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Abstract

The feasibility of studying hypernuclei by means of peripheral heavy ion induced

reactions was demonstrated by observing clear signals of Λ, 3
ΛH,

4
ΛH in their respec-

tive invariant mass distributions from their mesonic decay. The experiment was

performed with 6Li beams at 2 A GeV impinging on a carbon target.

This thesis presents an independent analysis which aims to corroborate previous

results obtained by the HypHI collaboration. For this purpose, a track reconstruc-

tion procedure, based on the Kalman �ltering approach, and two di�erent secondary

vertex reconstruction algorithms have been implemented.

The invariant masses of the Λ-hyperon, the 3
ΛH and the 4

ΛH hypernuclei were

found to be 1109.6± 0.38, 2981.0± 0.30 and 3898.1± 0.68 MeV/c2 with statistical

signi�cance of 9.8σ, 12.8σ and 7.3σ, respectively. The results obtained in this work

are in agreement with the previous analysis.

The hypernuclei yield ratio was found to be N(3
ΛH)/N(4

ΛH)∼ 3, which suggests

that the production mechanism of hypernuclear in heavy ion induced reactions in

the projectile rapidity region involves not only the coalescence mechanism but also

secondary pion-/kaon- induced reactions and Fermi break-up.

Zusammenfassung

Die Produktion von Hyperkernen wurde in peripheren Schwerionenreaktionen

untersucht, bei denen eine Kohlensto�folie mit 6Li Projektilen mit einer Strahlen-

ergie von 2 A GeV bestrahlt wurde. Es konnten klare Signale für Λ, 3
ΛH,

4
ΛH in deren

jeweiligen invarianten Massenverteilungen aus Mesonenzerfall beobachtet werden.

In dieser Arbeit wird eine unabhängige Datenauswertung vorgelegt, die eine Ver-

i�zierung früherer Ergebnisse der HypHI Kollaboration zum Ziel hatte. Zu diesem

Zweck wurde eine neue Track-Rekonstruktion, basierend auf einem Kalman-Filter-

Ansatz, und zwei unterschiedliche Algorithmen zur Rekonstruktion sekundärer Ver-

tices entwickelt.

Die invarianten Massen des Λ-Hyperon und der 3
ΛH- und

4
ΛH-Hyperkerne wurden

mit 1109.6±0.4, 2981.0±0.3 und 3898.1±0.7 MeV/c2 und statistischen Signi�kanzen

von 9.8σ, 12.8σ beziehungsweise 7.3σ bestimmt. Die in dieser Arbeit erhaltenen

Ergebnisse stimmen mit der früheren Auswertung überein.

Das Ausbeutenverhältnis der beiden Hyperkerne wurde als N(3
ΛH)/N(4

ΛH)∼ 3

bestimmt. Das deutet darauf hin, dass der Produktionsmechanismus für Hyperkerne

in Schwerionen-induzierten Reaktionen im Projektil-Rapiditätsbereich nicht allein

durch einen Koaleszenzmechanismus beschrieben werden kann, sondern dass auch

sekundäre Pion-/Kaon-induzierte Reaktionen und Fermi-Aufbruch involviert sind.
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Chapter 1

Introduction

Contents

1.1 Hypernuclear physics . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Hypernuclear physics development . . . . . . . . . . . . . . . 2

1.1.2 Formation of hypernuclei in high energy heavy ion collisions . 3

1.1.3 HypHI project . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Hypernuclear physics

The main goal of hypernuclear physics is to improve our understanding of baryon-

baryon interactions under �avored SU(3) symmetry. Standard nuclear reaction

experiments can only provide information about the nucleon-nucleon interaction.

The hypernucleus is a bound system of a hyperon (Y ) and a nucleus and gives

the opportunity to use it as a micro-laboratory for studying hyperon-nucleon (Y N)

interactions. The hyperon-hyperon (Y Y ) interaction can be studied via double Λ

hypernuclei.

Through an understanding of Y N and Y Y interactions we expect to be able to

investigate new aspects and new forms of hadronic matter. In particular, detailed

information on Y N and Y Y interactions are indispensable for our understanding of

high-density nuclear matter inside neutron stars. Depending on the strength of the

Y N interaction, the core of the neutron star may be composed of hyperons, strange

quark matter or kaon condensate [1]. The additional strangeness degree of freedom

softens the equation-of-state (EOS) leading to a smaller maximum mass of neutron

stars compared to a purely nucleonic EOS [2].

The main object of hypernuclear research is studying the Λ-nucleus interaction.

The Λ particle bound into a nucleus is an excellent probe of nuclear properties. The

mass of Λ isMΛ = 1115 MeV/c2, exceeding the mass of a nucleon by approximately

20%. The Λ-nucleus interaction is weaker than the NN one [3]. We can therefore

expect that a Λ particle behaves similar to a neutron, however as a neutron with a

strangeness quantum number S = −1. The Λ particle is the lightest strange baryon.

It is neutral and has spin-parity Jπ = 1
2

+
and isospin I = 0. The free Λ decays via

weak interaction Λ → N + π with a lifetime of 2.631 × 10−10 sec [4]. In nuclear

matter an additional decay mode is possible Λ + N → 2N which is also a weak

decay. This decay mode de�nes the lifetime of the Λ in hypernuclei with Z > 2.
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The lifetime of heavy hypernuclei is estimated to be about 10−10 sec. It allows the

study of strong and electromagnetic properties of hypernuclei.

The study of hypernuclei provides invaluable information on the many-body

hadronic system by adding strangeness to the standard nuclear matter. In partic-

ular, a Λ-hyperon can be put deeply inside a nucleus as an impurity to provide

a sensitive probe of nuclear matter. Since a Λ hyperon inside the nucleus is free

from Pauli blocking, it can penetrate into the nuclear interior and form deeply

bound hypernuclear states. This is a unique way to study hyperon-nucleon and

hyperon-hyperon interactions. Indeed, due to the short lifetime of hyperons no

hyperon-hyperon scattering experiments can be performed.

One of the main characteristics of hypernuclei is the binding energy of a hy-

peron. The Λ binding energy can be calculated from the total binding energies of

hypernuclei and nuclei as follow:

BΛ(A+1
Λ Z) = Btot((

A+1
Λ Z)−Btot(AZ) (1.1)

Moreover, the binding energy of the Λ in light hypernuclei can be derived from the

kinematical analysis of the decay products of hypernuclei.

There are several models which can be applied to describe the structure of hyper-

nuclei. One of them is to consider the N-body problem within an e�ective interaction

model with G-matrix calculations. A Λ hypernuclear wave function can be obtained

by considering a core nucleus potential and a Λ hyperon within it. The hypernuclear

Hamiltonian is then expressed as follows:

H = HCoreNucleus + tΛ +
∑

υeffectiveΛN (1.2)

where HCoreNucleus is the Hamiltonian for the core nucleus, tΛ is the kinetic energy

of the Λ-hyperon and υeffectiveΛN describes the e�ective ΛN interaction. At �rst, the

e�ective interaction can be considered from the two-body interaction in free space.

One-boson-exchange models such as Nijmegen [5, 6, 7, 8] and Juelich interactions [9,

10] are widely used to describe the elementary two-body interactions.

1.1.1 Hypernuclear physics development

The �rst observation of a hypernucleus was made in 1952 by Danysz and Pniewski.

The hypernucleus was discovered in a cosmic ray interaction in an emulsion plate and

was seen to decay with a path length of 90 µm [11]. Since the �rst observation several

stages of investigation have been performed. Figure 1.1 shows all hypernuclei [12]

discovered until 2004.

Since the 50's and until the 70's, most experiments used low energy K− beams

on nuclear emulsions. Lambda hypernuclei from 3
ΛH to 15

Λ N have been identi�ed by

observing the mesonic weak decay, and their binding energy was measured. Also

the ground state spins have been determined for light hypernuclei from observed

branching ratios and/or the angular distribution of the decay products. The lifetimes

of H and He hypernuclei were also measured [13]. However this technique is limited
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to the ground states of hypernuclei. The next era in hypernuclear physics came

with the possibility to perform counter experiments at CERN in the late 60's with

(K−stopped, π
−) and was continued with the in-�ight (K−,π−) reactions at CERN

and BNL. Those experiments su�ered from low kaon beam intensity but they have

studied the structure of p-shell hypernuclei and found that the spin-orbit splitting

is quite small [14]. The third stage in the mid-1980's began with a new (π+,K+)

reaction and associated production at BNL. The same production mechanism was

developed at KEK in Japan from early 90's. This technique has been applied to

investigate a large number of Λ-hypernuclei with very high quality measurements [15,

16]. Comparing to strangeness exchange with kaon beams, the associated production

involves larger momentum transfers and is, therefore, suitable for studying higher

spin states with larger excitation energy.

Figure 1.1: Λ hypernuclear chart [12]

The Hyperball collaboration performed γ-ray spectroscopy experiments for p-shell

Λ hypernuclei by using (K−,π−) and (π+,K+) reactions. The new technique has

improved the energy resolution from an order of MeV to keV, and it has shown that

the Λ-hyperon has glue e�ect and indicated that nuclear structure may be di�erent

because of the presence of a hyperon inside the nucleus [17].

1.1.2 Formation of hypernuclei in high energy heavy ion collisions

The production mechanism of hypernuclei in reactions between heavy nuclei was

�rst discussed by Kerman and Wiess in 1973 [18]. They pointed out that the best
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way to produce hypernuclei with several hyperons is produced with a heavy ion

collision. Late in 1988 the coalescence model was applied for the description of

hypernucleus formation [19]. According to this model the production cross section

depends mainly on three parameters: the cross sections of strangeness and fragment

production and the coalescence radius or probability.

Figure 1.2: Schematic view of the scenario for the production of Λ-hypernuclei in

heavy ion collisions. The Λ produced in the hot participant zone is absorbed by a

projectile fragment.

The reaction mechanism between two heavy ions at relativistic energy is well

explained by the participant-spectator model. As it is schematically shown in the

Figure 1.2, a hyperon (Λ) in peripheral heavy ion collision is produced in the par-

ticipant region at mid-rapidity and may coalesce in the projectile fragments due to

the overlap of the rapidity distributions (Figure 1.3). Since the energy threshold for

Λ production in elementary process NN → ΛKN is 1.6 GeV, high incident energies

have to be chosen. Hypernuclei produced in the projectile spectator region thus will

have a large velocity and a longer e�ective lifetime due to a large Lorentz factor. It

gives a unique opportunity to study hypernuclei in �ight.

Figure 1.3: Rapidity distributions of produced Λ hyperons and fragments (F ) from

the target and the projectile [19]
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The Ultrarelativistic Quantum Molecular Dynamics (UrQMD) event generator

describes a heavy ion reaction [20]. It has been developed to reproduce the experi-

mental data of a wide range of collision energies. The UrQMD event generator was

used for the Monte Carlo simulation, for the design of the experimental apparatus

of the HypHI Phase 0 experiment, and for the performance check of reconstruction

methods. The collisions of 6Li at 2 A GeV/c on a 12C target were simulated with

UrQMD. Hypernuclear events are produced in a second stage by the coalescence of

produced Λ and fragments by a phase-space cut in momentum and space.

The �rst successful experiment with heavy ion collisions has peen performed in

1989 in Joint Institute for Nuclear Research at Dubna with 4He and 6Li beams

on a polyethylene target. The production cross section of 3
ΛH and 4

ΛH was found

to be about 0.2µb and the lifetime has been measured τ(3
ΛH) = 240+170

−100 ps and

τ(4
ΛH) = 220+50

−40 ps [21].

In BNL AGS E864 experiment light hypernuclei were produced with Au ions

with the momentum of 11.5 GeV/c per nucleon impinging on a �xed Pt target. The

10%-most-central collision events are sampled with an open geometry spectrometer.

In the analysis Λ-hyperon, 3
ΛH and 4

ΛH were observed in the invariant mass spectrum

after the background substraction. The study has been performed for the hypernu-

clei at mid rapidity region. The 3
ΛH yield and an upper limit on the 4

ΛH yield has

been reported [22].

In 2010 the STAR collaboration at the Relativistic Heavy-Ion Collider at BNL

has reported the observation of 3
ΛH and 3

ΛH̄ in Au+Au collisions at 200 GeV in the

center-of-mass system. It is the �rst observation of an anti-hypernucleus [23]. The

deduced lifetime of 3
ΛH is 182+89

−45 ± 27 ps, which agrees with previously measured

values. The result on the comparison of the ratios 3
ΛH/

4
ΛH̄ and 3He/4H̄e supports

the coalescence model as the main process for the formation of hypernuclei in the

mid rapidity region of central heavy ions collisions.

1.1.3 HypHI project

The aim of the HypHI project is to study hypernuclei produced by heavy ion col-

lisions at the projectile rapidity region [24]. In this sense the HypHI experiment is

unique. The conventional methods convert a target nucleus into a hypernucleus. In

peripheral relativistic heavy ion collisions the production of hypernuclei is done by

the coalescence of the projectile with a hyperon, produced in the participant zone.

It gives an opportunity to study hypernuclei at extreme isospin, since the produc-

tion mechanism involves the projectile fragments, which are known to have a wide

isospin distribution. It is the only way to produce extremely proton- and neutron-

rich hypernuclei. As previously mentioned, hypernuclei can be also produced in

the central nucleus-nucleus collision (AGS, STAR), but in this case, because of the

high temperature in the �reball, it is possible to produce only very light hypernuclei

(A . 4) [25, 26].

The Phase 0 of the HypHI experiment was performed in October 2009 at GSI

with 6Li beams at 2 A GeV on a 12C target in order to demonstrate the feasibility of
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the hypernuclear production in non-central heavy ion collisions. The main goal was

to observe and to study the lightest hypernuclei (3ΛH,
4
ΛH,

5
ΛHe) by reconstructing

the invariant mass of these bound states. They can be measured via their mesonic

weak decay channels:

• 3
ΛH → 3He + π−

• 4
ΛH → 4He + π−

• 5
ΛHe → 4He + π− + p

The reason to concentrate on the light hypernuclei is the dominance of the mesonic

weak decay channels compared to non-mesonic weak decays and the fact that the

heavier beam would increase the di�culty of the data analysis because of a higher

particle multiplicity per event.

This thesis presents the results of the two-body �nal state reconstruction for 3
ΛH

and 4
ΛH analyzing the data taken in October 2009 with a 6Li beam at 2 A GeV

on a 12C target. Additionally, the invariant mass reconstruction of the well known

Λ-hyperon is achieved in order to validate the dedicated reconstruction algorithms.

The �nal results are shown in Figure 1.4 and summarized in the Table 1.1.3

Λ 3
ΛH

4
ΛH

Figure 1.4: Invariant mass distribution (black dots) �tted with the signal+ back-

ground distribution for Λ (left), 3
ΛH (middle) and 4

ΛH (right). The blue lines represent

the most probable solution returned by the �t, the red lines and yellow area show

the 1σ uncertainty band. The light purple markers correspond to the scaled mixed

event invariant mass distributions

Table 1.1: Summary of the results obtained in the current work
Particle M [MeV/c2] σ [MeV/c2] Signi�cance [σ] Lifetime [ps]

Λ 1109.6± 0.4 3.04± 0.41 9.8 269.37 +93.13
−62.57

3
ΛH 2981.0± 0.3 3.16± 0.25 12.8 239.07 +61.19

−43.72
4
ΛH 3898.1± 0.7 4.47± 0.66 7.3 209.39 +135.34

−64.72
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The present thesis is composed of six chapters. In Chapter 2 the experimental

setup used in the experiment is described. Chapter 3 is dedicated to the develop-

ment of the Kalman �lter based track reconstruction algorithm. The method and

the performance of vertex �tting algorithms are demonstrated in Chapter 4. The

Chapter 5 presents the detector calibration and �nal invariant mass reconstruction

results obtained for Λ, 3
ΛH and 4

ΛH particles. The �nal summary and outlook are

given in Chapter 6.





Chapter 2

HypHI@GSI

Contents
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2.1.3 Drift chambers . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Time-Of-Flight walls . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Data acquisition system . . . . . . . . . . . . . . . . . . . . . 20

2.3 Trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

The experiment, was performed at GSI Helmholzzentrum für Schwerionenforschung

GmbH in Darmstadt [27]. A schematic view of GSI laboratory is shown in Figure 2.1.

The accelerator facility of GSI includes UNIversal Linear Accelerator (UNILAC),

where low-charged ions can be accelerated to an energy of 11.4 MeV per nucleon, a

heavy-ion synchrotron (SchwerIonenSynchrotron, SIS), where the ions with a charge-

to-mass ratio 1/2 can be accelerated up to 2 A GeV/c, an Experimental Storage Ring

(ESR) and a fragment separator (FRS).

For the HypHI experiment the primary beam of 6Li from the ion source was

preaccelerated in the UNIversal Linear Accelerator and injected into the heavy-

ion synchrotron. After the acceleration it was extracted and transported into the

experimental area of Cave C, where Phase 0 experiment took place.

2.1 The experimental setup of HypHI Phase 0

The HypHI experiment was designed to study the mesonic weak decay (MWD)

of light hypernuclei produced by the coalescence of a projectile fragment with a

Λ-hyperon at the projectile rapidity, as it was described in Chapter 1. The hy-

pernculei are produced by the collision of a primary 6Li beam at 2.0 A GeV with

intensity of 3 × 106 particles per second impinging into 4 cm thick 12C target.

The secondary decay vertex and invariant mass of the bound states of interest needs

to be reconstructed, that requires precise momentum reconstruction and a Parti-

cle Identi�cation (PID). Tracking detectors are placed up- and downstream for the

momentum calculation in such a way that the decay vertex occurs before the �rst

tracking detector. Time-Of-Flight and energy deposit measured with plastic ho-

doscopes are used for the particle identi�cation. Due to the Lorentz boost because
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Figure 2.1: Layout of the accelerator facility at GSI and of the experimental areas

of a large projectile momentum all produced particles concentrate in a small solid

angle providing an e�ective detection solid angle close to 4π.

One of the major challenge in the concept of the experiment was the design of

the trigger system for the data taking and the reduction of the background contri-

bution. Three stages of the trigger for the data acquisition system have been used:

a Secondary Vertex trigger, a π− trigger and a Z = 2 particle trigger.

The full experimental setup shown in Figure 2.2 has been placed in Cave C in

summer 2009. It consists of A Large Acceptance Dipole magnet (ALADiN) [28] for

the momentum reconstruction. The maximum bending power is around 2.3 Tm at

2500 A. Fragments from the heavy ion collisions are separated according to their

magnetic rigidity through the ALADiN magnet. For the Phase 0 experiment, the

magnetic �eld has been set to 0.75 T in order to have a reasonable separation between

the fragments and to optimize the acceptance for π−. The tracking detectors: three

scintillating �ber detectors (TR0, TR1 and TR2) and one drift chamber (BDC) are

located in front of the magnet, another drift chamber (SDC) is placed behind the

magnet. For the beam measurements and for time reference the start counter is

placed in front of the target. In addition, three Time-Of-Flight (TOF) detectors

(TOF+, ALADiN TOF and Time-of-Flight Wall, TFW) were used as last tracking

layers and as stop counters for TOF measurements.

In the following, the details of each detector used in the HypHI Phase 0 experi-

ment will be described.
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Figure 2.2: HypHI experimental setup

2.1.1 Start counter

The start counter (Figure 2.3) has been designed to be able to sustain a high counting

rate up to 3× 107 particles per second and to be able to distinguish beam particles

from possible contamination of 12C coming from the ion source. The start counter

is a scintillating hodoscope consisting of 10 bars of Bicron BC-420 arranged in three

layers with a 1 mm overlap between neighboring bars as it is shown in Figure 2.4.

Two bars are 15× 6× 50 mm3 and the eight others bars are 4× 6× 50 mm3.

The total active area perpendicular to the beam direction is 53× 50 mm2 which

covers the beam pro�le σxy = 10 mm. The simulated beam pro�le is shown in

Figure 2.5, the dashed lines shows the detector size. The read out is done by

Hamamatsu R7400U-06 MOD photomultipliers from both ends of each bar. These

PMT's has been chosen based on a simulated counting rate per bar (Figure 2.6)

with the chosen geometry of the detector (Figure 2.4) and the beam intensity of 107

particles per second.

The choice of the PMT has been done based on the results of the test experiment

of August 2008 in which two types of the photomultipliers were used: H3164-10

MOD and R7400-06 MOD. Both types of the PMT's were modi�ed by adding a

booster to the three last dynodes in order to stabilize the voltage under the high

counting rate. Both prototypes delivered a similar result for the time (∼ 200 ps)

and energy resolution (∼ 50%). The R7400-06 MOD was chosen because its smaller

dimensions simpli�ed the construction of the detector.

The analog signals for the photomultipliers of the Start Counter were ampli�ed

and then divided into two di�erent branches for the energy and time measurement.
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Figure 2.3: Start Counter seen from the side of the incoming beam

The �rst branch was sent to QDC (charge sensitive analog-to-digital converter),

CAEN VME V792, and the second branch was fed into leading-edge discriminators,

CAEN V895, and then recorded by TDC (time-to-digital converter) modules, CAEN

V775s.

2.1.2 Fiber detectors

A set of arrays of three scintillating �ber detectors (TR0, TR1 and TR2) was placed

in front of the magnet. Each of them consists of two planes, X and Y , of four layers

of SCSF-78 (Kuraray) scintillating �bers (Figure 2.7 (a)). The inner diameter (core)

and the outer diameter (including cladding) of the �bers are 0.73 mm and 0.83 mm

respectively. The attenuation length is over 4 m and the decay constant is 2.8 ns.

The rows of four layers of �ber bundles are aligned with a 0.59 mm pitch as shown

in Figure 2.7 (b). The read out is done by Hamamatsu Photonic H7260KS MOD

multi-anode photomultiplier tubes. The PMTs have three booster cables in the last

dynode stages in order to stabilize the voltage under the high counting rate. The

distance between the center of the target and TR0 is 36.5 mm, TR1 and TR2 are

located at 300 mm and 700 mm after TR0 respectively. The dimensions and the

number of the readout channels are summarized in Table 2.1.

Analog signals from the PMTs of the �ber detectors are fed into the double-

threshold-discriminators (DTDs) to create a low voltage di�erential signaling (LVDS)

level logic signal. These logic signals are sent to the Field Programmable Gate Array

(FPGA) based logic module (VUPROM2) [29]. The timing information of leading
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Figure 2.4: Cross sectional view (from the top) of the arrangement of the scintillator

bars (red) of the Start Counter. The dimensions are in mm. The beam comes

perpendicularly from the bottom of the �gure.
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X(Y) axis with beam intensity of 107

particle per second
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Figure 2.7: Photograph (a) and schematic drawing (b) of cross section of a 32-

channels �ber bundle. The panel (c) shows a scheme of a surface of the PMT.

Table 2.1: Dimensions of arrays of �ber detectors, TR0X, TR0Y, TR1X, TR1Y,

TR2X and TR2Y, and the number of readout channels and photomultipliers of each

layer
Name Size (mm) Channels PMT

TR0X 39 64 3

TR0Y 39 64 3

TR1X 139 224 7

TR1Y 76 128 4

TR2X 245 416 13

TR2Y 113 192 6
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Figure 2.8: Distribution of the energy deposition in TR0 detector for the particles

with Z = 1, 2 and 3

and trailing edges of the signal were registered by the programmed TDC function

of VUPROM2 modules with a granularity of 2.5 ns. The existence of the secondary

vertex between TR0 and TR1, secondary vertex trigger, was as well examined by

VUPROM2 modules. In addition for the TR0 planes, analog readout was performed

by QDCs CAEN VME V792.

The performance of the scintillating �ber detectors was studied during several

test experiments in August 2008 and April 2009 as well as in the Phase 0 experiment.

The �nal performance was deduced during the Phase 0 experiment. The achieved

position resolution is 0.21 mm in RMS for the Z = 3 particles (beam) and 0.46 mm

in RMS for the Z = 1 particles [30]. The energy deposition information form the

TR0 was used to distinguish particles with di�erent charges, Z = 1, Z = 2, Z = 3.

It is use to discriminate the signals recorded from hydrogen hypernuclei and the

others signals (background), dominated by the He isotopes produced in the target.

The obtained energy resolution is about 81% for Z = 1, 27% for Z = 2 and 11% for

Z = 3 as shown in Figure 2.8.

2.1.3 Drift chambers

Two drift chambers are used for the track reconstruction of charged particles in

Phase 0 experiment.

The drift chamber, BDC (Beam Drift Chamber), which was mounted between
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TR1 and TR2 was originally developed for the secondary meson beam lines at

KEK [31]. A photograph of BDC is shown in Figure 2.9. It consists of three pairs

of wire planes XX ′, UU ′ and V V ′. The UU ′ and V V ′ pair-plans have a stereo

angle of ±15 degrees, respectively to the vertical wires of XX ′ pair plan in order

to determine the horizontal and vertical hit positions. The size of the chamber is

24 × 14 cm2. The distance between sense wires in one single plane is 5 mm, and

pair-planes are shifted by half of cell size (2.5 mm) in order to resolve the right/left

ambiguity around the sense wires. Between the sense wires in each single plane

there are potential wires. For the Phase 0 experiment BDC was operated with a gas

mixture of Ar (70%) and CO2 (30%). Since the beam particles were passing through

the BDC, a part of the sense wires were wrapped with Te�on tape for all 6 layers

with a size of 1.5× 1.5 cm2 (Figure 2.10) in order to suppress the gas ampli�cation

in this area. Raw signals from a sense wire were �rst ampli�ed by the pre-ampli�er

REPIC RPV-040, mounted on the chamber. Ampli�ed raw signals were fed into

a discriminator card REPIC RPV-020 equipped with a main-ampli�er to produce

Emitter-coupled logic (ECL) level signal. The timing of the signals was recorded by

the VUPROM2 modules with programmed TDC function with 2.5 ns granularity

and two multi hits capability.

Figure 2.9: Photograph of BDC

(Beam Drift Chamber)

Figure 2.10: Photograph of the mask-

ing of the BDC

The design value of the position resolution of BDC is around 0.3 mm, how-

ever in the Phase 0 experiment, the readout signals after preampli�er and am-

pli�er/discriminator were fed into VUPROM2 module with a 2.5 ns time readout

granularity, and so the achieved position resolution becomes 2.5 mm.

Another drift chamber, SDC (Scattered Drift Chamber), also shipped from

KEK [32], was used for the tracking of all charged particles behind the dipole mag-

net (Figure 2.11). The size of the chamber is 120 × 90 cm2. It consists of 5 layers

of sense wires XX ′, Y Y ′ and U . The U plain has an angle of 45 degrees in order

to resolve the stereo ambiguity of the hits. During the Phase 0 experiment, SDC

was operated with the same gas mixture as BDC: Ar (70%) and CO2 (30%). Since

the beam particles are passing through the SDC the area around the beam region
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Figure 2.11: Picture of Scattered Drift Chamber

was deactivated to avoid the high counting rate. The cell size for the XX ′ and Y Y ′

layer is 4.5 mm, for the U layer is 9 mm. Scince a similar to a BDC readout system

was used for SBD, the achieved position resolution is around 4.5 mm.

2.1.4 Time-Of-Flight walls

Three Time-Of-Flight (TOF) walls were used during the Phase 0 experiment. One

of them called TOF+ wall (Figure 2.12) has been specially designed and built

for the HypHI project for the detection of positively charged particles. The TOF+

wall consists of 32 plastic scintillator bars of Bicron BC-408 with read out from

both sides by Hamamatsu H7415 photomultiplier tubes. Each bar has a size of

4.5× 2.5× 100 cm3. The bars are placed in two layers with an overlap of 1.5 cm as

shown in Figure 2.13. The active area of the detector is around 1 m2. To reduce a

counting rate and prevent plastic scintillators from the damage by the beam particles

a hole of 7.5 × 6.5 cm2 has been implemented in TOF+. Each of three bars with

the hole was constructed by two smaller bars with a gap to create the hole in their

center. Those two smaller bars are wrapped together in a re�ective mylar to keep

the optical propagation of the produced light in those two scintillator bars. The

front-end readout electronics of the detector consists of two di�erent branches for

the energy and time measurement. CAEN VME QDC and TDC modules were used

for recording the information.

ALADiN TOF wall and TFW LAND were used as stop counters for the detection

of negatively charged particles.
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Figure 2.12: Scheme and pictures of the TOF+ wall

Figure 2.13: Arrangement of the scintillator bars of the TOF+ wall with a partial

overlap of adjacent bars as indicated on the top right corner



2.1. The experimental setup of HypHI Phase 0 19

The ALADiN wall has been used for the multi-fragmentation experiments [33].

It consists of two layers of plastic scintillator strips, each with a width of 2.5 cm and

thickness of 1 cm. The active area of the detector is 2.4 × 1.1 m2. The two layers

are shifted with respect to each other by half width of a single strip leading to the

e�ective granularity of the X position measurements of 1.25 cm. The readout is

done by Hamamatsu photomultiplier's R3478 from both sides of plastic strips. In

the Phase 0 experiment only the �rst layer of ALADiN TOF wall has been used.

Energy and time information were digitized by FASTBUS ADC and TDC. Since

the ALADiN TOF wall was designed for the detection of the heavy fragments and

not the π−-mesons like in the HypHI experiment, the e�ciency of ALADiN TOF

was lower than the e�ciency of TFW LAND. It is not used for invariant mass

reconstruction, but it was used for the calibration and the alignment.

TFW LAND (Figure 2.14) was also used as a stop counter for the detection

of negatively charged particles, π− mesons. It consists of two layers, horizontal and

vertical, of the plastic scintillators (SCSN-81). The width of each plastic bar is

10 cm and the thickness is 5 mm. The vertical layer consists of 18 bars, while the

horizontal layer has 14 bars. The total detection area is 1.89×1.47 m2. The readout

is done from both ends of the plastic bars with the PMTs (XP2262). The front end

readout consists of two branches: for the energy measurements, the information is

digitized by FASTBUS ADC and for the time measurement with CAEN VME TDC

modules.

Figure 2.14: Picture of TFW
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TOF walls with association to the drift chamber (SDC) give su�cient position

resolution for the invariant mass reconstruction of hypernuclei.

2.2 Data acquisition system

The GSI Multi Branch System (MBS) [34] was used as a framework for the Data

Acquisition System (DAQ). It has been running on RIO3 VME processor with Lynx

OS. Two types of crates were used for the front end electronics: VME and FAST-

BUS. Each crate was equiped with the RIO3 VME Processor board and the GSI

trigger module board. The GSI trigger modules are connected to each other via a

trigger bus cable in order to synchronize the data acquisition and to accept trigger

signals generated by the master trigger system. The data are then transported via a

dedicated network to the memory of the server machine used as "Event builder" to

format the event data stream. The delayed data transfer was implemented in such

a way that all the data in the "Event builder" are written down to the hard disk

device during o�-spill via RFIO protocol. The online monitoring was implemented

via ethernet socket connected to stream server to check the on-going data stream.

2.3 Trigger system

The Phase 0 experiment has been performed with high intensity 6Li beam on a

thick carbon target, and the total reaction rate in the target was expected to be

around 2 MHz for the beam intensity of 3× 106 particle per second. Therefore, the

technical challenge was to produce a trigger for the data acquisition system with a

reasonable reduction of the background events. The trigger system consists of three

simultaneous stages: the secondary vertex trigger produced by the �ber detectors,

the π− trigger by the TFW LAND and the Z = 2 trigger produced by the TOF+

wall.

The secondary vertex trigger is based on the fact that hypernuclei and free

Λ-hyperons decay well behind the target due to the Lorentz boost. Most of the

π− tracks from the decay of hypernuclei do not match the hit in TR0 due to a

large momentum kick, while the nuclear fragments from the decay have a similar

momentum vector as the hypernculei produced in the target hypernuclei. In the

Figure 2.15 the typical decay of the 4
ΛH decay is shown, the fragment track (4He)

has a similar direction as the mother particle. The secondary vertex trigger checks if

it is possible to associate a hit in TR0 with a combination of the hits between TR1

and TR2 considering all tracks as straight lines. All possible primary tracks are

then removed and the remaining hits checked, by the template matching method, if

there is an associated hit in TR0. The template has been produced with the Monte

Carlo Simulation. This trigger decision procedure is implemented by several stages

of VUPROM2 modules.

The π− trigger requires the simple detection of a hit in TFW LAND above a

certain energy threshold.
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Figure 2.15: Typical 4
ΛH→4He+π− event whose decay vertex is behind the TR0.

Tracks in green, red and blue represent 4
ΛH,

4He and π−, respectively. The yellow

points are the hits of the particles in the TR0, TR1 and TR2.

The Z = 2 particle trigger is obtained by the TOF+ wall based on the time-over-

threshold method. The signals from the PMTs are fed to the discriminators where

the width of the pulse over a certain threshold is measured and the decision is made.

Two signals from the scintillating bar are fed into the leading edge discriminator with

a pulse width dependence. Once a signal amplitude exceeds the �xed threshold

value the LED generates a corresponding logic signal which ends when the analog

input signal amplitude crosses again the threshold after reaching the minimum.

Figure 2.16 shows the three di�erent signals from the di�erent particles recorded

with a digital oscilloscope during the test experiment. If, for example, the threshold

of the discriminator is set to −0.1 mV, the resulting measured width of a logic pulse

for the di�erent amplitudes is shown in Figure 2.17. With the speci�c discriminators,

it is possible to keep in a certain order the correlation between the charge via signals

from energy deposit and the logic pulse after discriminator. This correlation is fair

enough to distinguish the particles with Z = 1 from the particles with Z > 2.

The trigger e�ciency has been investigated with the Monte Carlo simulation

with 4
ΛH and associated particle events, and full background events produced by

the UrQMD calculations. The estimated trigger rate for the 4
ΛH decay channel is

around 340 Hz with the combination of those three trigger stages. Considering the

expected cross-section from the other hypernuclei, such as 3
ΛH and 5

ΛHe, the trigger

rate is up to 2.3kHz which ful�lls the data acquisition rate.

The experiment has been performed with a beam intencity of 3×106, four types

of physics trigger were implemented as a combination of described earlier triggers

and a Minimum bias trigger: Reaction, Vertex and Hypernuclei. The trigger timing
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Figure 2.16: Time-over-threshold

measurements. Each curve corre-

sponds to a signal from the di�erent

particles passing through a scintillat-

ing bar.

Figure 2.17: Pulse width measured

by leading edge discriminator with a

pulse width dependency for the par-

ticles with Z = 1 (black) and Z = 2

(red)

Table 2.2: Summary of the trigger patterns for the physics triggers.
Trigger Secondary Vertex Z = 2 π− Rate Scale

(770 kHz) (846 kHz) (48 kHz)

Reaction OFF ON ON 13 kHz 1/216

Vertex ON OFF OFF 750 kHz 1/211

Hypernuclei ON ON ON 2.3 MHz 1

was de�ned by the leading edge of the delayed signal of the start detector. Hence,

a hit above the certain threshold from the Start Counter is required to produce

a Minimum bias trigger. Minimum bias trigger was used to take data without

any biases from the other triggers. The typical rate of Minimum bias trigger was

3.0 MHz. This trigger was scaled down by a factor 216 compare to the Hypernuclei

trigger. The Reaction and Vertex trigger were implemented in order to check the

performance of the Secondary Vertex trigger, Z = 2 trigger and π− trigger. In

addition, the hit multiplicity less then three in Start Counter was required for the

Hypernuclei trigger. The trigger pattern for the physics triggers, the typical trigger

rate and scaling factors are summarised in the Table 2.2.
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3.1 Introduction

Track reconstruction is an essential step in the data analysis chain of a nuclear

physics experiment. The quality of physics analysis depends mainly on the perfor-

mance of the reconstruction algorithm.

The task of track reconstruction is to determine the location, the direction and

the momentum of charged tracks. Traditionally the task of track reconstruction

is divided into three steps: track �nding (or pattern recognition), track �tting (or

estimation), and track quality check (testing).

• Pattern recognition: track �nding. The assignment of the detector hits

to the tracks is unknown a-priori and has to be determined by a pattern recog-

nition algorithm. The latter is usually highly dependent on the detector and

the shape of the magnetic �eld. The track �nding or pattern recognition is

dividing the measurements coming from tracking detectors into the sets of the
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hits originated by the same particle. This sets are called track candidates. The

performance of the pattern recognition is strongly in�uenced by the amount of

background, for instance these sets can contain measurements which are not

coming from any interesting tracks but from electronic noise or from low en-

ergy particles spiraling inside the detector. The pattern recognition algorithm

should be conservative and keep all the track candidate in case there is any

doubt because it is impossible to recover track candidates in the late stage.

• Estimation: track �tting. The track �tting procedure takes a set of mea-

surements of the track candidate as a starting point. The goal of the �tting is

to estimate as precise as possible a set of parameters which describe the state

of the particle. This requires

• The track model, i.e, the solution of the equation of motion of the charged

particle in the magnetic �eld. The solutions can be analytical or numer-

ical.

• The amount of material crossed by the particle in order to account for

physics e�ects such a multiple scattering or energy loss by ionization.

These e�ects can be computed to a good approximation from the theory

[35].

• The covariance matrix of the observation errors.

The most wide used method for the �tting of the tracks is based on the least-

squares methods. The track �tting algorithm should be as fast as possible,

should be robust against mistakes made during the track �nding and it should

be numerically stable.

• Testing. After the track �t, the quality of the track candidate is checked, i.e, if
the track candidate hypothesis is valid. Such a test can be based on the value

of χ2 statistic, i.e. the sum of the squared standardized deference between

the measured positions in the track candidate and the estimated position of

the track at the point of intersection of the detectors. If the value of such a

statistic is too high, the set of the measurements is not statistically compatible

with the hypothesis of having created by the single particle. The reason of this

incompatibility could be a single or a few measurements of the track candidate

misclassi�ed by the track �nding, or the track candidate being completely

wrong in the sense that the random collection of the measurements originated

from several other particles so called ghost track. The track �t should be able

at this stage to remove wrong or outlying measurements in the track candidate

list and reduce the amount of ghost tracks.

Once the track reconstruction is performed, one can then determine the location

of an interaction point and the momenta of the participating tracks. The tasks

following the track reconstruction is called vertex reconstruction algorithm and will

be discussed in details in the next chapter.
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3.2 The HypHI tracking setup

Modern particles physics experiments generally consist of several kind of detectors

which provides the simultaneous measurements of di�erent properties of the particles

such as mass, energy loss, momentum. By combining the information coming from

each detector it is possible to recognize which particle has been detected. The goal

of the tracking system of any setup is to provide the information about the path of

the particles starting from the single point measured by each detector plane. The

main part of the HypHI experimental setup is made of dedicated tracking detectors

up and downstream the ALADiN magnet:

• upstream : TR0, TR1, and TR2 �bers detectors

• downstream: Drift chamber SDC, TFW and TOF+ walls.

0 m 1 m 2 m 3 m 4 m 5 m 6 m

TOF+ wall

TFW

ALADiN TOF wall

ALADiN 

dipole magnet

TR0

TR1

TR2

BDC
SDC

Li Beam

TOF-start

C Target

Z

X

Figure 3.1: Setup of the HypHI tracking system used for the Phase 0 experiment in

Cave C

As shown in Figure 3.1, the tracking will be based on the hit information coming

from TR1 and TR2 �ber detectors behind the target and the drift chamber together

with the two TOF hodoscopes behind the dipole magnet.

3.3 The ALADiN magnetic �eld

The magnetic �eld of the dipole magnet ALADiN is typical for any real dipole

magnet. It starts to rise at some distance out side the gap of the magnet and

reaches its full value Bmax
y at short distance inside the magnet. This region outside
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Figure 3.2: Implementation of the

HypHI experimental setup in the

Monte Carlo simulation. The AL-

ADiN Magnet is rotated by an 5.6

degree angle compare to the Z axis.

Tracking in front of the magnet is

done using essentially the �bers de-

tectors. In the forward region, the

drift chamber and both TOF wall are

used.

Figure 3.3: Event Display: a 2 AGeV
6Li beam particle through the HypHI

tracking system. The ALADiN mag-

netic �eld de�ects the beam in a way

that it will go through the hole of the

TOF plus detector. An intensity in-

put of 900 A which corresponds to

Bmax
y = 0.75 Tesla is used to obtain

such a bending power.

the gap in�uenced by a residual magnetic �eld is so-called the fringing-�eld region

and is of extreme importance for the exact computation of the particle trajectory.

To avoid complications, in the track �nding procedure where track reconstruction

accuracy has to be balanced with a relatively fast computational time, an e�ective

�eld length L is introduced. The e�ective �eldlength of the ALADiN magnet has

been measured in [36]. A distance from the center of the magnet to the point where

the �eld drops by a factor of 1/e of its maximal value has been taken as a base of

the e�ective �eldlength de�nition. This distance has been measured at both ends of

the magnet giving a total e�ective �eldlength of L = 1.36 m. This value is in good

agreement with the empirical formula given in [28]:

L = 2
kG

cos(α)
+ L0 (3.1)

where:

L0 is the physical length.

G is the height of the magnet gap.

k is the characteristic factor for dipole magnet found to be of order 0.6 ± 0.1 for

most magnets.

α is the magnet tilt angle.

For the ALADiN dipole magnet, G = 50 cm, α = 5.6o, L0 = 80cm which gives

an e�ective �eldlength L ∼ 140cm in agreement with the measurement.

On the basis of geometrical considerations [28] the relation between the bending
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angle ψ and the radius of curvature ρ can be found:

ρ =
L

2sin(
ψ

2
)cos(α− ψ

2
)

(3.2)

This relation is especially important since the momentum of the particle can be

deduced from the curvature of the track. In case of homogeneous magnetic �eld the

motion of the particle is a�ected by the Lorentz force

−→
F =

q

c

(−→v ×−→B) (3.3)

where q is an electric charge, c is a velocity of light, −→v is the particle velocity and−→
B is a magnetic �eld. The �nal trajectory of the particle is a helix whose axis is

parallel to the magnetic �eld direction. This motion consists of two parts

• a circumference in the plane perpendicular to the magnetic �eld direction

• a straight line in the plane parallel to the magnetic �eld

In case of a constant �eld along the y axis, the equation 3.3 simpli�es to the

momentum-curvature relation

p = 0.3 By ρ (GeV/c) (3.4)

also valid for relativistic particle. The equation 3.2 and the momentum-curvature

relation will be used by the track �nding to get an approximate value for the mo-

mentum of track candidates.

Typical sizes of the magnetic �eld components Bx, By and Bz as a function of

z are displayed in �g. 3.4. The main bending component (By) has a bell-shaped

dependence on z, and there is clearly no signi�cant subset of the magnet tracking

system in which the �eld can be regarded as inhomogeneous. Furthermore Figure 3.4

shows asymmetrical x and z �eld components which are negligible making it possible

to restrict the track reconstruction to projections during the track �nding procedure.

In Figure 3.5 the pro�le of the magnetic �eld By(x, y, z) is shown in the (xz), (zy)

and (xy) -planes of the laboratory frame. The Figure 3.6 represents the pro�le of

the normalized deviation δBy/by as a function of x and y: it can be noticed that the

variation of the magnetic �eld in the x or y direction are less than a few percent.

However in the reality, the trajectory of the particle is not a perfect helix, due

to the presence of the materials along the path of the particles (energy loss, mul-

tiple scattering) and non-uniformity of the magnetic �eld. The goal of the track

reconstruction is to �nd the algorithm which will be able to take into account those

e�ects: precision when propagating the track parameter through the magnetic �eld

is required. For this reason measured a precise three dimensional ALADiN �eld map

is used.
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Figure 3.4: Magnetic �eld components of the ALADiN magnet as function of the z

coordinate in the magnet center. The z coordinate corresponds to the exact Cave

C position of the ALADiN magnet.

Figure 3.5: Pro�le of the ALADiN �eld map in the (xz), (zy) and (xy) -planes of

the laboratory frame.
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Figure 3.6: Pro�le of the magnetic �eld deviation δBy/By as a function of x and y

coordinates.

3.4 Track �nding

As previously mentioned, the track recognition procedure restrict the track recon-

struction to projections in the non-bending plane (yz) and the bending plane (xz).

All combinations of hits in the non-bending (yz) plane on TR1, TR2 and one

of TOF+ and TFW are checked using a straight line χ2 �t. Combinations of hits

with reduced χ2
y less than 20 are requested to be considered as track candidates

(Figure 3.7). For those track candidates, the momentum is calculated in the bending

plane (xz) assuming a uniform �eld in the ALADiN magnet. Figure 3.8 illustrates

the momentum estimation method. An initial track vector is calculated using hits

in TR1 and TR2. The distance d1 is de�ned as the distance between the entrance

of the magnet and an arbitrary point along the line denoted as intersection with the

line de�ned by the initial vector, while d2 is the distance between the intersection

and the exit of the magnet in the line de�ned by the intersection point to a measured

point in the TOF wall. The intersection is found to be a point where d1 and d2 are

equals. The circle which has the two line as tangent is calculated. The radius of

circle is then used to deduce the track candidate momentum using equation 3.4.

Performance studies

The momentum residuals and momentum resolution as a function of the mo-

mentum have been studied for all relevant particle species using a dedicated Monte

Carlo simulation. Figure 3.9 shows in two columns the momentum residuals and

the momentum resolution as a function of the momentum for the particles species

which are relevant in the analysis, i.e (π−, p, d, t, 3He,4He). It can be noticed that

the momentum resolution is degraded for low momentum (p < 0.6 GeV) and for

high momentum (p > 5 GeV/c) pattern recognition tracks. High momentum par-



30 Chapter 3. Track Reconstruction

Figure 3.7: Track search in the (yz)

non-bending plane .

Figure 3.8: Track search in the xz

bending plane taking into account the

local track curvature.

ticles are not bent enough in the ALADiN magnetic �eld for a proper momentum

reconstruction and resolution can reach for triton (p > 8 GeV) δp/p ∼ 20%. For

low momentum particle, the geometrical calculation of the intersection simply fails

and resolution can reach for proton (p < 0.8 GeV) δp/p ∼ 60%.

For the analysis, a correction of such an estimated momentum is then manda-

tory. The hit positions in the detectors including the closest hits in the drift cham-

ber detectors will be �tted by a Kalman Filter method which uses the estimated

momentum only as an initial approximation. An improvement of the momentum

resolution is expected for the low momentum particle. For the high momentum

particle instead, the small track curvature will not allow for much improvement.

3.5 Track �tting

3.5.1 The Kalman �lter

The method chosen for the track reconstruction in the HypHI experiment is based

on the Kalman �lter method [37]. The Kalman �lter is a method for pattern recog-

nition and track �tting which is very commonly used in modern high-energy physics

experiments. Originally, however the method was developed for radar tracking of

spacecraft. It was introduced the �rst time into high-energy physics by P. Billoir [38]

and was called the progressivemethod of track �tting [39]. However, at that time the

equivalence between the progressive method and the Kalman �lter was not known.

This was realized a few years later by R. Fruehwirth [39]. It then became clear

that the �lter could be supplemented by a smoothing procedure which enabled the

optimal estimation of the track parameters anywhere along the track, not only at

some reference surface.

The Kalman �lter is a linear, recursive method of track �tting which is equivalent

to a global, linear least-squares method and is therefore the optimal, linear estimator

of the track parameters. If the track model is truly linear and the errors involved
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Figure 3.9: Momentum residuals and resolution as a function of the momentum

obtain with the track �nding procedure for all particulars species.
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are Gaussian, it is also e�cient, i.e no non-linear estimator can perform better. The

Kalman �lter has some well-known, attractive features which makes it preferable in

the case of the HypHI experiment over the least-squares method:

• The recursive nature of the method makes it well-suited for combined track

�nding and track �tting

• The Kalman �lter with its associated smoothing procedure deliver optimal

estimates anywhere along the track. This makes it easy to obtain optimal

predictions also in detectors lying close to the primary interaction vertex such

as TR0 and TR1.

• The ability to obtain smoothed predictions at any detector layer also enables

the Kalman �lter to e�ciently remove outliers, i.e. measurements that do not

belong to the track.

• Most important advantage in the case of HypHI experiment: in the presence

of multiple scattering and many measurements,a large covariance matrix has

to be inverted when applying the least-squares method. This is not the case

for the Kalman �lter.

Generally, The track �tting procedure aims to estimate a set of parameters rep-

resenting the kinematic state of a charge particle from the information contained

in the various position measurements in the track candidate. Since these measure-

ments are stochastic quantities with uncertainties attached to them, the estimation

amount of some kind of statistical procedure. In addition to estimated values of the

track parameters, the track �t also provides a measure of the uncertainty of these

values in the terms of the covariance matrix of the track parameter vector. Most

estimation methods can be decomposed into the several stages that will be described

in the following.

3.5.2 Track parametrization

Five parameters are su�cient to uniquely describe the state of a charged particle.

The choice of the track parameters depends on the geometry of the tracking detec-

tors. In case of cylindrical detector layers the reference surface is often cylindrical

and makes the radius times the azimuthal angel the natural choice of one of the

position parameters. In the planar detector layers con�guration Cartesian position

coordinates are more suitable to be used.

The choice of the track parameters is essential for the e�cient track �t. The

transport operation and the projection into the measurement space should avoid

correlations between parameters at any rate, and be as linear is possible. For �xed

target experiments such like HypHI, the detector planes are mainly perpendicular to

the beam axis, i.e the z-axis. Thus it is natural to parametrize the track parameters

as a function of z : q = q(z)(the xy plane is approximately parallel to the detector
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plane ). Thereby, the state vector is chosen as follow:

q =


x

y

tx
ty
k

 , (3.5)

where x and y are local transverse coordinate, tx = tan θx = px/pz and ty =

tan θy = py/pz the track direction tangents at the z reference value, k is inverse

radius of curvature, momentum related parameter. For the particle with charge Q,

k is related to the momentum component in the bending plane as

k =
Q

p⊥
. (3.6)

In case then the magnetic �eld is parallel to the y axis momentum transverse to the

�eld is

p⊥ =
√
p2
x + p2

z = p

√
1 + t2x

1 + t2x + t2y
(3.7)

The parameter k is preferred to the inverse total momentum since it is almost de-

couple transport in the horizontal and vertical planes. But for the realistic detector

setup, the �eld is not homogeneous, but still y component dominant. In this case

k strongly depends on the local �eld strength, so Q/p⊥ will be a more suitable pa-

rameter. The local track parameters are associated with the corresponding (5× 5)

covariance matrix : C = cov(q) with entry (ij):

Cij = 〈(qi− < qj >)(qj− < qi >)〉.

where < qi > are the expectation values of these parameters. The track propagation

algorithm predicts the trajectory of the charged particle in terms of mean values of

the track parameters and the corresponding errors assuming a track model. During

the propagation, three processes are taken into account:

• Energy loss, which in�uences both mean values and errors.

• Multiple Coulomb scattering, which a�ect error calculation only.

• The magnetic �eld, which in�uences the average trajectory only.

3.5.3 Track model

In the framework of the Kalman �lter, the change of the parameters of a track along

its path is regarded as the dynamical evolution of a stochastic state vector q. It will

be assumed in the following that the detector is a collection of n surfaces, and that

both the measurements and the state vectors are de�ned at these surfaces only. The

subscript k will denote quantities at layer number k.
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The track model describes how the state vector at given surface k depends on a

state vector on a di�erent surface i:

qk = fk|i(qi) (3.8)

where fk|i is the track propagator from surface i to surface k and q is a state vector.

Figure 3.10: Illustration of the track model and propagation concepts. The function

fk|i is the track propagator from surface i to surface k. The exact mathematical

form depends on the track model, i.e, the solution of the equation of motion in the

ALADiN magnetic �eld.

The track model is analytical in case of absence of magnetic �eld (straight line)

or in homogeneous �eld (helix). If the magnetic �eld is inhomogeneous, one has to

use the numerical schemes for the solving of the equation of motion.

3.5.4 Measurement model

The measurement model hk describes the functional dependence of the measured

quantities in layer k, mk, on the state vector at the same layer,

mk = hk(qk). (3.9)

The vector of measurements mk usually consist of the measured position but can

also contain the other quantities, e.g. measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this transformation is often

needed,

Hk =
∂hk
∂qk

. (3.10)

In many cases the Jacobian contain only the rotations and the projections and can

be calculated analytically.

The majority of experiments use some kind of linear least-squares approach for

the track �tting.
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The linear, global least-squares method is optimal if track model is linear, i.e.

if the propagator fk|i is a linear function of the state vector, and if all probability

densities encountered during the estimation procedure are Gaussian. The starting

point for deriving the global least-squares method is the functional relation between

the initial state vector q0 of the particle at the reference surface and the vector of

measurements mk at detector layer k,

mk = dk(q0) + γk, (3.11)

where dk is a composition of the measurement model function mk = hk(qk) and

the track propagator functions:

dk = hk ◦ fk|k−1 ◦ ... ◦ f2|1 ◦ f1|0. (3.12)

γk is a stochastic therm and contains all Coulomb multiple scattering up to layer k

as well as the measurement error of mk. A linear estimation requires a linearized

track model, and for the Jacobian Dk of dk is needed:

Dk = HkFk|k−1...F2|1F1|0, (3.13)

where H is the Jacobian of h and F is the Jacobian of f .

The observations mk, the functions dk, the Jacobians Dk, and the noise γk can

be presented as a single vector or matrix,

m =

m1
...

mb

 , d =

d1
...

db

 , D =

D1
...

Db

 , γ =

γ1
...

γb

 , (3.14)

where the total number of measurement layers is n. The model now becomes

m = d(q0) + γ, (3.15)

and the linearized version is

m = Dq0 + c + γ, (3.16)

where c is a constant vector. The global least-squares estimate of q0 is given by

q̃0 = (DTGD)−1DTG(m− c), (3.17)

where V = G−1 is the non-diagonal covariance matrix of γ.

Large number of measurements lead to a high computational cost of the meth-

ods due to the need of the inversion of large matrices. A recursive formulation of

the least-squares method is a Kalman �lter, which requires inversion of only small

matrices and the material e�ects can be taken into account locally.

Compare to the global least-squares �t the Kalman Filter proceeds progressively

from on measurement to the next, improving the particle trajectory with each new

measurement (see Figure 3.11). Properties of the Kalman Filter approach make it
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Figure 3.11: Prediction and Filter step of the Kalman �lter. The propagation

proceeds in the z direction, while the x coordinate is measured. The prediction step

propagates the estimated track parameter qk−1|k−1 vector from detector layer k− 1

to the next layer k containing a measurement. Adapted from [40].

more suitable instrument for the HypHI track reconstruction. The prediction step,

when the estimation of the state vector from the current knowledge for the next

measurement is made, is useful to distinguish a noise signals and the real hits from

the other tracks from the �t. The �lter step, which is updating the state vector, does

not require the inversion of the matrix with the state vector as in global approach,

but only with a dimension of the measurement. As well as the problem of random

perturbation on the trajectory, like Coulomb multiple scattering and energy loss,

can be taken into account in a very e�cient way.

As already mentioned above, the Kalman �lter technique was developed to de-

termine the trajectory of the state vector of the dynamical system from a set of

measurements taken at a di�erent times. In the following a brief introduction to the

mathematics of the Kalman �lter will be given.

The state vector qk−1|k−1 contains the parameters of the �tted track given at

the position of the (k − 1)th hit, its covariance matrix denoted by Ck−1|k−1. In

the assumption of linear track model, the prediction step propagates the estimated

track parameters qk−1|k−1 from detector layer k − 1 to the next layer containing a

measurement:

qk−1|k−1 ≡ fk|k−1(qk−1|k−1) = Fk|k−1(qk−1|k−1) (3.18)

where the matrix Fk|k−1 is a propagator of the track parameters from (k−1)th to kth

hit. A parameter mk is the coordinate measured by the kth hit, i.e. is a vector with

its dimension corresponding to that of the measurement. Matrix Vk describes the

measurement error. The relation between track parameters qk|k−1 and the expected
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measurementmk is given by the projection matrix Hk. Then the state vector and its

covariance matrix are propagated to the next measurement the prediction equation

becomes

qk|k−1 = Fk|k−1qk−1k−1 Ck|k−1 = Fk|k−1Ck|k−1F
T
k|k−1 + Qk (3.19)

and the estimated residual becomes

rk|k−1 = mk−1 −Hkqk|k−1 Rk|k−1 = Vk + HkCk|k−1H
T
k (3.20)

Here Qk is an additional error introduced by the process noise, i.e. random pertur-

bations of the particle's trajectory. The updating of the state vector with the kth

measurement is performed with the �lter equation:

Kk = Ck|k−1H
T
k (Vk + HkCk|k−1H

T
k )−1

qk|k = qk|k−1 + Kk(mk −Hkqk|k−1) (3.21)

Ck|k = (I−KkHk)Ck|k−1

with the �ltered residual

rk|k = (1−HkKk)rk|k−1 Rk|k = (I−HkKk)Vk|k (3.22)

where Kk is a gain matrix. The χ2 contribution of the �ltered point is given by

χ2
k,F = rTkR

−1
k|krk (3.23)

The state vector at the last point contains always the full information from all

points. If it is needed to have a vector at every point of the trajectory, then the new

information has to be obtained by passing with the smoother equations:

Ak = Ck|kF
T
k+1|k(Ck|k−1)−1

qk|n = qk|k + Ak(qk+1|n − qk+1|k)

Ck|n = Ck|k + Ak(Ck+1|k − Ck+1|n)AT
k (3.24)

rn|k = mk −Hkqn|k

Rn|k = Rk −HkAk(Cn|k+1 −Ck|k−1)AT
kH

T
k

Smoothing is also a recursive operation which proceeds step by step in the opposite

to the �ltering direction. In case then process noise such as multiple scattering is

taken into account the smoothed trajectory may in general contains small kinks and

thus reproduce more close of the particle real path.

In the equations above, F and H are just ordinary matrices if both transport

and projection in measurement space are linear. In case of non-linear systems, one

has to replace them by the corresponding functions and their derivatives:

Fkqk|k → fk(qk|k) Hkqk|k → hk(qk|k) (3.25)
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and covariance matrix transformations

Fk →
∂fk
∂qk|k

Hk →
∂hk
∂qk|k

(3.26)

The dependence of fk and hk on the state vector estimate will in general require

iteration until the trajectory converges such that all derivatives are calculated at

their proper positions. In this case the ∂fk/∂qk|k and ∂hk/∂qk|k are called transport

and projection matrix respectively.

3.5.5 Average trajectory and transport matrices

In a �xed target spectrometer like HypHI, the role of the time in the system evolution

in the Kalman �lter can be associated with the z coordinate of the detector, while

the measurements coordinates transverse to the beam.

When dividing the track into n sequential steps, the transport matrix is calcu-

lated as repeated multiplications of the transport matrices for each steps:

F =
n∏
k=1

Fk (3.27)

Field free region

In case of the absence of magnetic �eld the particle trajectory is resumed to a

straight line: only the Y and Y components of the state vector will be changed

xk|k−1 = xk−1 + tx∆z (3.28)

yk|k−1 = yk−1 + ty∆z (3.29)

with ∆z = zk − zk−1 The transport matrix Fk in this case reads:

Fk =


1 0 ∆z 0 0

0 1 0 ∆z 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

 (3.30)

Equation of motion in magnetic �eld

The trajectory of a particle in a static magnetic �eld B has to satisfy the equations

of motion given by the Lorentz force 3.3.

d

dt
(mγ

dx

dt
) =

q

c

dx

dt
×B (3.31)

where q is the charge, v =
dx

dt
the velocity, and B the magnetic �eld vector. The

equation 3.31 can be rewritten in terms of the track length parameter s the curvi-

linear distance along the trajectory

d2x

ds2
=

q

cp
· dx
ds
×B(x, s) (3.32)
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The motion of the charged particle along the z axis can be expressed from 3.32 as:

x′′ = κ · (q/p)(ds/dz)
[
x′y′Bx − (1 + x′

2
By + y′Bz)

]
, (3.33)

y′′ = κ · (q/p)(ds/dz)
[
(1 + y′

2
)Bx − x′y′By − x′Bz)

]
(3.34)

where ds/dz =
√

1 + x′2 + y′2 , κ = 2.99792458 · 10−4[(GeV/c)T−1mm−1], and the

prime denotes the derivatives with respect to z.

Thereby, the equation of motion can be written as follows using the state vector of

track parameters:

dq

dz
=

d

dz


x

y

tx
ty
Q/p

 =


tx
ty

(κQ/p)Ax
(κQ/p)Ay

0

 (3.35)

where Ax and Ay are de�ned as

Ax =
√

1 + t2x + t2y
(
txtyBx − (1 + t2x)Bx + tyBz

)
(3.36)

Ay =
√

1 + t2x + t2y
(
(1 + t2y)Bx − txtyBy − tyBz

)
(3.37)

Then one has to solve the Cauchy problem with the initial value q0. In our imple-

mentation, the problem is solved using the 4th order Runge-Kutta method [41].

3.5.6 Material e�ects

The most important e�ect on the path of the charged particle caused by the ma-

terial presented in the detector volume are ionization energy loss and Coulomb

multiple scattering. For the light particles such as electrons, radiation energy loss

by bremsstrahlung also plays an important role. The �uctuation of the ionization

energy loss are usually quite small, therefore normally treated during track �tting

as a deterministic correction to the state vector. Bremsstrahlung energy loss suf-

fers from the large �uctuation and a�ects both the state vector and the covariance

matrix. Coulomb multiple scattering is an elastic process, which in a thin materials

a�ect only the direction of the passing charged particle; in a su�ciently thick ma-

terial disturbs also the position in the plane transversal to the incident direction.

Since the mean value of scattering angle and the eventual o�set is zero, only the

covariance matrix is updates in order to take into account the e�ects of multiple

scattering into the �tting procedure.

Energy Loss

The energy loss decreases the particle energy and eventually a particle can even

be stopped if during such a process it looses all its energy. In the presence of a

magnetic �eld, the energy loss in�uences the path of charged particles by reducing

their momentum. Energy loss of particles traversing material occurs due to
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• Electromagnetic e�ects or ionization in an order proportional to α2, α denotes

the �ne structure constant α = 1/137.

• Bremsstrahlung in an order proportional to α3

• Direct pair production in an order proportional to α4

• Photonuclear interactions [35]

Nevertheless for heavy particles with masses above 100 MeV ionization loss domi-

nates the overall energy loss. In the energy loss correction algorithm only energy

loss by ionization is taken into account.

The mean energy loss from ionization for heavy particles is given by the Bethe-

Bloch equation [42]:(
dE

dx

)
ionization

= −Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax
I2

− β2 − δ(βλ)

2

]
(3.38)

where K = 4πNAr
2
emec

2 = 0.307075 MeV g−1cm2 is a constant, Z is the charge

of the particle, Z and A are the atomic number and mass of the absorber, mec
2 is

the electron mass, I is the mean excitation energy, Tmax is the maximum kinetic

energy which can be transferred to a free electron in a single collision, and δ(βλ) is

the density e�ect correction.

For a particle with mass M and momentum Mβγc, Tmax reads [42]

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(3.39)

At high energy the density e�ect is approximate using [42]

δ/2→ ln

(
28.816

√
ρ 〈Z/A〉
I

)
+ lnβγ − 1/2 (3.40)

In general the density e�ect correction δ depends in the properties of the material,

for a more accurate estimation the Sternheimer's parametrization are used [42].

The mean excitation energy I depends highly in�uenced on the internal structure

of the atoms in the traversed material as shown by the Figure 3.12.

It is di�cult to �nd a proper approximation which could be valid for all atoms.

In the energy loss correction algorithm, the simple approximation is used:

I = 10 eV · Z, Z > 16 (3.41)

I = 16 eV · Z0.9, Z < 16 (3.42)

The di�erence in energy before and after crossing a certain material is given by:

∆E = ∆ρl (3.43)



3.5. Track �tting 41

where l is the traversed length in the material and ρ is the material density. Then

the Q/p correction is given by

Q

p
=

Q√
(E2

corr −M2)
(3.44)

where Ecorr = E0 + ∆E is the corrected energy of the particles after crossing the

material.

Figure 3.12: Mean excitation energies, I divided by Z in eV units as a function of

the Z of the material [42].

Multiple scattering

Multiple scattering occurs through elastic scattering of charged particles in the

Coulomb �eld of the nuclei in the detector material. Since the nuclei are usually

much heavier then the traversing particles, the absolute momentum of the latter

remains una�ected while their direction is changed. Consequently only track pa-

rameters related to particle direction are a�ected directly, these are the track slopes

tx and ty in the track parametrization chosen above.

The Coulomb scattering is well represented by the theory of Moliere. It is roughly

gaussian for small de�ection angles, but at larger angles it behaves like Rutherford

scattering, with larger tails than for a gaussian distribution. The multiple scattering

correction algorithm uses the well-known Highland formula which is a gaussian ap-

proximation for the central 98% of the projected angular distribution, with a width

given by [35]:

Θ0 =
13.6 MeV

βpc
z

√
l

X0

[
1 + 0.038ln(

l

X0
)

]
(3.45)

Multiple scattering is a random process, therefore, its corrections a�ects only the

process noise matrix Qk. Corrections to the covariance matrix for an absorber with



42 Chapter 3. Track Reconstruction

thickness ∆z are given by the symmetric matrix [43, 42]

Q(∆z) =



cov(tx, tx)
∆z2

3
cov(tx, ty)

∆z2

3
cov(tx, tx)

α∆z

2
cov(tx, ty)

α∆z

2
0

· · · cov(ty, ty)
∆z2

3
cov(tx, ty)

α∆z

2
cov(ty, ty)

α∆z

2
0

· · · · · · cov(tx, tx) cov(tx, ty) 0

· · · · · · · · · cov(ty, ty) 0

· · · · · · · · · · · · 0


(3.46)

where symmetric counterparts are symbolized with dots and the slopes covariances

reads:

cov(tx, tx) = (1 + t2x)(1 + t2x + t2y)Θ
2
0

cov(ty, ty) = (1 + t2y)(1 + t2x + t2y)Θ
2
0 (3.47)

cov(tx, ty) = txty(1 + t2x + t2y)Θ
2
0

∆z is the traversed length of the material and α = ±1 indicating whether the motion

will increase (+1) or decrease (-1) the z coordinate.

Geometry Navigation

In order to compute accurately the material e�ects during track propagation the

precise traversed length in the material and the material properties have to be

determined. The dynamical estimation of the traversed length and the traversed

material properties is done using the ROOT geometry package [44] which takes into

account the exact geometry of the HypHI experiments as it is implemented for the

simulation.

The navigation through the detector geometry is illustrated in Figure 3.13. The

track propagation interval [z0, zf ] is divided into several steps. The number of steps

is obtained using a prede�ned maximum step size hmax which depends on the density

of the traversed material: nsteps = |zf − z0| /hmax. For each step the navigation

algorithm searches for intersections with the material along a straight line marked

with white dots in Figure 3.13. In the next stage, a precise extrapolation is done

between the intersection points inside each steps and material e�ects are added at

each intersection points as it is done during the internal tracking of the simulation.

3.5.7 Error propagation

During the track parameter estimation procedure, propagation of the track param-

eter covariance matrix along the track parameters themselves is requested. The

standard procedure is called the linear error propagation and it's similar to the

transformation between layers i and k

Ck = Fk|iCiF
T
k|i, (3.48)
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Figure 3.13: Illustration of the calculation of the traversed length using the naviga-

tion algorithm of the Geometry Modeller in ROOT [44].

where C is covariance matrix and Fk|i is the Jacobian matrix of the propagation

from layer i to k

Fk|i =
∂qk
∂qi

. (3.49)

For the analytical track models the Jacobian is also analytical, but in case of in-

homogeneous magnetic �eld, the derivatives are calculated numerically. The most

Figure 3.14: Illustration of the error propagation algorithm. The initial track pa-

rameters are smeared according the the covariance matrix estimated at surface A.

The residuals obtained are then used to compute numerically all the derivatives,

components of the Jacobian matrix.
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straightforward way is by using the de�nition of the numerical derivative:

f ′(qi) ∼
f(qi + hi)− f(qi)

hi
(3.50)

where f(qi) propagates the local track parameters denoted by i, from the initial

surface to the target surface, while hi is kept su�ciently small, ideally zero. By using

the above de�nition of the derivative, the initial local track are varied by a small

amount hi, one at a time. Only such a procedure gives an estimate of how these small

variations in initial values translate to the �nal local track parameters. Registering

the changes to the �nal parameters gives the 25 derivatives of the Jacobian.

Even though the procedure appears to be simple, the method is quite inaccurate.

One can increase the algorithm accuracy by using instead of Equation 3.50 the

following symmetric derivative [41]

g′(hi) ∼
f(qi + hi)− f(qi − hi)

2hi
(3.51)

which has a fractional error two orders of magnitude better than the original de�ni-

tion of derivatives given in equation 3.50. For further improvements in accuracy, the

Ridders algorithm has been used [42]. The idea of this algorithm is to parametrize

the symmetric derivative as a function of hi alone by calculating it for decreasing

values of hi (see �g. 3.15). This parametrization of g(hi) is then used to estimate

the derivative at the limit hi → 0.

Figure 3.15: Illustration of the Ridder algorithm. The graph shows the parametriza-

tion of the symmetric derivative g(hi).

3.6 Tracking performance

The performance of the tracking algorithm has been evaluated by generating di�er-

ent tracks with the UrQMD heavy ions collisions generators. The generated tracks
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were then processed through the HypHI spectrometer using the Virtual Monte Carlo

software environment [45]. All material e�ects, energy loss and multiple scattering,

were taken into account in the simulation.

The quality of the tracking algorithm is tested using two di�erent estimators:

• The track parameter residual: the di�erence between the �tted parameter

to the Monte Carlo truth. The distribution of residuals is expected to be

centered at zero and normally distributed. The standard deviation obtained by

applying a gaussian �t to the distribution measure the visible track parameter

resolution.

• The track parameter pull or normalized residual: is de�ned by

P(qi) =
qreci − qMC

i√
Cii

(3.52)

where qreci is the reconstructed track parameter and qMC
i the corresponding

Monte Carlo value, while Cii is the estimate for the corresponding covariance

diagonal element.

Material e�ects correction

In order to quantify the e�ectiveness of the multiple scattering correction, two type

of particles were �tted1 using the Kalman �lter:

• Slow pion in the momentum range pπ ∈ [0.2, 2.] (GeV/c) with a polar angle

θ ∈ [0, 4o] degree

• Slow proton in the momentum range pp ∈ [0.8, 4.5] (GeV/c) with a polar angle

θ ∈ [0, 4o] degree

The �gures 3.16 and 3.17 show the pulls distribution obtains for respectively the pion

and the proton tracks without and with material e�ect corrections. The resulting

pull distributions �tted with a gaussian function are superimposed.

The pion tracks �tted without material e�ects correction show extremely dis-

torted distribution of the parameter estimates (see �g.3.16). For the protons track

sample the distortion of the parameter estimates without correction is less pro-

nounced. When the material e�ects are applied in the Kalman �t, the gaussian

core of the pulls agree in all cases (pion an proton tracks) with unity, indicating

a reliable estimate of the covariance matrix. Inspection of pull for lower momenta

shows that even for very low momenta pion (100 MeV), the estimate of parameters

ans covariance matrix is2 reliable.

1the Kalman �t procedure was restricted to two passes
2The magnetic �eld had to be reduced for the low momenta study. It should be noted that

these low momenta are considered only for testing purpose because the acceptance of the tracking

system - in connection with the strength of the magnetic �eld-cuts o� pions with momenta below

0.4 GeV
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Figure 3.16: E�ect of material correction for π �tted tracks in the momentum range

pπ ∈ [0.2, 2.] . The �gure shows 3 columns. The �rst column shows uncorrected

pull distribution, the second the corrected distribution and in the third column the

uncorrected and corrected pull distribution are superimposed.
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Figure 3.17: E�ect of material correction for P �tted tracks in the momentum range

pP ∈ [0.8, 4.5] GeV. The �gure shows 3 columns. The �rst column shows uncorrected

pull distribution, the second the corrected distribution and in the third column the

uncorrected and corrected pull distribution are superimposed.
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Tracking performance for di�erent types of particles

Di�erent type of particles, i.e π, p, 3He and 4He particles, coming out of a 6Li ion

beam at 2 A GeV impinging on a carbon target were generated using the UrQMD

heavy ions collisions generators. The momentum range of generated particles should

correspond to the visible momentum range in the experiment.

The Figures 3.18, 3.19 , 3.20 and 3.21 show the pull distribution obtained when

the Kalman �t was applied to all main tracker hits, i.e. hits measured on TR1, TR2

SDC and TOF plus detector plane for positively charge particle and hits measured

on TR1, TR2, SDC and TFW detector plane for negatively charge particle.

For all di�erent types of particles, the gaussian cores pulls agree with unity,

indicating a reliable estimate of the covariance matrix. Furthermore all pulls distri-

butions are centered at zero indicating that no bias exists in the estimation of the

track parameters.

Tracking quality

Since the Kalman �lter is mathematically equivalent to a least-squares estimator,

the sum of the �ltered χ2 contributions χ2 =
∑

i δχ
2
F will follow a χ2 distribution

assuming that the errors entering into the �t are normally distributed. In this case

the χ2 probability

Pχ2 =

∫ χ2

−infty
f(χ2)dχ2 (3.53)

where f(χ2) is the standard χ2 distribution for the appropriate number of degree

of freedom and should be evenly distributed between 0 and 1. However in reality

f(χ2) is not exactly evenly distributed and deviations are to be expected if multiple

scattering3 is a dominating e�ect. In the HypHI tracking system, these e�ects have

a much larger in�uence than in traditional tracking system because of the large

amount of plastic scintillator material coming from �ber detectors and TOF walls.

The �gure 3.22 shows the normalized χ2 and χ2 probability distributions for all

type of particle. For the negatively charged particle, the probability of χ2 deviates

slightly from a �at distribution due to the multiple scattering e�ect that dominates

at low momenta. This deviation does not indicate a bad behavior of the �t, but

shows the inadequacy of the χ2 test when errors are not normally distributed.

For the positively charged particles, the probability of χ2 is nearly uniformly

distributed between 0 and 1. All normalized χ2 shows a mean peaked at one.

3.6.1 Tracking resolution

The relative momentum resolution dp/p and the relative length resolution dl/l as a

function of the momentum is shown in �gure 3.23. For the negatively low momentum

charged particle, the resolution is almost completely dominated by the multiple

3Angular deviations due to multiple scattering in the Moliere theory do not results in gaussian

distributed position errors.
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Figure 3.18: State vector pulls (right column) and residuals (left column ) distribu-

tions for π tracks in the momentum range pP ∈ [0.4, 2.5] GeV
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Figure 3.19: State vector pulls (right column) and residuals (left column ) distribu-

tions for proton tracks in the momentum range pP ∈ [0.8, 4.5] GeV
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Figure 3.20: State vector pulls (right column) and residuals (left column ) distribu-

tions for 3He tracks in the momentum range p3He ∈ [3.5, 7.] GeV
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Figure 3.21: State vector pulls (right column) and residuals (left column ) distribu-

tions for 4He tracks in the momentum range p4He ∈ [7., 25.] GeV
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Figure 3.22: Normalized χ2 and χ2 probability distributions for all type of parti-

cle. For the negatively charged particle, the probability of χ2 deviates slightly from

a �at distribution due to the multiple scattering e�ect that dominates at low mo-

menta. For the positively charged particles , the probability of χ2 is nearly uniformly

distributed between 0 and 1. All normalized χ2 shows a mean peaked at one.
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scattering as expected. For the positively charged particle the resolution is almost

completely dominated by hit position measurement errors. For fast particles such

like 4He, the relative momentum resolution dp/p ∼ 10% is nearly two times worse

than for slower particle like protons dp/p ∼ 4%.

The achieved relative length resolution is better for positively charged particle

dl/l ∼ 0.4% than for the low-momenta pions having a more pronounced curvature

dl/l ∼ 0.8%. For fast particle like 3He and 4He the relative length resolution is

nearly constant as a function of the momentum.

3.6.2 Tracking bias studies

No systematic biases were found to be introduced by the Kalman �lter algorithm.

This search was by plotting the residuals of the state vector as a function of the χ2

of the �t and the reconstructed momentum for all type of particles.

The results are shown in �gures 3.24, 3.25, 3.26, 3.27. From the �gures, one can

conclude that there is no obvious correlation between the residuals of the local track

parameters and the increase in χ2 or the increase of the reconstructed momentum.
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Figure 3.23: Reconstructed momentum and length as a function of the momentum

for all type of particles.
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Figure 3.24: Residuals of the local track parameter as a function of χ2 and recon-

structed momentum for π particle.
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Figure 3.25: Residuals of the local track parameter as a function of χ2 and recon-

structed momentum for protons .



58 Chapter 3. Track Reconstruction

Figure 3.26: Residuals of the local track parameter as a function of χ2 and recon-

structed momentum for 3He particle.
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Figure 3.27: Residuals of the local track parameter as a function of χ2 and recon-

structed momentum for 4He particle.
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Vertex Reconstruction
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4.1 Introduction

Vertex reconstruction is one of the important phase in the event reconstruction.

Association of tracks to vertices relies on the �tted position of the vertex which

is therefore important for physical interpretation of the events. Several articles

discussing sophisticated solutions to the vertex reconstruction can be found in the

literature [39, 46, 47].

The HypHI Phase 0 experiment focuses on producing and identifying mainly:
3
ΛH,

4
ΛH, and

5
ΛHe by their mesonic weak two or three body decay channels 3

ΛH

→ π−+3He, 4
ΛH → π−+4He, 5

ΛHe → π−+4He+p.

Identi�cation of hypernuclear event is achieved by vertex reconstruction and the

invariant mass method from the track reconstruction of particles. The mean decay
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length of produced hypernuclei is approximately 15 cm due to a Lorentz factor γ ∼ 3,

since the velocity of the produced particle is close to the one of the projectile.

Therefore one can assume for the vertex reconstruction that the decay vertex

of the produced hypernuclei takes place between the target and the �rst position

measurement plane (TR1)

−2 < zdecay < 41.5 cm (zTR1)

and the vertex reconstruction will then be limited to this region. The distribution

of Λ→ π− + p decay along the z axis in Figure 4.1 follows this assumption.

Figure 4.1: Reconstructed secondary vertex Z coordinate of Λ→ π− + p.

In �xed target experiments, the tracks are mainly focused around the beamline

coinciding with the z axis in the HypHI coordinates system. The vertex position

uncertainty in the beamline direction is then expected to be larger than in the

transverse direction leading to ambiguities in the separation of primary to secondary

tracks and consequently to biases in the estimation of tracks parameters and the

�nal invariant mass measurement. Furthermore large multiplicities in the �rst �ber

detector TR0 make measurements close to the target region di�cult thus removing

the possibility to reconstruct the primary interaction vertex.

The vertex reconstruction algorithms will have to deal with such inherent am-

biguities and may lead to the large uncertainties. Additionally, since vertices are

high level reconstructed objects made of reconstructed tracks, it is generally di�cult

to disentangle e�ects coming from tracks and vertex reconstruction. It is therefore

important to be able to cross check the physical results using di�erent algorithms.

In this chapter two di�erent approaches to the vertex reconstruction problem are

derived: a global reconstruction based on the least square �tting technique and an

iterative reconstruction based on the Kalman �lter algorithm.

In both approaches, the algorithm is decomposed into two main steps:

- the vertex �nding : this step consists in �nding clusters of compatible tracks

among a set of candidate tracks given on input. The search is guided by the
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a-priori knowledge of the decay channel.

- the vertex �tting : this step consists in �nding the vertex position most

compatible with the set of tracks given on input, and applying constraints on

the momentum vector using the knowledge of the vertex position.

To illustrate the data reduction after applying the vertex �nding and �tting algo-

rithm, one can for example display the selected tracks after each procedure on Monte

Carlo simulated data using the UrQMD generator to generate a typical 6Li+12C

collision at 2 A GeV which in shown in the Figure 4.2. In Figure 4.3 the high mul-

tiplicity of tracks is reduced by applying the vertex �nding algorithm and 2 decay

candidates are found: Λ→ π− + p and 3
ΛHe →3He+π−.

A more complex statistical algorithm (vertex �tting) can then be applied to solve

the ambiguity: the decay Λ → π− + p is selected based on a χ2 statistical analysis

in Figure 4.4.

Figure 4.2: UrQMD colli-

sion event (6Li+12C)
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Figure 4.3: Vertex �nding:

2 decay candidates
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Figure 4.4: Vertex �tting:

selection based on χ2

4.2 The vertex �nding

The vertex �nding algorithm aims at identifying a set of track i which should have

been produced at the same vertex of origin. The vertex �nding algorithm is sup-

posed to provide the �rst approximation to the vertex and transport the trajectory

parameters and their covariance matrix to the point of closest approach to the esti-

mated vertex. Knowing an approximate vertex position will then simplify the vertex

�tting algorithm since in the vicinity of the vertex point to be �tted a linearization

of the χ2 function can be applied.

The vertex �nding problem can be seen as a clustering problem, in which each

vertex is a cluster of tracks. The clustering algorithm should take into account that

2 tracks produced by a real decay will usually not intersect in three dimensional

space since the tracks parameters are only known within the accuracy of the track

�tting algorithm.



64 Chapter 4. Vertex Reconstruction

The basic idea for clustering will be to verify if several tracks come close to each

other in a small volume. The selection of such close tracks is based on the geometrical

distance of closest approach between 2 tracks extrapolated as straight lines in the

magnetic �eld free region between the target and the second �ber detector plane

(TR1). A cluster is identi�ed when the distance of closest approach of the track

pair δi,j is less then a maximal value δi,j < δmax obtained from the Monte Carlo

simulated data. The track parameters used for the calculation of distance of closest

approach are those obtained a z = zTR1 after the track �tting procedure.

4.2.1 Method

In the HypHI experiment, a heavy ion beam, for example (6Li), collides with an

elemental target. The information provided for a particle track resulting from this

collision includes

- a given position on the track adequately close to, if not, the �rst possible

measured point : the �tted track parameters at the second �ber detector

(TR1) at zTR1 = 41.5cm from the target will be used.

- the momentum vector at that point

- the magnetic �eld acting on the particle and the particle charge: in the HypHI

experiment, the decay of hypernuclei or lambda particle can only be recon-

structed in the geometrical region de�ned between the target plane and the

second �ber detector plane TR1. The magnetic �eld can be neglected in this

region and the tracks will be assumed to have no curvature.

Using this information, the distance and points of closest approach between two

of these tracks as shown in the Figure 4.5, one positively charged and the other

negatively charged, may be considered to determine if these tracks form a vertex V0.

Figure 4.5: Distance and points of closest approach for tracks pairs coming from a

Λ→ π− + p decay. δ(π−,p) = ‖ ~AB ‖.
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The method for the vertex �nding is based on purely geometrical consideration.

The equation de�ning the straight tracks are

~rp = ~r0,p + ~up · tp (4.1)

~rπ = ~r0,π + ~uπ · tπ (4.2)

with ~rp representing the position on the positively charged track (proton) and

~rπ the negatively charged one. ~r0,(p,π) are the position vectors of the given position,

~up,π are the unit vector in the direction of the track momentum i.e

~up,π =
~pp,π

‖ ~pp,π ‖
(4.3)

and tp,π are parameters describing position on the tracks.

The distance vector between the two tracks is

~δp,π = ~rp − ~rπ = ~r0,p − ~r0,π + ~up · tp − ~uπ · tπ (4.4)

In the Appendix A, a detailed calculation shows that the distance of closest

approach δ(π−,p) is obtained using the nearest points:

~rmp = ~r0,p + ~up ·
[~r · ~up + (~r · ~uπ) · ( ~uπ · ~up)]

[1− ( ~uπ · ~up)]2
(4.5)

~rmπ = ~r0,π + ~uπ ·
[~r · ~uπ + (~r · ~up) · ( ~uπ · ~up)]

[1− ( ~uπ · ~up)]2
(4.6)

with ~r = ~r0,p − ~r0,π .

4.2.2 Algorithm

The main steps of vertex �nding algorithm can be described as follow:

- the method receives N tracks as input

- each track is approximated by a straight line in the region de�ned between

the target and the �ber detector TR1

- an estimation of the secondary vertex from each pair of tracks is obtained

evaluating the point of nearest approach using Equations (4.5) and (4.6)

- the track is selected only if the distance of minimal approach is within a

prede�ned limit δi,j < δmax. This selection mechanism in case of N > 2 tracks

is illustrated with the Figure 4.6: once a �rst estimate of the vertex position

is obtained, the distance from the i-th track to the average vertex point (the

estimation of the secondary vertex is computed:

ri =
√

(xi − xv)2 + (yi − yv)2 + (zi − zv)2
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the average distance of the cluster of N tracks to the average point and its

associated dispersion are then calculated:

r̄ = 1
N ·

N∑
i=1

ri , ∆r̄ = 1
N ·

√
N∑
i=1

∆2ri

after these calculations some constraints are applied to the distance from the

i-th track to the average cluster point:

ri −∆ri > r̄ + ∆r̄

if this disparity apply, then the i-th track is rejected from the cluster.

- the coordinates of the secondary vertex are determined averaging among all

the track pairs



xv =
1

Ntracks
·
N∑
i=1

ωxi · xmi

yv =
1

Ntracks
·
N∑
i=1

ωyi · ymi

zv =
1

Ntracks
·
N∑
i=1

ωzi · zmi

with the weight

wi =
1

σ2
i ·

N∑
i

1

σ2
i

which take into account the precision of the track parameters, σ2
i being the

diagonal element of the covariance matrix of the i-th track estimate Vi.

- a �rst estimation of the error on the average secondary vertex position

σxv =
1

Ntracks
·

√
N∑
i=1

ωxi
2 · σ2

xmi

σyv =
1

Ntracks
·

√
N∑
i=1

ωyi
2 · σ2

ymi

σzv =
1

Ntracks
·

√
N∑
i=1

ωzi
2 · σ2

zmi

- the last step stores xv, yv, zv, σxv , σyv , σzv , position and errors of the secondary

vertex respectively
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Figure 4.6: The clustering algorithm: track i , j and k are crossing a potential decay

region de�ned by the minimal distance of closest cut approach δi,j < δmax. A �rst

estimation of the vertex position can then be extracted by a weighted mean of the

points of nearest approach.

4.2.3 Vertex �nding performance

In order to validate the algorithms described in this chapter, a full simulation of the

Phase 0 HypHI experimental setup has been performed within the VMC (Virtual

Monte Carlo) framework [44] [45].

The schematic layout of the experimental setup used in the simulation study is

presented in Figure 4.7.

The complete implementation of the experimental setup within the Virtual

Monte Carlo framework is presented in Figure 4.8 and an event display of a typical

collision 6Li+12C transport through the detectors is presented in Figure 4.9.

As input to the simulation, the event generator based on the UrQMD model [?]

presented in Chapter 1 is used. Events from the UrQMD event generator are pro-

cessed in the experimental setup mentioned above by the mean of Monte Carlo

simulations within the GEANT3 [48] framework. The measured resolutions of the

�bers detectors (TR0, TR1 and TR2), the drift chambers (BDC and SDC), the

TFW and the TOF+ walls used for the track reconstruction algorithm described

in Chapter 3 have been reused in the Monte Carlo simulations to process events

through the experimental setup.

The Monte Carlo simulation performs as follow:

- kinematics and Particle Data Code of UrQMD generated particles are for-

warded as primary particles to the Monte Carlo GEANT3 transport engine
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Figure 4.7: The schematic layout of the Phase 0 HypHI experimental setup used

in the simulation study with the distance of each detector system from the target.

Figure 4.8: Implementation of the

HypHI experimental setup in VMC

Figure 4.9: Event Display: UrQMD

collision event (6Li+12C)
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- primary particles are transported through the detector and hits position in the

sensitive volume of the detectors are smeared according to the corresponding

resolution

- smeared hits are used as input for track �nding and Kalman track �tting

algorithms.

- �tted track parameters for primary and secondary tracks at the TR1 detector

plane are stored

The �tted track parameters obtained at the TR1 detector plane are then used as

an input to the vertex reconstruction algorithm. To study the performance of the

vertex �nding algorithm, the Λ→ π− + p decay is used.

4.2.3.1 Distance of closest approach

The Figure 4.10 shows the distribution of distance of closest approach of track pairs

δi,j in the case of true Λ decay: δi,j < 1 cm. Using this results, a maximal distance

of closest approach

δmax
ij = 2 cm

will be applied in the vertex �tting algorithm to perform a �rst selection of decay

candidate.

Figure 4.10: Distribution of distance of closest approach in the case of true Λ decay.

4.2.3.2 Resolution

The Figure 4.11 shows the deviations from the true vertex position, or the residuals,

distributions for the X, Y and Z coordinates. It is clear from the picture that the

dominant error comes from the Z coordinates. Furthermore compared to the trans-

verse plane resolution, the residuals or the deviations from the in Z are not normally
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distributed which mainly comes from the uncertainties in the track parameters that

are propagated in the vertex �nding algorithm. The vertex �nding resolution are

summarized in Table 5.2

Figure 4.11: Residuals distributions for the X, Y and Z coordinates (blue) �tted

by the Gaussian function (red).

The Figures 4.12 and 4.13 shows respectively the transverse and longitudinal

resolution as a function of the Z coordinates. In both transverse and longitudinal

direction the resolution is improved as the distance of the decaying particle to the

target increase. The transverse resolution is linear in Z , the longitudinal resolution

follow an exponential decrease in Z coordinate.

The Figure 4.16 shows respectively the transverse and longitudinal resolution as

a function of the transverse momentum of the Λ particle. The longitudinal resolution
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Table 4.1: Vertex �nding Resolutions in X, Y and Z coordinates

δX (cm) δY (cm) δZ (cm)

0.084 0.079 0.83

Figure 4.12: Transverse resolution as

function of Z.

Figure 4.13: Longitudinal Resolution

as function of Z.

Figure 4.14: Transverse resolution as

function of ptΛ.

Figure 4.15: Longitudinal Resolution

as function of ptΛ.
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Figure 4.16: The longitudinal discrepancy δZ versus the opening angle between the

two outgoing tracks (p, π−) from the Λ decay. The opening angle is calculated with

the track parameters extrapolated to the approximate vertex position.

is improve for high value of the transverse momentum ptΛ. This can be explained

by a pure geometrical consideration: for high ptΛ the decay products π− and p have

a larger opening angle and the intersection of the corresponding straight tracks is

estimated with a better accuracy. The Figure 4.16 show the small values of the

opening angles between the two outgoing tracks (p, π−) from the Λ decay imply a

wider distribution in the longitudinal discrepancy δZ .

4.2.3.3 E�ciency

As for the tracking e�ciency, the vertex �nding e�ciency can be de�ned by the ratio

between the number of found Λ particle and the the number of Λ vertices accepted

in the geometrical acceptance of the experimental setup. A decaying particle (Λ) is

considered to be in the geometrical acceptance of the detector if:

- its decay products pass through enough layer of tracking station i.e TR1 TR2

and BDC. These requirements are needed for the proper track reconstruction.

- a hit has been recorded in TOF+ wall for the positively charged particle and in

the TFW for the negatively charged particle. These requirements are needed

for a proper particle identi�cation.

- the decay position zvertex of the particle candidate must be within the de-

tectable z interval −2 < zdecay < 41.5 cm (zTR1) .

In Figures 4.17 and 4.18, the vertex �nding e�ciency



4.3. The vertex �tting 73

Figure 4.17: Vertex �nding e�ciency

as a function of Zv coordinate of the

decaying particle.

Figure 4.18: Vertex �nding e�ciency

as a function of the momentum pΛ.

of the decaying particle.

ε(zv) =
Nfound

Λ (zv)

Naccepted
Λ (zv)

ε(pΛ) =
Nfound

Λ (pΛ)

Naccepted
Λ (pΛ)

(4.7)

as a function of of Zv coordinate of the decaying particle and the momentum

pΛ. of the decaying particle are shown. The e�ciency as a function of the variables

Zv and pΛ is rather constant and reach nearly 98− 99 %.The e�ciency decreases a

little for decay particle created close to the vertex. It is important that the vertex

�nding e�ciency reaches this maximum for the whole geometrical and kinematical

range in order not to introduce any bias for the further data analysis tasks: the

vertex �tting.

4.3 The vertex �tting

4.3.1 Motivations

A vertex reconstruction algorithm usually proceed in three stages. At the �rst stage

all possible combinations of tracks are considered and a �rst estimate of the vertex

seeds ~rv = (xv, yv, zv)
T is de�ned. Tracks parameters are swum from the reference

plane z = zTR1 to the plane z = zv. This �rst stage, the vertex �nding , has been

described in detail in the preceding section.

At the second stage a mathematical procedure, the vertex �tting is applied

for each vertex seeds. For the exclusive analysis of elementary particle reactions,

the complete kinematic of the reaction should be accessible: the 4-momentum

pµ = (E, ~p)T of all produced particles have to be determined. In the HypHI ex-

perimental setup a combination of scintillating �bers and drift chamber detectors

are used for the measurement of the particle momenta ~p while the time of �ight

delivered by the TOF detectors allows to identify the particle and also used as a

last tracking plane. After identifying the di�erent particles, the masses are set to

the nominal values, enabling, together with the momentum, the calculation of the

energy E. Intermediate particles, such as hypernuclei particles, that have a short
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lifetime and decay before being detected, can then be reconstructed via the invariant

mass technique. The particle tracks are completely de�ned by their momentum ~p,

the energy E (or the mass m) and the space point ~rv, at which the momentum is

evaluated, the so called vertex point. However, these observables can only be deter-

mined within the track parameters uncertainties coming from a �nite resolution of

the position measurement and of the track reconstruction algorithm. Consequently

the mass of intermediate particle is also measured within a certain uncertainty.

The scope of the vertex �tting is to improve the mass resolution of reconstructed

particle and to reduce the amount of background reactions contaminating the signal.

It uses eventually the physical laws governing a particle interaction or decay to

improve the measurements describing the process. For example, the fact that the

three particles coming from the hypernuclear 5
ΛHe→ π−+4He+p decay must come

from a common space point can be used to improve the momentum vectors of

the daughter particles, thus improving the mass resolution of the reconstructed

hypernuclei 5
ΛHe. As a result, the vertex �tting procedure de�nes an optimal vertex

position (3 parameters), momentum vectors at the vertex for all N products particles

(3 ·N parameters), the covariance matrix and the χ2 value. This chapter describes

two di�erent approaches for the vertex �tting: a global approach based on the least

squares method and a progressive method based on the Kalman �lter algorithm.

In the third stage, which will be described in the next pages, the best seeds

(minimal χ2, corresponding geometrical cuts etc.) is selected and considered as

reconstructed particle.

4.3.2 Track parametrization

For the track �tting procedure in a �xed target experiment, each point along the

trajectory describes a track by a 5-component Cartesian coordinates state vector

~qi = (x, tx, y, ty, Q/pxz)
T ∀i = (1, ..., N) (4.8)

and its associated Vq (5× 5) covariance matrix.

For vertex �tting it is important to choose a track representation which uses

physically meaningfull quantities ans is complete. Unfortunately, the above track

parametrization lacks of completeness :

- it does not specify the location in space (3 coordinates) of a particle production

or decay

- it does not specify the energy E: in vertex �tting the energy varies indepen-

dently of the momentum because the mass is in general not constraint, which

is always the case for hypernuclei.

For these reasons, in this chapter the above minimal dim(~qi) = 5 representation

is embedded into more dimensions. In particular, we choose the dim(αqi) = 7

representation:

~αi = (x, y, z, px, py, pz, E)T ∀i = (1, ..., N) (4.9)
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and its associated Valpha (7 × 7) covariance matrix which can be deduced from Vq
using the Jacabian transformation Jq→α:

(Vq)i,j = 〈δqi, δqj〉 , dim(Vq) = (5× 5) (Vα)i,j = 〈δαi, δαj〉 , dim(Vα) = (7× 7)

Vα = Jq→α · Vq · (Jq→α)−1 (4.10)

Appendix B describes a procedure for converting the covariance matrix to the

new track representation format.

4.3.3 The Least Squares vertex �t

The Least Squares vertex �t is a well established tool to test the hypothesis that a set

of measurements represent a given physics reaction [49]. The �t is a least squares

error minimization of the tracks measurements that must satisfy some speci�ed

constraint equations, namely that the tracks have a common vertex and observe

four-momentum conservation. In other words, if the system is overdetermined, the

track parameters may be �t such that they abide these constraints while minimizing

the deviation from their measured values relative to their uncertainties. If the tracks

parameters measurements are normally distributed about their true values, the �t

errors from a large data sample follow a χ2 distribution corresponding to the number

of freedom in the �t. The χ2 distribution can be translated into a con�dence level

of the �t, which can then be cut on to extract the signal from the background.

The Figure 4.19 shows a scheme of vertex �tting procedure: the input are N

�tted tracks parameters at z = zTR1. Following the notation in [50] we denote the

reconstructed parameters of track i by ~αi and the corresponding covariance matrix

by Vi. Given a set of N outgoing tracks each labeled with an index i, the χ2 of the

vertex can be generally written as

χ2 =
N∑
i=1

[~αi − hi(~x, ~pi)]T V −1
i [~αi − hi(~x, ~pi)] (4.11)

where ~x is 3D vector representing the �tted vertex position, ~pi is the �tted 4-

momentum vector of the outgoing track and hi is a function the expresses the

measured track parameters in terms of ~x and ~pi.

The solution to the vertex �t is the set of parameters ~α ≡ (~x, ~p1, · · · ~pN ) that

minimizes the χ2. In case the function hi is linear in the parameters ~α, the solution

can be expressed generally as

~̂α = ~α0 −
(
d2χ2

d~α2

)−1
dχ2

d~α
(4.12)

where ~α0 is a arbitrary starting point for ~α. The inverse of the second derivative

matrix on the right hand side is also half the covariance matrix for ~̂α. If the derivative

of hi is denoted by Hi, this leads to the well-know expression for the linear least

squares estimator,

~̂α = ~α0 − C ·
N∑
i=1

HT
i V
−1
i [~αi − hi(~x, ~pi)] (4.13)
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Figure 4.19: Vertex �tting scheme with N tracks parameters as input.

with the covariance matrix

C =

(
N∑
i=1

HT
i ViHi

)−1

(4.14)

In general, the function hi is not linear and hence its derivative Hi not constant.

It is therefore important to begin the iterative vertex �tting procedure with a good

estimation of vertex position (vertex �nding). Only in that case, the minimum can

be obtained by starting from a suitable expansion point ξ0 and iteratively applying

Equation 4.12 until a certain convergence criterion is met, usually a minimum change

in χ2.

As explained in the introduction the minimum χ2 of the vertex �t will be used

in selections further in the data analysis. Assuming that the uncertainties on the

track parameters are correctly estimated, that is to say that they are representative

of the RMS of the error distribution, the expectation value of the χ2 of a N -track

vertex is 2N − 31.

If the resolution of the tracking detector is good enough to separate decay vertices

of di�erent particles, background events consisting of tracks from di�erent vertices

have a higher χ2. The number 2N − 3 is also called number of degree of freedom

of the χ2. In the data analysis selection, the cumulative χ2 distribution Prob(χ2),

function will be used as selection variable.

1For a N -prong vertex �t the expression for the number of degrees of freedom can be understood

as follows. One can show that the expectation value for the minimum χ2 of a �t withM parameters

(or unknowns) to N one-dimensional constraints (or measurements) of the position of a point in 3D

to estimate a common, unknown point of origin. Each point contributes 3 independent constraints,

for the x,y and z coordinates respectively. The origin point has 3 unknowns. Consequently, the

number of degree of freedom of the minimum χ2 is 3N−3. If one consider tracks rather than points,

the coordinate along the trajectory is not constrained and by the track parameters. Consequently,

a track provides only 2 constraints to a vertex. Therefore the χ2 to a vertex �t to N tracks has

2N − 3 degrees of freedom.
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4.3.3.1 Lagrange Multipliers Formalism

The vertex �tting formalism can be extended with additional constraints, such as an

a-priori knowledge of the vertex position or the known mass of the decaying particle.

Such constraints always take the form of a constraints equation:

~H(~α) = 0. (4.15)

A distinction can be made between exact constraints and constraints that have

a associated uncertainty. The latter are sometimes called χ2 constraints. Mass

constraints are usually implemented as exact constraints, while vertex constraints

are an example of χ2 constraint. These constraints can be implemented with the

Lagrange Multipliers Method. Their χ2 contribution takes the form

∆χ2 = ~λT ~H(~α) (4.16)

where the Lagrange multiplier vector ~λ is treated as an additional parameter in the

�t. The Lagrange Multipliers method for vertex �tting originated from a work by

Brandt [51] and by Williams [52]. The application of the method to vertex �tting

is discussed in details in the write-ups of Paul Avery [50] where it is shown that the

χ2 minimization of Equation 4.11 is equivalent to minimize the following Lagrange

equation with respect to ~α and ~λ

L(~α,~λ) = (~α− ~α0)T V−1
~α0

(~α− ~α0) + 2~λT ~H(~α) (4.17)

V−1
~α0

is the inverse of the track parameters covariance matrix2, ~α describes the 7N

�tted and ~α0 the 7N unconstrained parameters for the N tracks.

V−1
~α0

=


1
σ2
α1

0 · · · 0

0 1
σ2
α2

· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
α7N

 ~α =


~α1

~α2
...

~α7N

 ~αi =



xi
yi
zi
Ei
px,i
py,i
pz,i


~H(α) describes the M holonomic constraints conditions of Equation 4.15 and ~λ

is the M -dimensional vector of Lagrange multipliers. The factor 2 is added in order

to simpli�es further calculations.

The �rst term of Equation 4.17 forces the �tted track parameters ~α full�lling the

constraints to stay as close as possible to the unconstrined parameters ~α0. During

2The covariance matrix V ~α0 is a (7N×7N)-matrix containing the uncertainties of the measured

unconstrained track parameters ~α0. The diagonal elements correspond to the squares of the stan-

dard deviations of the parameters, the non-diagonal elements contain the correlated errors. For a

complete description, the non-diagonal elements, mainly originating from the multiple scattering,

need to be taken into account.
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the iterative �t, the parameters will be moved only within an interval de�ned the

measurements uncertainties σ2
αi , diagonal elements of the covariance matrix V ~α0

.

Assuming that the parameters uncertainties have a zero expectation value, the

Gauss-Markov theorem assures that the �tted parameters are unbiased and have

a minimal variance σ2
αi , in other words, the �t delivers the best possible set of

parameters3 [42].

The second term of Equation 4.17 describes theM constraints equations. Instead

of substituting the M conditions into the Lagrange function L inEquation 4.17 a

set of M new variables λi (Lagrange multipliers) is included in the expression of L

as coe�cients of a linear combination of the constraints.

In Figures 4.20 and 4.21 the 7N -dimensional parameter space to 2 dimension ~α =

( ~α1, ~α2)T and 1 constraint condition. One can translate the two conditions for the

�t as follow: �nd the minimum of the function χ2( ~α1, ~α2) = (~α− ~α0)T V−1
~α0

(~α− ~α0)

where the condition H( ~α1, ~α2) = 0 apply.

Figure 4.20: Lagrange multiplier method: black lines represents the contours of

χ2(α1, α2), the red line represents the constraints conditions H(α1, α2) = 0. The

minimum id found where both contours touch tangentially.

The solution of the constrained minimization is obtained by minimizing L with

respect to ~α and λ.

∂L(α1, α2, λ)

∂~α
= ~0 (4.18)

∂L( ~α1, ~α2, λ)

∂~λ
= 0 (4.19)

From Equations 4.18 and 4.19, one derives respectively

3track parameters will converge to proper values if the experiment is repeated enough times [50]
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Figure 4.21: Contour map 2D projection. The contours χ2 = min and H = 0

touch tangentially where the gradients of H (red-arrows) and χ2 (black arrows) are

parallel. The magnitude of the gradients is in general not the same.

• ∂L

∂~λ
= 2 · H(~α) = 0 i.e the solution must lie on a zero contour of the

constraint ( Figure 4.20 )

• ~∇α1,α2χ
2 = −2λ~∇α1,α2H i.e the gradients of χ2 and constraint must be

parallel at solution. The Figure 4.21 shows that at solution the constraint

line is parallel to the χ2 contour.

4.3.3.2 Linearization

In general, the minimization of Equation 4.17 needs to estimate the derivatives of

the constraint equation ~H(~α), which can be non-linear functions of the parameters ~α

and consequently, not solvable analytically. Nevertheless, the constraints functions
~H(~α) can be expanded around the approximate solution ~αA obtained during vertex

�nding.

~H(~α) ≈ ~H( ~αA) +
∂ ~H( ~αA)

∂~α
(~α− ~αA) ≡ Dδ~α+ ~d (4.20)

where δ~α = ~α− ~αA and

D =


∂H1(~α)
∂α1

∂H1(~α)
∂α2

· · · ∂H1(~α)
∂α7N

∂H2(~α)
∂α1

∂H2(~α)
∂α2

· · · ∂H2(~α)
∂α7N

...
...

. . .
...

∂HM (~α)
∂α2

∂HM (~α)
∂α2

· · · ∂HM (~α)
∂α7N

 ~d =


H1( ~αA)

H2( ~αA)
...

HM ( ~αA)

 (4.21)
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The linearization is only justi�ed is the approximate solution found by the vertex

�nding procedure is su�ciently close to the true value. The Equation 4.17 can then

be written as

L(~α,~λ) = (~α− ~α0)T V−1
~α0

(~α− ~α0) + 2~λT (Dδ~α+ ~d) (4.22)

After linearization, the Lagrange equation can be minimized analytically with re-

spect to ~α and ~λ. Solving the equations for the new parameters ~α and its associated

covariance matrix V~α yields to the equations [50]

~α = ~α0 −V ~α0
DTVD(Dδ ~α0 + ~d) (4.23)

V~α = V ~α0
−V ~α0

DTVDDV ~α0
(4.24)

where the matrix VD is de�ned as

VD =
(
DV ~α0

DT
)−1

(4.25)

Only the (M ×M)VD has to be inverted in order to obtain the new expression

of the χ2

χ2 = (Dδ ~α0 + ~d)TV−1
D (Dδ ~α0 + ~d) (4.26)

Because of the non-linearity in ~α, the �t has to be applied iteratively, using the

values obtained by the equations 4.23-4.26 as input for the next iteration step:

~αA = ~α. Improved values for ~α and V~α are calculated , which better �t to the

constraints. This procedure is repeated until minimal change in the χ2 value as

shown in the schematic overview of Figure 4.23. The Figure 4.22 shows a simpli�ed

picture of the linearization of the constraints. The function H(α) is plotted versus

a free parameter α. The linearization, like it is done in the �t, delivers the blue

tangent to the curve an a new value α1. Going on with this linearization procedure

will produces new values (α2, α3 · · ·αn) which approach the constraints H(α) = 0.

4.3.3.3 Vertex Constraints

A vertex constraint can be added to the Equation 4.22 in order to enforce the N

tracks to pass through a common space point ~v. Assuming that a vertex position ~vA
and the covariance matrix V~v can be approximated by the vertex �nding procedure,

the position and the errors of the vertex are taken into account by adding a second

term to the χ2 in the Lagrange Equation 4.17 which will be expanded around ~vA [50]:

L(~α,~v,~λ) = (~α− ~α0)T V−1
~α0

(~α− ~α0)+(~v − ~v0)T V−1
~v0

(~v − ~v0)+2~λT (Dδ~α+Eδ~v + ~d)

(4.27)

with ~v0 being the approximated initial vertex position, δ~v = ~v− ~vA and the (M ×3)

matrix

E =


∂H1(~α,~v)
∂vx

∂H1(~α,~v)
∂vy

∂H1(~α,~v)
∂vz

∂H2(~α)
∂vx

∂H2(~α)
∂vy

∂H2(~α)
∂vz

...
...

...
∂HM (~α,~v)

∂vx

∂HM (~α,~v)
∂vy

∂HM (~α,~v)
∂vz
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Figure 4.22: Schematic view of the linearization of the constraints in the iterative

�t

Figure 4.23: Schematic view of the �tting procedure
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The minimization of the new Lagrange function of Equation 4.27 with respect

to ~α, ~v and λ yields the equations

δ~α = −V ~α0
DT (VD −VDEV~vE

TVD)(Dδ ~α0 + Eδ ~v0 + ~d) (4.28)

δ~v = −V ~v0
ET (VD −VDEV~vE

TVD)(Dδ ~α0 + Eδ ~v0 + ~d) (4.29)

with δ~α = ~α − ~α0, δ~v = ~v − ~v0 and the auxiliray matrix VD being de�ned in

Equation 4.25. The covariance matrices are calculated as:

V~α = V ~α0
−V ~α0

DTVDDV ~α0
+ V ~α0

DTVDEV~vE
TVDDV ~α0

(4.30)

V~v =
(
V−1
~v0

+ ETVDE
)−1

(4.31)

When applying vertex constraints, the covariance matrix of the track parameters

V~α is increased by the last term of Equation 4.30 which comes from the vertex �t

itself. In particular, this last term contains a track to track correlations information

through the matrix V~v as re�ected by the (7N × 3) covariance matrix of the vertex

and the tracks:

Cov(~α,~v) = −V ~α0
DTVDEV~v (4.32)

Other matrices involved in Equation 4.30, D, VD and V ~v0
are block-diagonal so

that each track is �tted independently. In Equation 4.30 the new vertex covariance

matrix V~v can be seen as the weighted mean of the initial vertex error matrix V ~v0

and the track parameters errors de�ned inVD. Additionnaly, both vertex covariance

matrices V~v and V ~v0
needs inversion which will increase the �t computing time by

a factor ∼ 2×O(33).

The modi�ed expression for the χ2 is given by

χ2 = (Dδ~α+ Eδ~v + ~d)T (VD −VDEV~vE
TVD)T (Dδ~α+ Eδ~v + ~d) (4.33)

4.3.3.4 Quality of the �t

The validity of the vertex �t depends in a crucial manner on the correct input of

the track parameter covariance matrix V ~α0
. In the preceding Chapter 3, it has

been demonstrated that the Kalman track �tting procedure delivers a proper mean

estimate of the track parameters uncertainties (Figures 3.18, 3.19, 3.20, 3.21). But

even if, on a event by event basis, the track parameter errors are not correct, the

vertex �t will force the parameters ~α to satisfy the constraints. As a result, some

of the �tted parameters in ~α are not shifted inside the correct error interval and

they can be too far away or unnecessary close to ~α0. Therefore, it is important to

provide some quality criteria which measure the quality of the �t and that indicate

the presence of background events and whether the error input in V ~α0
is correct.

The vertex �tting is based on the minimization of the χ2 value de�ned by the �rst

term of 4.17. The χ2-value is therefore a good measure of the global performance

of the �t.
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Furthermore, if the input track parameters errors in V ~α0
are correctly estimated

and normally distributed, the probability density function of the χ2 is given by the

equation [42]

fν(χ2) =
1

2ν/2Γ(ν/2)
(χ2)ν/2e−χ

2/2 (4.34)

with a mean value
〈
fν(χ2)

〉
= ν , ν being the degree of freedom of the �t and Γ

the gamma function. The number of degrees of freedom ν is exactly the number

of constraints which are used in the �t4. Figure 4.24 shows the χ2 distribution for

di�erent values of ν.

For the data analysis, one can use a selection direclty based on the χ2 value or, a

more convenient way , on the on so-called p-value. The p-value is a quantity which

gives the probability that the same �t, if repeated, will result in a χ2
n+1 value as

large as or larger than the value of the preceding �t χ2
n. If the track parameters

input errors are correct an normally distributed, the p-value is evenly distributed

between 0 and 1. The p-value is de�ned as

p− value =

∫ ∞
χ2
ref

fν(χ2)dχ2 (4.35)

where χ2
ref is the calculated χ2-value after the application of the new �t. A high

χ2
ref means that the parameters ~α were shifted too far away from ~α0 and this results

in a low p-value: this property of the p-value will be used in the data analysis to

reduce background events.

4.3.4 The Kalman vertex �t

In the standard least squares �t formalism for vertex reconstruction, described in

the preceding section, all candidate tracks of a decay event are �tted to a single

vertex in one single step (4.11). In this sense, it is a global method. The expression

for the standard �t in Equation 4.11 show that the dimensions of matrices and

vectors in this formalism are proportional to the number N of measured tracks

of the decay event. Because the required processing time for the inversion of a

(N × N) matrix is ∼ O(N3), the method is unsatifactory in high charged particle

muliplicity environment. Furthermore, due to its global structure, this formalism is

not �exible in handling di�erent vertex hypothesis within a single decay event, such

as dynamically removing spurious tracks or taking a subset of tracks of the decay

event to search for secondary vertices.

In this section the method of Kalman Filter [54, 55], which has been already used

for track �tting in the preceding chapter, is adapted for vertex �tting. The basic

idea of the Kalman Filter is to use the information of di�erent particle trajectories

about the vertex consecutively one after the other. In this sense it is considered as

a local method.
4The dependence between χ2 and the degree of freedom ν is intuitive: in a �t with 2 constraints,

the parameters α have to be shifted further away from α0 as by applying a �t with only one

constraint. Therefore the χ2 value is larger.
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Figure 4.24: Normalized χ2 distribution for di�erent values of the degree of freedom

(ndf). In the limit ν → ∞, the χ2 is close to a normal distribution (central limit

theorem ) apadted from [53].

4.3.4.1 Formalism

In order to describe the formalism, the following notation, close to [55], is used:

~xk = estimate of the vertex position after using the information of k tracks.

~xt = the true vertex position.

Ck = cov(~xk) ≡ cov(~xk − ~xt)

~qk = estimate of the momentum of track k at ~xk

~qt
k = the true momentum of track k at ~xk

Dk = cov(~qk) ≡ cov(~qk − ~qt)

Ek = cov(~xk, ~qk) ≡ cov((~xk − ~xt), (~qk − ~qt))

~mk = (x, tx, y, ty, Q/pxz)
T the 5 measured parameters of track k estimated

from the track �tting at a reference plane z = zref

~νk = measurement noise, i.e if there is multiple scattering between the position

of the vertex and of the track parameters, its e�ect has to be included in vecνk.

Vk = cov(~νk) = associated covariance matrix of ~νk.

Gk = Vk
−1 = weightmatrix of track k
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The measurement equation describes a projecting function h of the true vertex

position ~xt and the true momentum ~qt of track k at this position to the measured

parameters ~mk of this track distorted by the measurement noise ~νk:

~mk = hk(~xt, ~qt
k) + ~νk (4.36)

All ~νk are assumed to be stochastically independent, unbiased and of �nite vari-

ance. In the case the meaurement ~mk depend non linearly on the vector (~xt, ~qt
k),

it is neccessary to linearize the model of measurement. As reasonable point of lin-

earization, (~x
(0)
k , ~q

(0)
k ) is for ~x

(0)
k the estimate after k − 1 tracks ~xk−1, and for ~q

(0)
k

the momentum at the point of the track k closest to ~x
(0)
k .

~hk(~xt, ~qt
k) ≈ hk(~x(0), ~q

(0)
k ) + Ak(~xt − ~x(0)

k ) + Bk(~qt
k − ~q

(0)
k )

= ~c
(0)
k + Ak~x

t + Bk~q
t
k

(4.37)

with

Ak =
∂hk

∂~xt

∣∣∣∣
~x

(0)
k ,~q

(0)
k

, Bk =
∂hk

∂~qt
k

∣∣∣∣
~x

(0)
k ,~q

(0)
k

~c
(0)
k = hk(~x(0), ~q

(0)
k )−Ak~x

(0
k −Bk~q

(0)
k

(4.38)

The Kalman vertex �tting algorithm then proceeds according to the following

steps:

1. A start value for the vertex position ~x(0) and its associated covariance matrix

C0 is taken from the a priori estimate of the track �nding procedure.

2. This start value ~x(0) is compared with the information about the vertex po-

sition obtained from the measured parameters ~m1 of one candidate track of

the decay event. This is achieved through the weighted addition of the vertex

position obtained from one track ~m1 to the χ2 of the previous guess ~x(0):

χ2
1 = (~x, ~q) = (~x− ~x0)TC0

−1(~x− ~x0)

+ ( ~m1 − ~c(0)
1 −A1~x−B1~q)TG1( ~m1 − ~c(0)

1 −A1~x−B1~q)
(4.39)

The position ~x and the momentum ~q that minimize χ2
1 are the �rst estimate5

for ~x1 and ~q1. A proper error propagation ([56]) delivers the covariance matrix

C1 of ~x1.

3. The preceding step is repeated for every single candidate track and after adding

the measurement ~mk from the k-th track, the minimization of

χ2
k(~x, ~q) = (~x− ~xk−1)TCk−1

−1(~x− ~xk−1)

+ ( ~mk − ~c
(0)
k −Ak−1~x−Bk−1~q)TGk−1( ~mk − ~c

(0)
k −Ak−1~x−Bk−1~q)

(4.40)

5 χ2
1 depends only on the measured parameters of one track, whereas in the standard least

square �t the χ2 contains the parameters of all candidate tracks.
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This procedure, so-called �ltering, results in the �nal estimate of the vertex

position ~xN and its associated covariance matrix CN, where N is the total

number of candidate tracks.

4. Then the smoothing step recalculates the momenta of all tracks at this �nal

vertex position ~xN

Since especially for a small number of candidate tracks the �nal vertex position ~xN

can still depend on the starting value ~x(0), the entire vertex �tting procedure can be

restarted with ~xN choosen to be the new start position. These iterations continue

until the �t converges according to some prede�ned criteria, which can be a minimal

change in the value of the total chisquare of the �t χ2
N .

The arguments on the quality of the �t discussed for the least squares based

vertex �t holds also for the kalman based vertex �t. In the optimal case6, the

variable χ2
N behaves like a χ2 distribution with a uniform probability distribution

between 0 and 1. As for the the least squares vertex �t, the probability of χ2 will

be used in the data analysis to test if the track really belong to one vertex.

A more complete derivation of the Kalman �lter equations independent of the

particle parametrisation is given in [56].

4.3.4.2 Track Parametrisation

The Kalman �lter formalism for the vertex reconstruction contains three di�erent

vectors

~xk = estimate of the vertex position by using the information of k track

~qk = estimate for the momentum of particle k

~mk = the measured parameters of the tracks k

In the choice of parametrisation for these vectors the following requirements should

be met

1. the errors of all these vectors should be unbiased, independent and normally

distributed.

2. the measurement projection, which is a mapping between ~xk and ~qk to the

measured track parameters ~mk should be linear.

In general, these requirements are di�cult to satisfy. When multiple scattering

e�ect are not neglectable, errors on ~xk and ~qk are correlated as well as errors of

measurements.

The choice of the parametrisation used in the Kalman based vertex �t algorithm

is the same as for the least squares based vertex �t, i.e

~h ≡ ~p = (~x, ~q)T = (x, y, z, px, py, pz, E)T dim(~p) = 7 (4.41)

6 refers to the case when the input track parameters errors are correclty estimated and normally

distributed
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Using the same representation will ease later the comparison between the two vertex

�t method.

For the sake of clarity, the derived mathematics can be found in [56].

4.4 Vertex �tting validation

In this section, the vertex position resolution obtained using the two di�erent vertex

�tting algorithms will be presented. Once the vertex position and the kinematics

of the outgoing particles at this position are known, two important physical observ-

ables, the invariant mass and the lifetime of the decaying particle, can be deduced.

The resolution obtained for both invariant mass and lifetime after applying the

vertex �tting algorithm will be also be presented.

4.4.1 Monte carlo simulation

As for the performance study of the vertex �nding algorithm, collisions of a 2 A

GeV 6Li heavy ion beam impinging on a 4 cm thick carbon target are generated

using the UrQMD event generator mentionned in Chapter 1 and processed in the

HypHI experimental setup. Within one collision event, Λ→ pπ− decays wich are in

the geometrical acceptance of the detectors are selected. The Λ decay is of special

interest for testing the performance of both vertex �tting algorithms since with only

two tracks the vertex �tting is susceptible of bad position measurement.

In the Monte Carlo simulation, the extension of the carbon target δx,y,z ∼ 2 cm

is taken into account by smearing with a uniform distribution the position of the Λ

production vertex in the spherical coordinate system. The longitudinal and transver-

sal distributions of the Λ production vertex after the smearing procedure are shown

in Figure 4.25.

Figure 4.25: Longitudinal and transversal distributions for the Λ production vertex.

The momemtum distribution for the Λ as generated by the UrQMD event gener-

ator is shown in Figure 4.26. The momemtum distribution of the Λ decay products
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are computed by the transport engine using a direct particle decays in �ight routine

which simulates the two-body decay with isotropic angular distribution in the center

of mass system.

Figure 4.26: Momentum distributions of the Λ particle and the outgoing particles

pion and proton.

The track �tting procedure described in Chapter 3, which utilizes position mea-

surements from

• the �bers detector (TR1 and TR2),

• the drift chamber (BDC) placed after the ALADiN magnet

• both the TFW wall for negatively charged particle and the TOF+ wall for the

positively charged particle

is used to compute the �tted track parameters for both positively and negatively

charged tracks at the TR1 detector plane which will be used as input to the vertex

�nding to extract a �rst guess of the decay vertex position.

The identi�cation of the tracks produced by the Λ decay is achieved by com-

paring, track by track, the measured points found by the track �tter with those

generated by the actual particles. This algorithm required all the measured points

used to be correclty assigned. Furthermore the correct mass assignements is also

known from the Monte Carlo engine itself. Therefore there is no background in the

selected Λ decay trials.

The approximate vertex position given by the vertex �nding procedure and the

extrapolated track parameters this vertex position are then used as input to both

the least squared based and the Kalman based vertex �t.
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4.4.2 Vertex �t quality

Residuals and Pull distributions

To control the quality of the vertex �tting algorithms, one usually de�ne quan-

tities sensitive to the single track parameters such as [57]

• the residual of the value x de�ned as

δx = xrec − xsim.

The mean of this distribution should be zero, the width is de�ned through its

errors

• the pull of the value x de�ned as the residual divided by its error

pull(x) =
xrec − xsim√
cov(xrec, xsim)

.

If the errors are properly taken into account in the error matrix and if there is

no systematic shift of the measured parameters, the mean of the pull distribu-

tion should be zero and the standard deviation should be 1. In this sense, the

e�ects of wrongly estimated uncertainties or systematic errors can directly be

detected out of the shape of the pull distributions.

Figures 4.30 and 4.32 show the residuals and the pulls distributions for the �tted

parameters ~α = (x, y, z, px, py, pz, E)T recalculated at the decay vertex position for

the least squares based vertex �tting procedure. The Figures 4.31 and 4.33 show

the same distributions for the Kalman vertex �tting procedure. Both algorithms

show a very similar vertexing and track parameter performance. Furthermore the

residuals and the pulls distributions presented show that there are no systematic

biases in eitherther vertex position or the kinematic quantities calculated from the

track paramters for both vertex �tting algorithm.

For both vertex �tting algorithms, the uncertainties in the decay vertex position

is nearly a factor ten smaller in the tranverse plane than in the longitudinal direction.

The uncertainty associated with reconstructin the decax vertex position is not, in

general, isotropic. It is instead described by an error ellipse when projected into

the XY plane, perpendicular to the beam axis. The orientation of the semimajor

axis of this ellipse is determined by the opening angles of the �tted decay products

and the quality of the �tted track parameters. A track that is well measured in the

�bers detector and in the drift chamber, for instance, will tend to produce an error

ellipse whose major axis is directed along that particle's �ight path at the vertex.

The uncertainty associated with the minor axis, which are found to be a factor

ten smaller in Figures 4.30 and 4.31 than that of the major axis7, re�ecting the

7nearly parallel to Z axis in our case where the Λ particle are boosted very forward (γ ∼ 3).

Because of the strong correlations between the decaying particles direction and the error ellipse's

orientation, one can assimilate the major and minor axes of the error ellispe as the longitudinal

and transverse errors respectively
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decreased accuracy in determining the longitudinal coordinate for the intersection

of two trackswith relatively small opening angles.

χ2 and the probability of χ2

As discussed above, in order to de�ne global criteria evaluating the overall quality

of the �t, one uses the χ2 and/or the p-value of the �t.

The Figures 4.27 and 4.28 show the χ2 and the probability of χ2 for both al-

gorithms. In both case the mean value of the χ2 distribution is ∼ 1.5 which is

greater that the expected value given by degree of freedom for this �t : ndf =

2 ·Ntracks − 3 = 1. This could come from the fact that errors are underestimated.

If the uncertainties are underestimated, the parameters are moved outside of their

error interval, causing a shift which is larger than the �t would expect due to the

covariance matrix. This generally results in larger χ2 values and consequently leads

to lower probablility of χ2 values
〈
Pχ2

〉
∼ 0.44. The probalibilty of χ2 is evenly

spread for both algorithms with an excess at low values. This peak could also origi-

nate from the events where only a local minimum of the χ2 is reached. Furthermore,

it has been shown that especially for the kinematical parameters (px, py, pz, E) the

errors are non-gaussian due to the large �uctuations in the processes of energy loss

and the corresponding multiple scattering. These e�ects also contribute to the low

p-value peak in the simulation and the broadening (σ > 1.0) of the pull distribu-

tions. Getting optimal values for the covariance matrix Vα is in practice di�cult.

The outer-diagonal elements, wich di�er from 0, have to be properly estimated and

taken into account. Only in this case, the pull-distributions and also the p-value

will have a correct form.

In an experiment, even if one estimates the covariance matrix Vα precisely, the

quality quantities described above do not exactly behave as expected. There will

be always a certain fraction of background, due for example to misidenti�cation

of particles, which will satisfy the constraint conditions of the analysis selection.

Concerning the simulated Λ → pπ, one can imagine that there will be a certain

amount of background below the mass of the Λ. This background will in general

not peak at the the Λ nominal mass, but will be more or less �at distributed over

a broad mass region. In the analysis, it is unavoidable to �t this background as

well as the signal. The �tted background produces an increased amount of large χ2

values. Thus the p-value distribution will inevitably peak at low values, similar to

the distributions in Figures 4.27 and 4.28 but with much more counts in the low

peak region.

By cutting on p-values larger than a minimum value so called signi�cance level

α, e.g (p-value > α = 0.0005), one can reduce the background8. Therefore it is

important to determine the covariance matrix Vα as precise as possible. If one

overestimates the errors, also the background events will in general be shifted to

8The signi�cance level α of a test is a value that should be decided upon by the user interpreting

the data and is compared against the p-value. The signi�cance level α is therefore not determined

by the p-value. The p-value is calculated for each decay event and is equal the the area to the right

of χ2, which di�ers from �t to �t. If the p-value is smaller that the �xed signi�cance α (or the χ2

is larger than the respective signi�cance level) the decay event is rejected.
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larger p-values, and the e�ciency of the cut is reduced. On the other hand, if one

underestimates the errors as it is shown by the pulls distributions of both vertex �t

algorithms in Figures 4.30 and 4.32, also the true Λ events will be shifted at too low

p-values, and the cut can exclude the signal. Is it then important to choose p-values

cut which is not too low in order to reduce the backgroung but also not too high

in order to reduce a minimum of signal. The Figure 4.29 shows how much signal is

excluded in % as a function of p-values cut9.

Figure 4.27: χ2 and probability of χ2 distributions for the reconstructed Λ particle

using the least square vertex �t.

4.4.3 Vertex �tting e�ciency

In the Figures 4.34 and 4.35, the vertex �tting e�ciency

ε(zv) =
Nfitted

Λ (zv)

Naccepted
Λ (zv)

, ε(pΛ) =
Nfitted

Λ (pΛ)

Naccepted
Λ (pΛ)

(4.42)

as a function of of Zv vertex coordinate and the momentum pΛ. of the recon-

structed Λ for both vertex �tting algorithms are shown. The e�ciency as a function

of the variables Zv and pΛ is rather constant and reach nearly 95− 99 %.

4.4.4 Invariant Mass reconstruction

If all decay products of a decaying particle reached, are detected an identi�ed using

the required detectors for the track reconstruction and identi�cation procedure, one

9In precise technical terms, the probability to reject non-background event with p-values < α

by mistake is called the error of �rst kind or type I error α since it usually equals the signi�cance

α.
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Figure 4.28: χ2 and Probability of χ2 distributions for the reconstructed Λ particle

using the Kalman vertex �t.

Figure 4.29: Evolution of the cut Λ signal in % as a function of the minimal p-value

cut. Too high p-value such as p − value > 0.1 cut will exclude a lot of signal and

should be avoided. A good compromise will be to use p-value cut in the range[
10−4; 10−3

]
wich exclude a maximum of 2% of the Λ signal. This range will be

used in the hypernuclei event selection.
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Figure 4.30: Residual and pulls distributions for the �tted vertex position for the

least squares based vertex �t (in blue). The pull distribution in the bending X direc-

tion shows discrepancy compared to a gaussian distribution (in red). Furthermore

the errors in the bending X direction seems to be ∼ 25% overestimated.
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Figure 4.31: Residual and pulls distributions for the �tted vertex position for the

Kalman based vertex �t (in blue) compared to a gaussian distribution (in red). The

pull distributions show that the Kalman algorithm estimate properly the errors in

all directions.
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Figure 4.32: Residual and pulls distributions for the �tted kinematic parameter

of the reconstructed Λ when applying the least square based vertex �t (in blue)

compared to a gaussian distribution (in red). The pull distribution in the bending

X direction do not follow an exact gaussian model.
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Figure 4.33: Residual and pulls distributions for the �tted kinematic parameter of

the reconstructed Λ when applying the Kalman vertex �t (in blue) compared to a

gaussian distribution (in red). As for the least squares based vertex �t, the pull

distribution in the bending X direction do not follow an exact gaussian model.
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Figure 4.34: Vertex �tting e�ciency as a function of the Z vertex position and the

momentum pΛ of the reconstructed Λ particle using the least square vertex �t.

Figure 4.35: Vertex �tting e�ciency as a function of the Z vertex position and the

momentum pΛ of the reconstructed Λ particle using the Kalman vertex �t. The

e�ciency shows a sensible decrease for high Z values but is still �at as a function

of Λ.
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can appy the invariant mass technique.

In the center of mass (CMS) reference frame of the daughter particles, the mother

particle is at rest at the time of the decay. Therefore the sum of the 4-momenta

pµi = (Ei, ~pi)
T of the daughter particles is exclusively determined by the mass of the

mother, referred to as the invariant mass. The sum being connected to the square

of the mother particle 4 momentum as follow

Minv ≡ pµmother · pµ,mother (4.43)

the mass is a Lorentz invariant scalar and its value is the same in every choosen

reference frame. If all N decay products of the mother particle are detected, its

mass is reconstructed using the equation:

Minv =
1

c2
·
√
pµmother · pµ,mother =

1

c2

√√√√( N∑
i=1

Ei

)2

−

(
N∑
i=1

~pi

)2

c2 (4.44)

where the decay products track parameters are the one obtained after applying the

vertex �tting procedure.

The Figures 4.36 and 4.37 show the reconstructed Λ invariant mass using re-

spectively the least squares and the Kalman vertex �tting procedures. The results

in terms of mean mass value and mass resolution are compatible for both vertex

�tting approaches and summarized in the Table 4.2.

Figure 4.36: Λ invariant mass us-

ing the χ2 vertex �t procedure (blue)

compared to a gaussian distribu-

tion (red).

Figure 4.37: Λ invariant mass us-

ing the Kalman vertex �t proce-

dure (blue) compared to a gaussian

distribution (red).

4.4.5 Lifetime reconstruction

In order to determine the proper decay time, both momentum and the �ight distance

of the decaying particle need to be reconstructed. The lifetime measurement make
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Table 4.2: Λ invariant mass results obtained after using the least square based vertex

�t the Kalman based vertex �t procedure. The Λ reconstructed mass mean value is

slightly overstimated compared to the nominal MΛ = 1.115684 (GeV ) used in the

Monte Carlo simulation.

vertex �t MΛ (GeV) σM (MeV)

χ2 based 1.1161 5.002

Kalman based 1.1164 4.933

use of the relativistic relation Ldecay = βct = γβcτ = (p/m)cτ which leads to the

simple formula

cτ =
Ldecay ·m

p
(4.45)

where cτ is the proper time measured in units of distance, the mass m in GeV/c2

and the momentum p in GeV/c2 .

After the vertex �tting procedure only the momentum and the endpoint (sec-

ondary vertex position) are accessible. However an accurate determination of the

lifetime requires that both the beginning ( primary interaction point ) and end-

point of the particle's �ight vector be determined precisely as shown in Figure 4.38.

Unfortunately with the HypHI experimental setup a precise measurement of the

primary interaction point is not possible to obtain with reasonable accuracy. One

should then take the assumption that the most probable position for the primary

interaction is in the middle of the 4 cm large carbon target which is the origin

point (0, 0, 0) of the experiment reference frame. This assumption will immediately

smear the �ight distance measurement by a systematic error of δL = ±2 cm which

correspond to the geometrical extension of the target.

This section describes the proper decay time measured on simulated decay Λ→
pπ− using the above assumption for the primary interaction point.

Momentum reconstruction

After the vertex �t procedure, the extrapolated momentum of the Λ daugh-

ter particles (p, π−) are combined to reconstruct the total Λ momentum. Fig-

ures 4.39 and 4.40 show the total momentum pΛ distributions as well as the momen-

tum residual distributions δp = (pΛ − psim) for both χ2 based and Kalman based

vertex �tting algorithms. The ideal total momentum resolution achieved in both

algorithm are summarized in Table 4.3. The error on the total momentum pΛ is

clearly dominated by the error along the longitudinal direction δpz, but the residual

mean value show that the reconstructed momentum using both the least square and

the kalman based vertex �t is unbiased.

Flight distance reconstruction

Two ingredients are used to reconstruct the �ight distance of the Λ baryon:

1 the production vertex of the Λ baryon in three dimensional coordinates xyz.
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Figure 4.38: The particle Λ is produced at the center of the 4 cm large carbon target

taken as the (0, 0, 0) point of the HypHI experiment reference frame. Then the Λ

travels a certain distance Ldecay so called the �ight distance before decaying into

its p + π− daughters. These daughters are subsequently measured by the tracking

system.

Figure 4.39: Λ momentum distributions and residuals obtained after using the least

square based vertex �t. The residual mean value 〈precΛ − precΛ 〉 = −0.017 show that

the momentum reconstruction is unbiased.

2 the decay vertex the Λ baryon in three dimensional coordinates xyz.

The decay vertex of the Λ baryon is determined by the vertex �t algorithms.
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Figure 4.40: Λ momentum distributions and residuals obtained after using the

Kalman based vertex �t. The residual mean value 〈precΛ − precΛ 〉 = −0.018 show

that the momentum reconstruction is unbiased.

Table 4.3: Reconstructed Λ momentum distributions and residuals obtained after

using the least square based vertex �t and the Kalman based vertex �t

Vertex �t 〈precΛ − precΛ 〉 (GeV) σprecΛ −p
sim
Λ

(MeV)

χ2 based -0.017 9.04

Kalman based -0.018 8.66

The production vertex of the Λ baryon corresponds to the interaction point of

the 6Li beam and a 12C nucleus in the 4 cm thick carbon target. Many charged

particles are created in the collision process and originate from this interaction

point. Unfortunately only few tracks of these particles coming from the primary

collisions can be reconstructed using the HypHI experimental setup which prevent

an accurate event-by-event reconstruction of the primary interaction point. As

mentionned before, on can only assume that the most probable primary interaction

point is situated at the middle of the 4 cm target at the origin point (0, 0, 0) of

the HypHI reference frame. Consequently, the corresponding errors in the three

dimensional coordinates for the primary interaction point are

1. δZ = ±2 cm correponding to the longitudinal extension of the carbon target.

2. δX,Y = ±1 cm corresponding to the constraint that in the transverse direction

the primary vertex should be within the beamspot area.

Nevertheless in the Monte Carlo simulation, the primary interaction point is

exactly known. One can use this information in order to estimate the bias introduced
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in the �ight distance measurement of the mother particle when using the origin point

as the primary interaction point.

The quality of the reconstructed �ight distance from the interaction point to the

Λ baryon decay vertex for both vertex �talgorithms is shown in Figures 4.41 and 4.42.

The �ight distance is calculated by using either the exact primary interaction posi-

tion from the Monte Carlo simulation or the origin position. Using the asumption,

the error on the �ight distance measurement is systematically multiplied by a fac-

tor 2. The �ight distance resolution fo both vertex �t algorithms is summarized in

Table 4.4.

Figure 4.41: Λ Flight distance distribution and residual using the least squares

based vertex �t. The upper part show reconstructed �ight distance and residual

when using the exact primary interaction position from the simulation. The lower

part show the same distributions when using the asumption that the primary vertex

is at the origin point (0, 0, 0).

Proper time reconstruction

The reconstructed proper decay time τΛ in second units is directly derived from

Equation 4.45:

τ recΛ =
mrec

Λ · LrecΛ

c · precΛ

(4.46)

here, c is the speed of light, mrec
Λ is the reconstructed Λ mass, precΛ is the re-

constructed Λ momentum and LrecΛ is the Λ reconstructed �ight distance. Fig-

ures 4.43, 4.44 show the quality of the reconstructed Λ proper time τΛ in pico-

second units (ps) and the corresponding error στ obtained on a event-by-event basis

calculation for both vertex �t algorithms.

The event-by-event basis proper time error στ is calculated using the errors on

the momentum σp and the �ight distance σL:
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Figure 4.42: Λ Flight distance distribution and residual using the Kalman based

vertex �t. The upper part show reconstructed �ight distance and residual when

using the exact primary interaction position from the simulation. The lower part

show the same distributions when using the asumption that the primary vertex is

at the origin point (0, 0, 0).

Table 4.4: Reconstructed Λ �ight distance distributions and residuals obtained after

using the least square based vertex �t and the Kalman based vertex �t. For both

vertex algorithms the true primary vertex (PV) position and the origin asumption

(PV = (0,0,0)) was used. When using the origin as the primary vertex position, the

error on the �ight distance reconstruction is multiply by nearly a factor 2.

Vertex �t + (PV= MC true)
〈
LrecΛ − LsimΛ

〉
(cm) σLrecΛ −L

sim
Λ

(cm)

χ2 based -0.004 0.85

Kalman based +0.003 0.88

Vertex �t + (PV=(0,0,0))

χ2 based -0.251 1.82

Kalman based -0.252 1.83

στ = τrec ·

√(
σL
Lrec

)2

+

(
σp
prec

)2

(4.47)

This error has to be used as a weight in the measurement of the average Λ decay

time.

As for the �ight distance distributions, two proper time calculations are pre-

sented: one measurement (the upper histograms in each Figures) uses the exact pri-
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Figure 4.43: Λ proper time distribution and the event-by-event associated error δτ
in pico-second units (ps) using the least square based vertex �t. The upper part

show reconstructed proper time and the event-by-event associated error δτ when

using the exact primary interaction position from the simulation. The lower part

show the same distributions when using the asumption that the primary vertex is

at the origin point (0, 0, 0).

mary vertex position taken from the Monte Carlo, the other (the lower histograms

in each Figures) uses the assumption that the primary vertex is at the origin point.

A exponential decay time function exp(−t/τ) is used to �t the proper time distri-

bution which shows that the expected exponential shape is distorted by combined

detector resolution and di�erent acceptance e�ects. These e�ects have to be taken

into account in order to properly �t the decay time distribution.

Figures 4.45 and 4.46 show the di�erence between reconstructed and simulated

proper time together with the evolution of the error στ as a function of the decay

time for both vertex �tting algorithms. It should be noted that the error on the

decay time increases with the decay time itself as is shown in Figures 4.45 and 4.45.

This e�ect becomes clear when Equation 4.47 is rewritten as :

στ = p−1
rec ·

√
m2

c2
· σ2

L + t2rec · σ2
p (4.48)

At small decay times the error on the proper decay time is dominated by the error

on the �ight distance, while at large decay times the momentum error dominates.

Consequently the error on the proper time measurement depends on the number of

selected signal events, ∼ 1/
√

(N) and, strongly, on the time interval covered by the

event selection in the analysis.

The reconstructed proper time results and associated errors are summarized in

Table 4.5.
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Figure 4.44: Λ proper time distribution and the event-by-event associated error δτ
in pico-second units (ps) using the Kalman based vertex �t. The upper part show

reconstructed proper time and the event-by-event associated error δτ when using

the exact primary interaction position from the simulation. The lower part show

the same distributions when using the asumption that the primary vertex is at the

origin point (0, 0, 0).

Table 4.5: Reconstructed Λ proper time distributions and residuals obtained after

using the least square based vertex �t and the Kalman based vertex �t. For both

vertex algorithms the true primary vertex (PV) position and the origin asumption

(PV = (0,0,0)) was used. When using the origin as the primary vertex position,

the resolution on the proper time is στ ∼ 35 (ps) and the measured proper time is

sytematically lower compared to the true MC value by ∆τ ∼ 4.9 (ps). Within the

obtained proper time resolution στ the �tted proper times are compatible with the

PDG nominal value of the Λ proper lifetime τΛ = 262 (ps).

Vertex �t + (PV= MC true)
〈
τ recΛ − τ simΛ

〉
(ps) στrecΛ −τsimΛ

(ps) τ fit (ps)

χ2 based -1.126 24.71 259.7

Kalman based -4.948 35.13 256.0

Vertex �t + (PV=(0,0,0))

χ2 based -1.053 24.63 254.0

Kalman based -4.889 35.13 246.8
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Figure 4.45: Proper time residual distribution and the event-by-event associated

error δτ as a function of τ in pico-second units (ps) using the least square based

vertex �t. The upper part show the distributions when using the exact primary

interaction position from the simulation. The lower part show the same distributions

when using the asumption that the primary vertex is at the origin point (0, 0, 0).

Figure 4.46: Proper time residual distribution and the event-by-event associated

error δτ as a function of τ in pico-second units (ps) using the Kalman based vertex

�t. The upper part show the distributions when using the exact primary interaction

position from the simulation. The lower part show the same distributions when

using the asumption that the primary vertex is at the origin point (0, 0, 0).
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4.4.6 Systematic bias studies

It is important to notice if there are e�ects which can systematically in�uence the

results of the vertex �tting procedure. Knowing these e�ects can help in more careful

design of the main analysis strategy for hypernuclei selection.

As already mentionned above, all the residual and pull distributions (Figures 4.30,

4.32, 4.31 and 4.33) show a mean value well centered at zero for both least squares

based and Kalman based algorithms.

Further search was made by plotting the spatial and the Λ momentum resid-

uals versus various kinematic and geometric quantities associated with the vertex

�t. For instance, Figures 4.47 and 4.48 show the longitudinal discrepancy δZ and

the Λ momentum discrepancy δP as a function of the χ2 value for both vertex �t

algorithms: there is no correlation between the longitudinal and the Λ momentum

discrepancy and the increase of χ2 due to the vertex �t. A large change in χ2 does,

however, imply a wider distribution of the δZ residuals.

Furthermore, Figures 4.49 and 4.50 show that the mass of the set of tracks,

as calculated using the vertex �t's track parmeters for the decay Λ → pπ− is not

correlated with the longitudinal discrepancy δZ but only with the δPΛ
momentum

residual as expected.
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Figure 4.47: The longitudinal δZ and δPΛ
momentum residual versus the χ2 of the

least squares based vertex �t for the decay Λ→ pπ− .

Figure 4.48: The longitudinal δZ and δPΛ
momentum residual versus the χ2 of the

Kalman based vertex �t for the decay Λ→ pπ−.
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Figure 4.49: The longitudinal δZ and δPΛ
momentum residual versus the mass cal-

culated MΛ using the least squares based vertex �t.

Figure 4.50: The longitudinal δZ and δPΛ
momentum residual versus the mass cal-

culated MΛ using the Kalman based vertex �t.
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5.1 Introduction

Any experiment attempting to measure the invariant mass of hypernuclei produced

in relativistic heavy ions collisions has to deal with major experimental challenges.

First, the relatively large number of produced particles leads to a high detectors

occupancy resulting in a serious load of the detectors. In a �xed target experimental

setup particles are typically produced with a large Lorentz boost which leads to high

track density in the forward direction. In case of HypHI, a hit density is high on the

tracker detectors situated before the ALADiN magnet. Additionally, de�ections of

particles caused by multiple scattering, especially within two �ber detector planes,

reduces the track resolution and as a consequence the vertex resolution and might

results in the reconstruction of fake secondary vertexes. Furthermore only a small

fraction of all produced tracks comes from hyperons or hypernuclei decay compared

to primary tracks created in the target region. Finally, uncorrelated positively

charged and negatively charged particles originating from a large fraction of partially

reconstructed pairs form a huge combinatorial background when combined to pairs.
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Although the HypHI experiment has been designed to detect hypernuclei under

such conditions, a sophisticated data analysis is mandatory in order to extract a

statistically signi�cant hypernuclear signal. In this sense, robust track and vertex

reconstruction algorithms are the key elements to achieve an e�cient mass recon-

struction of hypernuclei. In this chapter, the track and vertex algorithms described

in Chapters 3 and 4 will be applied to the 6Li+12C collision data at 2 A GeV/c

collected during the Phase 0 experiment in October 2009.

5.2 Analysis procedure

The data analysis consists of the following steps:

• calibration of detector raw data

• reconstruction of hits in each detector

• track reconstruction: combination of hits of all detectors to particles tracks

and momentum determination

• particle identi�cation using the TOFs system

• determination of relevant selection criteria in order to reject accidentally matched

tracks and reduce the combinatorial background

• subtraction of the combinatorial background from the invariant mass distri-

bution using the "event-mixing" technique

• estimation of reconstruction e�ciency by means of a realistic Monte Carlo

detector simulation.

The data �ow of the reconstruction chain up to the secondary vertex reconstruc-

tion is shown in the Figure 5.1. The �rst step of the analysis is to convert recorded

digitized data into the data structure suitable for the physics analysis. The main

part of the analysis before event reconstruction process is to produce proper data

structure for calibration of each detector system.

Unpacking or bytestream conversion is the �rst stage of the data analysis. The

conversion is performed within the GSI Object Oriented Online O�ine framework

(GO4) [58]. The GO4 framework is a GSI standard tool for the online and o�ine

analysis based on C++ and ROOT framework [44]. The GO4 library has been

chosen because it allows the conversion of the list mode data stream, the GSI stan-

dard data protocol of the DAQ system MBS [34]. Additionally the GO4 system can

connect to various MBS online data servers facilitating the online monitoring of the

detectors. The data structure is organized with respect to each electronic module.

In this step a pedestal subtraction for the QDC and zero suppression of the null

data words are done.

The second step is called Detector Analysis, there the data is splitted into tree

independent parts corresponding to the detector type: �ber detectors, time-of-�ight
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Figure 5.1: Analysis reconstruction chain. The column at the right side represents

the di�erent data levels, whilst the column at the left side show the algorithms which

work on them. The arrows shows the direction of the data �ow. Only bytestream

conversion is done using the GO4 framework, the rest of the analysis is performed

using the standard ROOT library.

Figure 5.2: Online monitoring scheme based on the GO4 framework.
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detectors and drift chambers. This approach allows to run each of them in parallel

or reprocess one without a�ecting the others. The calibration of each detector is

also performed at this stage. The calibration step includes several operations on

unpacked data such as gain matching of amplitude measurements, time reference

adjustment and/or position o�set of each sub-detector layer from the target. Since

those parts are focused on detectors, the output data is organized detector-wise and

written in a ROOT binary format independently.

The �rst two step of the analysis: Unpacking and Detector Analysis are used for

the online data monitoring system based on GO4 during the beam time (Figure 5.2).

In the next step of the data analysis so called �Merger� all calibrated detector

information is combined and the �nal precise detector calibration is performed. The

alignment of the detectors in the global coordinate system based on the geometrical

pre-tracking described in Chapter 4 is performed.

All track candidates found by the pre-tracking are then �tted by the track �tting

procedure based on Kalman �lter technique described in the Chapter 3. The last

step of the analysis is the recognition and �tting of secondary vertices using the

reconstructed tracks. Once all the vertex candidates are produced by combining of

2 or 3 outgoing tracks, a set of dedicated selection criteria will be applied in order

to determine the invariant mass of the mother particle in order to reduce to the

minimum the amount of background.

5.3 Calibration of Time-Of-Flight detectors

The measurement principle is common for the all TOF detector used in the HypHI

setup: Start counter, TOF+ and TFW. All timing is measured relatively to the

Start counter.

The typical raw QDC spectra of the Start counter is shown in Figure 5.3, where

the presence of beam pile-up. The second peak centered around 500 channels cor-

responds to the detection of the two 6Li ions in the same bar of the Start counter.

These events corresponds to 10% and have been excluded from the further analysis.

An important step in the data analysis is to correct the timing for slewing or

walk. The slewing is caused by the dependence of the discriminator response on the

pulse height. The walk correction was done for the TOF+ wall and the Start counter

with a method described in [59]. The Figure 5.4 shows the time di�erence between

two neighboring bars of the Start counter before and after walk correction. In the

test experiment the designed and measured time resolution of the Start counter was

about 200 ps [60], however due to high beam intensity during Phase 0 experiment

the average for the complete detector achieved time resolution is σt ∼ 300 ps.

The time walk correction was also performed for the TOF+ wall. The achieved

time and Y position resolution per bar is shown in Figure 5.5.

The amplitude (QDC) calibration of TOF+ wall consists of two parts: �rst the

gain matching of two QDC signals from same bar and second matching of the energy

of all bars to the same value. The raw QDC spectrum of one of the channel of TOF+
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Figure 5.3: Typical raw QDC spectrum of Start counter. The clear signal of 6Li

and two ions of 6Li are visible.

Figure 5.4: The time di�erence between two neighboring bars of Start counter before

(left) and after (right) walk correction.
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Figure 5.5: Left panel: TOF+ time resolution for each bar, the average value σt ∼
200 ps. Right panel: TOF+ Y position resolution for each bar, the average value

σY ∼ 2.5 cm

is shown in Figure 5.6. The clear separation between peaks for Z = 1, Z = 2 and

Z = 3 is visible. The two signals from di�erent ends of one plastic bar have to be

matched to obtain the same position of the peaks. Then the total energy deposit

in the bar is calculated as E =
√
QDCtop ×QDCbottom and matched to the same

peaks position for all 32 bars of TOF+ wall. The result of the calibration is shown

in Figure 5.7.
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Figure 5.6: Typical raw QDC spectrum of TOF+ wall for di�erent daughter particle

in 6Li on 12C collision. Z = 1× 2 corresponds to the 2 particle with Z = 1 detected

in the same bar of TOF+.
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Figure 5.7: Calibrated energy deposit in channels for each bar in TOF+ wall

5.4 Particle identi�cation

The particle identi�cation (PID) of positively charged particles is performed in two

steps. In the �rst step the charge of the particle is de�ned by using the energy depo-

sition in TOF+ wall. In the second step the type of the particle from the momentum

for Z = 2 particles and momentum and Time-of-�ight for Z = 1 particles is de�ned.

The charge identi�cation is based on the calibrated energy deposit (Fig. 5.7):

• for Z = 1: 6 < dE < 15 channels,

• for Z = 2: 40 < dE < 90 channels,

• for Z = 3: 110 < dE < 150 channels.

The momentum distribution of the Z = 2 particles is shown in Figure 5.9. The

particle with the momentum-over-charge ratio p/Z ∈ [3.4; 4.5] GeV/c is identi�ed

as 3He; p/Z ∈ [4.5; 6.0] GeV/c corresponds to the 4He.

Figure 5.10 shows the correlation between the velocity factor β and the momen-

tum of the particles. The velocity β is calculated for each particle having a certain

momentum p as follow

β =
p√

m2 + p2
(5.1)

From the correlation, protons and deuteron are clearly distinguished among a

wide momentum region. The light particles, such as π+ and K+, are not clearly

separated because of the limited acceptance for their low momentum. Additional

conditions in momentum range are applied for the PID:
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Figure 5.8: Correlation between the energy deposit of charged particles in the TOF+

wall and the momentum-to-charge ration p/Z

Figure 5.9: Z = 2 momentum distribution. The distribution is �tted by the sum of

two Gaussians and polynomial of third order.
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• p ∈ [0.0; 4.5] GeV/c for proton,

• p ∈ [4.5; 6.5] GeV/c for deuteron,

• p ∈ [6.5; 9.5] GeV/c for triton.

The calculated mass is used only for the identi�cation of the particle. If the particle

identi�ed as a proton, the known mass of the proton m = 0.938 GeV/c2 is assumed

for further analysis.

Figure 5.10: Correlation between velocity β and momentum p of the Z = 1 particles.

Continuous lines show the theoretical expectation, the dashed lines indicate the PID

cut ±20% from the known mass of the particle. Black lines corresponds to proton,

red to deuteron, purple to triton.

For the identi�cation of π−, a correlation between the velocity β and the mo-

mentum shown in the Figure 5.11 is used. The theoretical line calculated from the

Equation. 5.1 and the cut conditions are also shown. The cut conditions used in

this analysis is ±50% from the known mass of π−.

5.5 Simulation studies

A realistic simulation of the HypHI experimental setup is mandatory for de�ning an

optimized set of selection criteria in order to extract meaningful signal events out

of the experimental data. Furthermore, the physical interpretation of the results

obtained by applying such selection criteria on the experimental data requires a

precise estimation of the corresponding reconstruction e�ciencies. These e�ciencies

can only be calculated using a full scale Monte Carlo simulation of the HypHI setup.

The full Monte Carlo simulation consists of two steps:
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Figure 5.11: Correlation between velocity β and momentum p of the negatively

charged particles. Dashed line shows the theoretical expectation, continuous lines

indicate the PID cut conditions for π−.

• particles generation: the particles are created with the UrQMD event gen-

erator which modelizes the 6Li @ 12C heavy ion collision as straight lines,

satisfying energy and momentum conservation.

• particles transport: subsequently, the generated particle tracks are further

propagated through simulated detector material taking into account the de-

�ection in the ALADiN magnetic �eld.

Particle Generation with UrQMD

UrQMD, the Ultrarelativistic Quantum Molecular Dynamics model [20], is a non

equilibrium hadronic transport approach using Monte Carlo simulation techniques in

order to describe consistently heavy ion collisions from the beginning of the reaction

(initialization of projectile and target nuclei) until the end of the reaction (�nal

state of the system). The approach simulates multiples interactions of ingoing and

newly produced particles and constitutes an e�ective solution of the relativistic

Boltzmann equation and is restricted to binary collision of the propagated hadrons.

The underlying degrees of freedom are strings and hadrons that are excited in high

energetic binary collisions (2 → n processes). Projectiles and target nuclei are

initialized according to a Woods-Saxon pro�le in coordinate space. Fermi momenta

for each nucleon are randomly assigned in the rest frame of the projectile and target

nucleus, respectively. The initial nucleons and, later on, newly produced hadrons

are propagated on straight lines until the collision criterion is ful�lled:

dtrans ≤ d0 =

√
σtot
π
, σtot = σ(

√
s, type) (5.2)
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If the covariant relative distance d0 between two particles is smaller than a critical

distance determined by the corresponding total cross section, a collision of those

particle occurs. In UrQMD the elementary cross section are �tted according to

available data or parametrized using the quark model.

Particle production is described by excitation and fragmentation of classical

color strings with quarks (antiquarks) or diquarks (antidiquarks) at their ends and

by excitation and decay of hadronic resonances. Color string excitation and frag-

mentation are treated using the Lund phenomenological model of hadronization [61].

After particles production, this microscopic transport approach generates the full

space-time dynamics of string and hadrons.

Within UrQMD all hadrons and resonances up to 2.2 GeV are considered which

led to a successful description of di�erent observables in a broad range of collision

systems and energies [62]. Consequently, the UrQMD event generator is assumed

to provide a realistic description of the background medium in 6Li +12C collisions

at 2 A GeV.

The production of hypernuclei assumes the absorption of hyperons in the specta-

tor fragments of non central heavy ion collision. In this approach, a hyper-system is

formed considering hyperons which propagates with velocities close to the initial ve-

locities of the nuclei which means in the vicinity of the nuclear spectators [63]. Such

hyper-systems will decay into hyperfragments later on [64]. The computed kinemat-

ics of such clusterized hyperfragments will then be used as input to the GEANT

program which, assuming that the hyperfragments are known to the program, can

modelize their decay into 2 or 3 outgoing particles according to Lorentz invariant

Fermi phase space [65]. The de�nition of the particles in GEANT are summarized

in Table 5.1.

Table 5.1: De�nition of hypernuclei particles used in Monte Carlo simulation and

their corresponding decay mode [24]

Hypernucleus Decays mass [GeV ] τ [ns] σ [µb]
3
ΛH π−+3He 2.99114 0.246 0.1
4
ΛH π−+4He 3.9225 0.1946 0.1
5
ΛHe π− + p+4He 4.8399 0.256 0.5

Particle Transport through material

The particle transport through the HypHI experimental setup is done with the

GEANT program, which additionally simulates the energy loss and the multiple

scattering of the particles in the detectors. The detector response to the simu-

lated hit points is modeled using a Gaussian smearing which takes into account

realistic resolution of the detectors summarized in Table 5.2. The smeared Monte

Carlo hits also called digits are then taken as input to the full reconstruction chain

(Figure 5.12). This ensures that the same reconstruction algorithms are used for

both simulation and real data which is mandatory for the precise estimation of the
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reconstruction e�ciencies.

Table 5.2: Detector resolution used in the Monte Carlo simulation.

Detector Fibers SDH TOF+ TFW

σx 460. µm 4.5 mm 1.5 cm 10. cm

σy 460. µm 4.5 mm 3.5 cm 10. cm

The Figure 5.13 shows the display of a GEANT simulated event which is com-

posed of background particles coming from a UrQMD simulated 6Li + 12C collisions

at 2 A GeV and an embedded 3
ΛH → π−+3He decay signal. Similar embedding of

signal overlayed with a UrQMD simulated background has been produced for all

hypernuclei decay studied in this thesis.

Figure 5.12: The full scale simulation chain compared to the reconstruction chain.

5.5.1 Signal selection

According to the UrQMD generator, a 6Li+12C collision at 2 A GeV produces about

20 primary tracks (Fig. 5.14). According to the GEANT transport code, these pri-

mary tracks produce on average additionally 10 secondary tracks during the trans-

port through the detectors material. If one tries to calculate the invariant masses of

all two-tracks pairs, one would produce about a thousand candidates per event and

the vast majority of them would be fake i.e the invariant mass distribution would

be swamped with background. For the invariant mass analysis one must reduce the

number of combinations in a consistent way.

Assuming the particle identi�cation procedure described previously, this section

focuses on the improvement of the signal quality and the reduction of the background

by applying dedicated selection criteria for the following exclusive reactions:

• Λ→ p+ π−
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Figure 5.13: GEANT simulated event of 3
ΛH production and subsequent decay into

π−+3He. It consists of background particles coming from a UrQMD simulated
6Li+12C collisions at 2 GeV/A and an embedded 3

ΛH → π−+3He decay signal.

The red and the blue trajectories correspond respectively to the pion and the 3He

particles emitted by the 3
ΛH hypernucleus. Since the hypernucleus de�nition has

been implemented, the GEANT Monte Carlo can calculate itself the kinematics of

produced particles using a Lorentz invariant Fermi phase space algorithm.

Figure 5.14: Primary tracks multiplicity produced with 6Li+12C collisions at 2

A GeV using the UrQMD generator.
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• 3
ΛH → π−+3He

• 4
ΛH → π−+4He

• 5
ΛHe → π− + p+4He

Once a set of optimized selection criteria is de�ned, the full scale simulation is used

to obtain the corresponding reconstruction e�ciencies.

Geometrical acceptance

The geometrical acceptance is de�ned as the probability that all outgoing parti-

cles of a decay cross the Fibers detectors (TR1 and TR2) the drift chamber situated

after the magnetic �eld and one of the TOF wall2 leaving at least one hit in each

detectors. The geometrical acceptance e�ciencies for the Λ, 3
ΛH,

4
ΛH and 5

ΛHe are

summarized in Table 5.3.

Table 5.3: Geometrical acceptance e�ciency for Λ and hypernuclei decays.

Decay εacceptance [%]

Λ→ p+ π− 0.17
3
ΛH→ π−+3He 10.0
4
ΛH→ π−+4He 6.85
5
ΛHe→ π− + p+4He 6.64

Signal preselection

In order to keep the calculation numerically tractable, one has to reject at early

stage of the analysis a maximum of fake vertices. This is done by applying a set

of loose selection criteria which perform a �rst discrimination between signal and

background independently of a speci�c decay. Assuming the single-track parti-

cle identi�cation procedure described previously, the set of pre-selection criteria is

summarized in Table 5.4.

The Figure 5.15 shows the reconstructed invariant mass obtained after applying

the pre-selection criteria for the Λ and hypernuclei decays. On the reconstructed

invariant mass spectra, the signal (in red) and the background (in blue) have been

overlayed. As expected, the background shape for the reconstructed Λ decay corre-

sponds to a decreasing exponential. For the hypernuclei decay however, the back-

ground shape is more complicated and a noticeable part of background events seems

to accumulate under the signal mass region.

2TOF+ for positively charged particles and TFW for negatively charged particles
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Table 5.4: De�nition of the pre-selection criteria applied to Λ and hypernuclei decay.

The quantities pi and P
i
χ2 denotes the single track momentum range and probability

of χ2 respectively whilst P vtxχ2 denotes the reconstructed vertex probability of χ2 .

The quantity DCA corresponds to the distance of closest approach in cm described

in the Chapter 4.

Cut on Units Lower bound Upper bound

P πχ2 val. 0.001 1.

P+
χ2 val. 0.001 1.

pπ [GeV] 0.5 2.

pp [GeV] 0. 4.5

p3He [GeV] 6. 9.

p4He [GeV] 9. 12.

P vtxχ2 val. 10−4 1.

DCA [cm] 0. 1.

Λ→ pπ− decay selection

Before digging into the complicated analysis of hypernuclei reaction, one needs to

prove that the whole reconstruction chain is able to measure the invariant mass of a

well-known particle without any bias. For this purpose, the exclusive analysis of the

Λ → pπ− is of particular importance. Since in the experimental data this reaction

is not trigger favored, the de�nition of e�cient selection criteria is mandatory in

order to extract the Λ signal with the best possible signal over background ratio.

For sake of clarity, only the least square based vertex �t results will be presented

in this section. The corresponding results using the Kalman based algorithm for

vertex �tting is presented in Appendix C.

A simple geometrical selection of the Λ candidates is �rst applied by considering

the reconstructed distance of closest approach introduced in the vertex reconstruc-

tion Chapter 4. The Figure 5.16 represents the distance of closest approach (DCA)

distribution for both signal and background events.

Another natural criteria is to apply a selection based on the quality of the vertex

�tting. This is done by applying a lower bound to the vertex probability of χ2. Fig.

5.17 shows the probability of χ2 for both signal and background events.

Same as Λ hypernuclei, the free Λ hyperon is mostly produced via strong inter-

actions i.e in the reaction processes

π+n→ ΛK+,K−n→ π−Λ, K−p→ π0Λ (5.3)

using pion and kaon beams. And also the same way, both Λ hypernuclei and the

free Λ hyperon basically decay through the weak interactions. The free Λ hyperon

decays nearly 100% of the time via the Λ→ Nπ weak mesonic mode:

Λ→
{
p+ π−(64.1%)

n+ π0(35.7%)
(5.4)
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5
ΛHe

3
ΛH

4
ΛH

Λ

Figure 5.15: Reconstructed invariant mass obtained after applying the pre-selection

criteria for the Λ and hypernuclei decays. The blue and the red �lled area correspond

to the background and the signal respectively. The overall reconstructed invariant

mass spectrum is represented using black dots.

with the lifetime τ0 ∼ 263 ps [4]. In the full scale simulation both decay modes are

activated according to the branching ratios de�ned previously.

As a consequence of the relatively large lifetime (cτ ∼ 7.89 cm), the Λ decay

far outside the target region. This displacement in the Z coordinate of Λ decay

vertex relative to the target position is used to e�ciently discriminate between

fake Λ vertices using primary tracks combination and real vertices. Furthermore,

the longitudinal position of the Λ vertex should not be too close from the �rst �ber

tracking detector plane ZTR1 = 41.5 cm: the closer the Λ vertex is to the TR1 plane

the closer the hits will be measured in the detector. From a pure geometrical point of

view is is di�cult for such close tracks in space to estimate the longitudinal position

of the vertex, and the vertex �tting procedure will have di�culty to converge. The

Figure 5.18 shows the Λ vertex longitudinal position distribution for both signal

and background. It is clear from the picture that reconstructed vertices situated

too close to the target and the �rst plane of �ber detector are mainly fake vertices

and should then be excluded in the analysis. The Figure 5.18 shows additionally
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Figure 5.16: The DCA distribution

in cm for both signal (red) and back-

ground (blue) Λ candidates.

Figure 5.17: Probability of χ2 for

both signal (red) and background

(blue) Λ candidates.

the calculated Λ invariant mass as a function of the vertex longitudinal position:

the vertices reconstructed near the target populates the low mass region of the

invariant mass spectrum while those reconstructed too close to the �ber detector

populate both low and high mass region of the invariant mass spectrum.

The Podolanski-Armenteros variables are commonly used as criteria to select

Λ→ p+π− candidates [66]. The momenta of the daughter particles, p1 and p2, can

be decomposed to components parallel and perpendicular to the momentum of the

mother particle, ~p = ~p1 + ~p2. The longitudinal components can be obtained by

p1L = ~p · ~p1/ |~p| , p2L = ~p · ~p2/ |~p| (5.5)

Then the Armenteros variables i.e the transverse momentum pT and the longitudinal

asymmetry α are de�ned by :

pt = |~p1 × ~p2| / |~p| (5.6)

and

α = (p1L − p2L)/(p1L + p2L) = (~p1
2 − ~p2

2)/~p2 (5.7)

Using these variables the Λ particles are distinguishable, as shown in Figure 5.19

for simulated collision: the true Λ-hyperons form an typical arc placed the right

of the (pt, α) plane. Additionally a systematic bias in the reconstructed invariant

mass distribution of the Λ candidates for low α value ( α < 0.45) can be noticed in

Figure 5.20.

Thus, the Armenteros plots suggests that the background can be suppressed by

cutting on the arcs in the Armenteros plane. Unfortunately, cutting on the Ar-

menteros variables generally imply a �lter on the invariant mass distribution of the

Λ candidates. This �lter leads to the distortion of the background shape in the

invariant mass distribution. Such a �lter makes the description of the background

more complicated. Since in the analysis, the background needs to be �tted using a
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Figure 5.18: The histogram on the top represents the reconstructed Λ vertex lon-

gitudinal position. The blue area corresponds to the true Λ signal whilst the blue

area correspond to the background. The second histogram represents the calculated

Λ invariant mass as a function of the vertex longitudinal position. It is striking that

fake reconstructed vertices situated too close to the target mainly populate the low

mass tail while those too close to the �ber detector populate both low and high

mass region of the invariant mass spectrum.

model function, it is preferable to have featureless, easily �ttable background over

more complex one, even if it comes at the price of increasing the overall background

fraction. Taking this into account, only a loose selection based on the transverse

momentum variable pt < 0.1 has been applied for the data and the asymmetry cut

α > 0.45 has been applied on the simulated Λ candidates.

Two set of selection for the Λ reconstruction which correspond to loose and tight

criteria have been studies with the realistic simulation. They are summarized in

Table 5.5.

The left part of Figure 5.21 shows the Λ invariant mass distributions for both

signal and background events for the pre-selection,loose and tight criteria. The

right part of Figure 5.21 shows the �tted Λ invariant mass distribution for the

pre-selection, loose and tight criteria respectively. The mass �t uses a unbinned

likelihood �t performed using a gaussian model for the signal and Chebychev poly-
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Figure 5.19: Armenteros variables (α, pt) for the reconstructed Λ candidates. The

true Λ decays (in red) populate the typical arc-segment in the Armenteros plane

(α, pt). Instead the fake decays (in blue) are distributed uniformly in the Armenteros

plane.

Figure 5.20: Invariant mass of the reconstructed Λ candidates as a function of

the longitudinal momentum asymmetry α. Low α value Λ candidates (α < 0.45)

populate the high mass region of the invariant mass distribution. High α values

(α > 0.6) populate the low mass region of the invariant mass distribution.
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Table 5.5: De�nition of the selection criteria (loose and tight) for the Λ candidates.

The variables are the same as for Table 5.4. Additionally the Armenteros variables

are used.

Cut on Units Lower bound Upper bound Loose selection Tight Selection

P πχ2 val. 0.1 1. on on

P+
χ2 val. 0.1 1. on on

pπ [GeV] 0.5 2. on on

pp [GeV] 0. 4.5 on on

P vtxχ2 val. 0.01 1. on on

DCA [cm] 0. 0.4 on on

zv [cm] 0. 35. on on

pt [GeV] 0. 0.1 on on

α val. 0.45 1. o� on

nomials of third order for the background.

Hypernuclei decay selection

This section focuses on the reconstruction of light Λ hypernuclei 3
ΛH,

4
ΛH and

5
ΛHe.

The Λ hypernuclei are reconstructed via their corresponding mesonic weak de-

cay modes. The branching ration for this decay channels are summarized in the

Table 5.6.

Table 5.6: Branching ration of mesonic weak decay modes for the light hypernuclei.

Reaction Branching ratio [%]
3
ΛH → π−+3He 25 [67, 68]
4
ΛH → π−+4He 50 [69]
5
ΛHe → π− + p+4He 43 [70]

The mesonic weak decay modes of hypernuclei of interest systematically lead

to a 3He or 4He particle in the �nal state. Since the tracking resolution for these

particles is worse than for protons due to a lower bending in the magnetic �eld, the

�nal hypernuclei invariant mass resolution is expected to be worse than for the Λ.

The Λ hypernuclei lifetimes of ∼ 2 · 10−10 sec (cτ ∼ 6 cm) imply, as for the

Λ decay, that they decay far outside the target region. Thus, a �rst selection on

the longitudinal position of their reconstructed vertex helps to reduce fake pairs

combinations. Same as for the Λ, the hypernuclei should not decay in the vicinity

of the �rst �ber detector plane.

As for the Λ reconstruction, two set of selection for the hypernuclei reconstruc-
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Figure 5.21: Λ invariant mass distribution for both signal (red) and background

(blue) events presented in left column. Unbinned likelihood �t performed on Λ

invariant mass distribution shown in right column. The blue line represent the most

probable solution, the red lines and yellow area show the 1σ uncertainty band, the

dotted black line corresponds to a pure signal.The invariant mass distributions are

reconstructed using the pre-selection criteria only - �rst line, the loose criteria -

second line, tight criteria - third line.
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tion which correspond to loose and tight criteria (Table 5.7) have been studies with

the realistic simulation.

Table 5.7: De�nition of the selection criteria for the hypernuclei candidates. The

variables are the same as for table 5.4.

Cut on units Lower bound Upper bound

P πχ2 val. 0.1 1.

P+
χ2 val. 0.1 1.

pπ [GeV] 0.5 2.

p3He [GeV] 6. 9.

p4He [GeV] 9. 12.

P vtxχ2 val 0.01 1.

DCA [cm] 0. 0.4

zv (loose selection) [cm] 0. 35.

zv (tight selection) [cm] 0. 20.

The Figures 5.22, 5.23 and 5.24 are showing the invariant mass distribution for

the 3
ΛH,

4
ΛH and 5

ΛHe decay respectively. The left column of �gures shows the invari-

ant mass distributions for both signal and background events and the right column

shows the corresponding �tted invariant mass distribution for the pre-selection (top),

loose (middle) and tight criteria (bottom) respectively. The mass �t, as for the Λ

case, uses an unbinned likelihood �t performed using a gaussian model for the signal

and Chebychev polynomials of third order for the background. Unlike the Λ decay

reconstruction, the reconstruction of hypernuclei produce a non negligible amount

of background event accumulating under the signal mass region. This amount is

even more pronounced in the case of the 5
ΛHe 3-body decay but can be reduced by

applying the tight selection criteria.

The Table 5.8 summarize the performance of the Λ and hypernuclei decay re-

construction using the least square based vertex �t method for the di�erent set of

selection criteria. The corresponding performance for the Kalman based vertex �t

is presented in Appendix C.

Background study

The major problem in reconstructing Λ or hypernuclei signal from their de-

cay products is the combinatorial background produced by uncorrelated (p, π−),

(3He, π−) or (4He, π−) pairs. In order to subtract away this background, one should

be able to reproduce it.

The experiment measures a certain number of positive tracks n+ and negative

track n−. Considering all combinations of observed positive and negative tracks,

on can distinguish two classes of unlike-sign pairs: the actual signal of correlated

positive and negative particle S+− and the combinatorial background pairs B+−.
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Figure 5.22: 3
ΛH invariant mass distribution for both signal (red) and background

(blue) events presented in left column. Unbinned likelihood �t performed on 3
ΛH

invariant mass distribution shown in right column. The blue line represent the most

probable solution, the red lines and yellow area show the 1σ uncertainty band, the

dotted black line corresponds to a pure signal.The invariant mass distributions are

reconstructed using the pre-selection criteria only - �rst line, the loose criteria -

second line, tight criteria - third line.
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Figure 5.23: 4
ΛH invariant mass distribution for both signal (red) and background

(blue) events presented in left column. Unbinned likelihood �t performed on 4
ΛH

invariant mass distribution shown in right column. The blue line represent the most

probable solution, the red lines and yellow area show the 1σ uncertainty band, the

dotted black line corresponds to a pure signal.The invariant mass distributions are

reconstructed using the pre-selection criteria only - �rst line, the loose criteria -

second line, tight criteria - third line.
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Figure 5.24: 5
ΛHe invariant mass distribution for both signal (red) and background

(blue) events presented in left column. Unbinned likelihood �t performed on 5
ΛHe

invariant mass distribution shown in right column. The blue line represent the most

probable solution, the red lines and yellow area show the 1σ uncertainty band, the

dotted black line corresponds to a pure signal.The invariant mass distributions are

reconstructed using the pre-selection criteria only - �rst line, the loose criteria -

second line, tight criteria - third line.
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Table 5.8: Comparison of the performance obtained on the Λ and hypernuclei decay

reconstruction for the di�erent set of selection criteria. The quoted numbers have

been obtained by using an unbinned likelihood mass �t.

Λ Selection Mass [GeV/c2] σ [MeV/c2] S/B

pre-selection 1.117 3.2 0.62

loose 1.117 2.9 0.98

tight 1.117 2.8 1.42
3
ΛH Selection

pre-selection 2.994 8.1 1.81

loose 2.994 8.0 3.44

tight 2.994 8.0 4.87
4
ΛH Selection

pre-selection 3.928 8.0 0.90

loose 3.927 7.9 1.20

tight 3.927 7.9 1.46
5
ΛHe Selection

pre-selection 4.84 8.0 0.32

loose 4.84 8.0 0.60

tight 4.84 8.0 0.86

The total observed unlike-sign pair distribution N+− can be expressed as:

N+− = Scorr+− +Bcomb.
+− (5.8)

The combinatorial background can be estimated by the so called mixed-event tech-

nique. The basic idea of this technique is that unlike-sign pairs, obtained by com-

bination of opposite charged tracks of di�erent events, are inherently independent.

Thus, the background shape is obtained by constructing the invariant mass spec-

trum of uncorrelated (p, π−), (3He, π−) or (4He, π−) pairs that comes from di�erent

events. A special care is given in order to use the sub-sample of events of similar mul-

tiplicity and containing at least one pair of the particles of interest. Speci�cally,we

combine the daughter particle of the other type from a number of subsequent similar

events.

The Figures 5.25, 5.26, 5.27 and 5.28 represent a comparison between background

shape obtained with the mixed-event technique and the simulation for the Λ , 3
ΛH,

4
ΛH and 5

ΛHe reconstruction respectively. On the �gures, the bottom histograms

bin per bin ratio between the number of mixed-event background Nmix
bkg and the

corresponding simulated one N sim
bkg is also presented. There is an agreement between

simulated background and mixed background for the Λ reconstruction. A linear �t

in the bin per bin ratio histogram gives a mean value close to 1: 1.05±0.05. Instead

for hypernuclei reconstruction the background shape between simulated background

and mixed events di�ers by a systematic factor 2 under the peak mass region. A
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Figure 5.25: Comparison between

background shape obtained with the

mixed-event technique and the simu-

lation for the Λ reconstruction.

Figure 5.26: Comparison between

background shape obtained with the

mixed-event technique and the simu-

lation for the 3
Λ H reconstruction.

linear �t in the bin per bin ratio histogram gives a mean value of 2.19±0.05, 2.7±0.07

and 2.01± 0.06 for the 3
ΛH,

4
ΛH and 5

ΛHe decay respectively.

Figure 5.27: Comparison between

background shape obtained with the

mixed-event technique and the simu-

lation for the 4
Λ H reconstruction.

Figure 5.28: Comparison between

background shape obtained with the

mixed-event technique and the simu-

lation for the 5
Λ He reconstruction.
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5.6 Invariant mass reconstruction

The selection criteria applied for the real data, shown in the Table 5.9, are based on

the Monte Carlo simulation previously presented and optimized in order to obtain

for each reconstructed decay the best statistical signal signi�cance possible.

Table 5.9: Selection criteria for the Λ and hypernuclei candidates.

Cut on Units Lower bound Upper bound

P πχ2 val. 0.1 1.

P+
χ2 val. 0.1 1.

pπ [GeV] 0.5 1.5

pp [GeV] 0. 4.5

p3He [GeV] 6. 9.

p4He [GeV] 9. 12

P vtxχ2 val. 0.1 1.

DCA [cm] 0. 0.4

zv incl.target [cm] -10. 35.

zv excl.target [cm] 2. 35.

pt val 0. 0.1

The red hatched histograms in Figure 5.29 shows the invariant mass distribution

for the p + π−, 3He + π− and 4He + π− respectively. The blue hatched histogram

are the distributions obtained from mixed event analysis. The scaling factors for

the mixed events distributions are determined by the ratio of the areas de�ned in

the Table 5.10. The right panels of Figure 5.31 shows the �tted invariant mass

distributions, the �tting procedure was described previously in the signal selection

session, background is describes by the Chebyshev polynomial of second order. The

results are summarized in the Table 5.11.

Table 5.10: Mass ranges [GeV/c2] used for the scaling of the mixed events.

Particle Lower bound Upper bound

Λ 1.15 1.3
3
ΛH 3.0 3.1
4
ΛH 3.92 4.0

The Figure 5.30 shows the longitudinal distribution of the reconstructed vertex

in the case of unlike sign pairs in the same event and in the case of mixed events. One

can notice that in the case of reconstructed vertex from uncorrelated particles coming

from di�erent events the longitudinal vertex position is uniformly distributed. It

shows that the observed background comes from uncorrelated particles.
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Figure 5.29: Invariant mass spectra of p + π− system - top row, 3He+π− - middle

row and 4He+π− - bottom row. The distribution on the left side includes the target

region for the reconstructed vertex position, on the one on right side target region

is excluded
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Figure 5.30: Secondary vertex position distribution for the signal (blue) and the

mixed events (red). Scaling factor de�ned from the integral

The right panels of Figure 5.31 shows the rapidity distribution of the observed

particles. It is found that rapidity of observed hypernuclei is localized in the region

of 1.6 < y < 2.0 which include the projectile rapidity (∼ 1.81), while the Λ has a tail

in the low rapidity region because they are produced in �reball and, as previously

discussed in Chapter 1, have a wide rapidity distribution. It indicates that the

formation of hypernuclei is dominated by the capture of a hyperon produced in the

participant zone by the projectile fragments. Many theoretical model calculations

predict that the dominant process of the formation of the hypernuclei is described

by the coalescence scenario. Therefore, the observed kinematic is in agreement with

theoretical models [19, 71, 72, 73].

Table 5.11: Result of the �tting of invariant mass distribution presented in Fig-

ure 5.31.

Particle integral mean value [MeV/c2] σ [MeV/c2] signi�cance [σ]

Λ 417± 54 1109.6± 0.38 3.04± 0.41 9.8
3
ΛH 323± 36 2981.0± 0.30 3.16± 0.25 12.8
4
ΛH 170± 21 3898.1± 0.68 4.47± 0.66 7.3

5.7 Lifetime measurement

In order to measure the lifetime from the Λ, 3
ΛH and 4

ΛH candidates, one has to cor-

rect not only for the e�ects of the applied selection on the proper time distribution

but also for background contamination. Yet, the background events passing the

selections cuts can only be separated from the signal events in a statistical way. To
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ΛΛ

3
ΛH

3
ΛH

4
ΛH

4
ΛH

Figure 5.31: Left panels: �tted by the signal+ background distribution for Λ, 3
ΛH and

4
ΛH. The blue lines represent the most probable solution, the red lines and yellow

area show the σ uncertainty band, the dotted black line corresponds to a pure

signal. The light purple markers corresponds to the scaled mixed event invariant

mass distributions. Right panels: Rapidity distribution for Λ, 3
ΛH and 4

ΛH. The

distributions obtained from the signal region are in red, ones from the sideband are

shown in blue.
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this purpose, it is convenient to �t the data with a likelihood function which sepa-

rate the signal and background observables in two di�erent parts using probability

density distributions:

L =

Nobs∏
i=0

(fi · Msig(mi|σmi ,m) · Tsig(τi|στi , τ)

+(1− fi)Mbkg(mi|σmi ,m) · Tbkg(τi|στi , τ))

(5.9)

where fi is the fraction of signal event in the total number of observed events Nobs.

Msig andMbkg are the probability density function modeling the signal and back-

ground mass distributions. The terms Tsig and Tbkg describe the decay time dis-

tribution of the signal and the background respectively. The input variables to

the likelihood function extracted from the data are the proper decay time τi , its

uncertainty στi the mass mi and its uncertainty σmi .

Since both mass and proper decay time are included in the likelihood function,

both parameter are �tted simultaneously. Furthermore, the likelihood function is

calculated per event and do not assume an arbitrary binning which is an advantage

when dealing with low data sample size.

The best choice for the set of parameter (m, τ) is the one which yields the

maximum value of the likelihood function in Equation 5.9 or, in a numerically more

convenient way, which minimizes the negative logarithm of the likelihood −log(L).

In this section, an unbinned maximum likelihood �t to the reconstructed Λ, 3
ΛH

and 4
ΛH mass and proper decay time is performed to extract the lifetime of the

corresponding particles.

5.7.1 Proper time model

The probability density distribution to describe the proper time in absence of any

kind of bias is written out as :

T (τi|στi , τsig,bkg) = E(τi|τsig,bkg)⊗G(τi|στi)

=

∫ ∞
0

1

τi
e
− τ

′

τsig,bkg · 1√
2πστi

e
− (τi−τ

′
)2

2σ2
τi dτ

′
(5.10)

where τi is the measured proper time of event i; στi is the estimated proper decay

time uncertainty of event i and τ is the extracting lifetime.

As selection cuts has been used to suppress the abundant background, the re-

constructed proper decay time distribution may be distorted and consequently the

lifetime �t could be bias. An acceptance correction function is required to describe

such distortions. The acceptance function ε(τ) de�ned as the ratio between the mea-

sured proper decay time distribution and the true proper decay time distribution has

been extracted from the Monte Carlo simulation. Figures 5.32, 5.33 and 5.34 shows

the result of a polynomial �t to model the acceptance function for reconstructed Λ,
3
ΛH and 4

ΛH particles.
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Figure 5.32: Acceptance

function ε(τ) for the recon-

structed Λ.

Figure 5.33: Acceptance

function ε(τ) for the recon-

structed 3
ΛH.

Figure 5.34: Acceptance

function ε(τ) for the recon-

structed 4
ΛH.

Taking into account the selection bias the probability density function written

by Equation 5.10 describing the signal proper time is �nally written out as:

T (τi|στi , τsig) = E(τi|τsig)⊗G(τi|στi) · ε(τsig) (5.11)

where the acceptance function ε(τ) depends on the reconstructed particle.

5.7.2 Mass model

The probability distribution function adopted for the description of the signal in-

variant mass distribution is described by a single Gaussian function:

fmsig(mi|M,σm) =
1√

2πσm
e
− (mi−M)2

2σ2
m (5.12)

where, mi is the measured mass of the i-th event; M is the signal mass. The σm
term corresponds to the overall mass resolution which was used for the mass part

while the event by event resolution was used for the lifetime part.

A third order Chebyshev polynomial [74] is used to describe the invariant mass

distribution of the background:

fmbkg(m|c0, ..., cn) =
1

N
·

(
T 0(m) +

n∑
k=0

ckT
k(m)

)
(n = 2) (5.13)

where T k(m) is the kth order Chebyshev polynomial. Chebyshev polynomials are

chosen over regular polynomials because of their superior stability in �ts. Chebyshev

and regular polynomials can describe the same shapes, but a clever reorganization of

power terms in Chebyshev polynomials results in much lower correlations between

the coe�cients in a �t, and thus to a more stable �t behavior.

5.7.3 Fit results

The combined mass-lifetime unbinned likelihood �t was applied �rst on the Monte

Carlo simulation. The Figure 5.35 shows the invariant mass and proper decay time
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Table 5.12: The mass, signal yield and proper decay lifetime returned by the un-

binned likelihood �t for the di�erent reconstructed particles in their respective decay

channel.

�tted values M (GeV/c2) σM (MeV/c2) Nsig τ (ps)

Λ 1.10927 1.97 152± 26 269.37 +93.13
−62.57

3
ΛH 2.98175 3.25 146± 20 239.07 +61.19

−43.72

4
ΛH 3.89248 1.83 46± 11 209.39 +135.34

−64.72

distributions for the reconstructed Λ using the Monte Carlo simulation. The left

column shows the �tted invariant mass distribution overlayed with the extracted

signal (in red) and the background (in blue) together with the pro�le logarithm

likelihood as a function of the �tted mass parameter. The right columns shows the

�tted proper decay time distribution overlayed with the extracted signal (in red)

and the background ( in blue ) together with the pro�le logarithm likelihood as a

function of the �tted proper decay time parameter. The result obtained for the Λ

proper decay lifetime τ fitΛ = 264± 18 ps is compatible with the Λ lifetime de�nition

τ simΛ = 263 ps in GEANT.

Using the same presentation format, the �gures 5.36, 5.37 and 5.38 shows the

�tted invariant mass and proper decay time distributions for the selected Λ, 3
ΛH and

4
ΛH candidates using the combined mass-lifetime unbinned likelihood �t. In order to

have favorable signal over background ratio a systematic cut on the secondary vertex

of z > −2.cm for the reconstructed Λ and 3
ΛH and z > 5.cm for the reconstructed

4
ΛH was applied.

The mass and proper decay lifetime returned by the �t for the di�erent recon-

structed particles in their respective decay channel is summarized in Table 5.12.
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Figure 5.35: Invariant mass and proper decay time distributions for the recon-

structed Λ using the Monte Carlo simulation. The left column shows the on top

the �tted invariant mass distribution overlayed with the extracted signal (in red)

and the background (in blue) and down the pro�le logarithm likelihood as a func-

tion of the �tted mass parameter. The right columns shows the �tted proper decay

time distribution overlayed with the extracted signal (in red) and the background

(in blue) together with the pro�le logarithm likelihood as a function of the �tted

proper decay time parameter.
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Figure 5.36: Invariant mass and proper decay time distributions for the Λ candidates

selected in the real data. The left column shows on the top the �tted invariant mass

distribution overlayed with the extracted signal (in red) and the background (in blue)

and down the pro�le logarithm likelihood as a function of the �tted mass parameter.

The right columns shows the �tted proper decay time distribution overlayed with

the extracted signal (in red) and the background (in blue) together with the pro�le

logarithm likelihood as a function of the �tted proper decay time parameter. The

decay time errors are clearly asymmetric.
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Figure 5.37: Invariant mass and proper decay time distributions for the 3
ΛH candi-

dates selected in the real data. The left column shows on the top the �tted invariant

mass distribution overlayed with the extracted signal (in red) and the background

(in blue) and down the pro�le logarithm likelihood as a function of the �tted mass

parameter. The right columns shows the �tted proper decay time distribution over-

layed with the extracted signal (in red) and the background (in blue) together with

the pro�le logarithm likelihood as a function of the �tted proper decay time param-

eter. The decay time errors are clearly asymmetric.
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Figure 5.38: Invariant mass and proper decay time distributions for the 4
ΛH candi-

dates selected in the real data. The left column shows on the top the �tted invariant

mass distribution overlayed with the extracted signal (in red) and the background

( in blue ) and down the pro�le logarithm likelihood as a function of the �tted

mass parameter. The right columns shows the �tted proper decay time distribution

overlayed with the extracted signal (in red) and the background ( in blue ) together

with the pro�le logarithm likelihood as a function of the �tted proper decay time

parameter. The decay time errors are clearly asymmetric.
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5.7.4 Estimation of the ratio 3
ΛH / 4

ΛH

The yield ratio 3
ΛH / 4

ΛH can be deduced from the result obtained from the �tted

invariant mass spectra with signal + background model. The trigger e�ciency is

assumed to be similar for both reconstructed decays. One can express the ratio as

N(3
ΛH)

N(4
ΛH)

=
Nobs

3
ΛH
× Γtot(3

ΛH)

Γπ− (3
ΛH)
× 1

ε(3
ΛH)

Nobs
4
ΛH
× Γtot(4

ΛH)

Γπ− (4
ΛH)
× 1

ε(4
ΛH)

(5.14)

Assuming that the branching ratio for 3
ΛH→ π−+3He is ∼ 25% and branch-

ing ratio for 4
ΛH→ π−+4He is ∼ 50%, and using for the reconstruction e�ciency

respectively

• ε(3
ΛH) = 0.0211416± 0.000198

• ε(4
ΛH) = 0.0163757± 0.000192

one obtains the following value for the yield ratio N(3
ΛH)/N(4

ΛH)= 2.94±0.69. The

same ratio can be calculated using the results obtained with the Kalman vertex �t

(presented in the Appendix C). In this case the result is N(3
ΛH)/N(4

ΛH)= 3.21 ±
1.11 which is compatible with the previous value within the statistical errors. It

demonstrates that both methods are in agreement. The weighted mean is 3.02±0.59.

If the theoretical explanation for the hypernuclear production in peripheral heavy

ion collisions is described only by the coalescence scenario, the 3
ΛH and 4

ΛH would

be respectively formed by the coalescence of deuteron+ Λ and triton+ Λ. It would

mean that the ratio of 3
ΛH/

4
ΛH is comparable to the ratio of the numbers of deuterons

to the numbers of tritons produced in the fragmentation reaction together with a

Λ-hyperon in the rapidity region of the reconstructed hypernuclei assuming the

coalescence phenomenon is independent of the isospin of the involved systems.

Recent theoretical studies show that several additional concurrent production

mechanisms could be involved into the hypernuclei formation in the heavy ion colli-

sion and especially at the projectile rapidity, such as pion-/kaon- secondary induced

reaction [64, 72] and Fermi break-up [75]. Those subsidiary mechanisms could con-

tribute in di�erent ways to the ratios N(3
ΛH)/N(4

ΛH) and N(d)/N(t).

The number of observed tritons and deuterons detected with the minimum bias

trigger �ag was deduced from the �t of the momentum distribution of the particle

with Z = 1 [76]

N(d)

N(t)
=
Nobs

d
× 1

ε(d)

Nobs
t
× 1

ε(t)

= 2.58± 0.29. (5.15)

This value can be compared with that deduced from the hybrid theoretical model,

the Dubna cascade model (DCM) including Fermi break-up [75]. The obtained

theoretical value is N(d)/N(t) = 2.561. This model also predicts the hypernuclei

1A. Botvina, personal communication
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yield ratio N(3
ΛH)/N(4

ΛH) = 5.0 which is larger then the extracted ratio mentioned

above.

Unfortunately the present version of coalescence model described by [72] does

not generate any 4
ΛH in the projectile rapidity region [77], which is not realistic and

requires the additional work on these calculations.

The observed values for N(d)/N(t) = 2.58± 0.29 and N(3
ΛH)/N(4

ΛH) = 3.02±
0.59 are supporting, within errors, the coalescence model as a main mechanism of the

hypernuclear production in heavy ion induced reaction at the projectile rapidity [19].

However, this small di�erence between 2.58 and 3.02, not signi�cant at present, may

be taken as an indication that additional processes are involved in the hypernuclear

formation. It leaves room for additional studies with a higher experimental accuracy

and more detail theoretical calculations.



Chapter 6

Summary and Outlook

The aim of the HypHI Phase 0 experiment is to demonstrate the feasibility of the hy-

pernuclear production in heavy ion induced reactions where the reaction mechanism

is well explained by the participant-spectator model. In the peripheral high energy

heavy ions collision a hyperon is produced in the participant region at mid-rapidity

and may coalesce with a projectile fragments, so that the velocity of hypernuclei

is close to that of the projectile. This gives a unique opportunity to study hyper-

nuclei in �ight: because of an energy threshold of 1.6 GeV for the Λ production

in the elementary process NN → ΛKN , high incident energies have to be chosen.

The produced hypernuclei have thus a large velocity and so a large Lorentz factor

leading to a longer e�ective lifetime. It also makes feasible to produce hypernuclei

far from the β-stability line and to study several hypernuclei within the same data

set, because the variety of produced hypernuclei depends on the variety of isotopes

produced in the reaction.

The HypHI Phase 0 experiment was performed in October 2009 at GSI with 6Li

beams on a 12C target with an average intensity of 3 × 106 particles per second.

The integrated luminosity is 0.06 pb−1. The experimental setup is a typical forward

spectrometer setup with the ALADiN dipole magnet operated at 0.75 T. It consists

of arrays of scintillator �ber detectors placed in front of the magnet and a drift

chamber associated with time-of-�ight walls behind the magnet, which were used

for the momentum reconstruction and the particle identi�cation.

A dedicated track �tting algorithm based on the Kalman Filter technique was

implemented for the track reconstruction. In order to improve the performance of

the method, a precise calculation of the physical e�ects, mainly the energy loss

and multiple scattering e�ects a�ecting the track parameters and its errors, have

been included at each iteration of the Kalman �lter algorithm. In order to opti-

mize the removal of fake tracks, the canonical Kalman �lter has been modi�ed and

supplemented by a smoothing algorithm.

Two independent secondary-vertex �tting algorithms, a global χ2 �t and an

iterative vertex �t based on the Kalman �lter approach, were developed in order to

perform secondary vertex reconstruction with a statistical selection criterion. The

obtained results are shown in the Figure 6.1, and �t results are summarized in

Table 6.1. The obtained masses are in excellent agreement, within typically 2 MeV,

with the results of [76]. The widths are smaller which is due to the improved

methods used. It shows that addition of the vertex �tting improve signi�cantly the

�nal invariant mass resolution. A comparison of the methods applied here shows
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Λ 3
ΛH

4
ΛH

Figure 6.1: Invariant mass distribution (black dots) �tted with the signal+ back-

ground distribution for Λ (left), 3
ΛH (middle) and 4

ΛH (right). The blue lines represent

the most probable solution returned by the �t, the red lines and yellow area show

the 1σ uncertainty band. The light purple markers correspond to the scaled mixed

event invariant mass distributions

Table 6.1: Summary of the obtained results with the χ2 �t (�rst three rows) and

with the Kalman �t (bottom three rows).

Particle integral mean value [MeV/c2] σ [MeV/c2] signi�cance [σ]

Λ 417± 54 1109.6± 0.4 3.04± 0.41 9.8

χ2 3
ΛH 323± 36 2981.0± 0.3 3.16± 0.25 12.8
4
ΛH 170± 21 3898.1± 0.7 4.47± 0.66 7.3

Λ 658± 73 1110.3± 0.5 3.57± 0.42 12.0

KF 3
ΛH 417± 43 2981.3± 0.4 4.61± 0.37 10.8
4
ΛH 201± 44 3896.1± 1.1 6.39± 1.05 6.2

that the widths are method dependent.

An unbinned-likelihood lifetime �t was achieved using the results obtained from

the χ2 vertex �t. The obtained lifetime of the Λ-hyperon is 269.37 +93.13
−62.57 ps which

is in good agreement with the known value of 263 ps [4]. The deduced lifetime of

the hypernuclei are 239.07 +61.19
−43.72 and 209.39 +135.34

−64.72 ps for 3
ΛH and 4

ΛH, respectively.

The obtained results are compared to the world known data in Figure 6.2 and are

seen to be in agreement within the errors, giving additional support for the validity

of the obtained results.

The observed rapidity distribution, shown in Chapter 5 in Figure 5.31, shows

that the reconstructed particles are observed at the projectile rapidity region which

was expected from several theoretical models [19, 71, 72, 73].

The yield ratioN(3
ΛH)/N(4

ΛH) was found to be 3.02±0.59 and the ratioN(d)/N(t)

with the minimum bias trigger �ag was deduced to be 2.58 ± 0.29. The values are

very similar, in fact overlapping within their uncertainties, which may be considered

as generally supporting coalescence as a dominant mechanism for the hypernuclear
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Figure 6.2: The world data on the lifetime of 3
ΛH (left panel) and 4

ΛH (right panel)

from the following references: A [78], B [79], C [80], D [81], E [82], F [23], G [83],

H [69]. The red markers represent results obtained in the current work.

production. However, the theoretical approaches to explain this mechanism of the

hypernuclear production in heavy ion collisions have uncertainties regarding the

concurrent physics processes that are involved.

First of all, theoretical models based on a coalescence phenomenon as a primary

source of hypernuclear production use a �xed coalescence radius which may be

oversimpli�ed [19, 72].

Furthermore, secondary processes exist and are considered in several theoretical

models. At �rst only pion-/kaon-induced production mechanisms were taken into

account [84], which had impacts on the results obtained with di�erent models [72,

84, 64]. Later on, the Fermi break-up of excited hypernuclei has been discussed [75],

which has several uncertainties with respect to the excitation-energy distribution

which a�ect the importance of this mechanism for the hypernuclear formation.

The obtained value of 3.02± 0.59 for the ratio N(3
ΛH)/N(4

ΛH) re�ects all these

concurring mechanisms and may permit new insight regarding the fundamental pro-

cesses involved in the formation of hypernuclei in heavy-ion induced reactions.

As a �nal conclusion the present work proves the feasibility of the study of

hypernuclei produced in peripheral heavy ion collisions at projectile rapidity region.

This method gives an unique opportunity to study several hypernuclei within the

same data taking.





Appendix A

Distance and points of closest

approach for track pairs

The method for obtaining the distance of closest approach of two trajectories in

three-dimensional space, and the point on each trajectory that is closest to the

other (the point of closest approach) is described. The calculations are done for

straight lines but can be generalized for curved lines. The distance and points of

closest approach are crucial in the �rst approximation of the vertex position by the

vertex �nding algorithm.

Figure A.1: Distance and points of closest approach for tracks pairs coming from a

Λ0 → π− + p decay. δ(π−,p) = ‖ ~AB ‖.

The method is based on purely geometrical consideration as shown in �gure A.1.

The equation de�ning the straight tracks are

~rp = ~r0,p + ~up · tp (A.1)

~rπ = ~r0,π + ~uπ · tπ (A.2)

with ~rp representing the position on the positively charged track (proton) and

~rπ the negatively charged one. ~r0,(p,π) are the position vectors of the given position,

~up,π are the unit vector in the direction of the track momentum i.e

~up,π =
~pp,π

‖ ~pp,π ‖
(A.3)

and tp,π are parameters describing position on the tracks.

The distance vector between the two tracks is
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~δp,π = ~rp − ~rπ = ~r0,p − ~r0,π + ~up · tp − ~uπ · tπ (A.4)

and using the notation δ ~r0 = ~r0,p − ~r0,π, the distance squared reads:

‖ ~δp,π ‖2 = δ ~r0
2 + 2δ ~r0 · ~up · tp − 2δ ~r0 · ~uπ · tπ − 2 ~up · ~uπ · tπ · tp + t2p + t2π

The derivatives with respect to the parameters t's are

∂ ‖ ~δp,π ‖2

∂tp
= 0 = 2δ ~r0 · ~up − 2 ~up · ~uπ · tπ + 2tp

∂ ‖ ~δp,π ‖2

∂tπ
= 0 = 2δ ~r0 · ~uπ − 2 ~up · ~uπ · tp + 2tπ

The derivatives rewritten in canonical form are:

∂ ‖ ~δp,π ‖2

∂tp
= tp − ( ~up · ~uπ) · tπ = −δ ~r0 · ~up

∂ ‖ ~δp,π ‖2

∂tπ
= tπ − ( ~up · ~uπ) · tp = δ ~r0 · ~uπ

the solutions of the linear system are

tp =
[−δ ~r0 · ~up + (δ ~r0 · ~uπ) · ( ~uπ · ~up)]

1− ( ~uπ · ~up)2

tπ =
[−δ ~r0 · ~uπ + (δ ~r0 · ~up) · ( ~uπ · ~up)]

1− ( ~uπ · ~up)2

The values of (tp, tπ) can be substitued into equations A.1 and A.2 respectively in

order to obtain the point on each line that is closest to the other.

The method can be generalized to two tracks having curvature. In this case, the

equations A.1 and A.2 include a term describing the curve:

~rp = ~r0,p + ~up · tp + cp · t2p (A.5)

~rπ = ~r0,π + ~uπ · tπ + cπ · t2π (A.6)

where

cp,π = k · ~up,π × ŷ
| ~up,π × ŷ|

the unit vectors ~up,π are perpendicular to both the momentum and the y-axis muli-

plied by k a parameter describing the curve.



Appendix B

Covariance matrice conversion

The change of the track representation from canonical state representation used in

the Kalman track reconstruction algorithm:

~qA
T = (x, y, tx, ty, Q/pxz)z=zref (B.1)

to the representation adopted in the vertex reconstruction algorithm can be consid-

ered as a two step transformation (A)→ (B)→ (C):

~qA
T : (x, y, tx, ty, Q/p)→ ~qB

T : (x, y, z, tx, ty, Q/p)→ ~qC
T : (x, y, z, px, py, pz, E)

The (5×5) covariance matrix VA for the parameters ~qA is well assumed to be well-

de�ned and non-singular: GA = VA
−1. Both corresponding covariance matrices

for the parameters ~qB and ~qC, VA(6× 6) and VC(7× 7) are either singular or not

existing. It can be shown that one can de�ne the formal inverse covariance matrix

GB = VB
−1 but there is not way to de�ne neither the proper matrix VC nor the

proper matrix GC.

The re-parametrization ~qA → ~qB with additionnal parameter z does not allow to

write the sensible covariance matrix for ~qB. But one can write the formal expression

for the inverse covariance matrix:

GB = JT
A→B ·GA · JA→B (B.2)

and the Jacobian of the (A → B) transformation reads:

JA→B =

[
∂ ~qA

∂ ~qB

]
=


1 0 −tx −z 0 0

0 −1 −ty 0 −z 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 (B.3)

The matrix JA→B could be represented in a more simple way as a block matrix:

JA→B =

(
V U

0 1

)
where the matrices V(2× 3) and U(2× 3) and correspondingly the Jocabian trans-

formation JA→B have the following block structure:

V =

(
1 0 −tx
0 1 −ty

)
, U =

(
−z 0 0

0 −z 0

)
JT
A→B =

(
VT 0

UT 1

)
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The above block structure for V(2 × 3), U(2 × 3) and JA→B can be used to

write:

GB = JT
A→B ·GA =

(
VT 0

UT 1

)
·
(
GAx GAxt

GT
Axt GAt

)
·
(
V U

0 1

)
=

(
GBx GBxt

GT
Bxt GBt

)
GBx = VT ·GAx ·V
GBxt = VT ·GAx ·UT + VT ·GAxt

GBt = UT ·GAx ·U + UT ·GAxt + GT
Axt ·U + GAt

The block representation of the matrix GA has been used:

GA =

(
GAx GAxt

GAxt GAt

)
The (6× 6) matrix GB is singular of rank 5. The upper top (3× 3) block

GBx = VTGAxV

is a singular rank 2 matrix while the the lower right block GAt is generally not

singular and so has the inverse GAt
−1. The components of the inverse are:

VB = G−1B =

(
VBx VBxt

VT
Bxt VBt

)
The parametrization (A → B) formally allows to express the covariance matrix

VC throught the matrix VB as:

VC = JC→BVBJ
T
C→B

JC→B =

[
∂ ~qC

∂ ~qB

]
=

(
1 0

0 K

)
The matrix JC→B(7 × 6) is represented as block matrix where the K component

matrix is de�ned as:

K =

[
∂(px, py, pz, E)

∂(tx, ty, tz)

]
=



pz
1 + t2y

1 + t2x + t2y
−pz

txty
1 + t2x + t2y

−pz · p ·Q

−pz
txty

1 + t2x + t2y
pz

1 + t2x
1 + t2x + t2y

−py · p ·Q

−pz
1 + t2x + t2y

−pz
1 + t2x + t2y

−pz · p ·Q

0 0 −p
3

E
·Q


The VC expression reads:

VC =

(
VCx VCxt

VT
Cxt KVCt

)
=

(
VBx VBxtK

T

KVT
Bxt KVBtK

T

)
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where the lower right (4 × 4) block of the matrix VCt = KVBtK
T is singular.

Comparing these expressions gives all formal expression needed for the Kalman

Filter based vertex �tting procedure:

GCx −GCxpG
−1
CpG

T
Cxp = V−1Cx = GBx −GBxtG

−1
BtG

T
Bxt

G−1Cp = VCp −VT
CxpV

−1
CxVCxp = KG−1BtK

T

G−1CpG
T
Cxp = −VT

CxpV
−1
Cx = −KG−1BtG

T
Bxt

Eventhough neither the matrix VB nor matrices VC,GC could be constructed

explicitely, all required matrix expressions needed for the Kalman Filter based vertex

algorithm are valid matrix expressions.





Appendix C

Result of the data analysis with

KF vertex �t

This appendix presents the performance of the Kalman based secondary vertex

reconstruction described in Chapter 4 applied for both simulated and real data.

Simulated Data

For the Kalman vertex �t performance check the realistic simulation presented in

Chapitre 4 has been used. A set of selection for the particle reconstruction which

corresponds to loose criteria has been applied. The choosen selection criteria are

summarized in table C.1.

Table C.1: De�nition of the loose selection criteria for the reconstructed particles.

The variable pt stands for the Armenteros transverse momentum.

Cut on Units Lower bound Upper bound

P πχ2 val. 0.1 1.

P+
χ2 val. 0.1 1.

pπ [GeV] 0.5 2.

pp [GeV] 0. 4.5

P vtxχ2 val. 0.01 1.

DCA [cm] 0. 0.4

zv [cm] 0. 35.

pt [GeV] 0. 0.1

Real Data

The red hatched histograms in the left panel of Figure C.9 shows the invariant

mass distribution for the p + π−, 3He + π− and 4He + π−. The blue hatched

histogram are the distributions obtained from mixed event analysis. The scaling

factors for the mixed events distributions are determined by the ratio of the areas

de�ned in the Table 5.10.

The right panels of Figure C.9 shows the �tted invariant mass distributions, the

�tting procedure was described previously in Chapter 5, background is describes

by the Chebyshev polynomial of second order. The results are summarized in the

Table C.2.
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Figure C.1: Λ invariant mass distri-

bution for both signal (red) and back-

ground (blue) events using the selec-

tion criteria from table C.1.

Figure C.2: Unbinned likelihood �t

performed on Λ invariant mass distri-

bution reconstructed using the selec-

tion criteria from table C.1.

Figure C.3: 3
ΛH invariant mass distri-

bution for both signal (red) and back-

ground (blue) events using the criteria

from table C.1.

Figure C.4: Unbinned likelihood �t

performed on 3
ΛH Invariant mass dis-

tribution reconstructed using the cri-

teria from table C.1.
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Figure C.5: 4
ΛH invariant mass distri-

bution for both signal (red) and back-

ground (blue) events using the criteria

from table C.1.

Figure C.6: Unbinned likelihood �t

performed on 4
ΛH invariant mass dis-

tribution reconstructed using the cri-

teria from table C.1.

Figure C.7: 5
ΛHe invariant mass distri-

bution for both signal (red) and back-

ground (blue) events using the criteria

from table C.1.

Figure C.8: Unbinned likelihood �t

performed on 5
ΛHe invariant mass dis-

tribution reconstructed using the cri-

teria from table C.1.



164 Appendix C. Result of the data analysis with KF vertex �t

Assuming that the branching ratio for 3
ΛH→ π−+3He is ∼ 25% and branch-

ing ratio for 4
ΛH→ π−+4He is ∼ 50%, and using for the reconstruction e�ciency

respectively

• ε(3
ΛH) = 0.0242265± 0.0002135

• ε(4
ΛH) = 0.0160858± 0.0001900

one obtains the following value for the yield ratio N(3
ΛH)/N(4

ΛH)= N(3
ΛH)/N(4

ΛH)=

3.21 ± 1.11 which is compatible with a previous value obtained in Chapter 5 with

global χ2 vertex �t within the statistical errors. It demonstrates that both methods

are in agreement.

Table C.2: Summary of the obtained results with the �t KF vertex �t

Particle integral mean value [MeV/c2] σ [MeV/c2] signi�cance [σ]

Λ 658± 73 1110.3± 0.5 3.57± 0.42 12.0
3
ΛH 417± 43 2981.3± 0.4 4.61± 0.37 10.8
4
ΛH 201± 44 3896.1± 1.1 6.39± 1.05 6.2
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ΛΛ

3
ΛH

3
ΛH

4
ΛH

4
ΛH

Figure C.9: Left panels: Invariant mass spectra of Λ, 3
ΛH and 4

ΛH. The distribution

includes the target region for the reconstructed vertex position. Right panels: Invar-

ian mass distribution (black dots) �tted with the signal+ background distributions

for Λ, 3
ΛH and 4

ΛH. The blue lines represent the most probable solution, the red lines

and yellow area show the σ uncertainty band. The light purple markers correspond

to the scaled mixed event invariant mass distributions.
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