Thomas Speck: Publications

Peer reviewed

preprints

  1. Exploiting compositional disorder in collectives of light-driven circle walkers
    F. Siebers, A. Jayaram, P. Blümler, and T. Speck, submitted
  2. Structure formation of C60 on insulating CaF2 substrates: Matching experiments with simulations
    W. Janke, L. Höltkemeier, A. Kühnle, and T. Speck, submitted
  3. Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein Histone H3.1
    K. Nzogang Fomo, C. Schmelter, J. Atta, V.M. Beutgen, R. Schwarz, N. Perumal, G. Govind, T. Speck, N. Pfeiffer, and F.H. Grus, submitted

2022

  1. Employing artificial neural networks to identify reaction coordinates and pathways for self-assembly
    J. Appeldorn, S. Lemcke, T. Speck, and A. Nikoubashman, J. Phys. Chem. B 126, 5007 (2022)
    [abstract]
  2. Response to "Comment on 'Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?' " [J. Chem. Phys. 148, 241101 (2018)]
    D. Richard, C.P. Royall, and T. Speck, J. Chem. Phys. 157, 027102 (2022)
    [abstract]
  3. Critical behavior of active Brownian particles: Connection to field theories
    T. Speck, Phys. Rev. E 105, 064601 (2022)
    [abstract] [arXiv]
  4. Force generation in confined active fluids: The role of microstructure
    S. Paul, A. Jayaram, N. Narinder, T. Speck, and C. Bechinger, Phys. Rev. Lett. 129, 058001 (2022)
    [abstract] [arXiv]
    • Editors' Suggestion with a viewpoint by S. Thutupalli
  5. Efficiency of isothermal active matter engines: Strong driving beats weak driving
    T. Speck, Phys. Rev. E 105, L012601 (2022)
    [abstract] [arXiv]
  6. Predicting the Supramolecular Assembly of Amphiphilic Peptides from Comprehensive Coarse-Grained Simulations
    S. Chakraborty, C.M. Berac, M. Urschbach, D. Spitzer, M. Mezger, P. Besenius, and T. Speck, ACS Appl. Polym. Mater. (2022)
    [abstract]

2021

  1. Modeling of biomolecular machines in non-equilibrium steady states
    T. Speck, J. Chem. Phys. 155, 230901 (2021)
    [abstract] [arXiv]
  2. Hunting active Brownian particles: Learning optimal behavior
    M. Gerhard, A. Jayaram, A. Fischer, and T. Speck, Phys. Rev. E 104, 054614 (2021)
    [abstract] [arXiv]
  3. Modeling non-linear dielectric susceptibilities of supercooled molecular liquids
    T. Speck, J. Chem. Phys. 155, 014506 (2021)
    [abstract] [arXiv]
    • selected as Editor's Pick
  4. Mobilization upon Cooling
    S. Aeschlimann, L. Lyu, S. Becker, S. Mousavion, T. Speck, H.-J. Elmers, B. Stadtmüller, M. Aeschlimann, R. Bechstein, and A. Kühnle, Angew. Chem. Int. Ed. (2021)
    [abstract]
  5. Multiscale modelling of structure formation of C60 on insulating CaF2 substrates
    W. Janke and T. Speck, J. Chem. Phys. 154, 234701 (2021)
    [abstract] [arXiv]
  6. High-order simulation scheme for active particles driven by stress boundary conditions
    B. Deußen, A. Jayaram, F. Kummer, Y. Wang, T. Speck, and M. Oberlack, J. Phys. Condens. Matter 33, 244004 (2021)
    [abstract]
  7. Tip-induced mobilization upon cooling of Ni monolayers on Re(0001)
    J. Regel, T. Mashoff, T. Speck, and H. J. Elmers, Phys. Rev. B 103, 134114 (2021)
    [abstract]
  8. Critical behaviour in active lattice models of motility-induced phase separation
    F. Dittrich, T. Speck, and P. Virnau, Eur. J. Phys. E 44, 53 (2021)
    [abstract] [arXiv]
  9. Vorticity Determines the Force on Bodies Immersed in Active Suspensions
    T. Speck and A. Jayaram, Phys. Rev. Lett. 126, 138002 (2021)
    [abstract] [arXiv]
  10. Coexistence of active Brownian disks: van der Waals theory and analytical results
    T. Speck, Phys. Rev. E 103, 012607 (2021)
    [abstract] [arXiv]

2020

  1. Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics
    C.P. Royall, F. Turci, and T. Speck, J. Chem. Phys. 153, 090901 (2020)
    [abstract] [arXiv]
  2. Modeling epitaxial film growth of C60 revisited
    W. Janke and T. Speck, Phys. Rev. B 101, 125427 (2020)
    [abstract] [arXiv]
  3. Collective forces in scalar active matter
    T. Speck, Soft Matter 16, 2652 (2020)
    [abstract] [arXiv]
  4. The 2020 motile active matter roadmap
    G. Gompper et al., J. Phys.: Condens. Matter 32, 193001 (2020)
    [abstract] [arXiv]
  5. From scalar to polar active matter: Connecting simulations with mean-field theory
    A. Jayaram, A. Fischer, and T. Speck, Phys. Rev. E 101, 022602 (2020)
    [abstract] [arXiv]
  6. Quorum-sensing active particles with discontinuous motility
    A. Fischer, F. Schmid, and T. Speck, Phys. Rev. E 101, 012601 (2020)
    [abstract] [arXiv]
  7. Dynamical coexistence in moderately polydisperse hard-sphere glasses
    M. Campo and T. Speck, J. Chem. Phys. 152, 014501 (2020)
    [abstract] [arXiv]

2019

  1. Modeling Supramolecular Polymerization: The Role of Steric and Hydrophobic Interactions
    S. Chakraborty, C.M. Berac, B. Kemper, P. Besenius, and T. Speck, Macromolecules 52, 7661-7667 (2019)
    [abstract]
  2. Dynamic facilitation theory: A statistical mechanics approach to dynamic arrest
    T. Speck, J. Stat. Mech. 084015 (2019)
    [abstract] [arXiv]
  3. Devitrification of the Kob-Andersen glass former: Competition with the locally favored structure
    F. Turci, C.P. Royall, and T. Speck, J. Phys.: Conf. Ser. 1252, 012012 (2019)
    [abstract] [arXiv]
  4. Thermodynamic approach to the self-diffusiophoresis of colloidal Janus particles
    T. Speck, Phys. Rev. E 99 060602(R) (2019)
    [abstract] [arXiv]
  5. Classical nucleation theory for the crystallization kinetics in sheared liquids
    D. Richard and T. Speck, Phys. Rev. E 99, 062801 (2019)
    [abstract] [arXiv]
  6. Spontaneous Spatiotemporal Ordering of Shape Oscillations Enhances Cell Migration
    M. Campo, S.K. Schnyder, J.J. Molina, T. Speck, and R. Yamamoto, Soft Matter 15, 4939 (2019)
    [abstract] [arXiv]
  7. Aggregation and sedimentation of active Brownian particles at constant affinity
    A. Fischer, A. Chatterjee, and T. Speck, J. Chem. Phys. 150, 064910 (2019)
    [abstract] [arXiv]
  8. Non-equilibrium Markov state modeling of periodically driven biomolecules
    F. Knoch and T. Speck, J. Chem. Phys. 150, 054103 (2019)
    [abstract] [arXiv]

2018

  1. Dynamics of Binary Active Clusters Driven by Ion-Exchange Particles
    R. Niu, A. Fischer, T. Palberg, and T. Speck, ACS Nano 12, 10932 (2018)
    [abstract]
  2. Critical behavior of active Brownian particles
    J.T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, and P. Virnau, Phys. Rev. E 98, 030601(R) (2018)
    [abstract] [arXiv]
  3. Active Brownian particles driven by constant affinity
    T. Speck, EPL 123, 20007 (2018)
    [abstract] [arXiv]
  4. Self-organization of active particles by quorum sensing rules
    T. Bäuerle, A. Fischer, T. Speck, and C. Bechinger, Nat. Commun. 9, 3232 (2018)
    [abstract]
  5. Highly controlled optical transport of cold atoms into a hollow-core fiber
    M. Langbecker, R. Wirtz, F. Knoch, M. Noaman, T. Speck, and P. Windpassinger, New J. Phys. 20, 083038 (2018)
    [abstract] [arXiv]
  6. Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?
    D. Richard, C.P. Royall, and T. Speck, J. Chem. Phys. 148, 241101 (2018)
    [abstract] [arXiv]
  7. Crystallization of hard spheres revisited. II. Thermodynamic modeling, nucleation work, and the surface of tension
    D. Richard and T. Speck, J. Chem. Phys. 148, 224102 (2018)
    [abstract] [arXiv]
  8. Coupling between criticality and gelation in "sticky" spheres: A structural analysis
    D. Richard, J. Hallett, T. Speck, and C.P. Royall, Soft Matter 14, 5554 (2018)
    [abstract] [arXiv]
  9. Structural-dynamical transition in the Wahnström mixture
    F. Turci, T. Speck, and C.P. Royall, Eur. Phys. J. E 41, 54 (2018)
    [abstract] [arXiv]
  10. Crystallization of hard spheres revisited. I. Extracting kinetics and free energy landscape from forward flux sampling
    D. Richard and T. Speck, J. Chem. Phys. 148, 124110 (2018)
    [abstract] [arXiv]
  11. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding
    F. Knoch, K. Schäfer, G. Diezemann, and T. Speck, J. Chem. Phys. 148, 044109 (2018)
    [abstract] [arXiv]
  12. Three-body correlations and conditional forces in suspensions of active hard disks
    A. Härtel, D. Richard, and T. Speck, Phys. Rev. E 97, 012606 (2018)
    [abstract] [arXiv]
  13. Unfolding dynamics of small peptides biased by constant mechanical forces
    F. Knoch and T. Speck, Mol. Syst. Des. Eng. 3, 204 (2018)
    [abstract]

2017

  1. Nonequilibrium depletion interactions in active microrheology
    R. Wulfert, U. Seifert, and T. Speck, Soft Matter 13, 9093 (2017)
    [abstract]
  2. Non-Equilibrium Phase Transition in an Atomistic Glassformer: The Connection to Thermodynamics
    F. Turci, C.P. Royall, and T. Speck, Phys. Rev. X 7, 031028 (2017)
    [abstract] [arXiv]
  3. Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space
    R. Pinchaipat, M. Campo, F. Turci, J. Hallett, T. Speck, and C.P. Royall, Phys. Rev. Lett. 119, 028004 (2017)
    [abstract] [arXiv]
  4. Self-assembly of colloidal molecules due to self-generated flow
    R. Niu, T. Palberg, and T. Speck, Phys. Rev. Lett. 119, 028001 (2017)
    [abstract] [arXiv]
  5. Driven Brownian particle as a paradigm for a nonequilibrium heat bath: Effective temperature and cyclic work extraction
    R. Wulfert, M. Oechsle, T. Speck, and U. Seifert, Phys. Rev. E 95, 050103 (2017)
    [abstract] [arXiv]
  6. Thermodynamic formalism for transport coefficients with an application to the shear modulus and shear viscosity
    T. Palmer and T. Speck, J. Chem. Phys. 146, 124130 (2017)
    [abstract] [arXiv]
  7. Estimation of the critical behavior in an active colloidal system with Vicsek-like interactions
    B. Trefz, J.T. Siebert, T. Speck, K. Binder, and P. Virnau, J. Chem. Phys. 146, 074901 (2017)
    [abstract] [arXiv]
  8. Phase behavior of active Brownian disks, spheres, and dimers
    J.T. Siebert, J. Letz, T. Speck, and P. Virnau, Soft Matter 13, 1020 (2017)
    [abstract] [arXiv]
  9. Nonequilibrium Markov state modeling of the globule-stretch transition
    F. Knoch and T. Speck, Phys. Rev. E 95, 012503 (2017)
    [abstract] [arXiv]

2016

  1. Discontinuous thinning in active microrheology of soft complex matter
    R. Wulfert, U. Seifert, and T. Speck, Phys. Rev. E 94, 062610 (2016)
    [abstract] [arXiv]
  2. Gold Nanorods as Plasmonic Sensors for Particle Diffusion
    V. Wulf, F. Knoch, T. Speck, and C. Sönnichsen, J. Phys. Chem. Lett. 7, 4951 (2016)
    [abstract]
  3. Collective behavior of active Brownian particles: From microscopic clustering to macroscopic phase separation
    T. Speck, Eur. Phys. J. Special Topics 225, 2287 (2016)
    [abstract]
  4. Applicability of effective pair potentials for active Brownian particles
    M. Rein and T. Speck, Eur. Phys. J. E 39, 84 (2016)
    [abstract] [arXiv]
  5. Thermodynamic formalism and linear response theory for nonequilibrium steady states
    T. Speck, Phys. Rev. E 94, 022131 (2016)
    [abstract] [arXiv]
  6. Polydisperse hard spheres: Crystallization kinetics in small systems and role of local structure
    M. Campo and T. Speck, J. Stat. Mech. 084007 (2016)
    [abstract] [arXiv]
  7. Finite-size scaling of charge carrier mobility in disordered organic semiconductors
    P. Kordt, T. Speck, and D. Andrienko, Phys. Rev. B 94, 014208 (2016)
    [abstract] [arXiv]
  8. Ideal bulk pressure of active Brownian particles
    T. Speck and R.L. Jack, Phys. Rev. E 93, 062605 (2016)
    [abstract] [arXiv]
  9. Stochastic thermodynamics for active matter
    T. Speck, EPL 114, 30006 (2016)
    [abstract] [arXiv]
    • see the comment by A. Baskaran in the "Journal Club for Condensed Matter Physics"
  10. Nucleation pathway and kinetics of phase-separating active Brownian particles
    D. Richard, H. Löwen, and T. Speck, Soft Matter 12, 5257 (2016)
    [abstract] [arXiv]
  11. Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement
    M. Rein, N. Heinß, F. Schmid, and T. Speck, Phys. Rev. Lett. 116, 058102 (2016)
    [abstract] [arXiv]
  12. Transmission of torque at the nanoscale
    I. Williams, E.C. Oğuz, T. Speck, P. Bartlett, H. Löwen, and C.P. Royall, Nature Phys. 12, 98 (2016)
    [abstract] [arXiv]

2015

  1. Cycle representatives for the coarse-graining of systems driven into a non-equilibrium steady state
    F. Knoch and T. Speck, New J. Phys. 17, 115004 (2015)
    [abstract] [arXiv]
  2. The role of shear in crystallization kinetics: From suppression to enhancement
    D. Richard and T. Speck, Sci. Rep. 5, 14610 (2015)
    [abstract] [arXiv]
  3. Negative Interfacial Tension in Phase-Separated Active Brownian Particles
    J. Bialké, J.T. Siebert, H. Löwen, and T. Speck, Phys. Rev. Lett. 115, 098301 (2015)
    [abstract] [arXiv]
  4. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles
    T. Speck, A.M. Menzel, J. Bialké, and H. Löwen, J. Chem. Phys. 142, 224109 (2015)
    [abstract] [arXiv]
  5. Active colloidal suspensions: Clustering and phase behavior
    J. Bialké, T. Speck, and H. Löwen, J. Non-Cryst. Solids 407, 367 (2015)
    [abstract] [arXiv]

2014

  1. Meta-work and the analogous Jarzynski relation in ensembles of dynamical trajectories
    R.M. Turner, T. Speck, and J.P. Garrahan, J. Stat. Mech. P09017 (2014)
    [abstract] [arXiv]
  2. Effective Cahn-Hilliard Equation for the Phase Separation of Active Brownian Particles
    T. Speck, J. Bialké, A.M. Menzel, and H. Löwen, Phys. Rev. Lett. 112, 218304 (2014)
    [abstract] [arXiv]

2013

  1. Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining
    T. Leonard, B. Lander, U. Seifert, and T. Speck, J. Chem. Phys. 139, 204109 (2013)
    [abstract] [arXiv]
  2. Application of classical nucleation theory to the formation of adhesion domains
    R.L.C. Vink and T. Speck, Soft Matter 9, 11197 (2013)
    [abstract]
  3. Microscopic theory for the phase separation of self-propelled repulsive disks
    J. Bialké, H. Löwen, and T. Speck, EPL 103, 30008 (2013)
    [abstract] [arXiv]
  4. Gaussian field theory for the Brownian motion of a solvated particle
    T. Speck, Phys. Rev. E 88, 014103 (2013)
    [abstract] [arXiv]
  5. Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, Phys. Rev. Lett. 110, 238301 (2013)
    [abstract] [arXiv]
  6. Crystallization in a sheared colloidal suspension
    B. Lander, U. Seifert, and T. Speck, J. Chem. Phys. 138, 224907 (2013)
    [abstract] [arXiv]

2012

  1. The large deviation function for entropy production: the optimal trajectory and the role of fluctuations
    T. Speck, A. Engel, and U. Seifert, J. Stat. Mech. P12001 (2012)
    [abstract] [arXiv]
  2. First-order Phase Transition in a Model Glass Former: Coupling of Local Structure and Dynamics
    T. Speck, A. Malins, and C.P. Royall, Phys. Rev. Lett. 109, 195703 (2012)
    [abstract]
  3. Random pinning limits the size of membrane adhesion domains
    T. Speck and R.L.C. Vink, Phys. Rev. E 86, 031923 (2012)
    [abstract] [arXiv]
  4. Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers
    T. Speck and D. Chandler, J. Chem. Phys. 136, 184509 (2012)
    [abstract] [arXiv]
  5. Crystallization in a dense suspension of self-propelled particles
    J. Bialké, T. Speck, and H. Löwen, Phys. Rev. Lett. 108, 168301 (2012)
    [abstract] [arXiv]
  6. Effective confinement as origin of the equivalence of kinetic temperature and fluctuation-dissipation ratio in a dense shear-driven suspension
    B. Lander, U. Seifert, and T. Speck, Phys. Rev. E 85, 021103 (2012)
    [abstract] [arXiv]

2011

  1. Work distribution for the driven harmonic oscillator with time-dependent strength: Exact solution and slow driving
    T. Speck, J. Phys. A: Math. Gen. 44, 305001 (2011)
    [abstract] [arXiv]
  2. Effective free energy for pinned membranes
    T. Speck, Phys. Rev. E 83, 050901(R) (2011)
    [abstract] [arXiv]
  3. Space-time phase transitions in driven kinetically constrained lattice models
    T. Speck and J.P. Garrahan, Eur. Phys. J. B 79, 1 (2011)
    [abstract] [arXiv]

2010

  1. Mobility and diffusion of a tagged particle in a driven colloidal suspension
    B. Lander, U. Seifert, and T. Speck, EPL 92, 58001 (2010)
    [abstract] [arXiv]
  2. Specific adhesion of membranes: Mapping to an effective bond lattice gas
    T. Speck, E. Reister, and U. Seifert, Phys. Rev. E 82, 021923 (2010)
    [abstract] [arXiv]
  3. Driven Soft Matter: Entropy Production and the Fluctuation-Dissipation Theorem
    T. Speck, Prog. Theor. Phys. Suppl. 184, 248 (2010)
    [abstract] [arXiv]
    • Special issue YKIS'09 Kyoto
  4. Fluctuation-dissipation theorem in nonequilibrium steady states
    U. Seifert and T. Speck, EPL 89, 10007 (2010)
    [abstract] [arXiv]

2009

  1. Extended fluctuation-dissipation theorem for soft matter in stationary flow
    T. Speck and U. Seifert, Phys. Rev. E 79, 040102(R) (2009)
    [abstract] [arXiv]

2008

  1. Large deviation function for entropy production in driven one-dimensional systems
    J. Mehl, T. Speck, and U. Seifert, Phys. Rev. E 78, 011123 (2008)
    [abstract] [arXiv]
  2. Role of External Flow and Frame Invariance in Stochastic Thermodynamics
    T. Speck, J. Mehl, and U. Seifert, Phys. Rev. Lett. 100, 178302 (2008)
    [abstract] [arXiv]

2007

  1. The Jarzynski relation, fluctuation theorems, and stochastic thermodynamics for non-Markovian processes
    T. Speck and U. Seifert, J. Stat. Mech. L09002 (2007)
    [abstract] [arXiv]
  2. Distribution of entropy production for a colloidal particle in a nonequilibrium steady state
    T. Speck, V. Blickle, C. Bechinger, and U. Seifert, Europhys. Lett. 79, 30002 (2007)
    [abstract] [arXiv]
  3. Characterizing potentials by a generalized Boltzmann factor
    V. Blickle, T. Speck, U. Seifert, and C. Bechinger, Phys. Rev. E 75, 060101(R) (2007)
    [abstract] [arXiv]
  4. Einstein relation generalized to nonequilibrium
    V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, Phys. Rev. Lett. 98, 210601 (2007)
    [abstract] [arXiv]
  5. Entropy production for mechanically or chemically driven biomolecules
    T. Schmiedl, T. Speck, and U. Seifert, J. Stat. Phys. 128 77 (2007)
    [abstract] [arXiv]

2006

  1. Measurement of Stochastic Entropy Production
    C. Tietz, S. Schuler, T. Speck, U. Seifert, and J. Wrachtrup, Phys. Rev. Lett. 97, 050602 (2006)
    [abstract] [arXiv]
  2. Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state
    T. Speck and U. Seifert, Europhys. Lett. 74, 391 (2006)
    [abstract] [arXiv]
  3. Thermodynamics of a Colloidal Particle in a Time-Dependent Nonharmonic Potential
    V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger, Phys. Rev. Lett. 96, 070603 (2006)
    [abstract] [arXiv]

2005

  1. Integral fluctuation theorem for the housekeeping heat
    T. Speck and U. Seifert, J. Phys. A: Math. Gen. 38, L581 (2005)
    [abstract] [arXiv]
  2. Experimental Test of the Fluctuation Theorem for a Driven Two-Level System with Time-Dependent Rates
    S. Schuler, T. Speck, C. Tietz, J. Wrachtrup, and U. Seifert, Phys. Rev. Lett. 94, 180602 (2005)
    [abstract]
  3. Dissipated work in driven harmonic diffusive systems: General solution and application to stretching Rouse polymers
    T. Speck and U. Seifert, Eur. Phys. J. B 43, 543 (2005)
    [abstract]

2004

  1. Distribution of work in isothermal nonequilibrium processes
    T. Speck and U. Seifert, Phys. Rev. E 70, 066112 (2004)
    [abstract] [arXiv]

Other publications

prefaces and viewpoints

  1. Focus on Active Colloids and Nanoparticles
    T. Speck, J. Tailleur, and J. Palacci, New J. Phys. 22 060201 (2020)
    [abstract]
  2. A Theory to Tackle Supercooling
    T. Speck, Physics (2019)
  3. Fundamental Problems in Statistical Physics XIV
    M. Baiesi, A. Rosso, and T. Speck, Physica A (2017)
    [abstract]
  4. Special Issue on Structure in Glassy and Jammed Systems
    C.P. Royall and T. Speck, J. Stat. Mech. 054045 (2016)
    [abstract]

unpublished

  1. Geometric view of stochastic thermodynamics for non-equilibrium steady states
    T. Speck, arXiv:1707.05289 (2017)
    [arXiv]
  2. Liquid-liquid phase transition in an atomistic model glass former
    T. Speck, C.P. Royall, and S.R. Williams, arXiv:1409.0751 (2014)
    [arXiv]