} - \sum_{i=1}^{3}(\partial_{i}A)^{2}]$

$$\pi = \frac{1}{c} \frac{\partial \mathcal{L}}{\partial (\partial^0 A)} = \frac{\varepsilon}{c} \partial^0 A \quad , \quad \mathcal{H} = \mathcal{T}_{\rm kan}^{00} \quad , \quad \mathcal{T}_{\rm kan}^{\nu\rho} = \frac{\partial \mathcal{L}}{\partial (\partial_\nu A)} (\partial^\rho A) - g^{\nu\rho} \mathcal{L}$$

Euler-Lagrange-Gleichung:
$$0 = \frac{\partial \mathcal{L}}{\partial A^{\mu}} - \partial^{\nu} \left[\frac{\partial \mathcal{L}}{\partial (\partial^{\nu} A^{\mu})} \right] = -\varepsilon (\partial^{\nu} \partial_{\nu} A) \quad \left(\begin{array}{c} \text{Wellen-} \\ \text{gleichung!} \end{array} \right)$$

Konkrete Form von $\mathcal{H}=\mathcal{T}_{\mathrm{kan}}^{00}$ und $\mathcal{T}_{\mathrm{kan}}^{
u
ho}$:

$$\begin{split} \mathcal{H} &= \pi \partial_t A - \mathcal{L} = \varepsilon (\partial_0 A)^2 - \mathcal{L} = \frac{1}{2} \varepsilon \Big[(\partial_0 A)^2 + \sum_{i=1}^3 (\partial_i A)^2 \Big] = \frac{1}{2} \varepsilon [(\partial_0 A)^2 + (\nabla A)^2] \\ T_{\mathrm{kan}}^{\nu\rho} &= \frac{\partial \mathcal{L}}{\partial (\partial_\nu A)} (\partial^\rho A) - g^{\nu\rho} \mathcal{L} = \varepsilon \Big[(\partial^\nu A) (\partial^\rho A) - \frac{1}{2} g^{\nu\rho} (\partial^\mu A) (\partial_\mu A) \Big] \end{split}$$

4-Divergenz von $T_{\mathrm{kan},\phi}^{\nu\rho}$:

$$\partial_{\nu} T_{\mathrm{kan},\phi}^{\nu\rho} = \varepsilon \big[(\Box A)(\partial^{\rho} A) + (\partial^{\nu} A)(\partial_{\nu} \partial^{\rho} A) - (\partial^{\mu} A)(\partial_{\mu} \partial^{\rho} A) \big]_{\phi} = 0$$

Daher: $\int d{f x} \; {\cal T}^{0
ho}_{{
m kan},\phi} = {
m konstant!}$ (Energie- & Impulserhaltung)

Theoretische Physik 2: Elektrodynamik

5.1 Elektrodynamik als klassische Feldtheorie

Allgemeiner Fall und das Beispiel der Elektrodynamik

Allgemeiner Fall und das Beispiel der Elektrodynamik

Zurück zum allgemeinen Fall: kovariante Verallgemeinerung von \mathcal{H} ...

$$\mathcal{H} = \mathcal{T}_{\mathrm{kan}}^{00} \quad , \quad \mathcal{T}_{\mathrm{kan}}^{
u
ho}(A,\partial A,x) \equiv rac{\partial \mathcal{L}}{\partial (\partial_{
u}A^{\mu})}(\partial^{
ho}A^{\mu}) - g^{
u
ho}\mathcal{L}$$

Falls $\left(\frac{\partial \mathcal{L}}{\partial x_{
ho}} \right)_{\phi} = 0$, gilt:

 $({\sf Energie\text{-}Impuls\text{-}Erhaltung})$

$$0 = \int d\mathbf{x} \; \partial_{
u} \, T^{
u
ho}_{\mathrm{kan},\phi} = rac{d}{d(ct)} \int d\mathbf{x} \; T^{0
ho}_{\mathrm{kan},\phi} \quad , \quad \int d\mathbf{x} \; T^{0
ho}_{\mathrm{kan},\phi} = \mathrm{konstant}$$

Drehimpulserhaltung? Tensor der Drehimpuls dichte des e.m. Feldes:

$$L^{\mu\nu\rho} \equiv \frac{1}{c} \left(x^{\mu} T^{\nu\rho}_{\mathrm{kan},\phi} - x^{\nu} T^{\mu\rho}_{\mathrm{kan},\phi} \right)$$

Drehimpulserhaltung erfordert $\partial_
ho L_{
m F}^{\mu
u
ho}=0$

$$\begin{split} \partial_{\rho} L^{\mu\nu\rho} &= \frac{1}{c} \left[\left(\partial_{\rho} x^{\mu} \right) T^{\nu\rho}_{\mathrm{kan},\phi} + x^{\mu} \left(\partial_{\rho} T^{\nu\rho}_{\mathrm{kan},\phi} \right) - \left(\partial_{\rho} x^{\nu} \right) T^{\mu\rho}_{\mathrm{kan},\phi} - x^{\nu} \left(\partial_{\rho} T^{\mu\rho}_{\mathrm{kan},\phi} \right) \right] \\ &= \frac{1}{c} \left(\delta^{\mu}_{\rho} T^{\nu\rho}_{\mathrm{kan},\phi} - \delta^{\nu}_{\rho} T^{\mu\rho}_{\mathrm{kan},\phi} \right) = \frac{1}{c} \left(T^{\nu\mu}_{\mathrm{kan},\phi} - T^{\mu\nu}_{\mathrm{kan},\phi} \right) \neq 0 \end{split}$$

Konkretes Beispiel: freies elektromagnetisches Feld, $\mathcal{L}_{\mathrm{F}}=-rac{1}{4}arepsilon_{0}F^{\mu
u}F_{\mu
u}$

$$T_{\rm kan}^{\nu\rho} = -\varepsilon_0 F^{\nu\mu} \partial^\rho A_\mu - g^{\nu\rho} \mathcal{L}_{\rm F} \neq T_{\rm kan}^{\rho\nu} \quad , \quad T_{\rm kan}^{\nu\rho} \neq T^{\nu\rho} \quad , \quad \left(T_{\rm kan}\right)^\nu_{\;\;\nu} \neq 0$$

Außerdem: $T_{\rm kan}^{
u
ho}$ nicht eichinvariant! (keine Messgröße!) Was jetzt?!?

5.2 Das Noether-Theorem

Erhaltungsgrößen des elektromagnetischen Gesamtsystems:

▶ 4-Energie-Impuls-Tensor: (Învarianz unter Translationen in Raum-Zeit)

$$\mathcal{T}^{\mu
u} \equiv \Theta^{\mu
u} + \mathcal{T}^{\mu
u} \quad , \quad \partial_
u \mathcal{T}^{\mu
u} = 0 \quad , \quad rac{d}{dt} \int d\mathbf{x} \; \mathcal{T}^{\mu 0} = 0$$

Interpretation:

- $lacktriangleright T^{\mu
 u}=$ Energie-Impuls-Tensor des elektromagnetischen Feldes
- ullet $\Theta^{\mu\nu}=$ Energie-Impuls-Tensor der Materie
- ullet $\mathcal{T}^{\mu
 u}=$ Gesamt-Energie-Impuls-Tensor des Systems
- ► 4-Drehimpuls dichte: (
 ☐ Invarianz unter Lorentz-Transformationen)

$$\mathcal{L}^{\mu
u
ho} \equiv rac{1}{c} (x^\mu \mathcal{T}^{
u
ho} - x^
u \mathcal{T}^{\mu
ho}) \quad , \quad \partial_
ho \mathcal{L}^{\mu
u
ho} = 0 \quad , \quad rac{d}{dt} \int d\mathbf{x} \; \mathcal{L}^{\mu
u 0} = 0$$

Zusammenhang zwischen Invarianzen und Erhaltungsgrößen:

Noether-Theorem

Im Folgenden als Beispiel: Noether-Theorem für freie Felder

Theoretische Physik 2: Elektrodynamik

5.2 Das Noether-Theorem

Transformationen der Koordinaten und Felder

Transformationen der Koordinaten und Felder

Startpunkt: die Lagrange-Dichte des freien elektromagnetischen Feldes

$$\mathcal{L}_{\mathrm{F}}(\partial A) = -\frac{1}{4}\varepsilon_0 F^{\mu\nu}F_{\mu\nu} \quad , \quad F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \quad , \quad (\partial A)^{\mu\nu} \equiv \partial^{\mu}A^{\nu}$$

 \mathcal{L}_{F} ist Spezialfall der allgemeineren Form:

$$\mathcal{L} = \mathcal{L}(A, \partial A, x) \quad , \quad A = A^{\mu} \quad , \quad x = x^{\mu} \qquad (\mu \in \{0, 1, 2, 3\})$$

Betrachte Transformationen der Koordinaten und Felder: $(lpha={f 0} \ \widehat{=} \ \mathsf{Identit ilde{a}t})$

$$x' = x'(x; \boldsymbol{\alpha})$$
 , $x'(x; \boldsymbol{0}) = x$, $x' = x + \mathcal{O}(|\boldsymbol{\alpha}|)$ $(|\boldsymbol{\alpha}| \to 0)$

$$A'=A'(A,x; oldsymbol{lpha}) \quad , \quad A'(A,x; oldsymbol{0})=A \quad , \quad A'=A+\mathcal{O}(|oldsymbol{lpha}|) \quad (|oldsymbol{lpha}| o 0)$$

Parameter α : ein- oder mehrdimensional, kontinuierlich variierbar

Ziel: untersuche mögliche Invarianzen { der Lagrange-Dichte der Euler-Lagrange-Gleichung

Definition der neuen Lagrange-Dichte \mathcal{L}' :

$$\mathcal{L}(A, \partial A, x)d^{4}x \equiv \mathcal{L}'(A', \partial' A', x'; \alpha)d^{4}x'$$

Invarianz der Euler-Lagrange-Gleichung erfordert: [mit $\lambda^{\mu}(A, x; \mathbf{0}) = 0$] $\mathcal{L}'(A', \partial' A', x'; \boldsymbol{\alpha}) = \mathcal{L}(A', \partial' A', x') + (\partial'_{\mu} \lambda^{\mu})(A', x'; \boldsymbol{\alpha}) \quad , \quad S' = S + \int d\mathbf{x}' \; \lambda^0(A', x'; \boldsymbol{\alpha}) \Big|_{t'}^{t'_2}$

Transformationen als 1-Parameter-Gruppe

Betrachte Transformationen der Koordinaten und Felder: $(\alpha = \mathbf{0} \stackrel{\frown}{=} \mathsf{Identitat})$

$$x' = x'(x; \boldsymbol{\alpha})$$
 , $x'(x; \boldsymbol{0}) = x$, $x' = x + \mathcal{O}(|\boldsymbol{\alpha}|)$ $(|\boldsymbol{\alpha}| \to 0)$

$$A' = A'(A, x; \boldsymbol{\alpha})$$
 , $A'(A, x; \boldsymbol{0}) = A$, $A' = A + \mathcal{O}(|\boldsymbol{\alpha}|)$ $(|\boldsymbol{\alpha}| \to 0)$

Invarianz der Euler-Lagrange-Gleichung erfordert: [mit $\lambda^{\mu}(A, x; \mathbf{0}) = 0$]

$$\mathcal{L}'(A',\partial'A',x';\boldsymbol{\alpha}) = \mathcal{L}(A',\partial'A',x') + (\partial'_{\mu}\lambda^{\mu})(A',x';\boldsymbol{\alpha}) \quad , \quad S' = S + \int d\mathbf{x}' \; \lambda^{0}(A',x';\boldsymbol{\alpha}) \Big|_{t'_{1}}^{t'_{2}}$$

Annahme: (Operatoren T_{α} bilden eine 1-Parameter-Gruppe)

$$(x',A')=T_{\boldsymbol{lpha}}(x,A) \quad , \quad T_{(\alpha_1+\alpha_2)\hat{\boldsymbol{lpha}}}=T_{\alpha_1\hat{\boldsymbol{lpha}}}T_{\alpha_2\hat{\boldsymbol{lpha}}} \qquad (\hat{\boldsymbol{lpha}} ext{ fest }, \ \alpha_{1,2}\in\mathbb{R})$$

Konsequenz: [es reicht aus, $(\partial_{\alpha} T)_0$ zu untersuchen!]

$$T_{\boldsymbol{lpha}} = (T_{\boldsymbol{lpha}/N})^N \quad (N = 1, 2, \dots) \quad , \quad T_{\boldsymbol{lpha}/N} = 1 + \frac{1}{N} \boldsymbol{lpha} \cdot (\partial_{\boldsymbol{\alpha}} T)_{\mathbf{0}} + \mathcal{O}(N^{-2})$$

Notation "D":

$$x'_{\mu} = x_{\mu} + (Dx)_{\mu} + \mathcal{O}(\alpha^2)$$
 , $(Dx)_{\mu} \equiv \frac{\partial x'_{\mu}}{\partial \alpha}(x; \mathbf{0}) \cdot \alpha$, kurz: $x' \sim x + Dx$

$$A'_{\mu}=A_{\mu}+(\mathit{DA})_{\mu}+\mathcal{O}(\pmb{lpha}^2) \;\;,\;\; (\mathit{DA})_{\mu}\equiv rac{\partial A'_{\mu}}{\partial \pmb{lpha}}(A, imes;\pmb{0})\cdot \pmb{lpha} \;\;,\;\; \mathsf{kurz:}\;\; A'\sim A+\mathit{DA}$$

Theoretische Physik 2: Elektrodynamik

5.2 Das Noether-Theorem

Transformationen in linearer Ordnung

Transformationen in linearer Ordnung

Notation "D": [wegen
$$\lambda^{\mu}(A, x; \mathbf{0}) = 0$$
]
$$\begin{cases}
x' \sim x + Dx \\ A' \sim A + DA
\end{cases} \quad \text{mit} \quad (Dx)_{\mu} \equiv \frac{\partial x'_{\mu}}{\partial \alpha}(x; \mathbf{0}) \cdot \alpha \quad , \quad (DA)_{\mu} \equiv \frac{\partial A'_{\mu}}{\partial \alpha}(A, x; \mathbf{0}) \cdot \alpha$$

$$\lambda(A', x'; \alpha) = (D\lambda)(A, x) + \mathcal{O}(\alpha^2) \quad , \quad (D\lambda)^{\mu}(A, x) \equiv \frac{\partial \lambda^{\mu}}{\partial \alpha}(A, x; \mathbf{0}) \cdot \alpha$$

$$\partial' A' = \partial A + D\partial A + \mathcal{O}(\alpha^2) \quad , \quad (D\partial A)_{\mu\nu} \equiv \alpha \cdot \left[\frac{\partial (\partial'_{\mu} A'_{\nu})}{\partial \alpha}\right]_{\alpha=0}$$

Explizit Berechnung von $D\partial A$:

$$x' \sim x + Dx \quad \Rightarrow \quad \partial_{\lambda}(x')^{\mu} \sim \delta^{\mu}_{\lambda} + \partial_{\lambda}(Dx)^{\mu} \quad \text{und daher:}$$

$$\partial'_{\nu} x^{\rho} = (\partial' x)^{\rho}_{\nu} = \left[(\partial x')^{-1} \right]^{\rho}_{\nu} = \delta^{\rho}_{\nu} - \partial_{\nu} (Dx)^{\rho} + \mathcal{O}(\boldsymbol{\alpha}^{2})$$

Hieraus folgt:

$$\begin{split} (D\partial A)_{\mu\nu} &= \partial'_{\mu}A'_{\nu} - \partial_{\mu}A_{\nu} = (\partial'_{\mu}x^{\rho})(\partial_{\rho}A'_{\nu}) - \partial_{\mu}A_{\nu} \\ &= \left[\delta^{\rho}_{\ \mu} - \partial_{\mu}(Dx)^{\rho}\right] \left[\partial_{\rho}A_{\nu} + \partial_{\rho}(DA)_{\nu}\right] - \partial_{\mu}A_{\nu} \\ &= \partial_{\mu}(DA)_{\nu} - \left[\partial_{\mu}(Dx)^{\rho}\right](\partial_{\rho}A_{\nu}) \\ \text{kurz:} \quad D(\partial A) &= \partial(DA) - \left[\partial(Dx)^{\rho}\right](\partial_{\rho}A) = \partial(DA) - \left[\partial(Dx)\right] \cdot (\partial A) \end{split}$$

Transformationen in linearer Ordnung

Notation "D":

$$x' \sim x + Dx$$
 , $A' \sim A + DA$, $\lambda(A', x'; \alpha) \sim (D\lambda)(A, x)$
 $\partial' A' \sim \partial A + D\partial A$, $D(\partial A) = \partial(DA) - [\partial(Dx)] \cdot (\partial A)$

Integrationsmaß in "linearer Näherung":

$$d^{4}x' \sim d^{4}(x + Dx) = \det \left\{ \partial_{\mu} [x^{\nu} + (Dx)^{\nu}] \right\} d^{4}x \sim [1 + \partial_{\mu} (Dx)^{\mu}] d^{4}x$$
$$= d^{4}x + D(d^{4}x) \quad , \quad D(d^{4}x) = [\partial_{\mu} (Dx)^{\mu}] d^{4}x$$

Lagrange-Dichte:

$$\mathcal{L}(A, \partial A, x)d^{4}x = \mathcal{L}'(A', \partial' A', x'; \alpha)d^{4}x'$$

Einsetzen der "linearen Näherung" für $(x', A', \partial' A', \lambda, d^4x')$:

$$0 = \mathcal{L}(A + DA, \partial A + D\partial A, x + Dx)[1 + \partial_{\mu}(Dx)^{\mu}]d^{4}x$$
$$- \mathcal{L}(A, \partial A, x)d^{4}x + \{\partial'_{\mu}[(D\lambda)^{\mu}(A, x)]\}d^{4}x'$$

bzw.

$$0 = \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} (D\partial A)_{\mu\nu} + \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} + [\partial_{\mu} (Dx)^{\mu}] \mathcal{L} + \partial_{\mu} [(D\lambda)^{\mu} (A, x)]$$

Theoretische Physik 2: Elektrodynamik

5.2 Das Noether-Theorem

Formulierung einer Konsistenzgleichung

Formulierung einer Konsistenzgleichung

Notation ..D":

$$x' \sim x + Dx$$
 , $A' \sim A + DA$, $\lambda(A', x'; \alpha) \sim (D\lambda)(A, x)$
 $\partial' A' \sim \partial A + D\partial A$, $D(\partial A) = \partial(DA) - [\partial(Dx)] \cdot (\partial A)$
 $d^4 x' \sim d^4 x + D(d^4 x)$, $D(d^4 x) = [\partial_{\mu}(Dx)^{\mu}] d^4 x$

Einsetzen der "linearen Näherung": [Konsistenzgleichung! $\exists \lambda$, sodass $\forall (A, x) \dots$]

$$0 = \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} (D\partial A)_{\mu\nu} + \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} + [\partial_{\mu} (Dx)^{\mu}] \mathcal{L} + \partial_{\mu} [(D\lambda)^{\mu} (A, x)]$$

$$= \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} [\partial_{\mu} (DA)_{\nu}] + \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} - T_{\text{kan}}^{\mu\rho} [\partial_{\mu} (Dx)_{\rho}] + \partial_{\mu} [(D\lambda)^{\mu}]$$

Hilfsgröße: ("kanonischer Energie-Impuls-Tensor")

$$T_{\mathrm{kan}}^{\mu\rho}(A,\partial A,x)\equiv rac{\partial \mathcal{L}}{\partial (\partial_{\mu}A_{
u})}(\partial^{
ho}A_{
u})-g^{\mu
ho}\mathcal{L}$$

Euler-Lagrange-Gleichung für physikalisches 4-Potential A_{ϕ} :

$$0 = \partial_{\mu} \left[rac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{
u})}
ight] - rac{\partial \mathcal{L}}{\partial A_{
u}}$$

Der kanonische Energie-Impuls-Tensor

Konsistenzgleichung, damit Bewegungsgleichung forminvariant ist:

$$0 = \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \left[\partial_{\mu} (DA)_{\nu} \right] + \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} - T_{\mathrm{kan}}^{\mu\rho} \left[\partial_{\mu} (Dx)_{\rho} \right] + \partial_{\mu} \left[(D\lambda)^{\mu} \right]$$

Kanonischer Energie-Impuls-Tensor:

$$T_{\mathrm{kan}}^{\mu
ho}(A,\partial A,x)\equivrac{\partial \mathcal{L}}{\partial(\partial_{\mu}A_{
u})}(\partial^{
ho}A_{
u})-g^{\mu
ho}\mathcal{L}$$

Euler-Lagrange-Gleichung und $T_{\mathrm{kan}}^{\mu\rho}$ für physikalisches 4-Potential A_{ϕ} :

$$0 = \left(\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \right] - \frac{\partial \mathcal{L}}{\partial A_{\nu}} \right)_{\phi} \quad , \quad T_{\mathrm{kan},\phi}^{\mu\rho}(x) = T_{\mathrm{kan}}^{\mu\rho}(A_{\phi}(x),(\partial A_{\phi})(x),x)$$

 $T_{\mathrm{kan},\phi}^{\mu\rho}$ hat die schöne Eigenschaft

$$\begin{split} \partial_{\mu} T^{\mu\rho}_{\mathrm{kan},\phi} &= \left\{ \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \right] (\partial^{\rho} A_{\nu}) + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} (\partial_{\mu} \partial^{\rho} A_{\nu}) \right\}_{\phi} - \partial^{\rho} \mathcal{L}_{\phi} \\ &= \left[\frac{\partial \mathcal{L}}{\partial A_{\nu}} (\partial^{\rho} A_{\nu}) + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \partial^{\rho} (\partial_{\mu} A_{\nu}) \right]_{\phi} - \partial^{\rho} \mathcal{L}_{\phi} = - \left(\frac{\partial \mathcal{L}}{\partial x_{\rho}} \right)_{\phi} \end{split}$$

Rechte Seite der Konsistenzgleichung hat für A_{ϕ} Form einer 4-Divergenz!

Theoretische Physik 2: Elektrodynamik

_5.2 Das Noether-Theorem

Existenz einer Erhaltungsgröße

Existenz einer Erhaltungsgröße

Konsistenzgleichung, damit Bewegungsgleichung forminvariant ist:

$$0 = \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \left[\partial_{\mu} (DA)_{\nu} \right] + \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} - T_{\mathrm{kan}}^{\mu\rho} \left[\partial_{\mu} (Dx)_{\rho} \right] + \partial_{\mu} \left[(D\lambda)^{\mu} \right]$$

Kanonischer Energie-Impuls-Tensor:

$${\cal T}_{
m kan}^{\mu
ho}(A,\partial A,x)\equiv rac{\partial {\cal L}}{\partial (\partial_{\mu}A_{
u})}(\partial^{
ho}A_{
u})-{\sf g}^{\mu
ho}{\cal L}$$

Euler-Lagrange-Gleichung und $T_{\mathrm{kan}}^{\mu\rho}$ für physikalisches 4-Potential A_{ϕ} :

$$0 = \left(\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \right] - \frac{\partial \mathcal{L}}{\partial A_{\nu}} \right)_{\phi} \quad , \quad \partial_{\mu} T^{\mu\rho}_{\mathrm{kan},\phi} = - \left(\frac{\partial \mathcal{L}}{\partial x_{\rho}} \right)_{\phi}$$

Konsistenzgleichung für physikalisches 4-Potential A_{ϕ} :

$$\partial_{\mu} G^{\mu} = 0 \quad , \quad G^{\mu} \equiv \left[rac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{
u})} (DA)_{
u} - \mathcal{T}^{\mu
ho}_{\mathrm{kan}} (Dx)_{
ho} + (D\lambda)^{\mu}
ight]_{d}$$

Daher Erhaltungsgröße:

[falls Konsistenzgleichung $\forall (A, x)$ erfüllt ist!]

$$\frac{d}{dt} \int d\mathbf{x} \ G^0 = 0$$

Nomenklatur: $\int d\mathbf{x} \ G^0 \ \widehat{=} \ \mathsf{Noether-Ladung}, \ G^\mu \ \widehat{=} \ \mathsf{Noether-Strom}(\mathsf{dichte})$

Amalie Emmy Noether (1882 - 1935)

Noether-Theorem: $\partial_{\mu}G^{\mu}=0$

$$G^{\mu} \equiv \left[rac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{
u})} (DA)_{
u} - T^{\mu
ho}_{
m kan} (Dx)_{
ho} + (D\lambda)^{\mu}
ight]_{\phi} \quad , \quad rac{d}{dt} \int d\mathbf{x} \ G^0 = 0$$

Theoretische Physik 2: Elektrodynamik

└5.2 Das Noether-Theorem

Beispiel 1: Invarianz von $\mathcal L$ unter Translationen in der Raum-Zeit

Beispiel 1: Invarianz unter Translationen in der Raum-Zeit

Invarianz von \mathcal{L} unter Translationen in der Raum-Zeit:

$$(Dx)_{\mu}=\alpha_{\mu}$$
 , $DA=0$, $D\partial A=0$, $\partial Dx=0$, $D\lambda=0$

Konsistenzgleichung, damit Bewegungsgleichung forminvariant ist:

$$\begin{split} 0 &= \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \left[\partial_{\mu} (DA)_{\nu} \right] + \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} - T_{\mathrm{kan}}^{\mu\rho} \left[\partial_{\mu} (Dx)_{\rho} \right] + \partial_{\mu} \left[(D\lambda)^{\mu} \right] \\ &= \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} = \frac{\partial \mathcal{L}}{\partial x_{\mu}} \; \alpha_{\mu} \quad , \quad \frac{\partial \mathcal{L}}{\partial x_{\mu}} = 0 \quad (\mu = 0, 1, 2, 3) \end{split}$$

Noether-Strom(dichte): $(\partial_{\mu}G^{\mu}=0)$

$$G^{\mu} = \left[rac{\partial \mathcal{L}}{\partial (\partial_{\mu}A_{
u})}(DA)_{
u} - T^{\mu
ho}_{\mathrm{kan}}(Dx)_{
ho} + (D\lambda)^{\mu}
ight]_{\phi} = -\left[T^{\mu
ho}_{\mathrm{kan}}(Dx)_{
ho}
ight]_{\phi} = -(T^{\mu
ho}_{\mathrm{kan}}lpha_{
ho})_{\phi}$$

Invarianz von $\mathcal L$ unter 1-Parametergruppe $lpha_
ho=lpha\delta_{
ho
u}~
ightarrow$ Noether-Ladung:

$$\int d{f x} \; G^0 = -lpha \int d{f x} \; T^{0
u}_{{
m kan},\phi} \qquad egin{pmatrix}
u = 0: & {
m Feld}{\it energie} \\
u = 1,2,3: & {
m Feld}{\it impuls} \end{pmatrix}$$

$$T_{\mathrm{kan}}^{\mu
ho}(A,\partial A,x)\equivrac{\partial\mathcal{L}}{\partial(\partial_{\mu}A_{
u})}(\partial^{
ho}A_{
u})-g^{\mu
ho}\mathcal{L}\quad,\quad\partial_{\mu}T_{\mathrm{kan},\phi}^{\mu
ho}=-\left(rac{\partial\mathcal{L}}{\partial x_{
ho}}
ight)_{\!\!\!\!\phi}\stackrel{!}{=}0$$

Subtilität: $T_{\mathrm{kan},\phi}^{0
u}
eq \mathsf{Energie}$ - bzw. Impulsdichte!

Beispiel 1: Invarianz unter Translationen in der Raum-Zeit

Invarianz von \mathcal{L} unter Translationen in der Raum-Zeit:

$$(Dx)_{\mu} = \alpha_{\mu}$$
 , $DA = 0$, $D\partial A = 0$, $\partial Dx = 0$, $D\lambda = 0$

Noether-Strom(dichte): $G^{\mu} = -(\mathcal{T}_{\mathrm{kan}}^{\mu\rho}\alpha_{
ho})_{\phi}$

Invarianz von ${\cal L}$ unter 1-Parametergruppe $\alpha_{
ho}=\alpha\delta_{
ho
u}~
ightarrow~$ Noether-Ladung:

$$\int d{f x} \; G^0 = -lpha \int d{f x} \; T^{0
u}_{{
m kan},\phi} \qquad egin{pmatrix}
u=0: & {
m Feld}{\it energie} \\
u=1,2,3: & {
m Feld}{\it impuls} \end{pmatrix}$$

$${\cal T}_{
m kan}^{\mu
ho}(A,\partial A,x)\equivrac{\partial {\cal L}}{\partial (\partial_{\mu}A_{
u})}(\partial^{
ho}A_{
u})-{f g}^{\mu
ho}{\cal L}\quad,\quad \partial_{\mu}\,{\cal T}_{{
m kan},\phi}^{\mu
ho}=-\left(rac{\partial {\cal L}}{\partial x_{
ho}}
ight)_{\!\!\!\!\phi}\stackrel{!}{=}0$$

Subtilität: $T_{\mathrm{kan},\phi}^{0\nu} \neq \mathsf{Energie}$ - bzw. Impuls*dichte* wegen

$$0 = \partial_{\mu} T^{\mu\rho}_{\mathrm{kan},\phi} = \partial_{\mu} (T^{\mu\rho}_{\mathrm{kan},\phi} + \partial_{\gamma} K^{\gamma\mu\rho}) \qquad \forall K^{\gamma\mu\rho} \ \mathsf{mit} \ K^{\gamma\mu\rho} = -K^{\mu\gamma\rho}$$

Daher alternativer Ausdruck für Noether-Ladung:

$$\int d{f x} \; T_K^{0
u} \;\;\; , \;\;\; T_K^{\mu
u} \equiv T_{{
m kan},\phi}^{\mu
u} + \partial_\gamma K^{\gamma\mu
u}$$

1M\$Q: Für welche Wahl von $K^{\gamma\mu\nu}$ gilt $T_K^{0\nu} \cong$ Energie-Impulsdichte?

Theoretische Physik 2: Elektrodynamik

└5.2 Das Noether-Theorem

Beispiel 2: Invarianz von \mathcal{L} unter Translationen von A_{μ}

Beispiel 2: Invarianz von $\mathcal L$ unter Translationen von $\mathcal A_\mu$

Invarianz von $\mathcal L$ unter Translationen des Feldfreiheitsgrads A_μ :

$$(DA)_{\mu}=\alpha_{\mu}$$
 , $Dx=0$, $\partial(DA)=0$, $\partial(Dx)=0$, $D\lambda=0$.

Konsistenzgleichung, damit Bewegungsgleichung forminvariant ist:

$$\begin{split} 0 &= \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \left[\partial_{\mu} (DA)_{\nu} \right] + \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} - T_{\mathrm{kan}}^{\mu\rho} \left[\partial_{\mu} (Dx)_{\rho} \right] + \partial_{\mu} \left[(D\lambda)^{\mu} \right] \\ &= \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} = \frac{\partial \mathcal{L}}{\partial A_{\mu}} \alpha_{\mu} \quad , \quad \frac{\partial \mathcal{L}}{\partial A_{\mu}} = 0 \quad (\mu = 0, 1, 2, 3) \end{split}$$

Noether-Strom(dichte): $(\partial_{\mu} G^{\mu} = 0)$

$$G^{\mu} = \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} (DA)_{\nu} - T_{\mathrm{kan}}^{\mu\rho} (Dx)_{\rho} + (D\lambda)^{\mu}\right]_{\phi} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\rho})} (DA)_{\rho} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\rho})} \alpha_{\rho}$$

Invarianz von $\mathcal L$ unter 1-Parametergruppe $lpha_
ho=lpha\delta_{
ho
u}~
ightarrow$ Noether-Ladung:

$$\partial_{\mu}\left[rac{\partial \mathcal{L}}{\partial(\partial_{\mu}A_{
u})}
ight]=0 \quad , \quad rac{d}{dt}\int d\mathbf{x} \; G^{0}=0 \quad , \quad \int d\mathbf{x} \; G^{0}=lpha\int d\mathbf{x} \; rac{\partial \mathcal{L}}{\partial(\partial_{0}A_{
u})}$$

Konkretes Beispiel?

Beispiel 2: Invarianz von ${\cal L}$ unter Translationen von ${\cal A}_{\mu}$

Noether-Strom(dichte) und Noether-Ladung:

$$(\partial_{\mu}G^{\mu}=0$$
 , $\alpha_{
ho}=lpha\delta_{
ho
u})$

$$G^{\mu} = \alpha rac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{
u})} \quad , \quad rac{d}{dt} \int d\mathbf{x} \ G^0 = 0 \quad , \quad \int d\mathbf{x} \ G^0 = \alpha \int d\mathbf{x} \ rac{\partial \mathcal{L}}{\partial (\partial_0 A_{
u})}$$

Konkretes Beispiel mit $\frac{\partial \mathcal{L}}{\partial A_{\mu}} = 0$ (und $\frac{\partial \mathcal{L}}{\partial x_{\mu}} = 0$):

$$\mathcal{L}_{\mathrm{F}} = -\frac{1}{4} \varepsilon_0 F^{\mu
u} F_{\mu
u}$$

Gilt für \mathcal{L}_{F} auch $\partial_{\mu}G^{\mu}=0$?

$$rac{1}{lpha} {\sf G}^{\mu} = rac{\partial {\cal L}_{
m F}}{\partial (\partial_{\mu} {\sf A}_{
u})} = -rac{1}{4} arepsilon_0 (2 {\sf F}^{\mu
u} - 2 {\sf F}^{
u\mu}) = -arepsilon_0 {\sf F}^{\mu
u} \quad , \quad \partial_{\mu} {\sf G}^{\mu} = -lpha arepsilon_0 \partial_{\mu} {\sf F}^{\mu
u} = 0$$

Weitere 4-divergenzfreie Größen? (wegen $\frac{\partial \mathcal{L}}{\partial x_{\mu}} = 0$: $\partial_{\nu} T_{\mathrm{kan},\phi}^{\nu\rho} = -\left(\frac{\partial \mathcal{L}}{\partial x_{\rho}}\right)_{\phi} = 0$)

$$T_{\mathrm{kan},\phi}^{
u
ho}=rac{\partial \mathcal{L}}{\partial (\partial_
u A_\mu)}\left(\partial^
ho A_\mu
ight)-\mathcal{L} \mathsf{g}^{
u
ho}=-arepsilon_0 \mathsf{F}^{
u\mu}\partial^
ho A_\mu-\mathcal{L} \mathsf{g}^{
u
ho}$$

$$T_K^{
u
ho} \equiv T_{\mathrm{kan},\phi}^{
u
ho} + \partial_\gamma K^{\gamma
u
ho} \quad \text{wegen} \quad \partial_
u T_K^{
u
ho} = 0 \quad \forall K^{\gamma
u
ho} \, \mathrm{mit} \, K^{\gamma
u
ho} = -K^{
u\gamma
ho}$$

Speziell für symmetrischen Energie-Impuls-Tensor $T^{\nu\rho}=-\varepsilon_0 F^{\nu\mu}F^{\rho}_{\ \mu}-\mathcal{L}g^{\nu\rho}$:

$$T_{\phi}^{
u
ho} = T_{\mathrm{kan},\phi}^{
u
ho} - arepsilon_0 (F^{\mu
u}\partial_\mu A^
ho)_\phi = T_{\mathrm{kan},\phi}^{
u
ho} + \partial_\gamma (-arepsilon_0 F^{\gamma
u}A^
ho)_\phi \qquad [\mathrm{mit}\ \partial_\gamma F^{\gamma
u} = 0]$$

Theoretische Physik 2: Elektrodynamik

5.2 Das Noether-Theorem

Beispiel 3: Invarianz von $\mathcal L$ unter Lorentz-Transformationen

Beispiel 3: Invarianz von $\mathcal L$ unter Lorentz-Transformationen

Invarianz von $\mathcal L$ unter Lorentz-Transformationen:

$$(x')^{\lambda} = \Lambda^{\lambda}{}_{\mu}x^{\mu}$$
 , $(A')^{\lambda} = \Lambda^{\lambda}{}_{\mu}A^{\mu}$, $\Lambda^{\lambda}{}_{\mu} = g^{\lambda}{}_{\mu} + \omega^{\lambda}{}_{\mu}$, $\omega^{\lambda\mu} = -\omega^{\mu\lambda}$

Notation "D":

$$(Dx)^{\lambda} = \omega^{\lambda}_{\ \mu} x^{\mu} \quad , \quad (DA)^{\lambda} = \omega^{\lambda}_{\ \mu} A^{\mu} \quad , \quad D\lambda = 0$$

 $\partial_{\mu} (DA)_{\nu} = \omega_{\nu\rho} (\partial_{\mu} A^{\rho}) \quad , \quad \partial_{\mu} (Dx)^{\rho} = \omega^{\rho}_{\ \mu}$

Konsistenzgleichung, damit Bewegungsgleichung forminvariant ist: $T^{\nu\rho} \stackrel{!}{=} T^{\rho\nu}$

$$0 = \frac{\partial \mathcal{L}}{\partial A_{\mu}} (DA)_{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \left[\partial_{\mu} (DA)_{\nu} \right] + \frac{\partial \mathcal{L}}{\partial x_{\mu}} (Dx)_{\mu} - T_{\text{kan}}^{\mu\rho} \left[\partial_{\mu} (Dx)_{\rho} \right] + \partial_{\mu} \left[(D\lambda)^{\mu} \right]$$

$$= \omega_{\rho\nu} \left[\frac{\partial \mathcal{L}}{\partial A_{\rho}} A^{\nu} - \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} (\partial_{\mu} A^{\rho}) + \frac{\partial \mathcal{L}}{\partial x_{\rho}} x^{\nu} - T_{\text{kan}}^{\nu\rho} \right]$$

$$= -\omega_{\rho\nu} \left[T_{\text{kan}}^{\nu\rho} + \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} A_{\nu})} (\partial_{\mu} A^{\rho}) \right] \equiv -\omega_{\rho\nu} T^{\nu\rho} \quad \text{falls} \quad \frac{\partial \mathcal{L}}{\partial A_{\mu}} = 0 \quad , \quad \frac{\partial \mathcal{L}}{\partial x_{\nu}} = 0$$

Erhaltungsgröße für $\mathcal{L}=\mathcal{L}_{\mathrm{F}}(\partial A)$ mit $T^{
u\rho}=-arepsilon_0 F^{
u\mu}F^{
ho}_{\mu}-\mathcal{L}g^{
u\rho}$:

$$G^{\mu} = \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} (DA)_{\nu} - T_{\text{kan}}^{\mu\rho} (Dx)_{\rho}\right]_{\phi} = \omega_{\rho\nu} (\varepsilon_{0} F^{\mu\nu} A^{\rho} - T_{\text{kan}}^{\mu\rho} x^{\nu})_{\phi}$$
$$= \omega_{\rho\nu} \left[\varepsilon_{0} F^{\mu\nu} A^{\rho} - \varepsilon_{0} F^{\sigma\mu} (\partial_{\sigma} A^{\rho}) x^{\nu} - T^{\mu\rho} x^{\nu}\right]_{\phi}$$

Beispiel 3: Invarianz von $\mathcal L$ unter Lorentz-Transformationen

Konsistenzgleichung, damit Bewegungsgleichung forminvariant ist:

$$0 = -\omega_{
ho
u} \Big[T_{
m kan}^{
u
ho} + rac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{
u})} \left(\partial_{\mu} A^{
ho}
ight) \Big] \equiv -\omega_{
ho
u} T^{
u
ho} \quad , \quad T^{
u
ho} \stackrel{!}{=} T^{
ho
u}$$

Erhaltungsgröße für $\mathcal{L}=\mathcal{L}_{\mathrm{F}}(\partial A)$ mit $T^{\nu\rho}=-\varepsilon_0\,F^{\nu\mu}F^{\rho}_{\mu}-\mathcal{L}g^{\nu\rho}$:

$$G^{\mu} = \omega_{\rho\nu} \left[\varepsilon_0 F^{\mu\nu} A^{\rho} - \varepsilon_0 F^{\sigma\mu} (\partial_{\sigma} A^{\rho}) x^{\nu} - T^{\mu\rho} x^{\nu} \right]_{\phi}$$

$$\omega_{\rho\nu} \, x^{\nu} \, T^{\mu\rho} = \omega_{\rho\nu} \, x^{\nu} \, T^{\rho\mu} = \frac{1}{2} \omega_{\rho\nu} (x^{\nu} \, T^{\rho\mu} - x^{\rho} \, T^{\nu\mu}) = \frac{1}{2} c \, \omega_{\rho\nu} \, L_{\rm F}^{\nu\rho\mu}$$

Definition der Drehimpulstensordichte:

$$L_{\rm F}^{\nu\rho\mu} \equiv \frac{1}{c} (x^{\nu} T^{\rho\mu} - x^{\rho} T^{\nu\mu})$$

Konsequenz:

(wegen
$$F^{\mu\sigma} = -F^{\sigma\mu}$$
)

$$\begin{split} G^{\mu} + \tfrac{1}{2} c \, \omega_{\rho\nu} \, L_{\mathrm{F},\phi}^{\nu\rho\mu} &= \varepsilon_0 \, \omega_{\rho\nu} \, [F^{\mu\nu} A^{\rho} + F^{\mu\sigma} (\partial_{\sigma} A^{\rho}) x^{\nu}] \\ &= \varepsilon_0 \, \omega_{\rho\nu} F^{\mu\sigma} \partial_{\sigma} (A^{\rho} x^{\nu}) = \varepsilon_0 \, \omega_{\rho\nu} \, \partial_{\sigma} (F^{\mu\sigma} A^{\rho} x^{\nu}) \\ \partial_{\mu} (G^{\mu} + \tfrac{1}{2} c \, \omega_{\rho\nu} L_{\mathrm{F},\phi}^{\nu\rho\mu}) &= \varepsilon_0 \, \omega_{\rho\nu} \, \partial_{\mu} \, \partial_{\sigma} (F^{\mu\sigma} A^{\rho} x^{\nu}) = 0 \end{split}$$

Fazit: Erhaltung des 4-Drehimpulstensors $\int d\mathbf{x} \; L_{\mathrm{F},\phi}^{\nu\rho0}$!

$$0 = \partial_{\mu} G^{\mu} = -rac{1}{2} c \, \omega_{
ho
u} \left(\partial_{\mu} L_{ ext{F},\phi}^{
u
ho\mu}
ight) \quad , \quad 0 = \partial_{\mu} L_{ ext{F},\phi}^{
u
ho\mu}$$

Theoretische Physik 2: Elektrodynamik

└5.2 Das Noether-Theorem

Beispiel 3: Invarianz von $\mathcal L$ unter Lorentz-Transformationen

Beispiel 3: Invarianz von \mathcal{L} unter Lorentz-Transformationen

Konsistenzgleichung, damit Bewegungsgleichung forminvariant ist:

$$0 = -\omega_{\rho\nu} \left[T_{\rm kan}^{\nu\rho} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \left(\partial_{\mu} A^{\rho} \right) \right] \equiv -\omega_{\rho\nu} T^{\nu\rho} \quad , \quad T^{\nu\rho} \stackrel{!}{=} T^{\rho\nu}$$

Definition der Drehimpulstensordichte mit $T^{
u
ho}=-arepsilon_0 F^{
u\mu}F^{
ho}_{\ \mu}-\mathcal{L}g^{
u
ho}$:

$$L_{\mathrm{F}}^{
u
ho\mu} \equiv \frac{1}{c}(x^{
u} T^{
ho\mu} - x^{
ho} T^{
u\mu})$$

 $T_{\phi}^{\mu\nu}$ (nicht $T_{\mathrm{kan},\phi}^{\mu\nu}$) ist Energie-Impuls(strom)dichte des freien Feldes, denn:

► Tensor $T_K^{\mu\nu}$ soll eichinvariant sein (Messgröße!):

$$T_{K}^{\nu\rho} = -\left(\varepsilon_{0}F^{\nu\mu}\partial^{\rho}A_{\mu} + \mathcal{L}_{\mathrm{F}}g^{\nu\rho}\right)_{\phi} + \partial_{\gamma}K^{\gamma\nu\rho}$$

lacktriangle dies erfordert $K^{\gamma
u
ho}=-arepsilon_0(F^{\gamma
u}A^
ho)_\phi$ und somit $T_K^{
u
ho}=T_\phi^{
u
ho}$

Aufgrund ähnlicher Überlegungen:

- $ho_{
 m F}^{
 u
 ho\mu}$ soll durch Messgrößen Energie und Impuls mitbestimmt werden
- also soll $L_{{\rm F},\phi}^{
 u\rho\mu}$ von $T_{\phi}^{\mu\nu}$ (nicht $T_{{\rm kan},\phi}^{\mu\nu}$ oder $T_{K}^{\mu\nu}$) bestimmt werden
- $ightharpoonup nur \ L_{{
 m F},\phi}^{
 u
 ho\mu}$ kann als physikalische Drehimpulstensordichte interpretiert werden
- ... denn allgemeinere 4-divergenzfreie Größen physikalisch nicht-akzeptabel:

$$L_K^{
u
ho\mu} \equiv L_{{
m F},\phi}^{
u
ho\mu} + \partial_\gamma K^{
u
ho\mu\gamma} \quad , \quad K^{
u
ho\mu\gamma} = -K^{
u
ho\gamma\mu}$$

Kapitel 6: Statische elektromagnetische Felder

- ▶ 6.0 Die Gleichungen der Elektro- und Magnetostatik
- ▶ 6.1 Das elektrostatische Potential und die Multipolentwicklung
- ▶ 6.2 Das Vektorpotential und das magnetische Moment

Theoretische Physik 2: Elektrodynamik

6.0 Die Gleichungen der Elektro- und Magnetostatik

Streng zeitunabhängige Felder

6.0 Die Gleichungen der Elektro- und Magnetostatik

Maxwell-Gleichungen "im Vakuum":

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$

II.
$$\nabla \cdot \mathbf{B} = 0$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$
 IV. $\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}$

Streng zeitunabhängige Felder $\mathbf{E}(\mathbf{x})$, $\mathbf{B}(\mathbf{x})$ nur falls $\begin{cases} \partial_t \rho = 0 \\ \partial_t \mathbf{i} = \mathbf{0} \end{cases} \Rightarrow$

$$\left(oldsymbol{
abla} \cdot oldsymbol{\mathsf{E}}
ight) \left(oldsymbol{\mathsf{x}}
ight) = rac{1}{arepsilon_\mathsf{D}}
ho(oldsymbol{\mathsf{x}})$$

$$oldsymbol{
abla} imes oldsymbol{\mathsf{E}}=oldsymbol{\mathsf{0}}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$(\mathbf{
abla} imes \mathbf{B})(\mathbf{x}) = \mu_0 \mathbf{j}(\mathbf{x})$$

Viel interessanter:

Zeitmittelung:

$$\frac{\overline{\partial \mathbf{E}}}{\partial t} \equiv \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} dt \, \frac{\partial \mathbf{E}}{\partial t}(\mathbf{x}, t) = \lim_{T \to \infty} \frac{\mathbf{E}(\mathbf{x}, T) - \mathbf{E}(\mathbf{x}, 0)}{T} = \mathbf{0}$$

analog: $\frac{\overline{\partial \mathbf{B}}}{\partial t} = \mathbf{0} \quad \Rightarrow \quad \mathsf{Maxwell-Gleichungen} \, o$

$$\begin{split} \left(\nabla \cdot \overline{\mathsf{E}}\right)(\mathsf{x}) &= \overline{\left(\nabla \cdot \mathsf{E}\right)(\mathsf{x})} = \frac{1}{\varepsilon_0} \overline{\rho(\mathsf{x},t)} \equiv \frac{1}{\varepsilon_0} \overline{\rho}(\mathsf{x}) \\ \nabla \times \overline{\mathsf{E}} &= \overline{\nabla \times \mathsf{E} + \frac{\partial \mathsf{B}}{\partial t}} = \mathsf{0} \\ \nabla \cdot \overline{\mathsf{B}} &= \overline{\nabla \cdot \mathsf{B}} = \mathsf{0} \\ \nabla \times \overline{\mathsf{B}} &= \overline{\nabla \times \mathsf{B} - \varepsilon_0 \mu_0} \frac{\partial \mathsf{E}}{\partial t} = \mu_0 \, \overline{\mathsf{j}(\mathsf{x},t)} \equiv \mu_0 \, \overline{\mathsf{j}}(\mathsf{x}) \end{split}$$

Fazit: $(\overline{\mathbf{E}}, \overline{\mathbf{B}}, \overline{\boldsymbol{\rho}}, \overline{\mathbf{j}})$ erfüllen Gleichungen der Elektro- bzw. Magnetostatik

Theoretische Physik 2: Elektrodynamik

6.0 Die Gleichungen der Elektro- und Magnetostatik

Lösung der Gleichungen der Statik

Definiere (Φ, A) gemäß:

$$\overline{\boldsymbol{E}} = -\boldsymbol{\nabla} \boldsymbol{\Phi} \quad , \quad \overline{\boldsymbol{B}} = \boldsymbol{\nabla} \times \boldsymbol{A}$$

Wähle Coulomb-Eichung $\nabla \cdot \mathbf{A} = 0 \quad \rightarrow \quad$ Poisson-Gleichungen:

$$\Delta \Phi = -rac{1}{arepsilon_0}ar{
ho} \quad , \quad \Delta {f A} = -\mu_0\,{f ar{f j}}$$

Lösungen: $(\Phi, |\mathbf{A}| \to 0 \text{ für } x \to \infty)$

$$\Phi(\mathbf{x}) = \frac{1}{4\pi\varepsilon_0} \int d\mathbf{x}' \; \frac{\bar{\rho}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \quad , \quad \mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int d\mathbf{x}' \; \frac{\bar{\mathbf{j}}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}$$

entsprechende Felder:

$$\begin{aligned} \overline{\mathbf{E}}(\mathbf{x}) &= \frac{1}{4\pi\varepsilon_0} \int d\mathbf{x}' \; \bar{\rho}(\mathbf{x}') \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^3} \quad \text{(Coulomb-Gesetz)} \\ \overline{\mathbf{B}}(\mathbf{x}) &= \frac{\mu_0}{4\pi} \int d\mathbf{x}' \; \frac{\overline{\mathbf{j}}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} \quad \text{(Biot-Savart-Gesetz)} \end{aligned}$$

6.1 Elektrostatisches Potential und Multipolentwicklung

Gesucht in Elektrostatik: $\Phi(\mathbf{x})$ für $|\mathbf{x}| \to \infty$

Lösungsmethode: Taylor-Entwicklung $\,\,
ightarrow$

$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{\sqrt{x^2 - 2\mathbf{x} \cdot \mathbf{x}' + (x')^2}} = \frac{1}{x} \left[1 - \frac{2\hat{\mathbf{x}} \cdot \mathbf{x}'}{x} + \left(\frac{x'}{x}\right)^2 \right]^{-\frac{1}{2}}$$

$$= \frac{1}{x} \left\{ 1 + \frac{\hat{\mathbf{x}} \cdot \mathbf{x}'}{x} + \frac{1}{2x^2} (\hat{\mathbf{x}})^{\mathrm{T}} \left[3\mathbf{x}'(\mathbf{x}')^{\mathrm{T}} - (x')^2 \mathbf{1} \right] \hat{\mathbf{x}} \right.$$

$$+ \frac{1}{2x^3} \hat{x}_{i_1} \hat{x}_{i_2} \hat{x}_{i_3} \left[5x'_{i_1} x'_{i_2} x'_{i_3} - x'_{i_1} \delta_{i_2 i_3} - x'_{i_2} \delta_{i_1 i_3} - x'_{i_3} \delta_{i_1 i_2} \right] + \dots \right\}$$

$$\equiv \sum_{n=0}^{\infty} \mu_{i_1 i_2 \dots i_{\ell}} (\mathbf{x}') \frac{\hat{x}_{i_1} \hat{x}_{i_2} \dots \hat{x}_{i_{\ell}}}{x^{\ell+1}} \qquad (x \to \infty)$$

Theoretische Physik 2: Elektrodynamik

6.1 Das elektrostatische Potential und die Multipolentwicklung

6.1.1 Multipolentwicklung in kartesischen Koordinaten

Resultat:

$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \sum_{\ell=0}^{\infty} \mu_{i_1 i_2 \dots i_{\ell}}(\mathbf{x}') \frac{\hat{x}_{i_1} \hat{x}_{i_2} \dots \hat{x}_{i_{\ell}}}{\mathbf{x}^{\ell+1}} \qquad (\mathbf{x} \to \infty)$$

→ Multipolentwicklung des skalaren Potentials:

$$\Phi(\mathbf{x}) = \sum_{\ell=0}^{\infty} M_{i_1 i_2 \dots i_\ell} rac{\hat{x}_{i_1} \hat{x}_{i_2} \dots \hat{x}_{i_\ell}}{4\pi arepsilon_0 \, \mathbf{x}^{\ell+1}} \quad , \quad M_{i_1 i_2 \dots i_\ell} \equiv \int d\mathbf{x}' ar{
ho}(\mathbf{x}') \mu_{i_1 i_2 \dots i_\ell}(\mathbf{x}')$$

mit

$$\begin{split} M &= \int d\mathbf{x}' \; \bar{\rho}(\mathbf{x}') \equiv q \quad , \quad M_{i_1} = \int d\mathbf{x}' \bar{\rho}(\mathbf{x}') x_{i_1}' \equiv d_{i_1} \\ M_{i_1 i_2} &= \int d\mathbf{x}' \; \bar{\rho}(\mathbf{x}') \left[\frac{3}{2} x_{i_1}' x_{i_2}' - \frac{1}{2} (x')^2 \delta_{i_1 i_2} \right] \equiv Q_{i_1 i_2} \\ M_{i_1 i_2 i_3} &= \int d\mathbf{x}' \; \bar{\rho}(\mathbf{x}') \left[\frac{5}{2} x_{i_1}' x_{i_2}' x_{i_3}' - \frac{1}{2} x_{i_1}' \delta_{i_2 i_3} - \frac{1}{2} x_{i_2}' \delta_{i_1 i_3} - \frac{1}{2} x_{i_3}' \delta_{i_1 i_2} \right] \equiv O_{i_1 i_2 i_3} \end{split}$$

(Ladung q, Dipolmoment d, Quadrupoltensor Q)

Höhere Multipolmomente kompliziert, z. B. Hexadekapol:

$$\begin{split} M_{i_{1}i_{2}i_{3}i_{4}} &= \int d\mathbf{x}' \; \bar{\rho}(\mathbf{x}') \left[\frac{35}{8} x'_{i_{1}} x'_{i_{2}} x'_{i_{3}} x'_{i_{4}} - \frac{5}{8} (x')^{2} (\delta_{i_{1}i_{2}} x'_{i_{3}} x'_{i_{4}} + \delta_{i_{1}i_{3}} x'_{i_{2}} x'_{i_{4}} + \delta_{i_{1}i_{3}} x'_{i_{2}} x'_{i_{4}} + \delta_{i_{2}i_{4}} x'_{i_{1}} x'_{i_{3}} + \delta_{i_{3}i_{4}} x'_{i_{1}} x'_{i_{2}} \right) \\ &+ \frac{1}{8} (x')^{4} (\delta_{i_{1}i_{2}} \delta_{i_{3}i_{4}} + \delta_{i_{1}i_{3}} \delta_{i_{2}i_{4}} + \delta_{i_{1}i_{4}} \delta_{i_{2}i_{3}}) \right] \equiv H_{i_{1}i_{2}i_{3}i_{4}} \end{split}$$

→ Entwicklung für skalares Potential:

$$egin{aligned} \Phi(\mathbf{x}) &= rac{1}{4\piarepsilon_0 x} igg(q + rac{\hat{\mathbf{x}}\cdot\mathbf{d}}{x} + rac{(\hat{\mathbf{x}})^{\mathrm{T}}Q\hat{\mathbf{x}}}{x^2} + rac{1}{x^3}\hat{x}_{i_1}\hat{x}_{i_2}\hat{x}_{i_3}O_{i_1i_2i_3} \ &+ rac{1}{x^4}\hat{x}_{i_1}\hat{x}_{i_2}\hat{x}_{i_3}\hat{x}_{i_4}H_{i_1i_2i_3i_4} + \ldots igg) \end{aligned} \quad (x
ightarrow \infty)$$

Annahmen:

- Ladungsverteilung räumlich begrenzt
- Entwicklungsparameter: a/x (a = typische Ausdehnung der Ladungsverteilung)

Theoretische Physik 2: Elektrodynamik

6.1 Das elektrostatische Potential und die Multipolentwicklung

6.1.1 Multipolentwicklung in kartesischen Koordinaten

Exakte Realisierung des

► Monopols q: Punktladung q in x = 0 \Rightarrow

$$\Phi_0(\mathbf{x}) = rac{q}{4\piarepsilon_0 x} \quad , \quad \mathbf{E}_0 = -\mathbf{\nabla}\Phi_0 = rac{q\hat{\mathbf{x}}}{4\piarepsilon_0 x^2}$$

▶ Dipols **d**: Ladungen λq , $-\lambda q$ an Orten $\frac{1}{2\lambda}$ **a**, $-\frac{1}{2\lambda}$ **a**; Limes $\lambda \to \infty \Rightarrow$

$$\Phi_1(\mathbf{x}) = rac{\hat{\mathbf{x}} \cdot \mathbf{d}}{4\pi\varepsilon_0 x^2} \quad , \quad \mathbf{d} = q\mathbf{a} \quad , \quad \mathbf{E}_1 = -\mathbf{\nabla}\Phi_1 = rac{[3\hat{\mathbf{x}}(\hat{\mathbf{x}})^{\mathrm{T}} - \mathbf{1}] \, \mathbf{d}}{4\pi\varepsilon_0 x^3}$$

▶ Quadrupols Q: Dipole $\lambda \mathbf{d}$, $-\lambda \mathbf{d}$ an Orten $\frac{1}{2\lambda}\mathbf{a}$, $-\frac{1}{2\lambda}\mathbf{a}$; Limes $\lambda \to \infty \Rightarrow$

$$\begin{split} & \Phi_2(\mathbf{x}) = \lim_{\lambda \to \infty} \left[\Phi_1 \left(\mathbf{x} - \frac{\mathbf{a}}{2\lambda} \right) - \Phi_1 \left(\mathbf{x} + \frac{\mathbf{a}}{2\lambda} \right) \right] \\ &= \lim_{\lambda \to \infty} \left[\frac{1}{\lambda} \mathbf{a} \cdot \mathbf{E}_1(\mathbf{x}) \right] \\ &= \lim_{\lambda \to \infty} \left[\frac{1}{\lambda} \mathbf{a} \cdot \mathbf{E}_1(\mathbf{x}) \right] \\ &= \frac{(\hat{\mathbf{x}})^{\mathrm{T}} [3\mathbf{a}(\mathbf{d})^{\mathrm{T}} - (\mathbf{a} \cdot \mathbf{d}) \mathbf{1}] \hat{\mathbf{x}}}{4\pi \varepsilon_0 x^3} \\ &= \frac{(\hat{\mathbf{x}})^{\mathrm{T}} [3\mathbf{a}(\mathbf{d})^{\mathrm{T}} - (\mathbf{a} \cdot \mathbf{d}) \mathbf{1}] \hat{\mathbf{x}}}{4\pi \varepsilon_0 x^3} \\ \end{split}$$

mit

$$Q = \frac{3}{2}[\mathbf{a}(\mathbf{d})^{\mathrm{T}} + \mathbf{d}(\mathbf{a})^{\mathrm{T}}] - (\mathbf{a} \cdot \mathbf{d})\mathbf{1}$$

Verallgemeinerung für 2^ℓ-Pol

Exakte Realisierung des

▶ 2^{ℓ} -Pols $M^{(\ell)}$:

$$2^{\ell-1}$$
-Pole $\lambda M^{(\ell-1)}$, $-\lambda M^{(\ell-1)}$ an Orten $\frac{1}{2\lambda}\mathbf{a}$, $-\frac{1}{2\lambda}\mathbf{a}$; Limes $\lambda \to \infty$ \Rightarrow

$$\begin{split} \Phi_{\ell}(\mathbf{x}) &= \lim_{\lambda \to \infty} \left[\Phi_{\ell-1} \left(\mathbf{x} - \frac{\mathbf{a}}{2\lambda} \right) - \Phi_{\ell-1} \left(\mathbf{x} + \frac{\mathbf{a}}{2\lambda} \right) \right] \\ &= \lim_{\lambda \to \infty} \left[-\frac{1}{\lambda} \mathbf{a} \cdot (\boldsymbol{\nabla} \Phi_{\ell-1}) \left(\mathbf{x} \right) \right] \\ &= \lim_{\lambda \to \infty} \left[\frac{1}{\lambda} \mathbf{a} \cdot \mathbf{E}_{\ell-1}(\mathbf{x}) \right] \end{split}$$

mit

$$\mathbf{E}_{\ell-1}(\mathbf{x}) = \text{elektrisches Feld eines } 2^{\ell-1} \text{-Pols } \lambda M^{(\ell-1)} \text{ in } \mathbf{x} = \mathbf{0}$$

Theoretische Physik 2: Elektrodynamik

6.1 Das elektrostatische Potential und die Multipolentwicklung

6.1.2 Multipolentwicklung in beliebiger Ordnung

Multipolentwicklung in beliebiger Ordnung

Ziel: Systematisierung der Multipolentwicklung

Verwende Identität:

$$|\mathbf{x} - \mathbf{x}'| = \frac{x}{x'} \left| \mathbf{x}' - \left(\frac{x'}{x} \right)^2 \mathbf{x} \right|$$

Beweis:

$$\left[|\mathbf{x} - \mathbf{x}'|(x')^2 \right]^2 - \left[xx'|\mathbf{x}' - \left(\frac{x'}{x}\right)^2 \mathbf{x}| \right]^2 =$$

$$\left[x^2 - 2\mathbf{x} \cdot \mathbf{x}' + (x')^2 \right] (x')^4 - x^2 (x')^2 \left[(x')^2 - 2\left(\frac{x'}{x}\right)^2 \mathbf{x}' \cdot \mathbf{x} + \frac{(x')^4}{x^2} \right] = 0$$

Taylor-Entwicklung in mehreren Variablen:

$$f(\mathbf{x} + \mathbf{a}) = \sum_{\ell=0}^{\infty} \frac{a_{i_1} a_{i_2} \dots a_{i_{\ell}}}{\ell!} \left[\partial_{i_1} \partial_{i_2} \dots \partial_{i_{\ell}} f \right] (\mathbf{x}) \qquad \begin{pmatrix} \text{Einstein-} \\ \text{Konvention,} \\ \partial_i \equiv \frac{\partial}{\partial x_i} \end{pmatrix}$$

Entwicklung des skalaren Potentials:

$$\begin{split} \Phi(\mathbf{x}) &= \frac{1}{4\pi\varepsilon_0} \int d\mathbf{x}' \; \frac{\bar{\rho}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{4\pi\varepsilon_0} \int d\mathbf{x}' \; \frac{\bar{\rho}(\mathbf{x}')\mathbf{x}'}{\mathbf{x}|\mathbf{x}' - \left(\frac{\mathbf{x}'}{\mathbf{x}}\right)^2 \mathbf{x}|} \\ &= \frac{1}{4\pi\varepsilon_0} \int d\mathbf{x}' \; \bar{\rho}(\mathbf{x}') \frac{\mathbf{x}'}{\mathbf{x}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{\ell!} \left(\frac{\mathbf{x}'}{\mathbf{x}}\right)^{2\ell} \mathbf{x}_{i_1} \dots \mathbf{x}_{i_{\ell}} \partial_{i_1}' \dots \partial_{i_{\ell}}' \frac{1}{\mathbf{x}'} \\ &= \frac{1}{4\pi\varepsilon_0} \sum_{\ell=0}^{\infty} M_{i_1 i_2 \dots i_{\ell}} \frac{\hat{x}_{i_1} \hat{x}_{i_2} \dots \hat{x}_{i_{\ell}}}{\mathbf{x}^{\ell+1}} \end{split}$$

Multipolmomente $M_{i_1i_2...i_\ell}$:

(Buckingham-Konvention!)

$$M_{i_1 i_2 \dots i_\ell} = rac{(-1)^\ell}{\ell!} \int d\mathbf{x}' \; ar{
ho}(\mathbf{x}') (x')^{2\ell+1} \partial_{i_1}' \partial_{i_2}' \dots \partial_{i_\ell}' rac{1}{x'} \quad , \quad \partial_i' \equiv rac{\partial}{\partial x_i'}$$

Eigenschaften der $M_{i_1 i_2 \dots i_\ell}$:

- für $\ell \geq 2$ symmetrisch in allen Indizes
- spurlos:

$$M_{i_1...i_{\ell-2}ii} = rac{(-1)^\ell}{\ell!} \, \int d{f x}' \, ar
ho({f x}') (x')^{2\ell+1} \partial'_{i_1} \ldots \partial'_{i_{\ell-2}} \left(\Delta' rac{1}{x'}
ight) = 0$$

Theoretische Physik 2: Elektrodynamik

6.2 Das Vektorpotential und das magnetische Moment

Multipolentwicklung für das Vektorpotential

6.2 Das Vektorpotential und das magnetische Moment

Magnetostatik, Vektorpotential:

$$\mathbf{A}(\mathbf{x}) = rac{\mu_0}{4\pi} \int d\mathbf{x}' \; rac{ar{\mathbf{j}}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}$$

Taylor-Entwicklung von $\frac{1}{|\mathbf{x}-\mathbf{x}'|}$ für $x \to \infty$ \to

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi x} \left\{ \int d\mathbf{x}' \ \overline{\mathbf{j}}(\mathbf{x}') + \frac{1}{x} \left[\int d\mathbf{x}' \ \overline{\mathbf{j}}(\mathbf{x}')(\mathbf{x}')^{\mathrm{T}} \right] \hat{\mathbf{x}} + \cdots \right\}$$

Allgemein:

$$\int d\mathbf{x}' \, \mathbf{j}(\mathbf{x}', t) = -\int d\mathbf{x}' \, \mathbf{x}' \left(\nabla' \cdot \mathbf{j} \right) (\mathbf{x}', t) = \int d\mathbf{x}' \, \mathbf{x}' \frac{\partial \rho}{\partial t} (\mathbf{x}', t)
= \frac{d}{dt} \int d\mathbf{x}' \, \mathbf{x}' \rho(\mathbf{x}', t) \quad \Rightarrow \quad \int d\mathbf{x}' \, \overline{\mathbf{j}}(\mathbf{x}') = \mathbf{0}
\int d\mathbf{x}' \, \mathbf{j}'(\mathbf{x}')^{\mathrm{T}} = \frac{1}{2} \int d\mathbf{x}' \, [\mathbf{j}'(\mathbf{x}')^{\mathrm{T}} + \mathbf{x}'(\mathbf{j}')^{\mathrm{T}}] + \frac{1}{2} \int d\mathbf{x}' \, [\mathbf{j}'(\mathbf{x}')^{\mathrm{T}} - \mathbf{x}'(\mathbf{j}')^{\mathrm{T}}] \quad , \quad \mathbf{j}' \equiv \mathbf{j}(\mathbf{x}', t)$$

Außerdem:

$$\frac{1}{2} \int d\mathbf{x}' \left[\mathbf{j}'(\mathbf{x}')^{\mathrm{T}} + \mathbf{x}'(\mathbf{j}')^{\mathrm{T}} \right] = -\frac{1}{2} \int d\mathbf{x}' \ \mathbf{x}'(\mathbf{x}')^{\mathrm{T}} \left(\nabla' \cdot \mathbf{j} \right) (\mathbf{x}', t)
= \frac{1}{2} \int d\mathbf{x}' \ \mathbf{x}'(\mathbf{x}')^{\mathrm{T}} \frac{\partial \rho}{\partial t} (\mathbf{x}', t) = \frac{d}{dt} \left[\frac{1}{2} \int d\mathbf{x}' \ \mathbf{x}'(\mathbf{x}')^{\mathrm{T}} \rho(\mathbf{x}', t) \right]
\Rightarrow \int d\mathbf{x}' \left[\mathbf{j}'(\mathbf{x}')^{\mathrm{T}} + \mathbf{x}'(\mathbf{j}')^{\mathrm{T}} \right] = \mathbf{00}^{\mathrm{T}}$$

Definition: (magnetischer Dipol)

$$D \equiv \frac{1}{2} \int d\mathbf{x}' \ \left[\mathbf{\bar{j}}(\mathbf{x}')(\mathbf{x}')^{\mathrm{T}} - \mathbf{x}' \ \mathbf{\bar{j}}(\mathbf{x}')^{\mathrm{T}} \right]$$

 \Rightarrow Vektorpotential für $x \to \infty$: (analog zu $\Phi(x) = \frac{d \cdot \hat{x}}{4\pi \varepsilon_0 x^2}$)

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi x^2} D\hat{\mathbf{x}} + \cdots$$

Definition: (magnetisches Moment m)

$$D_{ij} = -arepsilon_{ijk} m_k \quad , \quad \mathbf{m} \equiv rac{1}{2} \int d\mathbf{x}' \; \mathbf{x}' imes ar{\mathbf{j}}(\mathbf{x}')$$

Theoretische Physik 2: Elektrodynamik

6.2 Das Vektorpotential und das magnetische Moment

Dynamik eines magnetischen Moments im äußeren Magnetfeld

Resultate: [antisymmetrischer (echter) Tensor D, Pseudovektor m]

$$\mathbf{A}(\mathbf{x}) = \frac{\mu_0}{4\pi x^2} D\hat{\mathbf{x}} + \cdots , \quad D_{ij} \equiv -\varepsilon_{ijk} m_k , \quad \mathbf{A}(\mathbf{x}) = -\frac{\mu_0}{4\pi x^2} \hat{\mathbf{x}} \times \mathbf{m} + \cdots$$

Magnetfeld $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$ des magnetischen Dipols:

$$\mathbf{B}(\mathbf{x}) = \frac{\mu_0}{4\pi x^3} [3\hat{\mathbf{x}}(\hat{\mathbf{x}})^\mathrm{T} - \mathbf{1}] \, \mathbf{m} \qquad \left(\begin{array}{c} \text{Analogie zum elektrischen Dipol:} \\ \mathbf{E} = \frac{1}{4\pi \varepsilon_0 x^3} [3\hat{\mathbf{x}}(\hat{\mathbf{x}})^\mathrm{T} - \mathbf{1}] \, \mathbf{d} \end{array} \right)$$

Zusätzlich: äußeres Magnetfeld $\mathbf{B}_0 \neq \mathbf{0}$ (schwach, zeitlich/räumlich konstant) \Rightarrow

$$\overline{\mathbf{F}} = \sum_{l=1}^{N} q_{l} \overline{\mathbf{u}}_{l} \times \mathbf{B}_{0} = \overline{\int d\mathbf{x}' \ \mathbf{j}(\mathbf{x}', t)} \times \mathbf{B}_{0} = \mathbf{0} \qquad \begin{pmatrix} \text{zeitliches Mittel der} \\ \text{auf den Dipol} \\ \text{wirkenden Kraft} \end{pmatrix}$$

Außerdem:

$$\int d\mathbf{x}' \left(\mathbf{x}' \cdot \mathbf{j}' \right) = -\frac{1}{2} \int d\mathbf{x}' \left(\mathbf{x}' \cdot \mathbf{x}' \right) \left(\nabla' \cdot \mathbf{j} \right) \left(\mathbf{x}', t \right) = \frac{1}{2} \int d\mathbf{x}' \left(\mathbf{x}' \cdot \mathbf{x}' \right) \frac{\partial \rho}{\partial t} (\mathbf{x}', t)$$
$$= \frac{d}{dt} \left[\frac{1}{2} \int d\mathbf{x}' \left(\mathbf{x}' \cdot \mathbf{x}' \right) \rho(\mathbf{x}', t) \right]$$

⇒ Zeitgemitteltes Drehmoment:

$$\begin{split} \overline{\mathbf{N}} &= \sum_{l=1}^{N} \overline{\mathbf{x}_{l} \times (q_{l} \mathbf{u}_{l} \times \mathbf{B}_{0})} = \int d\mathbf{x}' \ \mathbf{x}' \times \left[\overline{\mathbf{j}}(\mathbf{x}') \times \mathbf{B}_{0} \right] \\ &= \int d\mathbf{x}' \ \left[\overline{\mathbf{j}}(\mathbf{x}')(\mathbf{x}')^{\mathrm{T}} - \left(\mathbf{x}' \cdot \overline{\mathbf{j}}(\mathbf{x}') \right) \mathbf{1} \right] \mathbf{B}_{0} \\ &= D \, \mathbf{B}_{0} = -\mathbf{B}_{0} \times \mathbf{m} = \mathbf{m} \times \mathbf{B}_{0} \qquad \begin{pmatrix} \textit{Präzession von } \mathbf{m} \\ \textit{um } \mathbf{B}_{0} - \textit{Achse} \end{pmatrix} \end{split}$$

Präzession langsam (verglichen mit T) \Rightarrow $\overline{f N} = {\Delta \overline{f L} \over \Delta t}$

[$\overline{f L}=$ zeitgemittelter mechanischer Drehimpuls, $\Delta t\gtrsim {\cal T}$]

Zusätzliche Annahme: $q_{\ell}/m_{\ell} = q/m \ (\forall \ell) \Rightarrow$

$$\mathbf{m} = \frac{1}{2} \int d\mathbf{x}' \ \mathbf{x}' \times \overline{\mathbf{j}}(\mathbf{x}') = \frac{1}{2} \sum_{l} q_{l} \ \overline{\mathbf{x}_{l} \times \mathbf{u}_{l}} = \frac{q}{2m} \sum_{l} m_{l} \ \overline{\mathbf{x}_{l} \times \mathbf{u}_{l}} = \frac{q}{2m} \overline{\mathbf{L}}$$

$$\Rightarrow \frac{\Delta \overline{\mathbf{L}}}{\Delta t} = \overline{\mathbf{N}} = \mathbf{m} \times \mathbf{B}_{0} = \frac{q}{2m} \overline{\mathbf{L}} \times \mathbf{B}_{0} = -\boldsymbol{\omega} \times \overline{\mathbf{L}} \quad , \quad \boldsymbol{\omega} \equiv \frac{q \mathbf{B}_{0}}{2m}$$

Fazit: (Larmor-)Präzession mit (Larmor-)Frequenz $\omega_{
m L}\equiv rac{|q|B_0}{2m}$

Theoretische Physik 2: Elektrodynamik

6.2 Das Vektorpotential und das magnetische Moment

Larmor-Präzession und Larmor-Frequenz

Der Urheber: Sir Joseph Larmor

Sir Joseph Larmor (11 July 1857 - 19 May 1942)

Larmor-Präzession: $\frac{\Delta \overline{\mathbf{L}}}{\Delta t} = -\boldsymbol{\omega} \times \overline{\mathbf{L}}$

Larmor-Frequenz: $\omega \equiv rac{q \mathbf{B}_0}{2m}$

Larmor-Radius: $R = \frac{m_0 \gamma_u |\mathbf{u}_{\perp}|}{qB}$

Larmor-Formel: $W = \frac{q^2|\dot{\boldsymbol{\beta}}|^2}{6\pi\varepsilon_0c}$

1897: Beiträge zur SRT, Lorentz-Transformationen!

MP for Cambridge University (1911-1922, Liberal Unionist party)

Kapitel 7: Die Dynamik der Felder - elektromagnetische Wellen

▶ Inhaltsverzeichnis

- 7.0 Die Wellengleichung für das 4-Potential
- ▶ 7.1 Elektromagnetische Wellen im Vakuum
- ▶ 7.2 Der Einfluß von Ladungen und Strömen
- ▶ 7.3 Wellengleichungen in materiellen Medien
- 7.4 Skintiefe und Skineffekt
- ▶ 7.5 Hohlraumresonatoren und Wellenleiter

Theoretische Physik 2: Elektrodynamik

└ 7.0 Die Wellengleichung für das 4-Potential

Wellengleichung und mögliche Anwendungen

7.0 Die Wellengleichung für das 4-Potential

Explizite Zeitabhängigkeit elektromagnetischer Felder:

$$\Box {\sf A}^\mu - \partial^\mu (\partial_
u {\sf A}^
u) = rac{1}{arepsilon_0 c} j^\mu$$

 A^{μ} nicht eindeutig bestimmt:

$$\tilde{A}^{\mu} \equiv A^{\mu} + \partial^{\mu} \Lambda$$

Beispiel: Lorenz-Eichung $\partial_{\nu}A^{\nu}=0$ \Rightarrow inhomogene Wellengleichung für A^{μ} :

$$\Box A^{\mu} = \frac{1}{\varepsilon_0 c} j^{\mu}$$

 \Rightarrow elektromagnetisches Feld = Welle!

7.1 Elektromagnetische Wellen im Vakuum

Keine Quellen $\left(j^{\mu}=0\right) \;\Rightarrow\;$ wähle $extit{Coulomb-Eichung}\;(oldsymbol{
abla}\cdot oldsymbol{\mathsf{A}}=0)$ wegen

$$\Delta \Phi = 0 \quad , \quad \Box \mathbf{A} = - \frac{1}{c^2} \mathbf{\nabla} \frac{\partial \Phi}{\partial t}$$

$$\Rightarrow \Phi(\mathbf{x},t) = 0 \ (\forall \mathbf{x} \in \mathbb{R}^3)$$
 wegen Randbedingung $\Phi = 0 \ (|\mathbf{x}| = \infty)$

In Coulomb-Eichung daher:

$$\Phi(\mathbf{x},t) = 0$$
 , $\Box \mathbf{A} = \mathbf{0}$ $\begin{pmatrix} \Rightarrow \mathbf{A}(\mathbf{x},t) \text{ erfüllt} \\ homogene Wellengleichung \end{pmatrix}$

Lösung der Wellengleichung eindeutig, falls zusätzlich bekannt:

$$\mathbf{A}(\mathbf{x},0) \equiv \mathbf{A}_0(\mathbf{x})$$
 , $\frac{\partial \mathbf{A}}{\partial t}(\mathbf{x},0) = \dot{\mathbf{A}}_0(\mathbf{x})$ (Anfangswertproblem der Wellengleichung

Theoretische Physik 2: Elektrodynamik

7.1 Elektromagnetische Wellen im Vakuum

Quasi-eindimensionale Lösungen

Quasi-eindimensionale Lösungen

Ebene Wellen der Form $\mathbf{A} = \mathbf{A}(x_1,t) \rightarrow 1$ -dimensionale Wellengleichung:

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x_1^2}\right)\mathbf{A} = \mathbf{0} \quad , \quad \mathbf{A}(x_1,0) \equiv \mathbf{A}_0(x_1) \quad , \quad \frac{\partial \mathbf{A}}{\partial t}(x_1,0) = \dot{\mathbf{A}}_0(x_1)$$

Koordinatentransformation: $\xi \equiv x_1 - ct, \ \eta \equiv x_1 + ct \rightarrow t$

$$\partial_{\varepsilon}\partial_{\eta}\mathbf{A}=\mathbf{0}$$

Allgemeine Lösung:

$$\mathbf{A}(x_1,t) = \mathbf{a}_1(\xi) + \mathbf{a}_2(\eta) = \mathbf{a}_1(x_1 - ct) + \mathbf{a}_2(x_1 + ct)$$

Anfangsbedingungen ightarrow

$$\mathbf{A}(x_1,t) = \frac{1}{2}[\mathbf{A}_0(x_1-ct) + \mathbf{A}_0(x_1+ct)] + \frac{1}{2c} \int_{x_1-ct}^{x_1+ct} dy \, \dot{\mathbf{A}}_0(y)$$

(Überlagerung einer nach rechts und einer nach links laufenden Welle)

Sphärisch symmetrische Lösungen

Sphärische Symmetrie $\stackrel{\wedge}{=}$ Welle der Form $\mathbf{A} = \mathbf{A}(r,t)$ mit

$$\mathbf{x} = \boldsymbol{\xi} - r\hat{\mathbf{r}}$$
 , $r = |\boldsymbol{\xi} - \mathbf{x}|$, $\hat{\mathbf{r}} = \begin{pmatrix} \cos(\varphi)\sin(\vartheta) \\ \sin(\varphi)\sin(\vartheta) \\ \cos(\vartheta) \end{pmatrix}$

Wellengleichung:

$$\mathbf{0} = \Box \mathbf{A} = \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \Delta\right) \mathbf{A} = \left[\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}\right)\right] \mathbf{A}$$
$$= \left[\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{1}{r} \frac{\partial^2}{\partial r^2} r\right] \mathbf{A} = \frac{1}{r} \left[\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r^2}\right] (r\mathbf{A})$$

Allgemeine Lösung:

$$\mathbf{A}(r,t) = \frac{1}{r} [\mathbf{a}_1(r - ct) + \mathbf{a}_2(r + ct)]$$

Spezialfall für alle t > 0: (ausfallende Kugelwelle)

$$\mathbf{A}(\mathbf{x},t) = \frac{\mathbf{a}(\boldsymbol{\xi})d\boldsymbol{\xi}}{4\pi cr}\delta(r-ct) \quad , \quad r = |\mathbf{x} - \boldsymbol{\xi}|$$

(geht mit Amplitude $a(\xi)d\xi$ vom Volumenelement $d\xi$ um ξ aus)

Theoretische Physik 2: Elektrodynamik

7.1 Elektromagnetische Wellen im Vakuum

Überlagerungen von Kugelwellen

Überlagerungen von Kugelwellen:

$$\begin{aligned} \mathbf{A}(\mathbf{x},t) &= \int d\boldsymbol{\xi} \; \frac{\mathbf{a}(\boldsymbol{\xi})}{4\pi c r} \delta(r-ct) \\ &= \frac{1}{4\pi c} \int d\Omega \; \int dr \; r \mathbf{a}(\mathbf{x}+r\hat{\mathbf{r}}) \delta(r-ct) \quad , \quad d\Omega \equiv \sin(\vartheta) d\vartheta d\varphi \\ &= \frac{t}{4\pi} \int d\Omega \; \mathbf{a}(\mathbf{x}+ct\hat{\mathbf{r}}) \equiv t M_{\mathbf{x},ct}[\mathbf{a}] \qquad \begin{pmatrix} \text{ebenfalls L\"osungen} \\ \text{von } \Box \mathbf{A} = \mathbf{0} \end{pmatrix} \end{aligned}$$

Verhalten zum Anfangszeitpunkt t = 0:

$$\mathbf{A}(\mathbf{x},0) = \mathbf{0} \quad , \quad \frac{\partial A_i}{\partial t}(\mathbf{x},0) = \lim_{t \downarrow 0} \left\{ M_{\mathbf{x},ct}[a_i] + ct M_{\mathbf{x},ct} \left[\frac{\partial a_i}{\partial \mathbf{x}} \cdot \hat{\mathbf{r}} \right] \right\} = a_i(\mathbf{x})$$

$$\frac{\partial^2 A_i}{\partial t^2}(\mathbf{x},0) = \lim_{t \downarrow 0} \left\{ 2c M_{\mathbf{x},ct} \left[\frac{\partial a_i}{\partial \mathbf{x}} \cdot \hat{\mathbf{r}} \right] + c^2 t M_{\mathbf{x},ct} \left[\hat{\mathbf{r}}^T \frac{\partial^2 a_i}{\partial \mathbf{x}^2} \hat{\mathbf{r}} \right] \right\} = 0$$

$$\Rightarrow \quad \mathbf{A}(\mathbf{x},0) = \mathbf{0} \quad , \quad \frac{\partial \mathbf{A}}{\partial t}(\mathbf{x},0) = \mathbf{a}(\mathbf{x}) \quad , \quad \frac{\partial^2 \mathbf{A}}{\partial t^2}(\mathbf{x},0) = \mathbf{0}$$

Allgemeine Lösung der 3-dimensionalen Wellengleichung

Bisheriges Ergebnis: Verhalten von

$$\mathbf{A}(\mathbf{x},t)=tM_{\mathbf{x},ct}[\mathbf{a}]$$

zum Anfangszeitpunkt t = 0:

$$\mathbf{A}(\mathbf{x},0) = \mathbf{0}$$
 , $\frac{\partial \mathbf{A}}{\partial t}(\mathbf{x},0) = \mathbf{a}(\mathbf{x})$, $\frac{\partial^2 \mathbf{A}}{\partial t^2}(\mathbf{x},0) = \mathbf{0}$

Fazit: allgemeine Lösung der 3-dimensionalen Wellengleichung

$$\Box \mathbf{A} = \mathbf{0}$$
 , $\mathbf{A}(\mathbf{x}, 0) = \mathbf{A}_0(\mathbf{x})$, $\frac{\partial \mathbf{A}}{\partial t}(\mathbf{x}, 0) = \dot{\mathbf{A}}_0(\mathbf{x})$

lautet:

$$\mathbf{A}(\mathbf{x},t) = \frac{\partial}{\partial t} \left\{ t M_{\mathbf{x},ct}[\mathbf{A}_0] \right\} + t M_{\mathbf{x},ct}[\dot{\mathbf{A}}_0]$$

Theoretische Physik 2: Elektrodynamik

└_7.1 Elektromagnetische Wellen im Vakuum

Quasi-zweidimensionale Lösungen

Zylinderwellen

Anfangsbedingungen translationsinvariant: (z. B. in ê₃-Richtung)

$$\mathbf{A}_0 = \mathbf{A}_0(x_1, x_2)$$
 , $\dot{\mathbf{A}}_0 = \dot{\mathbf{A}}_0(x_1, x_2)$ (Zylinderwellen)

Führe Polarkoordinaten (ρ, φ) ein:

$$ho \equiv \operatorname{ct} \sin(artheta) \quad , \quad \hat{oldsymbol{
ho}} \equiv egin{pmatrix} \cos(arphi) \ \sin(arphi) \end{pmatrix}$$

Definition: $\mathbf{x}_{\perp} \equiv (x_1, x_2) \Rightarrow$

$$tM_{\mathbf{x},ct}[\mathbf{a}] = rac{1}{2\pi c} \int\limits_0^{2\pi} darphi \int\limits_0^{ct} d
ho \ \mathbf{a}(\mathbf{x}_\perp +
ho \hat{oldsymbol{
ho}}) rac{
ho}{\sqrt{c^2 t^2 -
ho^2}} \ = rac{1}{c} \int\limits_0^{ct} d
ho \ M_{\mathbf{x}_\perp,
ho}^{(2)}[\mathbf{a}] rac{
ho}{\sqrt{c^2 t^2 -
ho^2}}$$

Nacheffekt

Beispiel: (Feld anfangs in $\mathcal{D}_{\perp} \subset \mathbb{R}^2$ lokalisiert)

$$ct_1 \leq |\boldsymbol{\xi}_{\perp} - \mathbf{x}_{\perp}| \leq ct_2 \qquad (\forall \boldsymbol{\xi}_{\perp} \in \mathcal{D}_{\perp})$$

Konsequenzen:

Fig. $t \le t_1$: kein Signal

 $ightharpoonup t > t_1$: Signal

▶ im Langzeitlimes $(t \gg t_2)$:

$$egin{align} z_{\mathrm{c}} & z_{\mathrm{c}} = z_{\mathrm{c}$$

Fazit: Nacheffekt!

Theoretische Physik 2: Elektrodynamik

└_7.2 Der Einfluß von Ladungen und Strömen

L Die inhomogene Wellengleichung

7.2 Der Einfluß von Ladungen und Strömen

$$(
ho, \mathbf{j})
eq (0, \mathbf{0}) \quad \Rightarrow \quad \textit{Lorenz-Eichung} \,\, ext{günstiger}
ightarrow ext{inhomogene} \,\, ext{Wellengleichung:}$$

$$\Box A^{\mu} = \frac{1}{\varepsilon_0 c} j^{\mu}$$

Anfangsbedingung z.Z. t = 0:

$$A^{\mu}(\mathbf{x},0) \equiv A_0^{\mu}(\mathbf{x}) \quad , \quad \frac{\partial A^{\mu}}{\partial t}(\mathbf{x},0) \equiv \dot{A}_0^{\mu}(\mathbf{x})$$

Allgemeine Lösung des Anfangswertproblems:

$$A^\mu = A_1^\mu + A_2^\mu$$

mit

$$\Box A_1^{\mu} = 0 \qquad A_1^{\mu}(\mathbf{x}, 0) = A_0^{\mu}(\mathbf{x}) \qquad \frac{\partial A_1^{\mu}}{\partial t}(\mathbf{x}, 0) = \dot{A}_0^{\mu}(\mathbf{x})$$
$$\Box A_2^{\mu} = \frac{1}{\varepsilon_0 c} j^{\mu} \qquad A_2^{\mu}(\mathbf{x}, 0) = 0 \qquad \frac{\partial A_2^{\mu}}{\partial t}(\mathbf{x}, 0) = 0$$

Bereits bekannt:

$$A_1^\mu(\mathbf{x},t) = rac{\partial}{\partial t} \left\{ t M_{\mathbf{x},ct} [A_0^\mu]
ight\} + t M_{\mathbf{x},ct} [\dot{A}_0^\mu] \hspace{1cm} [\Rightarrow \hspace{1cm} \mathsf{Gesucht:} \hspace{1cm} A_2^\mu(\mathbf{x},t) \hspace{1cm}]$$

Betrachte:

$$A_2^\mu({\mathsf x},t) = \int\limits_0^t d au \; {\mathsf a}^\mu({\mathsf x},t; au)$$

mit:

$$egin{aligned} \Box a^{\mu} &= 0 & (t \geq au) \ a^{\mu}(\mathbf{x}, au; au) &= 0 &, & rac{\partial a^{\mu}}{\partial t}(\mathbf{x}, au; au) &= rac{c}{arepsilon_0} j^{\mu}(\mathbf{x}, au) \end{aligned}$$

 A_2^μ erfüllt: Anfangsbedingung + inhomogene Wellengleichung, denn:

$$\Box \int_{0}^{t} d\tau \ a^{\mu}(\mathbf{x}, t; \tau) = \frac{1}{c^{2}} \frac{\partial}{\partial t} \left[\int_{0}^{t} d\tau \ \frac{\partial a^{\mu}}{\partial t}(\mathbf{x}, t; \tau) + a^{\mu}(\mathbf{x}, t; t) \right] - \int_{0}^{t} d\tau \ (\Delta a^{\mu})(\mathbf{x}, t; \tau)$$

$$= \int_{0}^{t} d\tau \ \left[\frac{1}{c^{2}} \frac{\partial^{2} a^{\mu}}{\partial t^{2}}(\mathbf{x}, t; \tau) - (\Delta a^{\mu})(\mathbf{x}, t; \tau) \right] + \frac{1}{c^{2}} \frac{\partial a^{\mu}}{\partial t}(\mathbf{x}, t; t)$$

$$= \frac{1}{\varepsilon_{0} c} j^{\mu}(\mathbf{x}, t)$$

Theoretische Physik 2: Elektrodynamik

7.2 Der Einfluß von Ladungen und Strömen

Lösung der inhomogenen Wellengleichung

Allgemeine Lösung für $a^{\mu}(\mathbf{x},t;\tau)$ bekannt \Rightarrow allgemeine Form von A_2^{μ} :

$$A_2^\mu(\mathbf{x},t) = \int\limits_0^t d au \; (t- au) M_{\mathbf{x},c(t- au)} \left[rac{c}{arepsilon_0} j_ au^\mu
ight] \quad , \quad j_ au^\mu(\mathbf{x}) \equiv j^\mu(\mathbf{x}, au)$$

Definition: $r \equiv c(t- au) \Rightarrow \text{alternative Darstellung:}$

$$\begin{split} A_2^{\mu}(\mathbf{x},t) &= \frac{1}{c^2} \int\limits_0^{ct} dr \ r M_{\mathbf{x},r} \left[\frac{c}{\varepsilon_0} j_{\tau}^{\mu} \right] \\ &= \frac{1}{4\pi\varepsilon_0 c} \int d\Omega \int\limits_0^{ct} dr \ r j^{\mu} (\mathbf{x} + r \hat{\mathbf{r}}, t - \frac{r}{c}) \\ &= \frac{1}{4\pi\varepsilon_0 c} \int d\xi \frac{j^{\mu} \left(\xi, t - \frac{|\xi - \mathbf{x}|}{c} \right)}{|\xi - \mathbf{x}|} H \left(t - \frac{|\xi - \mathbf{x}|}{c} \right) \end{split}$$

Interpretation:

- nur Signale von $j^{\mu}(\boldsymbol{\xi}, \tau)$ mit $|\boldsymbol{\xi} \mathbf{x}| = c(t \tau)$
- $\tau = t \frac{|\xi x|}{c}$: retardierte Zeit

Quasi-zweidimensionale Lösungen

Spezialfall: (ρ, \mathbf{j}) translations invariant in $\hat{\mathbf{e}}_3$ -Richtung \Rightarrow Zylinderwellen:

$$\begin{split} A_2^{\mu}(\mathbf{x}_{\perp},t) &= \int\limits_0^t d\tau \; \frac{1}{c} \int\limits_0^{c(t-\tau)} d\rho \; M_{\mathbf{x}_{\perp},\rho}^{(2)} \left[\frac{c}{\varepsilon_0} j_{\tau}^{\mu} \right] \frac{\rho}{\sqrt{c^2(t-\tau)^2 - \rho^2}} \\ &= \frac{1}{c^2} \int\limits_0^{ct} dr \int\limits_0^r d\rho \; \frac{\rho}{\sqrt{r^2 - \rho^2}} M_{\mathbf{x}_{\perp},\rho}^{(2)} \left[\frac{c}{\varepsilon_0} j_{t-\frac{r}{c}}^{\mu} \right] \\ &= \frac{1}{2\pi\varepsilon_0 c} \int\limits_0^{ct} dr \; \int d\boldsymbol{\xi}_{\perp} \; \frac{j^{\mu} \left(\boldsymbol{\xi}_{\perp}, t - \frac{r}{c}\right)}{\sqrt{r^2 - |\boldsymbol{\xi}_{\perp} - \mathbf{x}_{\perp}|^2}} H(r - |\boldsymbol{\xi}_{\perp} - \mathbf{x}_{\perp}|) \end{split}$$

Theoretische Physik 2: Elektrodynamik

7.2 Der Einfluß von Ladungen und Strömen

Quasi-eindimensionale Lösungen

Quasi-eindimensionale Lösungen

Analog: (ρ, \mathbf{j}) translations invariant in $\hat{\mathbf{e}}_2$ - und $\hat{\mathbf{e}}_3$ -Richtung \Rightarrow ebene Wellen:

$$egin{aligned} A_2^\mu(x_\perp,t) &= \int\limits_0^t d au \; rac{1}{2c} \int\limits_{x_\perp-c(t- au)}^{x_\perp+c(t- au)} d\xi_\perp \; rac{c}{arepsilon_0} j^\mu(\xi_\perp, au) \ &= rac{1}{2arepsilon_0 c} \int\limits_0^{ct} dr \; \int d\xi_\perp \; j^\mu \left(\xi_\perp,t-rac{r}{c}
ight) H(r-|\xi_\perp-x_\perp|) \end{aligned}$$

Langzeitverhalten

Annahme: j^{μ} räumlich/zeitlich lokalisiert:

$$j^{\mu}(oldsymbol{\xi}, au) = 0 \quad ext{für } |oldsymbol{\xi} - \mathbf{x}| > c T \quad ext{oder } au > T \qquad \left(egin{array}{c} ext{analog für} \ j^{\mu}(oldsymbol{\xi}_{\perp}, au) \ j^{\mu}(oldsymbol{\xi}_{\perp}, au) \end{array}
ight)$$

Langzeitverhalten von A^{μ} :

- Für 3-dim. Wellen und $t \ge 2T$: $A_2^{\mu}(\mathbf{x}, t) = 0$
- Für Zylinderwellen:

$$A_2^\mu({f x}_\perp,t) \sim rac{1}{2\piarepsilon_0 ct} \int d{m \xi}_\perp \; \int d au \, j^\mu({m \xi}_\perp, au) \qquad (t o\infty)$$

Fazit: $\mathbf{E}, \mathbf{B} \neq \mathbf{0}$ $(t \rightarrow \infty)$, Nacheffekt!

Für ebene Wellen:

$$A_2^\mu(\mathsf{x}_\perp,t) = rac{1}{2arepsilon_0} \int d\xi_\perp \; \int d au \, j^\mu(\xi_\perp, au) \qquad (t \geq 2T)$$

Fazit: $\mathbf{E}, \mathbf{B} = \mathbf{0} \quad (t \ge 2T)$

Theoretische Physik 2: Elektrodynamik

└_7.2 Der Einfluß von Ladungen und Strömen

Green'sche Funktionen

Punktquellen

Spezialfall: Punktquelle $j^{\mu}(\mathbf{x},t) = \delta(\mathbf{x})\delta(t-0^+)$ \Rightarrow

$$A_2^{\mu}(\mathbf{x},t) = \frac{1}{4\pi\varepsilon_0 C^{\mathbf{x}}} \delta\left(t - \frac{\mathbf{x}}{c}\right) \equiv G_3(\mathbf{x},t)$$

Analog für Zylinderwellen: Punktquelle $j^{\mu}(\mathbf{x}_{\perp},t)=\delta(\mathbf{x}_{\perp})\delta(t-0^{+})$ \Rightarrow

$$egin{align} A_2^{\mu}(\mathbf{x}_{\perp},t) &= rac{1}{2\piarepsilon_0 c} \int \limits_0^{ct} dr \; rac{\delta(t-rac{r}{c}-0^+)}{\sqrt{r^2-|\mathbf{x}_{\perp}|^2}} H(r-|\mathbf{x}_{\perp}|) \ &= rac{1}{2\piarepsilon_0} rac{H(ct-|\mathbf{x}_{\perp}|)}{\sqrt{(ct)^2-|\mathbf{x}_{\perp}|^2}} \equiv G_2(\mathbf{x}_{\perp},t) \ \end{array}$$

Analog für ebene Wellen: Punktquelle $j^{\mu}(x_{\perp},t)=\delta(x_{\perp})\delta(t-0^{+})$ \Rightarrow

$$A_2^{\mu}(x_{\perp},t)=rac{1}{2arepsilon_0}H(ct-|x_{\perp}|)\equiv G_1(x_{\perp},t)$$

Green'sche Funktionen

 G_3 , G_2 und G_1 erfüllen Gleichungen:

$$\Box G_3 = \frac{1}{\varepsilon_0 c} \delta(\mathbf{x}) \delta(t - 0^+) \qquad G_3(\mathbf{x}, 0) = 0 \qquad \frac{\partial G_3}{\partial t}(\mathbf{x}, 0) = 0$$

$$\left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial \mathbf{x}_{\perp}^2}\right) G_2 = \frac{1}{\varepsilon_0 c} \delta(\mathbf{x}_{\perp}) \delta(t - 0^+) \qquad G_2(\mathbf{x}_{\perp}, 0) = 0 \qquad \frac{\partial G_2}{\partial t}(\mathbf{x}_{\perp}, 0) = 0$$

$$\left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial \mathbf{x}_{\perp}^2}\right) G_1 = \frac{1}{\varepsilon_0 c} \delta(\mathbf{x}_{\perp}) \delta(t - 0^+) \qquad G_1(\mathbf{x}_{\perp}, 0) = 0 \qquad \frac{\partial G_1}{\partial t}(\mathbf{x}_{\perp}, 0) = 0$$

Nomenklatur: Green'sche Funktionen der 3-/2-/1-dimensionale Wellengleichung

Nutzen: $G_{1,2,3}$ bekannt \Rightarrow allgemeine Lösung der 3-/2-/1-dim. Wellengl. bekannt:

$$egin{aligned} A_2^\mu(\mathbf{x},t) &= \int doldsymbol{\xi} \int d au \ G_3(\mathbf{x}-oldsymbol{\xi},t- au) j^\mu(oldsymbol{\xi}, au) \ A_2^\mu(\mathbf{x}_\perp,t) &= \int doldsymbol{\xi}_\perp \ \int d au \ G_2(\mathbf{x}_\perp-oldsymbol{\xi}_\perp,t- au) j^\mu(oldsymbol{\xi}_\perp, au) \ A_2^\mu(\mathbf{x}_\perp,t) &= \int doldsymbol{\xi}_\perp \ \int d au \ G_1(\mathbf{x}_\perp-oldsymbol{\xi}_\perp,t- au) j^\mu(oldsymbol{\xi}_\perp, au) \end{aligned}$$

Theoretische Physik 2: Elektrodynamik

7.2 Der Einfluß von Ladungen und Strömen

Green'sche Funktionen

Das Huygens'sche Prinzip

Insbesondere: G₃ erfüllt die Gleichungen:

$$\Box G_3 = \frac{1}{\varepsilon_0 c} \delta(\mathbf{x}) \delta(t - 0^+) \quad , \quad G_3(\mathbf{x}, 0) = 0 \quad , \quad \frac{\partial G_3}{\partial t}(\mathbf{x}, 0) = 0$$

und impliziert für die allgemeine Lösung der 3-dimensionalen Wellengleichung:

$$A_2^\mu(\mathbf{x},t) = \int doldsymbol{\xi} \int d au \ G_3(\mathbf{x}-oldsymbol{\xi},t- au) j^\mu(oldsymbol{\xi}, au)$$

G₃ erfüllt das Huygens'sche Prinzip:

Das Signal einer Punktquelle ist auf dem Rand $\{x \mid |x| = ct\}$ des Vorwärts-Lichtkegels konzentriert

Alternative Berechnung von $G_3(\mathbf{x}, t)$

Die Fourier-Transformierte $g_3(\mathbf{x}, \omega)$ von $G_3(\mathbf{x}, t)$:

$$g_3(\mathbf{x},\omega) \equiv rac{1}{\sqrt{2\pi}} \int dt \; G_3(\mathbf{x},t) e^{i\omega t} \quad , \quad G_3(\mathbf{x},t) = rac{1}{\sqrt{2\pi}} \int d\omega \; g_3(\mathbf{x},\omega) e^{-i\omega t}$$

erfüllt die inhomogene Helmholtz-Gleichung:

$$\left(\Delta + rac{\omega^2}{c^2}
ight)g_3 = -rac{1}{\sqrt{2\pi}arepsilon_0c}\delta(\mathbf{x})$$

 $\ddot{\mathsf{U}}\mathsf{bung} o$

$$g_3(\mathbf{x},\omega) = \frac{1}{\sqrt{2\pi}\varepsilon_0 c} \left[\frac{\cos\left(\omega\frac{x}{c}\right)}{4\pi x} + B \frac{\sin\left(\omega\frac{x}{c}\right)}{4\pi x} \right] \quad [B = B(\omega)]$$

Inverse Fourier-Transformation:

$$G_3(\mathbf{x},t) = \frac{1}{2\pi\varepsilon_0 c} \int d\omega \left[\cos\left(\omega \frac{\mathbf{x}}{c}\right) + B\sin\left(\omega \frac{\mathbf{x}}{c}\right) \right] \frac{\mathrm{e}^{-i\omega t}}{4\pi x}$$

Theoretische Physik 2: Elektrodynamik

└─7.2 Der Einfluß von Ladungen und Strömen

 \Box Alternative Berechnung von $G_3(\mathbf{x}, t)$

Retardierte und avancierte Green'sche Funktionen

Eigenschaften der Lösung:

- **L**ösung von $\Box G = \frac{1}{\varepsilon_0 c} \delta(\mathbf{x}) \delta(t-0^+)$ nicht eindeutig
- Lösung wird jedoch eindeutig mit den Anfangsbedingungen

$$G_3(\mathbf{x},0) = 0$$
 , $\partial_t G_3(\mathbf{x},0) = 0$ [\Leftrightarrow Wahl $B = i$]

Form der Lösung für B = i:

$$\Rightarrow G_3(\mathbf{x},t) = \frac{1}{4\pi\varepsilon_0 cx} \left[\frac{1}{2\pi} \int d\omega \ e^{-i\omega \left(t - \frac{x}{c}\right)} \right] = \frac{\delta \left(t - \frac{x}{c}\right)}{4\pi\varepsilon_0 cx}$$

Für B=i gilt also für alle t<0: $G_3(\mathbf{x},t)=0$ \Rightarrow G_3 retardiert

Alternative Wahl $B = -i \implies$

$$G_3^{\mathrm{av}}(\mathbf{x},t) = rac{\delta\left(t + rac{x}{c}
ight)}{4\pi\varepsilon_0 cx}$$
 (avanciert)

7.3 Wellengleichungen in materiellen Medien

Maxwell-Theorie "im Medium": Effekte der $\begin{cases} Magnetisierung M \\ Polarisation P \end{cases}$

Hilfsfelder:

$$\mathbf{D} \equiv \varepsilon_0 \mathbf{E} + \mathbf{P} \quad , \quad \mathbf{H} \equiv \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$$

 \Rightarrow Maxwell-Gleichungen: $(\rightarrow$ Kontinuitätsgleichung: $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0)$

$$\mathsf{I.} \; \boldsymbol{\nabla} \cdot \mathbf{D} = \rho$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

II.
$$\nabla \cdot \mathbf{B} = 0$$

$$\mathsf{IV}.\nabla\times\mathsf{H}-\frac{\partial\mathsf{D}}{\partial t}=\mathsf{j}$$

Einfache (lineare, isotrope) Medien: → Materialgleichungen:

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \varepsilon_r \mathbf{E} = \varepsilon \mathbf{E}$$
 , $\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}) = \mu_0 \mu_r \mathbf{H} = \mu \mathbf{H}$

In Leitern: Ohm'sches Gesetz

$$\mathbf{j} = \sigma \mathbf{E}$$

Theorie "im Medium" ist:

- **>** phänomenologisch (Materialparameter $\varepsilon_{\mathrm{r}}, \, \mu_{\mathrm{r}}, \, \sigma$)
- wichtig (praktische Anwendungen!)

Theoretische Physik 2: Elektrodynamik

_7.3 Wellengleichungen in materiellen Medien

Lorentz-kovariante Formulierung

Lorentz-kovariante Formulierung

E und **B**-Felder:

- Feldtensor $F^{\mu\nu} = (\mathbf{E}, c\mathbf{B})$
- antisymmetrischer echter 4-Tensor $M^{\mu\nu}=(-c^2{\bf P},\,c{\bf M})$

Explizite Form der Tensoren $F^{\mu\nu}$ und $M^{\mu\nu}$:

D- und H-Felder:

$$H^{\mu\nu} \equiv \frac{1}{\mu_0} F^{\mu\nu} - M^{\mu\nu} = \left(\frac{1}{\mu_0} \mathbf{E} + c^2 \mathbf{P}, \frac{c}{\mu_0} \mathbf{B} - c \mathbf{M}\right) = (c^2 \mathbf{D}, c \mathbf{H})$$

Homogene Maxwell-Gleichungen:

$$\partial_{\mu}\tilde{F}^{\mu\nu}=0$$

Inhomogene Maxwell-Gleichungen: [im Vakuum $\partial_{\mu}(\frac{1}{\mu_0}F^{\mu\nu})=cj^{\nu}$]

$$\partial_{\mu}H^{\mu\nu}=cj^{
u}$$

Lorentz-kovariante Formulierung der Materialgleichungen

Minkowski (1908): Im Medium $\left\{ \begin{array}{ll} 3 ext{-Geschwindigkeit } \mathbf{u} \\ 4 ext{-Geschwindigkeit } u^\mu = \gamma_u(1,oldsymbol{eta}) \end{array} \right\} \Rightarrow$

• Materialgleichung $\mathbf{D} = \varepsilon \mathbf{E}$:

$$\frac{1}{c^2}H^{\nu\rho}u_{\rho}=\varepsilon F^{\nu\rho}u_{\rho}$$

• Materialgleichung $\mathbf{B} = \mu \mathbf{H}$:

$$\tilde{F}^{\nu\rho}\mathbf{u}_{o}=\mu\tilde{H}^{\nu\rho}\mathbf{u}_{o}$$

► Ohm'sches Gesetz:

$$j^{\nu} = (u_{\rho}j^{\rho})u^{\nu} + \sigma F^{\nu\rho}u_{\rho}$$

Energiebilanzgleichung:

$$-\mathbf{E}\cdot\mathbf{j} = \frac{\partial\rho_{\mathcal{E}}}{\partial t} + \mathbf{\nabla}\cdot\mathbf{S} \qquad \qquad \begin{pmatrix} \text{Interpretation:} \\ \text{Energiedichte }\rho_{\mathcal{E}} \\ \text{Energiestromdichte }\mathbf{S} \end{pmatrix}$$

In linearen Medien:

$$ho_{\mathcal{E}} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B})$$
 , $\mathbf{S} = \mathbf{E} \times \mathbf{H}$

Theoretische Physik 2: Elektrodynamik

7.3 Wellengleichungen in materiellen Medien

Herleitung einer Wellengleichung

Wellenausbreitung in materiellen Medien

Annahmen:

- Materialparameter ε, μ, σ ortsunabhängig und räumlich isotrop
- Ladungsneutralität ($\rho = 0$)

Wähle Coulomb-Eichung ${f
abla}\cdot{f A}=0$ \Rightarrow elektromagnetische Potentiale:

$$\begin{split} \Delta \Phi &= -\frac{1}{\varepsilon} \rho = 0 \qquad \left(\begin{array}{c} \text{eindeutige L\"osung zur RB } \Phi = 0 \text{ f\"ur } |\mathbf{x}| = \infty \text{:} \\ \Phi(\mathbf{x},t) &= 0 \quad (\forall \mathbf{x} \in \mathbb{R}^3) \end{array} \right) \\ \Delta \mathbf{A} &= -[\boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \mathbf{A}) - \Delta \mathbf{A}] = -\boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \mathbf{A}) = -\boldsymbol{\nabla} \times \mathbf{B} \\ &= -\mu \boldsymbol{\nabla} \times \mathbf{H} = -\mu \left(\mathbf{j} + \frac{\partial \mathbf{D}}{\partial t} \right) = -\mu \left(\sigma \mathbf{E} + \varepsilon \frac{\partial \mathbf{E}}{\partial t} \right) \end{split}$$

Felder:
$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t}$$
 , $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$ \rightarrow

$$\Delta \mathbf{A} = \varepsilon \mu \left(\frac{\partial^2 \mathbf{A}}{\partial t^2} + \frac{\sigma}{\varepsilon} \frac{\partial \mathbf{A}}{\partial t} \right) = \frac{1}{\overline{c}^2} \left(\frac{\partial^2 \mathbf{A}}{\partial t^2} + \frac{1}{\tau} \frac{\partial \mathbf{A}}{\partial t} \right)$$

Definitionen:

- lacktriangle Ausbreitungsgeschwindigkeit $ar c \equiv (arepsilon \mu)^{-1/2}$ der Wellen
- lacktriangle charakteristische Dämpfungszeit $au\equivrac{arepsilon}{\sigma}$ der Wellen

Die Telegraphengleichung

Die Felder E und B erfüllen:

$$\Delta \mathbf{E} = \frac{1}{\bar{c}^2} \left(\frac{\partial^2 \mathbf{E}}{\partial t^2} + \frac{1}{\tau} \frac{\partial \mathbf{E}}{\partial t} \right) \quad , \quad \Delta \mathbf{B} = \frac{1}{\bar{c}^2} \left(\frac{\partial^2 \mathbf{B}}{\partial t^2} + \frac{1}{\tau} \frac{\partial \mathbf{B}}{\partial t} \right)$$

Allgemeine Form der Telegraphengleichung:

$$\Delta v = \frac{1}{\bar{c}^2} \left[\frac{\partial^2 v}{\partial t^2} + (r_1 + r_2) \frac{\partial v}{\partial t} + r_1 r_2 v \right] \qquad (r_1, r_2 \ge 0) \qquad \left(\begin{array}{c} \text{Interpretation:} \\ \text{"Dämpfungsterm"} \\ \text{"Oszillatorterm"} \end{array} \right)$$

Unterscheide: [Medium dispersionslos: $\sigma(\omega) \simeq \sigma(0) \equiv \sigma$ (analog für ε , μ)]

lsolatoren ($\omega \tau \gg 1$) \Rightarrow Dämpfungsterm vernachlässigbar:

$$\Delta \textbf{A} = \frac{1}{\bar{c}^{\,2}} \frac{\partial^2 \textbf{A}}{\partial t^2} \quad , \quad \Delta \textbf{E} = \frac{1}{\bar{c}^{\,2}} \frac{\partial^2 \textbf{E}}{\partial t^2} \quad , \quad \Delta \textbf{B} = \frac{1}{\bar{c}^{\,2}} \frac{\partial^2 \textbf{B}}{\partial t^2}$$

Metalle (σ groß, τ klein: $\tau \simeq 10^{-14}\,\mathrm{s}$), $\omega \tau \ll 1 \; \Rightarrow \; \mathsf{Dämpfungsterm}$ dominiert:

$$\Delta \mathbf{A} = rac{1}{ar{c}^{\,2} au}rac{\partial \mathbf{A}}{\partial t} \quad , \quad \Delta \mathbf{E} = rac{1}{ar{c}^{\,2} au}rac{\partial \mathbf{E}}{\partial t} \quad , \quad \Delta \mathbf{B} = rac{1}{ar{c}^{\,2} au}rac{\partial \mathbf{B}}{\partial t}$$

(Diffusionsgleichungen, effektive Diffusionskonstante $\bar{c}^2 \tau$)

lacktriangle schlechte Leiter, Halbleiter: $\omega au\simeq 1$ möglich

Theoretische Physik 2: Elektrodynamik

└─7.4 Skintiefe und Skineffekt

Wechselfelder an einer Grenzschicht

6.4 Skintiefe und Skineffekt

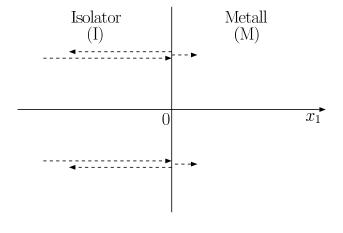
Gesucht: Wechselfelder \mathbf{E} , \mathbf{B} (Frequenz ω) nahe Grenzfläche Leiter/Isolator

Gefunden: Skineffekt!

Annahme: $\rho = 0 \quad \Rightarrow \quad \text{Coulomb-Eichung:}$

$$\mathbf{\nabla}\cdot\mathbf{A}=rac{\partial A_1}{\partial x_1}=0 \ \Rightarrow \ \mathbf{A}\perp\hat{\mathbf{e}}_1$$
 (o. B. d. A.)

Daher möglich: wähle $\mathbf{A} \parallel \hat{\mathbf{e}}_2$ -Richtung



Welle am Übergang zwischen Isolator und gut leitendem Metall

Vektorpotential im Isolator $(x_1 < 0)$: [mit ε_I , μ_I , $\bar{c}_I = (\varepsilon_I \mu_I)^{-1/2}$]

$$\mathbf{A}_{\mathrm{I}}(x_1,t) = \hat{\mathbf{e}}_2 \operatorname{\mathsf{Re}} \left[\mathcal{A}_{\mathrm{I}}(x_1,t)
ight]$$

$$\mathcal{A}_{\mathrm{I}}(x_1,t) \equiv a_r e^{i(kx_1-\omega t)} + a_l e^{-i(kx_1+\omega t)} \qquad \left(egin{array}{c} a_r\,,\; a_l \in \mathbb{C} \; \mathrm{beliebig;} \ \omega = ar{\mathsf{c}}_{\mathrm{I}} k \; (orall k > 0) \end{array}
ight)$$

Im Metall: [mit $\varepsilon_{
m M}$, $\mu_{
m M}$, σ , $ar{c}_{
m M}=(\varepsilon_{
m M}\mu_{
m M})^{-1/2}$, $au=\varepsilon_{
m M}/\sigma$]

$$\mathbf{A}_{\mathrm{M}} = \hat{\mathbf{e}}_{2} \operatorname{Re}[\mathcal{A}_{\mathrm{M}}(x_{1}, t)] \quad , \quad \mathcal{A}_{\mathrm{M}}(x_{1}, t) \equiv a_{\mathrm{M}} e^{-\frac{x_{1}}{\delta} + i\left(\frac{x_{1}}{\delta} - \omega t\right)} \qquad (a_{\mathrm{M}} \in \mathbb{C})$$

Einsetzen in Diffusionsgleichung ightarrow [mit $k_{
m M}=\omega/ar{c}_{
m M}=ar{c}_{
m I}k/ar{c}_{
m M}$]

$$\delta = \sqrt{\frac{2}{\omega \mu_{\rm M} \sigma}} = \frac{\sqrt{2\omega \tau}}{k_{\rm M}} \qquad \text{(\it Skintiefe}; im Metall } \omega \tau \ll 1 \ \, \Rightarrow \ \, \delta \ll \lambda\text{)}$$

Elektrisches Feld:

$$\mathbf{E}_{\mathrm{I}} = -rac{\partial \mathbf{A}_{\mathrm{I}}}{\partial t} = \hat{\mathbf{e}}_{2} \operatorname{Re}[i\omega \mathcal{A}_{\mathrm{I}}(x_{1},t)] \quad , \quad \mathbf{E}_{\mathrm{M}} = \hat{\mathbf{e}}_{2} \operatorname{Re}[i\omega \mathcal{A}_{\mathrm{M}}(x_{1},t)]$$

Magnetfeld:

$$\mathbf{B}_{\mathrm{I}} = \mathbf{\nabla} \times \mathbf{A}_{\mathrm{I}} = \hat{\mathbf{e}}_{1} \times \frac{\partial \mathbf{A}_{\mathrm{I}}}{\partial x_{1}} = \hat{\mathbf{e}}_{3} \operatorname{Re} \left\{ ik \left[a_{r} e^{i(kx_{1} - \omega t)} - a_{l} e^{-i(kx_{1} + \omega t)} \right] \right\}$$

$$\mathbf{B}_{\mathrm{M}} = \mathbf{
abla} imes \mathbf{A}_{\mathrm{M}} = \hat{\mathbf{e}}_1 imes rac{\partial \mathbf{A}_{\mathrm{M}}}{\partial x_1} = \hat{\mathbf{e}}_3 \, \mathsf{Re} \left[rac{i-1}{\delta} \mathcal{A}_{\mathrm{M}}(x_1,t)
ight]$$

Theoretische Physik 2: Elektrodynamik

└─7.4 Skintiefe und Skineffekt

Bestimmung der Koeffizienten (a_l, a_r, a_M)

Die Randbedingungen

Bemerkungen:

- lackbox In beiden Phasen: $f E \perp B \perp \hat{f k} = \hat{f k}_{
 m M} = \hat{f e}_1 \perp f E$
- Auch Stromdichte $\mathbf{j} = \sigma \mathbf{E}$ auf dünne Grenzschicht beschränkt
- Annahme $\rho = 0$ (s. oben) konsistent wegen:

$$\nabla \cdot \mathbf{j} = \sigma \nabla \cdot \mathbf{E} = -\sigma \frac{\partial}{\partial t} (\nabla \cdot \mathbf{A}) = 0 \quad \Rightarrow \quad \text{Kontinuitätsgleichung} \rightarrow \quad \frac{\partial \rho}{\partial t} = 0$$

Randbedingungen: [aus Maxwell-Gleichungen]

$$\hat{\mathbf{e}}_1 \cdot (\mathbf{D}_{\mathrm{I}} - \mathbf{D}_{\mathrm{M}}) = \hat{\mathbf{e}}_1 \cdot (\varepsilon_{\mathrm{I}} \mathbf{E}_{\mathrm{I}} - \varepsilon_{\mathrm{M}} \mathbf{E}_{\mathrm{M}}) = \mathbf{\Sigma}$$
 ($\mathbf{\Sigma} = \mathit{Flächenladungsdichte}$)

$$\boldsymbol{\hat{e}}_1\times(\boldsymbol{\mathsf{E}}_{\mathrm{I}}-\boldsymbol{\mathsf{E}}_{\mathrm{M}})=\boldsymbol{0}$$

$$\hat{\textbf{e}}_1\cdot(\textbf{B}_{\mathrm{I}}-\textbf{B}_{\mathrm{M}})=0$$

$$\hat{\mathbf{e}}_1 imes (\mathbf{H}_{\mathrm{I}} - \mathbf{H}_{\mathrm{M}}) = \hat{\mathbf{e}}_1 imes (rac{1}{\mu_{\mathrm{I}}} \mathbf{B}_{\mathrm{I}} - rac{1}{\mu_{\mathrm{M}}} \mathbf{B}_{\mathrm{M}}) = \mathbf{J}$$
 ($\mathbf{J} = \textit{Flächenstromdichte}$)

Hier: $\Sigma = 0$, J = 0 \Rightarrow $D_{\perp}, B_{\perp}, E_{\parallel}, H_{\parallel}$ stetig

Konsequenzen der Randbedingungen

Bedingung $\mathbf{E}_{\mathrm{I}}(0,t) = \mathbf{E}_{\mathrm{M}}(0,t) \rightarrow$

$$a_r + a_l = a_M$$

Bedingung $rac{1}{\mu_{
m I}} {\sf B}_{
m I}(0,t) = rac{1}{\mu_{
m M}} {\sf B}_{
m M}(0,t)
ightarrow$

$$rac{1}{\mu_{
m I}}ik(a_r-a_l)=rac{1}{\mu_{
m M}}rac{i-1}{\delta}a_{
m M}=rac{1}{\mu_{
m M}}rac{i-1}{\sqrt{2\omega au}}k_{
m M}a_{
m M} \ \Rightarrow \ a_r-a_l=rac{\mu_{
m I}ar{\mathsf{c}}_{
m I}}{\mu_{
m M}ar{\mathsf{c}}_{
m M}}rac{1+i}{\sqrt{2\omega au}}a_{
m M}$$

Kombination \rightarrow [a_M bestimmt Amplitude der Gesamtwelle \Rightarrow beliebig]

$$a_r = rac{1}{2} \left(1 + \sqrt{rac{arepsilon_{
m M} \mu_{
m I}}{arepsilon_{
m I} \mu_{
m M}}} rac{1+i}{\sqrt{2\omega au}}
ight) a_{
m M} \quad , \quad a_l = rac{1}{2} \left(1 - \sqrt{rac{arepsilon_{
m M} \mu_{
m I}}{arepsilon_{
m I} \mu_{
m M}}} rac{1+i}{\sqrt{2\omega au}}
ight) a_{
m M} \quad ,$$

Bemerkung: Form $\delta=\sqrt{\frac{2}{\mu_{\rm M}\sigma\omega}}$ allgemeingültig ; Dimensionsargument:

$$D \stackrel{\wedge}{=} \bar{c}_{\rm M}^{\,2} \tau = \frac{1}{\varepsilon_{\rm M} \mu_{\rm M}} \frac{\varepsilon_{\rm M}}{\sigma} = \frac{1}{\mu_{\rm M} \sigma} \quad ; \quad \bar{\bf x} \equiv {\bf x}/\delta \quad , \quad \bar{\bf t} \equiv \omega t$$

$$\Rightarrow$$
 im Metall: $\frac{1}{2} \frac{\partial^2 \mathbf{A}}{\partial \bar{\mathbf{x}}^2} = \frac{\partial \mathbf{A}}{\partial \bar{t}} \Rightarrow \mathbf{A} = \mathbf{A}(\bar{\mathbf{x}}, \bar{t})$

Theoretische Physik 2: Elektrodynamik

└_7.4 Skintiefe und Skineffekt

Skineffekt

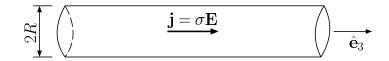
Der Skineffekt

Der Skineffekt =

Die Verdrängung eines hochfrequenten Stroms aus dem Inneren eines leitenden Drahts

Draht:

- ightharpoonup Leitfähigkeit σ , Radius R
- ► Ausrichtung || ê₃
- eingebettet in isolierendesMedium



Skizze eines metallischen Kabels

Struktur der Lösung

Suche axialsymmetrische Lösung:

$$\mathbf{j} = \sigma \mathbf{E} = -\sigma \frac{\partial \mathbf{A}}{\partial t} \parallel \hat{\mathbf{e}}_3 \quad (\mathbf{j} \text{ periodisch mit Frequenz } \omega)$$

mit:

$$\begin{split} \mathbf{A}(\rho,t) &= \hat{\mathbf{e}}_3 \operatorname{Re} \left[\mathcal{A}(\rho) e^{-i\omega t} \right] \quad , \quad \rho \equiv \sqrt{x_1^2 + x_2^2} \\ \mathbf{E}(\rho,t) &= \hat{\mathbf{e}}_3 \operatorname{Re} \left[\mathcal{E}(\rho) e^{-i\omega t} \right] \quad , \quad \mathcal{E}(\rho) = i\omega \mathcal{A}(\rho) \\ \mathbf{j}(\rho,t) &= \hat{\mathbf{e}}_3 \operatorname{Re} \left[j(\rho) e^{-i\omega t} \right] \quad , \quad j(\rho) = i\omega \sigma \mathcal{A}(\rho) \end{split}$$

Magnetfeld:

$$\mathbf{B}(
ho,t) = (\mathbf{
abla} imes \mathbf{A})(
ho,t) = \hat{\mathbf{e}}_{arphi} \operatorname{\mathsf{Re}} \left[\mathcal{B}(
ho) e^{-i\omega t}
ight] \quad , \quad \mathcal{B}(
ho) = -rac{d\mathcal{A}}{d
ho}$$

Theoretische Physik 2: Elektrodynamik

└_7.4 Skintiefe und Skineffekt

Skineffekt

Gleichungen im Inneren und außerhalb des Drahtes

Diffusionsgleichung im Draht ($\rho < R$):

$$\begin{split} 0 &= e^{i\omega t} \left(\Delta - \frac{1}{\bar{c}_{\mathrm{M}}^2 \tau} \frac{\partial}{\partial t} \right) \mathcal{A}(\rho) e^{-i\omega t} = \left(\Delta + \frac{i\omega}{\bar{c}_{\mathrm{M}}^2 \tau} \right) \mathcal{A}(\rho) \\ &= \left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + i\omega \mu_{\mathrm{M}} \sigma \right) \mathcal{A} = \left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + k_{\mathrm{M}}^2 \right) \mathcal{A} \end{split}$$

mit

$$k_{
m M} = rac{\sqrt{2i}}{\delta} = rac{1+i}{\delta} \qquad \left(\delta = \sqrt{rac{2}{\omega \mu_{
m M} \sigma}}
ight)$$

Wellengleichung außerhalb des Drahts ($\rho > R$):

$$0 = e^{i\omega t} \left(\Delta - \frac{1}{\bar{c}_{\mathrm{I}}^{2}} \frac{\partial^{2}}{\partial t^{2}} \right) \mathcal{A}(\rho) e^{-i\omega t} = \left(\frac{\partial^{2}}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + k_{\mathrm{I}}^{2} \right) \mathcal{A}$$

mit

$$k_{
m I} \equiv rac{\omega}{ar{c}_{
m I}}$$

Randbedingungen und Normierung

Randbedingungen an Grenzfläche ($\Sigma = 0$, $\mathbf{J} = \mathbf{0}$):

$$\hat{\mathbf{e}}_{
ho}\cdot\left[arepsilon_{\mathrm{I}}\mathbf{E}(R+0^{+},t)-arepsilon_{\mathrm{M}}\mathbf{E}(R-0^{+},t)
ight]=0$$
 $\hat{\mathbf{e}}_{
ho}\cdot\left[\mathbf{B}(R+0^{+},t)-\mathbf{B}(R-0^{+},t)
ight]=0$

und

$$\begin{split} \hat{\mathbf{e}}_{\rho} \times \left[\mathbf{E}(R+0^+,t) - \mathbf{E}(R-0^+,t) \right] &= \mathbf{0} \\ \hat{\mathbf{e}}_{\rho} \times \left[\frac{1}{\mu_{\mathrm{I}}} \mathbf{B}(R+0^+,t) - \frac{1}{\mu_{\mathrm{M}}} \mathbf{B}(R-0^+,t) \right] &= \mathbf{0} \end{split} \right\} \ \, \text{nicht-trivial!}$$

Definition der *Amplitude* des Gesamtstroms $I_0 \in \mathbb{R}$:

$$\mathbf{I}(t) = 2\pi \int_{0}^{R} d\rho \ \rho \ \mathbf{j}(\rho, t) = \hat{\mathbf{e}}_{3} \operatorname{Re}\left[I_{0}e^{-i\omega t}\right] = \hat{\mathbf{e}}_{3}I_{0}\cos(\omega t) \quad , \quad I_{0} \equiv 2\pi \int_{0}^{R} d\rho \ \rho j(\rho)$$

Fazit: A, E, B, j vollständig festgelegt!

Theoretische Physik 2: Elektrodynamik

_7.4 Skintiefe und Skineffekt

∟Skineffekt

Die Bessel'sche Differentialgleichung & ihre Lösungen

Die Gleichungen für das Vektorpotential:

$$0 = \left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + k_{\rm M}^2\right) \mathcal{A} \quad , \quad 0 = \left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + k_{\rm I}^2\right) \mathcal{A}$$

sind Spezialfälle der allgemeinen Bessel'schen Differentialgleichung

$$z^2 \frac{d^2 w}{dz^2} + z \frac{dw}{dz} + (z^2 - \nu^2)w = 0$$
 (zwei unabhängige Lösungen: $J_{\nu}(z)$ und $Y_{\nu}(z)$)

ightarrow Lösung: (regulär in ho=0 ; a, b_1, b_2 zunächst unbestimmt)

$$\mathcal{A}(\rho) = aJ_0(k_{\mathrm{M}}\rho) \qquad (\rho < R)$$

$$= b_1J_0(k_{\mathrm{I}}\rho) + b_2Y_0(k_{\mathrm{I}}\rho) \qquad (\rho > R)$$

Asymptotisches Verhalten von J_0 , Y_0 : $(|arg(z)| < \pi$, falls z komplex)

$$J_0(z) \sim 1 - rac{1}{4}z^2 + rac{1}{64}z^4 \qquad \qquad Y_0(z) \sim rac{2}{\pi} \left[\ln\left(rac{1}{2}z
ight) + \gamma
ight] \qquad (|z| o 0)$$
 $J_0(z) \sim \sqrt{rac{2}{\pi z}} \cos\left(z - rac{1}{4}\pi
ight) \qquad Y_0(z) \sim \sqrt{rac{2}{\pi z}} \sin\left(z - rac{1}{4}\pi
ight) \qquad (|z| o \infty)$

Bestimmung der Konstanten a

$$egin{aligned} I_0 &= 2\pi \int\limits_0^R d
ho \;
ho j(
ho) = 2\pi i \omega \sigma a \int\limits_0^R d
ho \;
ho J_0(k_{
m M}
ho) = rac{2\pi i \omega \sigma a}{(k_{
m M})^2} \int\limits_0^{k_{
m M}R} dz \; z J_0(z) \ &= rac{2\pi i \omega \sigma a}{i \omega \sigma \mu_{
m M}} \int\limits_0^K dz \; rac{d}{dz} [z J_1(z)] = rac{2\pi a}{\mu_{
m M}} k_{
m M} R J_1(k_{
m M}R) \end{aligned}$$

mit:

$$J_0'(z) = -J_1(z)$$
 , $0 = zJ_0'' + J_0' + zJ_0 = -(zJ_1' + J_1) + zJ_0 = -\frac{d}{dz}(zJ_1) + zJ_0$

Asymptotisches Verhalten von J_1 :

$$J_1(z) \sim \frac{1}{2}z\left(1-\frac{1}{8}z^2+\frac{1}{192}z^4+\cdots\right) \qquad (|z|\to 0) \ \sim \sqrt{\frac{2}{\pi z}}\cos\left(z-\frac{3}{4}\pi\right) \qquad (|z|\to \infty)$$

Insgesamt innerhalb des Drahts:

$$\mathcal{A}(
ho) = rac{\mu_{
m M} \emph{I}_0}{2\pi} rac{\emph{J}_0(\emph{k}_{
m M}
ho)}{\emph{k}_{
m M} \emph{R} \emph{J}_1(\emph{k}_{
m M} \emph{R})}$$

Theoretische Physik 2: Elektrodynamik

└─7.4 Skintiefe und Skineffekt

∟Skineffekt

Niederfrequente Wechselströme

Für niedrige Frequenzen ($\delta \gg R$): [Verwende $j(\rho) = i\omega\sigma\mathcal{A}(\rho)$]

$$\mathcal{A}(
ho) \sim rac{\mu_{
m M} \emph{I}_0 \delta^2}{2\pi \emph{i} R^2} \left[1 + rac{\emph{i}}{4\delta^2} (R^2 - 2
ho^2) + rac{1}{8\delta^4} \left(R^2
ho^2 - rac{1}{2}
ho^4 - rac{1}{3} R^4
ight) + \cdots
ight] \ \emph{j}(
ho) \sim rac{\emph{I}_0}{\pi R^2} \left[1 + rac{\emph{i}}{4\delta^2} (R^2 - 2
ho^2) + rac{1}{8\delta^4} \left(R^2
ho^2 - rac{1}{2}
ho^4 - rac{1}{3} R^4
ight) + \cdots
ight]$$

 \rightarrow Stromdichte:

$$\mathbf{j}(
ho,t) \sim rac{I_0}{\pi R^2} \hat{\mathbf{e}}_3 \left\{ \left[1 + rac{1}{8\delta^4} \left(R^2
ho^2 - rac{1}{2}
ho^4 - rac{1}{3} R^4
ight) + \cdots
ight] \cos(\omega t)
ight.$$
 $\left. + \left[rac{1}{4\delta^2} (R^2 - 2
ho^2) + \cdots
ight] \sin(\omega t)
ight\}$

Hochfrequente Wechselströme

Für hohe Frequenzen ($\delta \ll R$):

$$\mathcal{A}(\rho) \sim \frac{\mu_{\mathrm{M}} I_{0}}{2\pi i k_{\mathrm{M}} R} \left(\frac{R}{\rho}\right)^{\frac{1}{2}} e^{\frac{i-1}{\delta}(R-\rho)} \sim \frac{\mu_{\mathrm{M}} I_{0}}{2\pi i \sqrt{2i}} \frac{\delta}{\sqrt{R\rho}} e^{\frac{i-1}{\delta}(R-\rho)}$$
$$j(\rho) = i\omega \sigma \mathcal{A}(\rho) \sim \frac{I_{0}}{\pi \delta^{2} \sqrt{2i}} \frac{\delta}{\sqrt{R\rho}} e^{\frac{i-1}{\delta}(R-\rho)} \sim \frac{I_{0}}{\pi \delta \sqrt{2R\rho}} e^{\frac{i-1}{\delta}(R-\rho) - \frac{1}{4}\pi i}$$

 \rightarrow Stromdichte:

$$\mathbf{j}(
ho,t)\sim \hat{\mathbf{e}}_3 rac{I_0}{\pi\delta\sqrt{2R
ho}} \mathrm{e}^{-rac{R-
ho}{\delta}}\cos\left(rac{R-
ho}{\delta}-\omega t-rac{\pi}{4}
ight)$$

Fazit: Strom auf dünne Grenzschicht $(R-\rho)=\mathcal{O}(\delta)$ beschränkt!

Skineffekt!

Theoretische Physik 2: Elektrodynamik

└_7.4 Skintiefe und Skineffekt

∟Skineffekt

Bestimmung der Parameter $b_{1,2}$ aus den Randbedingungen

Aus
$$A(R-0^+) = A(R+0^+)$$
 folgt:

$$b_1 J_0(k_{\rm I} R) + b_2 Y_0(k_{\rm I} R) = a J_0(k_{\rm M} R)$$

Aus
$$-\frac{1}{\mu_{\mathrm{M}}}\frac{d\mathcal{A}}{d\rho}(R-0^+)=-\frac{1}{\mu_{\mathrm{I}}}\frac{d\mathcal{A}}{d\rho}(R+0^+)$$
 folgt: (mit $Y_0'=-Y_1$)

$$rac{k_{
m I}}{\mu_{
m I}}[b_1J_1(k_{
m I}R)+b_2Y_1(k_{
m I}R)]=rac{ak_{
m M}}{\mu_{
m M}}J_1(k_{
m M}R)$$

Zusammenfassend:

$$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a \begin{pmatrix} J_0(k_{\mathrm{I}}R) & Y_0(k_{\mathrm{I}}R) \\ \frac{k_{\mathrm{I}}}{\mu_{\mathrm{I}}}J_1(k_{\mathrm{I}}R) & \frac{k_{\mathrm{I}}}{\mu_{\mathrm{I}}}Y_1(k_{\mathrm{I}}R) \end{pmatrix}^{-1} \begin{pmatrix} J_0(k_{\mathrm{M}}R) \\ \frac{k_{\mathrm{M}}}{\mu_{\mathrm{M}}}J_1(k_{\mathrm{M}}R) \end{pmatrix}$$

Fazit:

$$\mathbf{A}, \mathbf{E}, \mathbf{B}, \mathbf{j}$$
 vollständig bekannt $(\forall \mathbf{x} \in \mathbb{R}^3)$

Spezialfall: gutes Metall ($\sigma \to \infty$, $\frac{\delta}{R} \downarrow 0$, I_0 fest)

$$\Rightarrow \quad a \begin{pmatrix} J_0(k_{\rm M}R) \\ \frac{k_{\rm M}}{\mu_{\rm M}} J_1(k_{\rm M}R) \end{pmatrix} \sim \frac{I_0}{2\pi R} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \left(\frac{\delta}{R} \downarrow 0\right)$$

 \Rightarrow Für $\rho > R$:

$$egin{aligned} \mathcal{A}(
ho) &= b_1 J_0(k_{
m I}
ho) + b_2 Y_0(k_{
m I}
ho) \ &\sim rac{\mu_{
m I} I_0}{2\pi k_{
m I} R} rac{J_0(k_{
m I}R) Y_0(k_{
m I}
ho) - Y_0(k_{
m I}R) J_0(k_{
m I}
ho)}{J_0(k_{
m I}R) Y_1(k_{
m I}R) - Y_0(k_{
m I}R) J_1(k_{
m I}R)} \qquad \left(rac{\delta}{R} \downarrow 0
ight) \end{aligned}$$

 \Rightarrow Felder außerhalb des Drahts *endlich*! Denn $\mathcal{E}(\rho) = i\omega \mathcal{A}(\rho)$ und:

$$\mathcal{B}(\rho) = -\frac{d\mathcal{A}}{d\rho}(\rho) \sim \frac{\mu_{\mathrm{I}}I_0}{2\pi R} \frac{J_0(k_{\mathrm{I}}R)Y_1(k_{\mathrm{I}}\rho) - Y_0(k_{\mathrm{I}}R)J_1(k_{\mathrm{I}}\rho)}{J_0(k_{\mathrm{I}}R)Y_1(k_{\mathrm{I}}R) - Y_0(k_{\mathrm{I}}R)J_1(k_{\mathrm{I}}R)} \qquad \left(\frac{\delta}{R} \downarrow 0\right)$$

Tangentiale Komponenten der Felder:

$$\mathbf{E}(R+0^+,t)=\mathbf{0} \qquad , \qquad \mathbf{H}(R+0^+,t)=\hat{\mathbf{e}}_{arphi} rac{\mathrm{I}_0}{2\pi R} \cos(\omega t)$$

Maxwell-Gleichung \rightarrow

$$\mathbf{\nabla} \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t} = \hat{\mathbf{e}}_3 \operatorname{Re} \left[(1 - i\omega \tau) j(\rho) e^{-i\omega t} \right] \sim \mathbf{j} \qquad \left(\frac{\delta}{R} \downarrow 0 \right)$$

Satz von Stokes $o \oint d\mathbf{x} \cdot \mathbf{H}(\mathbf{x},t) = I(t) \quad \Rightarrow \quad \mathsf{Fazit:} \ \Sigma = 0, \ \mathbf{J}
eq \mathbf{0}$

Theoretische Physik 2: Elektrodynamik

7.5 Hohlraumresonatoren und Wellenleiter

Einführung

7.5 Hohlraumresonatoren und Wellenleiter

Fourier-Analyse \Rightarrow untersuche harmonische Lösungen mit Frequenz ω :

$$\mathbf{E}(\mathbf{x},t) = \mathsf{Re}\left[\mathbf{\mathcal{E}}(\mathbf{x})e^{-i\omega t}
ight] \;,\; \mathbf{B}(\mathbf{x},t) = \mathsf{Re}\left[\mathbf{\mathcal{B}}(\mathbf{x})e^{-i\omega t}
ight]$$

Bereits bekannt: $\sigma = \infty \Rightarrow \mathbf{E} = \mathbf{B} = \mathbf{j} = \mathbf{0}$

 $\mbox{Eventuell:} \quad \begin{cases} \mbox{Oberflächenstromdichte } \mbox{\bf J} \neq \mbox{\bf 0} \\ \mbox{Oberflächenladungsdichte } \mbox{\bf \Sigma} \neq \mbox{\bf 0} \end{cases}$

Im isolierenden Bereich \mathcal{D} :

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$
 , $\nabla \cdot \mathbf{D} = \varepsilon \nabla \cdot \mathbf{E} = 0$ \Rightarrow $\nabla \times \boldsymbol{\mathcal{E}} = i\omega \boldsymbol{\mathcal{B}}$, $\nabla \cdot \boldsymbol{\mathcal{E}} = 0$

Definiere komplexes Vektorpotential: ${\cal A}({\bf x}) \equiv {\cal E}({\bf x})/i\omega \ o \ ext{reelles Vektorpotential:}$

$$\mathbf{A}(\mathbf{x},t) \equiv \operatorname{Re}\left[\mathbf{A}(\mathbf{x})e^{-i\omega t}\right]$$

$$\mathbf{\nabla} \cdot \mathbf{A} = \operatorname{Re}\left[(\mathbf{\nabla} \cdot \mathbf{A})e^{-i\omega t}\right] = \operatorname{Re}\left[\frac{1}{i\omega\varepsilon}(\mathbf{\nabla} \cdot \mathbf{\mathcal{E}})e^{-i\omega t}\right] = 0 \qquad (\forall \mathbf{x} \in \mathcal{D})$$

Felder:

$$\mathbf{E}(\mathbf{x}, t) = -\frac{\partial \mathbf{A}}{\partial t} = \operatorname{Re}\left[i\omega \mathbf{A}(\mathbf{x})e^{-i\omega t}\right]$$

$$\mathbf{B}(\mathbf{x}, t) = \mathbf{\nabla} \times \mathbf{A} = \operatorname{Re}\left[(\mathbf{\nabla} \times \mathbf{A})(\mathbf{x})e^{-i\omega t}\right]$$

Helmholtz-Gleichung im Hohlraum

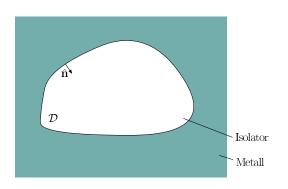
Im Hohlraum:

$$\left(\frac{1}{\bar{\mathsf{c}}^{\,2}}\frac{\partial^2}{\partial t^2} - \Delta\right) \boldsymbol{\mathsf{A}} = \boldsymbol{\mathsf{0}} \qquad \left(\boldsymbol{\mathsf{x}} \in \mathcal{D} \;,\; \bar{\mathsf{c}} = \frac{1}{\sqrt{\varepsilon\mu}}\right)$$

ightarrow Helmholtz-Gleichung für $\mathcal{A}(\mathbf{x})$:

$$\Rightarrow \left(\Delta + \frac{\omega^2}{\bar{c}^2}\right) \mathbf{A} = (\Delta + k^2) \mathbf{A} = \mathbf{0}$$
$$\left(\mathbf{x} \in \mathcal{D}, \lambda = k^2 \equiv \frac{\omega^2}{\bar{c}^2}\right)$$

 $\hat{\mathbf{n}}(\mathbf{x}) \equiv \text{Normalvektor auf Rand } \partial \mathcal{D} \quad (\forall \mathbf{x} \in \partial \mathcal{D})$



Im Leiter eingebetteter Isolator (Hohlraum)

Theoretische Physik 2: Elektrodynamik

7.5 Hohlraumresonatoren und Wellenleiter

Einführung

Randbedingungen

Randbedingungen $\hat{\mathbf{n}} \times \mathbf{E} = \mathbf{0}$, $\hat{\mathbf{n}} \cdot \mathbf{B} = \mathbf{0}$ $(\mathbf{x} \in \partial \mathcal{D}) \rightarrow \hat{\mathbf{n}} \times \mathcal{A} = \mathbf{0}$ $(\mathbf{x} \in \partial \mathcal{D})$

Inhomogene Maxwell-Gleichungen:

$$egin{aligned} oldsymbol{
abla} oldsymbol{
a$$

bzw.

$$\begin{array}{lcl} \boldsymbol{\Sigma} & = & \boldsymbol{\varepsilon} \ \hat{\mathbf{n}} \cdot \mathbf{E} & = & \boldsymbol{\varepsilon} \operatorname{Re} \left[i \omega (\hat{\mathbf{n}} \cdot \boldsymbol{\mathcal{A}}) e^{-i \omega t} \right] \\ \mathbf{J} & = & \frac{1}{\mu} \ \hat{\mathbf{n}} \times \mathbf{B} & = & \frac{1}{\mu} \operatorname{Re} \left[\hat{\mathbf{n}} \times (\boldsymbol{\nabla} \times \boldsymbol{\mathcal{A}}) e^{-i \omega t} \right] \end{array}$$

Dichten (Σ, \mathbf{J}) nicht unabhängig, erfüllen Kontinuitätsgleichung:

$$0 = \frac{\partial \boldsymbol{\Sigma}}{\partial t} + \boldsymbol{\nabla}_{\mathrm{t}} \cdot \boldsymbol{J} = \frac{\partial \boldsymbol{\Sigma}}{\partial t} - \left[\hat{\boldsymbol{n}} \times (\hat{\boldsymbol{n}} \times \boldsymbol{\nabla}) \right] \cdot \boldsymbol{J} \qquad \left[\, \boldsymbol{x} \in \partial \mathcal{D} \;,\; \boldsymbol{\nabla}_{\mathrm{t}} \equiv \boldsymbol{\nabla} - \hat{\boldsymbol{n}} (\hat{\boldsymbol{n}} \cdot \boldsymbol{\nabla}) \, \right]$$

 $Bemerkung: \qquad \hbox{Endliche Leitf\"{a}higkeit im Metall} \rightarrow \hbox{Dissipation!}$

Quaderförmiger Hohlraum

Einfaches Beispiel:

$$\mathcal{D} = \{ \mathbf{x} \mid 0 < x_i < L_i \}$$

Variablentrennung \rightarrow Lösung:

$$A_1 = a_1 \cos(k_1 x_1) \sin(k_2 x_2) \sin(k_3 x_3)$$

$$A_2 = a_2 \sin(k_1 x_1) \cos(k_2 x_2) \sin(k_3 x_3)$$

$$A_3 = a_3 \sin(k_1 x_1) \sin(k_2 x_2) \cos(k_3 x_3)$$

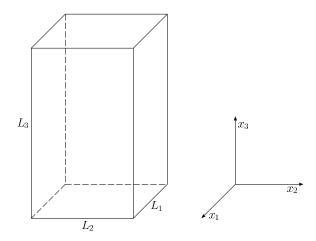
Wellenvektor $\mathbf{k} = (k_1, k_2, k_3)$ mit

$$k_i = \frac{n_i \pi}{L_i}$$

$$\begin{bmatrix} n_i \in \mathbb{N} \\ n_i = 0 \Rightarrow \\ n_j \neq 0 \ (j \neq i) \end{bmatrix}$$

Coulomb-Eichung $\mathbf{k} \cdot \mathbf{a} = 0$:

 \Rightarrow nur zwei der drei a_i unabhängig



Quaderförmiger isolierender Hohlraum \mathcal{D}

Theoretische Physik 2: Elektrodynamik

7.5 Hohlraumresonatoren und Wellenleiter

Beispiel: Quaderförmiger Hohlraum

Oberflächendichten, TE-/TM-Moden

Elektrisches Feld im Resonator: $\mathbf{E} = \text{Re}[i\omega \mathbf{A}e^{-i\omega t}]$

Magnetfeld: $\mathbf{B} = \operatorname{Re}[(\mathbf{\nabla} \times \mathbf{A})e^{-i\omega t}]$ mit

$$abla imes oldsymbol{\mathcal{A}} = egin{pmatrix} \sin(k_1x_1)\cos(k_2x_2)\cos(k_3x_3)(k_2a_3-k_3a_2) \\ \cos(k_1x_1)\sin(k_2x_2)\cos(k_3x_3)(k_3a_1-k_1a_3) \\ \cos(k_1x_1)\cos(k_2x_2)\sin(k_3x_3)(k_1a_2-k_2a_1) \end{pmatrix}$$

Dichten (Σ, \mathbf{J}) z. B. auf Fläche $x_1 = 0$: (erfüllen Kontinuitätsgleichung)

$$\Sigma(t) = \omega \varepsilon \sin(k_2 x_2) \sin(k_3 x_3) \operatorname{Re} \left[i a_1 e^{-i\omega t} \right]$$

$$\mathbf{J}(t) = \frac{1}{\mu} \, \hat{\mathbf{e}}_1 \times \mathbf{B} = \frac{1}{\mu} \begin{pmatrix} 0 \\ -\cos(k_2 x_2) \sin(k_3 x_3) \, \text{Re} \left[(k_1 a_2 - k_2 a_1) e^{-i\omega t} \right] \\ \sin(k_2 x_2) \cos(k_3 x_3) \, \text{Re} \left[(k_3 a_1 - k_1 a_3) e^{-i\omega t} \right] \end{pmatrix}$$

 $Quader = {\sf Zylinder} \ in \ \hat{\textbf{e}}_{3}\text{-}{\sf Richtung} \ mit \ rechteckigem} \ Querschnitt!$

Wahl der zwei unabhängigen Lösungen:

- $ightharpoonup E_3 = 0$: transversal-elektrische (TE) Mode
- $ightharpoonup B_3 = 0$: transversal-magnetische (TM) Mode

TE- und TM-Wellen

TE-Welle: $\mathbf{k} \cdot \mathbf{a} = 0$, $a_3 = 0 \Rightarrow a_2 = -\frac{k_1}{k_2} a_1 \Rightarrow$ Vektorpotential:

$$\mathbf{A}^{\mathrm{TE}} = \begin{pmatrix} \cos(k_1 x_1) \sin(k_2 x_2) \sin(k_3 x_3) \\ -\frac{k_1}{k_2} \sin(k_1 x_1) \cos(k_2 x_2) \sin(k_3 x_3) \\ 0 \end{pmatrix} \operatorname{Re} \left[a_1 e^{-i\omega t} \right]$$

TM-Welle:
$$\begin{cases} \mathbf{k} \cdot \mathbf{a} = 0 \\ k_1 a_2 - k_2 a_1 = 0 \end{cases} \Rightarrow \begin{cases} a_2 = \frac{k_2}{k_1} a_1 \\ a_3 = -\frac{k_1^2 + k_2^2}{k_1 k_3} a_1 \end{cases} \Rightarrow \text{Vektorpotential:}$$

$$\mathbf{A}^{\mathrm{TM}} = \begin{pmatrix} \cos(k_1 x_1) \sin(k_2 x_2) \sin(k_3 x_3) \\ \frac{k_2}{k_1} \sin(k_1 x_1) \cos(k_2 x_2) \sin(k_3 x_3) \\ -\frac{k_1^2 + k_2^2}{k_1 k_3} \sin(k_1 x_1) \sin(k_2 x_2) \cos(k_3 x_3) \end{pmatrix} \operatorname{Re} \left[a_1 e^{-i\omega t} \right]$$

$$\Rightarrow egin{array}{c} \left\{ \exists \atop
exists
ight.
ight\} \ ext{niederfrequente} \ \left\{ egin{array}{c} \mathsf{TE} \\ \mathsf{TM} \end{array}
ight\} ext{-Moden mit } (n_1,n_2) \in \{(1,0),(0,1)\} \end{array}$$

Theoretische Physik 2: Elektrodynamik

Zylindergeometrien, TE- und TM-Wellen

Zylinderförmige Hohlräume

Zylindrischer Hohlraum $\parallel \hat{\mathbf{e}}_3$ mit beliebigem Querschnitt:

$$0 < x_3 < L_3$$
 , $\mathbf{x}_{\perp} \equiv (x_1, x_2) \in \mathcal{D}_{\perp}$

Vektorpotential:

$$\mathcal{A}(\mathbf{x}) = \begin{pmatrix} a_1(\mathbf{x}_{\perp}) \sin(k_3 x_3) \\ a_2(\mathbf{x}_{\perp}) \sin(k_3 x_3) \\ a_3(\mathbf{x}_{\perp}) \cos(k_3 x_3) \end{pmatrix}$$

TE-Welle:

$$\left[\kappa^2 = k^2 - k_3^2 = \frac{\omega^2}{\bar{c}^2} - k_3^2 \right]$$

$$\left(\Delta_2 + \kappa^2\right) egin{pmatrix} a_1 \ a_2 \end{pmatrix} = egin{pmatrix} 0 \ 0 \end{pmatrix} \quad , \quad a_3 = 0 \quad , \quad rac{\partial a_1}{\partial x_1} + rac{\partial a_2}{\partial x_2} = 0 \qquad (\mathbf{x}_\perp \in \mathcal{D}_\perp)$$

Randbedingung $\hat{\mathbf{n}} \times \mathbf{A} = \mathbf{0} \quad \rightarrow \quad \left\{ \begin{matrix} a_3 = 0 \\ n_2 a_1 - n_1 a_2 = 0 \end{matrix} \right\} \quad (\mathbf{x}_\perp \in \partial \mathcal{D}_\perp)$

Form von $\mathbf{a}(\mathbf{x}_{\perp})$:

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ 0 \end{pmatrix} = \mathbf{\nabla} \times \begin{pmatrix} 0 \\ 0 \\ \psi \end{pmatrix} = \begin{pmatrix} \partial \psi / \partial x_2 \\ -\partial \psi / \partial x_1 \\ 0 \end{pmatrix}$$

Allgemeine Lösung für TE-Wellen

Das Feld $\psi(\mathbf{x}_{\perp})$ erfüllt:

$$(\Delta_2 + \kappa^2)\psi = \lambda \quad \begin{pmatrix} \mathbf{x}_\perp \in \mathcal{D}_\perp \\ \lambda \in \mathbb{R} \text{ konstant} \end{pmatrix} \quad ; \quad \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} \cdot \mathbf{\nabla}_2 \psi = \frac{\partial \psi}{\partial n} = 0 \quad (\mathbf{x}_\perp \in \partial \mathcal{D}_\perp)$$

Alternative Darstellung:

$$(\Delta_2 + \kappa^2)\tilde{\psi} = 0$$
 , $\frac{\partial \tilde{\psi}}{\partial n} = 0$, $\tilde{\psi} \equiv \left(\psi - \frac{\lambda}{\kappa^2}\right)$

Wähle o. B. d. A.: $\lambda = 0 \Rightarrow$

$$(\Delta_2 + \kappa^2)\psi = 0 \quad (\mathbf{x}_\perp \in \mathcal{D}_\perp) \quad , \quad \frac{\partial \psi}{\partial \mathbf{r}} = 0 \quad (\mathbf{x}_\perp \in \partial \mathcal{D}_\perp)$$

Fazit: TE-Welle ↔ Neumann-Problem für 2-dimensionale Helmholtz-Gleichung

Theoretische Physik 2: Elektrodynamik

_____7.5 Hohlraumresonatoren und Wellenleiter

Zylindergeometrien, allgemeine Lösung für TM-Wellen

Allgemeine Lösung für TM-Wellen

TM-Welle:
$$\left[\kappa^2 = k^2 - k_3^2 = \frac{\omega^2}{5^2} - k_3^2\right]$$

$$(\Delta_2 + \kappa^2)\mathbf{a} = \mathbf{0} \quad , \quad \frac{\partial a_1}{\partial x_2} - \frac{\partial a_2}{\partial x_1} = \mathbf{0} \quad , \quad \frac{\partial a_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2} - k_3 a_3 = \mathbf{0} \qquad (\mathbf{x}_{\perp} \in \mathcal{D}_{\perp})$$

Randbedingung $\hat{\mathbf{n}} \times \mathcal{A} = \mathbf{0} \quad \rightarrow$

$$a_3 = 0$$
, $n_2 a_1 - n_1 a_2 = 0$ $(\mathbf{x}_{\perp} \in \partial \mathcal{D}_{\perp})$

$$\frac{\partial a_1}{\partial x_2} - \frac{\partial a_2}{\partial x_1} = 0$$
 \Rightarrow Differential $d\psi = a_1 dx_1 + a_2 dx_2$ exakt \Rightarrow $\exists \psi(\mathbf{x}_\perp)$ mit:

$$a_1 = rac{\partial \psi}{\partial x_1} \quad , \quad a_2 = rac{\partial \psi}{\partial x_2} \quad , \quad k_3 a_3 = \Delta_2 \psi \qquad (\mathbf{x}_\perp \in \mathcal{D}_\perp)$$

Das Feld ψ erfüllt:

$$(\Delta_2 + \kappa^2)\psi = \lambda_1$$
 $(\mathbf{x}_\perp \in \mathcal{D}_\perp \;,\; \lambda_1 \in \mathbb{C} \; \mathsf{konstant}\,)$

Randbedingungen:

$$egin{aligned} \Delta_2 \psi &= 0 \quad , \quad inom{-n_2}{n_1} \cdot oldsymbol{
abla}_2 \psi &= \nabla_{2\mathrm{t}} \psi = 0 \qquad (\mathbf{x}_\perp \in \mathcal{D}_\perp) \ \psi &= \lambda_2 \qquad (\mathbf{x}_\perp \in \partial \mathcal{D}_\perp \, , \, \lambda_2 \in \mathbb{C} \; \mathrm{konstant}) \end{aligned}$$

Kombination mit Randbedingung $\Delta_2 \psi = 0$ und PDGI. ightarrow

$$\lambda_1 = \Delta_2 \psi + \kappa^2 \psi = \kappa^2 \lambda_2 \qquad (\mathbf{x}_\perp \in \partial \mathcal{D}_\perp)$$

Definition: $\tilde{\psi} \equiv \psi - \lambda_2 \implies$

$$(\Delta_2 + \kappa^2) ilde{\psi} = 0 \qquad (\mathbf{x}_\perp \in \mathcal{D}_\perp) \quad , \quad ilde{\psi} = 0 \qquad (\mathbf{x}_\perp \in \partial \mathcal{D}_\perp)$$

Wähle o. B. d. A.: $\lambda_2 = 0 \Rightarrow$

$$(\Delta_2 + \kappa^2)\psi = 0$$
 $(\mathbf{x}_{\perp} \in \mathcal{D}_{\perp})$, $\psi = 0$ $(\mathbf{x}_{\perp} \in \partial \mathcal{D}_{\perp})$

Fazit: TM-Welle ↔ Dirichlet-Problem für 2-dimensionale Helmholtz-Gleichung

Theoretische Physik 2: Elektrodynamik

_____7.5 Hohlraumresonatoren und Wellenleiter

└─Wellenleiter

Wellenleiter

Definition: Wellenleiter \equiv zylindrischer Hohlraum mit $L_3 = \infty$

Struktur der Lösungen:

$$\mathbf{A}(\mathbf{x},t) = \operatorname{Re}\left[\mathbf{a}(\mathbf{x}_{\perp})e^{i(k_3x_3 - \omega t)}\right] \quad , \quad (\Delta_2 + \kappa^2)\mathbf{a} = \mathbf{0} \quad , \quad \omega = \bar{c}\sqrt{\kappa^2 + k_3^2}$$

Phasengeschwindigkeit der Welle:

$$\frac{\omega}{k_3} = \bar{c} \ \frac{\sqrt{\kappa^2 + k_3^2}}{k_3} > \bar{c}$$

Gruppengeschwindigkeit:

$$\frac{\partial \omega}{\partial k_3} = \bar{c} \, \frac{k_3}{\sqrt{\kappa^2 + k_3^2}} < \bar{c}$$

⇒ geometrischer Mittelwert:

$$\left(\frac{\omega}{k_3}\frac{\partial\omega}{\partial k_3}\right)^{1/2} = \left(\frac{\partial\omega^2}{\partial k_3^2}\right)^{1/2} = \bar{c}$$

[Gruppengeschwindigkeit relevant für Transport von "Information"]

SI-Einheiten

Dielektrizitätskonstante des Vakuums:

$$\varepsilon_0 \equiv \frac{1}{\mu_0 c^2}$$

Permeabilität des Vakuums:

$$\mu_0 \equiv 4\pi \times 10^{-7} \, \frac{\mathrm{kg m}}{\mathrm{A}^2 \mathrm{s}^2}$$

Lichtgeschwindigkeit:

$$c \equiv 299792458 \, \text{m/s}$$

"Wellenwiderstand" des Vakuums: $\sqrt{\frac{\mu_0}{\varepsilon_0}} \simeq 376,73\,\Omega$

Theoretische Physik 2: Elektrodynamik

L Anhang

└─Beweis der Ladungserhaltung

Beweis der Ladungserhaltung

Inhomogene Maxwell-Gleichungen:

$$I. \quad \nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$
 IV. $\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}$

Kontinuitätsgleichung:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{j} = \frac{\partial}{\partial t} \varepsilon_0 \boldsymbol{\nabla} \cdot \mathbf{E} + \boldsymbol{\nabla} \cdot \left(\frac{1}{\mu_0} \boldsymbol{\nabla} \times \mathbf{B} - \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) = 0 \quad \Box$$

Ladung: $q(t) \equiv \int d\mathbf{x} \; \rho(\mathbf{x},t) \; \Rightarrow \; \mathsf{Satz} \; \mathsf{von} \; \mathsf{Gauß} \; \rightarrow$

$$\frac{dq}{dt} = \int_{\mathbb{R}^3} d\mathbf{x} \; \frac{\partial \rho}{\partial t} = -\int_{\mathbb{R}^3} d\mathbf{x} \; \nabla \cdot \mathbf{j} = -\int_{\partial \mathbb{R}^3} d\mathbf{S} \cdot \mathbf{j} = 0$$

Fazit: Ladungserhaltung!

◀ Allgemeine Eigenschaften

Warum "im Vakuum"?

Maxwell-Gleichungen "im Vakuum":

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho$$

II.
$$\nabla \cdot \mathbf{B} = 0$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$
 IV. $\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}$

Quellen ρ und $\dot{\mathbf{j}}$:

$$ho(\mathbf{x},t) \equiv \sum_i q_i \; \delta(\mathbf{x} - \mathbf{x}_i(t)) \quad , \quad \mathbf{j}(\mathbf{x},t) \equiv \sum_i q_i \; \dot{\mathbf{x}}_i(t) \delta(\mathbf{x} - \mathbf{x}_i(t))$$

Dirac'sche Deltafunktion: $\int d\mathbf{x}' \ f(\mathbf{x}') \delta(\mathbf{x}' - \mathbf{x}) = f(\mathbf{x})$, $\delta(\boldsymbol{\xi}) = \delta(\xi_1) \delta(\xi_2) \delta(\xi_3)$

Konsistenz:

◀ Allgemeine Eigenschaften

$$0 \stackrel{?}{=} \frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = \frac{\partial}{\partial t} \sum_{i} q_{i} \, \delta(\mathbf{x} - \mathbf{x}_{i}(t)) + \nabla \cdot \mathbf{j}$$

$$= \sum_{i} q_{i} \sum_{l=1}^{3} \left[-\dot{x}_{il}(t) \frac{\partial}{\partial x_{l}} \right] \delta(\mathbf{x} - \mathbf{x}_{i}(t)) + \nabla \cdot \mathbf{j} = -\nabla \cdot \mathbf{j} + \nabla \cdot \mathbf{j} = 0$$

Theoretische Physik 2: Elektrodynamik

L Anhang

Magnetische Monopole

Magnetische Monopole

Maxwell-Gleichungen "im Vakuum" mit magnetischen Ladungen/Strömen?

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho_{\mathrm{e}}$$

II.
$$\nabla \cdot \mathbf{B} = \rho_{\mathrm{m}}$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = -\mathbf{j}_{m}$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = -\mathbf{j}_{\mathrm{m}}$$
 IV. $\nabla \times \mathbf{B} - \varepsilon_{0}\mu_{0}\frac{\partial \mathbf{E}}{\partial t} = \mu_{0}\mathbf{j}_{\mathrm{e}}$

Ladungserhaltung?

$$\frac{\partial \rho_{\rm m}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j}_{\rm m} = \frac{\partial}{\partial t} \boldsymbol{\nabla} \cdot \boldsymbol{B} + \boldsymbol{\nabla} \cdot \left(-\boldsymbol{\nabla} \times \boldsymbol{E} - \frac{\partial \boldsymbol{B}}{\partial t} \right) \, = 0$$

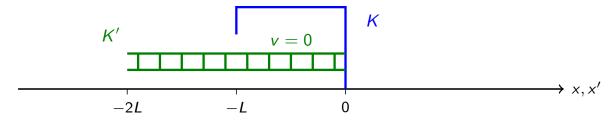
Dirac (1931): Streuung einer elektrischen Ladung $q_{
m e}
eq 0$ am Feld einer magnetischen Ladung $q_{
m m}
eq 0 \;\; o \;\;$ Konsistenzbedingung $rac{q_{
m e}\,q_{
m m}}{2\pi\hbar} = n \in \mathbb{Z}ackslash\{0\}$ Konsequenzen?

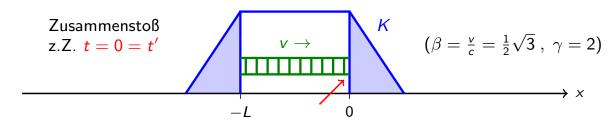
- lacktriangle Quantisierung der elektrischen Ladung: $q_{
 m e}=nrac{2\pi\hbar}{q_{
 m m}}$
- $q_{
 m e} = |e| \; , \; n = n_1 \quad \Rightarrow \quad q_{
 m m} = n_1 rac{2\pi\hbar}{|e|}$ ► Streuung einer Elementarladung: → magnetische Feinstrukturkonstante:

$$lpha_{
m m} \equiv rac{q_{
m m}^2}{4\pi\mu_0\hbar c} = rac{(n_1)^2}{4}rac{4\piarepsilon_0\hbar c}{{
m e}^2} = rac{(n_1)^2}{4lpha_{
m e}}\gg 1$$

Das Leiterparadoxon

(in K und K')



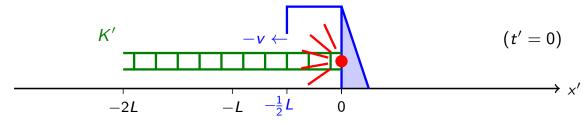


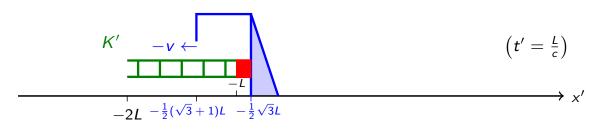
Theoretische Physik 2: Elektrodynamik

Anhang

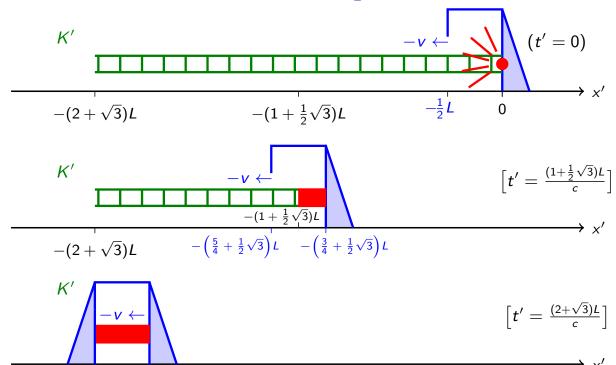
Las Leiterparadoxon

Das Leiterparadoxon in K'





Das Leiterparadoxon in K' $(\beta = \frac{1}{2}\sqrt{3}, \gamma = 2)$

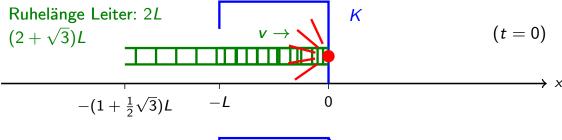


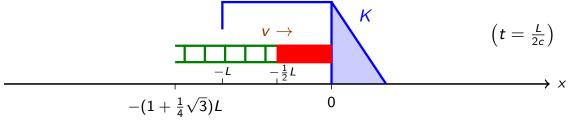
Theoretische Physik 2: Elektrodynamik

Anhang

__ Das Leiterparadoxon

Das Leiterparadoxon in K







Kovariante Beschreibung von magnetischen Monopolen?

Maxwell-Gleichungen "im Vakuum" mit magnetischen Ladungen/Strömen:

I.
$$\mathbf{\nabla} \cdot \mathbf{E} = \frac{1}{arepsilon_0}
ho_{
m e}$$

II.
$$\nabla \cdot \mathbf{B} = \rho_{\mathrm{n}}$$

III.
$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = -\mathbf{j}_{\text{m}}$$

I.
$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho_e$$
 II. $\nabla \cdot \mathbf{B} = \rho_m$ III. $\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = -\mathbf{j}_m$ IV. $\nabla \times \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}_e$

Ladungserhaltung:

$$rac{\partial
ho_{
m m}}{\partial t} + oldsymbol{
abla} \cdot oldsymbol{j}_{
m m} = 0$$

Feldtensor & dualer Feldtensor?

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & -cB_3 & cB_2 \\ E_2 & cB_3 & 0 & -cB_1 \\ E_3 & -cB_2 & cB_1 & 0 \end{pmatrix} , \quad \tilde{F}^{\mu\nu} = \begin{pmatrix} 0 & -c\mathbf{B}^{\mathrm{T}} \\ 0 & E_3 & -E_2 \\ c\mathbf{B} & -E_3 & 0 & E_1 \\ E_2 & -E_1 & 0 \end{pmatrix}$$

Wie bisher: $\partial_{\mu}F^{\mu\nu}=\mu_0cj_{\rm e}^{\nu}$ & außerdem

Theoretische Physik 2: Elektrodynamik

L Anhang

└─Kovariante Form der Maxwell-Theorie mit magnetischen Monopolen

Kovariante Beschreibung von magnetischen Monopolen?

Wie bisher: $\partial_{\mu}F^{\mu\nu} = \mu_0 c i_e^{\nu}$ & außerdem:

$$\partial_{\mu} \tilde{F}^{\mu 0} = c (\mathbf{\nabla} \cdot \mathbf{B}) = c \rho_{\mathrm{m}}$$

sowie

$$\partial_{\mu} ilde{\mathcal{F}}^{\mu j} = -\left(rac{\partial \mathbf{B}}{\partial t} + \mathbf{
abla} imes \mathbf{E}
ight)_{j} = j_{\mathrm{m}j}$$

Daher insgesamt?

$$\partial_{\mu} ilde{\mathcal{F}}^{\mu
u}=j_{\mathrm{m}}^{
u}\quad,\quad j_{\mathrm{m}}^{
u}\equiv(oldsymbol{c}
ho_{\mathrm{m}},\mathbf{j}_{\mathrm{m}})$$

∃ kovariante Beschreibung von magnetischen Monopolen! (eindeutig?)

Dualitätstransformation! (kontinuierlich)

$$(F')^{\mu\nu} \equiv \cos(\xi)F^{\mu\nu} + \sin(\xi)\tilde{F}^{\mu\nu}$$
 (ξ Pseudoskalar)
 $(\tilde{F}')^{\mu\nu} \equiv \cos(\xi)\tilde{F}^{\mu\nu} + \sin(\xi)\tilde{\tilde{F}}^{\mu\nu} = \cos(\xi)\tilde{F}^{\mu\nu} - \sin(\xi)F^{\mu\nu}$

Matrixform?

Kovariante Beschreibung von magnetischen Monopolen?

In Matrixform?

$$\begin{pmatrix} F' \\ \tilde{F}' \end{pmatrix} = \begin{pmatrix} \cos(\xi) & \sin(\xi) \\ -\sin(\xi) & \cos(\xi) \end{pmatrix} \begin{pmatrix} F \\ \tilde{F} \end{pmatrix} \quad , \quad \begin{pmatrix} \mathbf{E}' \\ c\mathbf{B}' \end{pmatrix} = \begin{pmatrix} \cos(\xi) & \sin(\xi) \\ -\sin(\xi) & \cos(\xi) \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ c\mathbf{B} \end{pmatrix}$$

4-Divergenz!

$$egin{pmatrix} egin{pmatrix} \mu_0 c j_{
m e}' \ j_{
m m}' \end{pmatrix} = egin{pmatrix} \cos(\xi) & \sin(\xi) \ -\sin(\xi) & \cos(\xi) \end{pmatrix} egin{pmatrix} \mu_0 c j_{
m e} \ j_{
m m} \end{pmatrix} \quad \Rightarrow \quad j_{
m m}' = -\sin(\xi) \mu_0 c j_{
m e} + \cos(\xi) j_{
m m} \end{pmatrix}$$

Konsequenzen?

- Physikalische Dimensionen: $[j_{\rm m}]/[j_{\rm e}] = [\mu_0 c] = \left[\sqrt{\mu_0/\varepsilon_0}\right] = \Omega$ Numerischer Wert: $\sqrt{\mu_0/\varepsilon_0} \simeq 376,73\,\Omega$ ("Wellenwiderstand" des Vakuums)
- ightharpoonup (**E**, c**B**), ($\mu_0 c j_{\rm e}, j_{\rm m}$) durch Drehung ineinander überführbar! (Dualität!)
- lacktriangle Falls $orall x^\mu$ gilt: $j_{
 m m}=\lambda\mu_0cj_{
 m e}$ \Rightarrow wähle $an(\xi)=\lambda$ \Rightarrow $j_{
 m m}'=0$

Theoretische Physik 2: Elektrodynamik

Anhang

Beweis 4-Gradient = 4-Vektor

Beweis der 4-Vektor-Natur des 4-Gradienten

Behauptung: Der 4-Gradient

$$\partial_{\mu}\varphi = \frac{\partial \varphi}{\partial \mathsf{x}^{\mu}} = \left(\frac{1}{c}\frac{\partial \varphi}{\partial t}, \mathbf{\nabla}\varphi\right)$$

ist ein kovarianter 4-Vektor!

Beweis? Poincaré-Transformation \rightarrow

$$(x')^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu} \quad \text{bzw.} \quad x^{\mu} = (\Lambda^{-1})^{\mu}_{\ \nu} [(x')^{\nu} - a^{\nu}]$$

⇒ Transformationsverhalten der Ableitungen?

4 4-Vektoren

$$\partial_{\nu}' = \frac{\partial x^{\mu}}{\partial (x')^{\nu}} \partial_{\mu} = (\Lambda^{-1})^{\mu}_{\ \nu} \partial_{\mu} = \Lambda_{\nu}^{\ \mu} \partial_{\mu} \qquad \Box$$

Satz von Helmholtz für antisymmetrische Tensoren 2. Stufe

Behauptung: $\partial_{\mu}A^{\mu\nu} = 0 \Leftrightarrow \exists \xi^{\mu} \text{ mit } A^{\mu\nu} = \varepsilon^{\mu\nu\rho\sigma}\partial_{\rho}\xi_{\sigma}$

Beweis? $\partial_{\mu}A^{\mu\nu}=0$ mit $A^{\mu\nu}=(\mathbf{p},\mathbf{a})$ \Rightarrow für $\nu=0$:

$$0 = \partial_{\mu} A^{\mu 0} = \nabla \cdot \mathbf{p} \quad \Leftrightarrow \quad \exists \, \boldsymbol{\xi} \quad \text{mit} \quad \mathbf{p} = \nabla \times \boldsymbol{\xi}$$

und für $\nu = j$:

$$0 = \partial_{\mu} A^{\mu j} = \varepsilon_{jik} \partial_i (a_k - \partial_0 \xi_k) \quad , \quad \nabla \times (\mathbf{a} - \partial_0 \boldsymbol{\xi}) = \mathbf{0}$$

Fazit? Helmholtz'scher Satz \rightarrow

$$0 = \partial_{\mu} A^{\mu j} \quad \Leftrightarrow \quad \exists \, \xi_0 \quad \text{mit} \quad \mathbf{a} = \partial_0 \boldsymbol{\xi} + \boldsymbol{\nabla} \xi_0$$

Definiere: $\xi^{\mu} \equiv (\xi_0, \boldsymbol{\xi}) \rightarrow$

■ Dualitätstransformationen

$$A^{\mu\nu} = (\mathbf{p}, \mathbf{a}) = (\mathbf{\nabla} \times \boldsymbol{\xi}, \partial_0 \boldsymbol{\xi} + \mathbf{\nabla} \xi_0) = \varepsilon^{\mu\nu\rho\sigma} \partial_\rho \xi_\sigma$$

Theoretische Physik 2: Elektrodynamik

Anhang

Invarianten I_1 , I_2 des elektromagnetischen Feldes

Invarianten I_1 , I_2 des elektromagnetischen Feldes

Beweis? interpretiere Transformationsverhalten von $F^{\mu\nu}$ unter $\mathcal{L}_{+}^{\uparrow}$:

$$(F')^{\mu\nu} = \Lambda^{\mu}_{\rho} \Lambda^{\nu}_{\sigma} F^{\rho\sigma} \quad , \quad \Lambda^{\mu}_{\nu} = e^{-i\alpha \cdot \mathbf{L} - \phi \cdot \mathbf{M}}$$

als komplexe Drehung von $\mathbf{F} \equiv \mathbf{E} + ic\mathbf{B}$!

$$\mathbf{F}' = R(\alpha - i\phi)\mathbf{F}$$

Reelle Drehungen $R(\alpha) = e^{-i\alpha \cdot \ell}$ \Rightarrow

einzige Invariante: Längenquadrat eines Vektors

Komplexe Drehungen komplexer Vektoren? analog:

$$\mathbf{F}' \cdot \mathbf{F}' = (R\mathbf{F}) \cdot (R\mathbf{F}) = \mathbf{F} \cdot (R^{\mathrm{T}}R\mathbf{F}) = \mathbf{F} \cdot \mathbf{F}$$

Längenquadrat von $\mathbf{F} = \mathbf{E} + ic\mathbf{B}$?

$$\mathbf{F}^2 = \mathbf{F} \cdot \mathbf{F} = [\mathbf{E}^2 - (c\mathbf{B})^2] + 2i\mathbf{E} \cdot (c\mathbf{B}) = I_1 + 2iI_2$$

Fazit: $I_1 = \text{Re}(\mathbf{F}^2)$, $I_2 = \frac{1}{2}\text{Im}(\mathbf{F}^2)$ einzige Invarianten!

■ Invarianten

${\cal A}$ vollständig durch ${f x}\cdot{f A}$ und $i\hat{{m {\cal L}}}\cdot{m {\cal A}}$ bestimmt

Beweis: Das Differenzvektorpotential $\mathbf{a} \equiv \mathcal{A}_1 - \mathcal{A}_2 \neq \mathbf{0}$ erfüllt

$$\mathbf{x} \cdot \mathbf{a} = 0$$
 , $i\hat{\mathbf{\mathcal{L}}} \cdot \mathbf{a} = 0$, $\mathbf{\nabla} \cdot \mathbf{a} = 0$ $(\mathbf{x} \in \mathcal{D})$

Identitäten:

$$0 = \mathbf{\nabla} \cdot \mathbf{a} = \frac{1}{x \sin(\vartheta)} \{ \partial_{\vartheta} [\sin(\vartheta) a_{\vartheta}] + \partial_{\varphi} a_{\varphi} \}$$
$$0 = i \hat{\mathbf{\mathcal{L}}} \cdot \mathbf{a} = \frac{1}{\sin(\vartheta)} \{ \partial_{\vartheta} [\sin(\vartheta) a_{\varphi}] - \partial_{\varphi} a_{\vartheta} \}$$

Kombination o $\hat{\mathcal{L}}^2[\sin(\vartheta)a_\vartheta]=0$, $\hat{\mathcal{L}}^2[\sin(\vartheta)a_\varphi]=0$

Allgemeine Lösung:

◆ Sphärische Symmetrie

$$\sin(\vartheta)a_{\vartheta} = f_{\vartheta}(x)Y_{00}(\Omega) \quad , \quad \sin(\vartheta)a_{\varphi} = f_{\varphi}(x)Y_{00}(\Omega) \ \Rightarrow \quad \mathbf{a} = a_{\vartheta}\hat{\mathbf{e}}_{\vartheta} + a_{\varphi}\hat{\mathbf{e}}_{\varphi} = \frac{1}{\sqrt{4\pi}\sin(\vartheta)}\left[f_{\vartheta}(x)\hat{\mathbf{e}}_{\vartheta} + f_{\varphi}(x)\hat{\mathbf{e}}_{\varphi}\right]$$

Annahme **a** regulär \Rightarrow $f_{\vartheta} \equiv 0$, $f_{\varphi} \equiv 0$ \Rightarrow $\mathbf{a} = \mathbf{0}$ \checkmark

Theoretische Physik 2: Elektrodynamik

Anhang

Retardierte elektromagnetische Felder

Retardierte elektromagnetische Felder

Gegeben? retardierte Potentiale

$$\Phi(\mathsf{R},\boldsymbol{\beta}) = \frac{q}{4\pi\varepsilon_0} \frac{1}{R - \boldsymbol{\beta} \cdot \mathsf{R}} \quad , \quad \mathsf{A}(\mathsf{R},\boldsymbol{\beta}) = \frac{q}{4\pi\varepsilon_0 c} \frac{\boldsymbol{\beta}}{R - \boldsymbol{\beta} \cdot \mathsf{R}}$$

Gesucht? retardierte Felder

$$\mathbf{E}(\mathbf{x},t) = -\mathbf{
abla}_{\mathbf{x}}\Phi - rac{\partial \mathbf{A}}{\partial t} \quad , \quad \mathbf{B}(\mathbf{x},t) = \mathbf{
abla}_{\mathbf{x}} imes \mathbf{A}$$

Relativvektor $\mathbf{R}(\mathbf{x}, \tau)$...

$$\mathbf{R}(\mathbf{x}, \tau) \equiv \mathbf{x} - \mathbf{x}_q(\tau)$$
 , $R(\mathbf{x}, \tau) \equiv |\mathbf{R}(\mathbf{x}, \tau)|$

Retardierte Zeit $\tau(\mathbf{x}, t) \dots$

$$\tau + \frac{R(\mathbf{x}, \tau)}{c} \equiv t$$

Retardierte elektromagnetische Felder

Retardierte Potentiale

$$\Phi(\mathsf{R},\boldsymbol{\beta}) = \frac{q}{4\pi\varepsilon_0} \frac{1}{R - \boldsymbol{\beta} \cdot \mathsf{R}} \quad , \quad \mathsf{A}(\mathsf{R},\boldsymbol{\beta}) = \frac{q}{4\pi\varepsilon_0 c} \frac{\boldsymbol{\beta}}{R - \boldsymbol{\beta} \cdot \mathsf{R}}$$

Orts-/Zeitableitungen von (Φ, \mathbf{A}) ?

$$-\left(\frac{\partial \Phi}{\partial x_{i}}\right)_{t} = -\left[\frac{\partial \Phi}{\partial R_{j}}\left(\frac{\partial R_{j}}{\partial x_{i}} + \frac{\partial R_{j}}{\partial \tau}\frac{\partial \tau}{\partial x_{i}}\right) + \frac{\partial \Phi}{\partial \beta_{j}}\frac{d\beta_{j}}{d\tau}\frac{\partial \tau}{\partial x_{i}}\right]$$

$$-\left(\frac{\partial A_{i}}{\partial t}\right)_{x} = -\left(\frac{\partial A_{i}}{\partial R_{j}}\frac{\partial R_{j}}{\partial \tau} + \frac{\partial A_{i}}{\partial \beta_{j}}\frac{d\beta_{j}}{d\tau}\right)\frac{\partial \tau}{\partial t}$$

$$B_{i} = \varepsilon_{ijk}\left(\frac{\partial A_{k}}{\partial x_{j}}\right)_{x} = \varepsilon_{ijk}\left[\frac{\partial A_{k}}{\partial R_{l}}\left(\frac{\partial R_{l}}{\partial x_{j}} + \frac{\partial R_{l}}{\partial \tau}\frac{\partial \tau}{\partial x_{j}}\right) + \frac{\partial A_{k}}{\partial \beta_{l}}\frac{d\beta_{l}}{d\tau}\frac{\partial \tau}{\partial x_{j}}\right]$$

Daher partielle Ableitungen von $(\mathbf{R}, \boldsymbol{\beta})$ erforderlich!

$$oldsymbol{eta}(au) = -rac{1}{c}rac{\partial \mathbf{R}}{\partial au}(\mathbf{x}, au) = rac{1}{c}rac{d\mathbf{x}_q}{d au}(au) \quad , \quad \dot{oldsymbol{eta}}(au) \equiv rac{doldsymbol{eta}}{d au}(au) = rac{1}{c}rac{d^2\mathbf{x}_q}{d au^2}(au)$$

Ortsableitung von $\mathbf{R}(\mathbf{x}, \tau) = \mathbf{x} - \mathbf{x}_q(\tau)$? $\frac{\partial R_j}{\partial x_i} = \delta_{ij}$

Theoretische Physik 2: Elektrodynamik

L Anhang

Retardierte elektromagnetische Felder

Retardierte elektromagnetische Felder

Retardierte Potentiale

$$\Phi(\mathsf{R},\boldsymbol{\beta}) = \frac{q}{4\pi\varepsilon_0} \frac{1}{R - \boldsymbol{\beta} \cdot \mathsf{R}} \quad , \quad \mathsf{A}(\mathsf{R},\boldsymbol{\beta}) = \frac{q}{4\pi\varepsilon_0 c} \frac{\boldsymbol{\beta}}{R - \boldsymbol{\beta} \cdot \mathsf{R}}$$

Ableitungen von $R(\mathbf{x}, \tau)$ durch Ableiten der Identität $\frac{1}{2}R^2 = \frac{1}{2}\mathbf{R}^2$!

$$\left(\frac{\partial R}{\partial \tau}\right)_{\mathbf{x}} = -\frac{\mathbf{R} \cdot \mathbf{u}}{R} = -c\hat{\mathbf{R}} \cdot \boldsymbol{\beta} \quad , \quad \left(\frac{\partial R}{\partial x_i}\right)_{\tau} = \frac{R_i}{R} = \left(\frac{\partial R}{\partial R_i}\right)_{\tau}$$

Ableitungen von $\tau(\mathbf{x},t)$? [verwende Identität $\tau=t-\frac{R}{c}$]

$$\left(\frac{\partial \tau}{\partial t} \right)_{\mathbf{x}} = 1 - \frac{1}{c} \frac{\partial R}{\partial \tau} \left(\frac{\partial \tau}{\partial t} \right)_{\mathbf{x}} = 1 + (\hat{\mathbf{R}} \cdot \boldsymbol{\beta}) \left(\frac{\partial \tau}{\partial t} \right)_{\mathbf{x}}$$

$$\left(\frac{\partial \tau}{\partial x_{i}} \right)_{t} = -\frac{1}{c} \left[\left(\frac{\partial R}{\partial x_{i}} \right)_{\tau} + \left(\frac{\partial R}{\partial \tau} \right)_{\mathbf{x}} \left(\frac{\partial \tau}{\partial x_{i}} \right)_{t} \right]$$

Daher
$$\left(\frac{\partial \tau}{\partial t}\right)_{\mathbf{x}} = \frac{1}{1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}}}$$
, $\left(\frac{\partial \tau}{\partial \mathbf{x}}\right)_{t} = \frac{-\frac{1}{c}\hat{\mathbf{R}}}{1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}}}$

Retardierte elektromagnetische Felder

Einsetzen dieser Ableitungen ergibt? $(\text{mit } \hat{R}_i \equiv R_i/R)$ $- \left(\frac{\partial \Phi}{\partial x_i}\right)_t = -\frac{q}{4\pi\varepsilon_0} \left\{ -\frac{\hat{R}_j - \beta_j}{(R - \boldsymbol{\beta} \cdot \mathbf{R})^2} \left[\delta_{ij} + (-c\beta_j) \frac{(-\frac{1}{c}\hat{R}_i)}{1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}}} \right] \right.$ $- \frac{(-R_j)}{(R - \boldsymbol{\beta} \cdot \mathbf{R})^2} \dot{\beta}_j \frac{(-\frac{1}{c}\hat{R}_i)}{1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}}} \right\}$ $= \frac{q}{4\pi\varepsilon_0 R^2} \frac{(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}})(\hat{R}_i - \beta_i) + (\hat{\mathbf{R}} \cdot \boldsymbol{\beta} - \beta^2)\hat{R}_i + \frac{1}{c}R(\hat{\mathbf{R}} \cdot \dot{\boldsymbol{\beta}})\hat{R}_i}{(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}})^3}$

und

$$-\left(\frac{\partial A_{i}}{\partial t}\right)_{x} = -\frac{q}{4\pi\varepsilon_{0}c} \left\{ -\frac{\beta_{i}(\hat{R}_{j} - \beta_{j})}{(R - \boldsymbol{\beta} \cdot \mathbf{R})^{2}} (-c\beta_{j}) \right.$$

$$\left. + \left[\frac{\delta_{ij}}{R - \boldsymbol{\beta} \cdot \mathbf{R}} - \frac{\beta_{i}(-R_{j})}{(R - \boldsymbol{\beta} \cdot \mathbf{R})^{2}} \right] \dot{\beta}_{j} \right\} \frac{1}{1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}}}$$

$$= \frac{q}{4\pi\varepsilon_{0}R^{2}} \frac{-(\hat{\mathbf{R}} \cdot \boldsymbol{\beta})\beta_{i} + \beta^{2}\beta_{i} - \frac{1}{c}R[(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}})\dot{\beta}_{i} + (\hat{\mathbf{R}} \cdot \dot{\boldsymbol{\beta}})\beta_{i}]}{(1 - \boldsymbol{\beta} \cdot \hat{\mathbf{R}})^{3}}$$

Theoretische Physik 2: Elektrodynamik

Anhang

Retardierte elektromagnetische Felder

Retardierte elektromagnetische Felder

Insgesamt?

[Verwende Identität
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$
]

$$\mathbf{E}(\mathbf{x},t) = \frac{q\left\{(1-\beta^2)(\hat{\mathbf{R}}-\boldsymbol{\beta}) + \frac{1}{c}R[(\hat{\mathbf{R}}\cdot\dot{\boldsymbol{\beta}})(\hat{\mathbf{R}}-\boldsymbol{\beta}) - \hat{\mathbf{R}}\cdot(\hat{\mathbf{R}}-\boldsymbol{\beta})\dot{\boldsymbol{\beta}}]\right\}}{4\pi\varepsilon_0R^2(1-\boldsymbol{\beta}\cdot\hat{\mathbf{R}})^3}$$

Analog für Magnetfeld:

$$\begin{split} B_{i} &= \frac{q}{4\pi\varepsilon_{0}c}\varepsilon_{ijk}\left\{-\frac{\beta_{k}(\hat{R}_{l}-\beta_{l})}{(R-\boldsymbol{\beta}\cdot\mathbf{R})^{2}}\left[\delta_{lj} + (-c\beta_{l})\frac{\left(-\frac{1}{c}\hat{R}_{j}\right)}{1-\boldsymbol{\beta}\cdot\hat{\mathbf{R}}}\right]\right. \\ &+ \left[\frac{\delta_{kl}}{R-\boldsymbol{\beta}\cdot\mathbf{R}} - \frac{\beta_{k}(-R_{l})}{(R-\boldsymbol{\beta}\cdot\mathbf{R})^{2}}\right]\dot{\beta}_{l}\frac{\left(-\frac{1}{c}\hat{R}_{j}\right)}{1-\boldsymbol{\beta}\cdot\hat{\mathbf{R}}}\right\} \\ &= \frac{q}{4\pi\varepsilon_{0}cR^{2}}\varepsilon_{ijk}\frac{-(1-\beta^{2})\hat{R}_{j}\beta_{k} - \frac{1}{c}R[(1-\boldsymbol{\beta}\cdot\hat{\mathbf{R}})\dot{\beta}_{k} + (\hat{\mathbf{R}}\cdot\dot{\boldsymbol{\beta}})\beta_{k}]\hat{R}_{j}}{(1-\boldsymbol{\beta}\cdot\hat{\mathbf{R}})^{3}} \end{split}$$

Fazit: $\mathbf{B} = \frac{1}{c}(\hat{\mathbf{R}} \times \mathbf{E}) \Rightarrow \mathbf{B} \perp \mathbf{E}$