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Abstract. In science powerful statistical means exist for analysis of time and data series of observations. 

However, quantifying the agreement (disagreement) between two series in terms of a number, a quantity does 

rarely exist to our knowledge. In addition, to our awareness, the inaccuracy (error) of the measurements, 10 

observations, and models is not included in the characterization of the agreement/disagreement. The comparison 

(extend of agreement/disagreement) mostly is made visually and thus remaining rather qualitative, disputable, 

and vague. This short notice is proposing a quantitative score (SCORE) or index of agreement for a comparison 

of time and data series including their errors. 

1 Introduction.  15 

Wenn ich zum Beispiel vermute “Im Kühlschrank könnte noch Bier sein” und ich gucke nach, 
dann betreibe ich im Prinzip schon eine Vorform von Wissenschaft. Großer Unterschied zur 

Theologie. Da werden Vermutungen in der Regel nicht überprüft. Wenn ich also nur behaupte “Im 
Kühlschrank ist Bier”, bin ich Theologe. Wenn ich nachschaue, bin ich Wissenschaftler. Wenn ich 

nachsehe, nichts finde und trotzdem behaupte, es ist Bier drin – dann bin ich Esoteriker (Vince 20 
Ebert, 2017)1 

Comparison (testing, verification) is a powerful, if not the most central instrument in physics, chemistry, 

biology, medicine, sociology, and environmental science, in daily use or once any scientific idea has been 

perceived. Measurements are repeated many times (samples are taken or drawn) in order testing and verifying a 

certain result. The observations certainly are showing errors but hopefully the data vary only by a slight amount. 25 

As an outcome a set of data is created:  

- Theoretical calculations and observations in time are completed piece by piece, creating two series. This way 

the algorithms of models are tried to justify.  

- Instruments running side by side for “calibration” (verification) are creating time series and seeding an idea, 

how good instruments do agree. Even if the instruments are manufactured identical, the data vary as a result of 30 

error and variation of the observed entity.  

- Time series of the same observable are generated at different points in the past planning to develop predictions 

for the future.  

                                                           
1  Vince Ebert, German Comedian, 2017 (http://www.vince-ebert.de/, 14 May 2017). Translation by him: 
“Scientific thinking is basically the testing of assumptions. For example, if I say: there is beer in the fridge and I 
go and check, I’m behaving like a scientist. If I say: there is beer in the fridge but don’t check. I’m a theologian. 
If I do look into the fridge, find no beer and still say there is - then I’m an esoteric.” 
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- Two different series are compared (correlated) hoping to get a first hint of a meaningful (functional) 

dependency.  

Often series as function of time are graphically presented, showing how good they agree or disagree (Li et al., 

2017) 2 . The degree of agreement is estimated visually by eye (!) only. Consequently, the agreement 

(disagreement) could be subject to debate, depending on personal preference and experience. Graphical 5 

presentations of time series “often are influenced” to boost certain conclusions. Thus visual comparisons are 

very problematic. It is not the purpose of this paper to develop sophisticated equations and discuss statistical 

tests. It is the purpose to help in quantifying what the eyes are seeing, taking into consideration the error of the 

data. 

2 Basics.  10 

Any physical (chemical) variable (experimental or modelled) like concentration, temperature, wind velocity v 

could be seen as the product of a numerical value and an unit (Cohen et al., 2008), as in “v = 12.5 m/s”. All of 

those variables have uncertainties (errors). Those uncertainties come in two flavours, instrumental (experimental, 

modelled) uncertainties and the variability of the observed variable. It is therefore essential reporting the 

numerical value of the variable with a range of uncertainty. Usually the variable then is noted as 15 

“v = 12.5 ± 0.1 m/s” or similar schemes meaning “face value” ± “uncertainty”. Uncertainty in the model of 

Gaussian distribution means, that at a level of confidence of about 68%, the numerical value is in that range. 

Ascertaining the uncertainty, a number of independent experiments3 have to be carried out (or estimated from the 

setup). Those measured uncertainties (residuals) are randomly distributed at best. Systematic errors should be 

treated separately. Unfortunately often environmental quantities are given without this information. 20 

In addition, environmental variables (and variables in models) are mostly subject to variations in time and space. 

Sometimes these variations are “included” in the uncertainty of the quantity and sometimes not. These variations 

depend mainly on the atmospheric residence time of the variable and the distribution of the sources. Variables 

with a short residence time show large variabilities, while those with long residence times, like oxygen, vary 

only slightly (Hamrud, 1983). This variability might be veiled, especially in integrating observations, like 25 

collecting particles (up to several weeks) on filters for later chemical and/or biological analysis. If the variable is 

measured over extended distances (using attenuation of electromagnetic radiation for instance), mainly the 

variability in space is veiled. Measurements of variables over a certain time form a time series. In such a time 

series the data are not necessarily independent from each other. That is easy seeing, because frequently recurrent 

observations of temperature at any meteorological station never fill the complete possible range of temperatures 30 

at that station. Statistical evaluations fail, if data are not independent from each other. Regardless of this, 

“statistical evaluations” are carried out in publications and reports. Any environmental observation should carry 

both uncertainties, like "𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =  𝑓𝑎𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 ±  𝑒𝑟𝑟𝑜𝑟 ±  𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  unit"  or 

"𝑣 =  12.5 ±  0.1 ±  0.5 m s"⁄ , for example. 

The standard deviation s is calculated from a number n of independent measurements and serves as an estimate 35 

of the parameter (σ) of the Gaussian distribution.  

                                                           
2 This reference serves as an example only. The content of the paper has no special meaning for this paper. 
3 Experiments, not only observations 
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𝑠 = ∑ 𝑥 − ∑ 𝑥  (1) 

with  xi= measured or calculated value 
n = number of the independent measurements 
i = counter 

s is the standard deviation of a normal distribution with the mean m. Only the positive values of this equation are 5 

used in this work. The standard deviation should be calculated from a set of independent data. For the above 

calculation the rule (n-1) of estimating s in the case of a small sample number n of measured values has been 

used. It is the general understanding, that every data xi of later series carries that error s as well. That means that 

even outliers are carrying that error (they might be “cleaned in later statistical treatment”). 

In numerical modelling likewise errors (approximation errors) exist because numerical calculations are prone to 10 

truncation, round-off, limited calculation time, imperfect assumptions, and others. The resulting data also could 

be characterized by a value xi and an error s. 

In evaluating data sets, often Pearson’s correlation coefficient r and a regression function are calculated. The 

correlation coefficient r delivers values between -1 and 1. However, the correlation coefficient r is not taking 

into account the error of the individual data. So data sets with different measuring uncertainties could result in 15 

identical correlation coefficients. Regression functions could be calculated from those data with uncertainty 

ranges of their coefficients. This gives an assessment how good the data follow the regression function. Again, 

the error of the measured values is not entering these calculations. 

If the error of any data point is assumed as “standard deviation”, each data point could be understood as part of a 

Gaussian distribution (with the standard deviation based on the error). Two separate data points then might 20 

intersect in their Gaussian distribution to certain extend. This intersection could be used as a quantitative 

measure of agreement. If the data points are extensively separated, there might be “no intersection”. But, 

measurements with large errors (inaccurate measurements with large uncertainties) tend intersecting more 

frequently and more broadly than accurately measured data. Using only the intersection as a quantitative 

measure of agreement would foster inaccurate measurements and degrade accurate measurements. 25 

It is the assumption in this paper, that in time series, the time is “accurate”, meaning no error in time is assumed. 

For many cases that certainly apply, as for daily temperatures or tree rings (they are counted). It remains to be 

discussed, how an uncertainty in time should be handled. In data series, close data points could be independent. 

In time series, that mostly is not the case (as easily could be seen in temperature time series). 

3 Proposal.  30 

To improve the comparison of two data sets or time series, we propose using an empirical equation with the 

errors of any pair of data points of the two time (data) series defining a penalty factor PF. This way the set of 

data points could be characterized with a SCORE, a quantitative value, how well they compare. To allow an 

extensive application of the proposed equation, great care has to be taken avoiding any singularities as could 

happen in data points close to zero or negative. The use of the SCORE permits data (like temperature) extending 35 

into the range below zero. 

𝑆𝐶𝑂𝑅𝐸(unit1; unit2) = 𝑃𝐹 ⋅
√ π

∫ 𝑒

( )

d𝑥 ∩
√ π

∫ 𝑒

( )

d𝑥 (2) 
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with  - 𝑆𝐶𝑂𝑅𝐸(unit1; unit2) = proposed quantitative measure comparing data pairs in the range 0 to 1. 
 - unit1|2 = “used unit” 
 - m1|2 = measured (determined) values of the data pairs. In contrast to other use, m1|2 are measured data, 
not averages. m1|2 might carry units, they also could have negative values. 
 - s1|2 = errors of the data pairs. Those errors carry the same units as the measured values. As usual, the 5 
errors could have been determined separately or estimated.  
 - ∩ = intersection. The intersection describes which fractions of the Gaussian (error) distributions of the 
pairs do overlap. That fraction might get values between 0 and 1.  

The proposed penalty factor is PF. 

𝑃𝐹 = 𝑒 ∙ 𝑒 ∙ 𝑒
( )

∙ ∙ 𝑒
( )

∙  (3) 10 

with - 𝑚 |   = arithmetic means of the measuring series.  

 - std1|2 = standard deviation of the measuring series. 

With (𝑚 − 𝑚 )  a systematic error between the measuring series is considered. 

𝑆𝐶𝑂𝑅𝐸(unit1; unit2)  is getting values of zero and greater. Zero means no agreement of the pairs. 

𝑆𝐶𝑂𝑅𝐸(unit1; unit2) = 1  would indicate “perfect agreement” of the pairs. One has to keep in mind that 15 

𝑆𝐶𝑂𝑅𝐸(unit1; unit2) also might carry the influence of the variance of the measured or calculated variables. Any 

comparison and 𝑆𝐶𝑂𝑅𝐸(unit1; unit2) has to be seen in that light. 

In averaging the SCORE of the individual pairs, a SCORE of the whole data series could be calculated.  

𝑆𝐶𝑂𝑅𝐸 = ∑ 𝑆𝐶𝑂𝑅𝐸  (4) 

Of course, that averaged 𝑆𝐶𝑂𝑅𝐸 also has a standard deviation. 20 

To explore the proposed SCORE, first a comparison of two identical time series is presented. 

For this example, the instruments used and their performance are of negligible interest. In the sample, 

s1|2 = 0.3°C has been assumed and 𝑆𝐶𝑂𝑅𝐸(°C;°C) = 0.9283 is calculated. 𝑆𝐶𝑂𝑅𝐸(°C;°C) values for different s1|2 

are shown in Table 1. As expected, 𝑆𝐶𝑂𝑅𝐸(°C;°C) is increasing and approaching 1 as the measurements are 

getting more accurate and the errors s1|2 are becoming smaller. So accurate measurements are rewarded and less 25 

accurate are degraded. 

Exploring the properties of SCORE, this data set could be used for a kind of autocorrelation: Calculating the 

SCORE as function of time lag. The time series with an s1|2 = 0.3°C has been selected. Time lag 0 results in 

values as above. Time lag 1 has a low SCORE with a “reasonable good” correlation r2 = 0.8811. This could be 

an indication, that SCORE is rather sensitive (Table 2). 30 

Expanding those simple examples, the SCORE of two (one step) successive atmospheric temperature (2 m above 

ground) measuring series has been calculated. That results in SCORE (°C;°C) = 0.1871 ± 133 %. That might 

serve as an indication of the temperature regime of the two years. The average temperature of one year was 

15.3°C, while the other showed 14.4°C. 

4 Applications and Discussions, Examples.  35 

In acquainting with the SCORE and getting a sense, about the values and sensitivity, a selection of data and time 

series from instruments and models have been asked for, calculated and are presented. 
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4.1 Optical Aerosol Particle Counters and Condensation Nuclei Counters.  

The size distribution (number concentration density as function of particle size of an equivalent sphere) of the 

atmospheric aerosol is one of its key parameters. It determines (among other parameters like index of refraction, 

chemistry, etc.) the colour of the sky, radiation balance, penetration of particles into the lungs, “water” 

precipitation efficiency of the atmosphere. Over the years a large variety of instruments has been developed and 5 

is offered by manufacturers using different properties of the aerosol to be measured (Baron and Willeke, 2001). 

Among them, optical particle counters are often used.  

The ideal comparison would be running two identical instruments (fresh from the production line) side by side 

whether under laboratory or ambient conditions. Most research groups do not have access to such identical 

instruments. They often have only a collection of different instruments. So, it should be the exclusive privilege 10 

of any prominent producer to have such data at hand4.  

A comparison of two instruments is very crucial. It not only informs about the performance and the errors of the 

instruments, it also gives an impression about the variability of the aerosol. The atmospheric aerosol has a rather 

short residence time and consequently a rather large variability.  

The Grimm 1.107 monitor is designed for airborne particulate size concentration measurements using 90° laser 15 

light scattering. Aerosol passes through a plane beam produced by a laser diode. A pulse height analyser detects 

the scattered optical signals and classifies them. The measuring range is given as 0.25 to 32 µm particle diameter 

in 31 size bins. The Grimm 1.109 monitor is very similar5. In principal 31 data pairs could be used, but not all of 

them have been reported in the example.6 Similar me3asurements are published in (Kaaden et al., 2009). 

The comparison (Figure 2) shows very typical aerosol size distributions with 22 data pairs. The regression 20 

coefficient r2 = 0.9980 points toward an excellent agreement. Most experimenters and manufacturers would 

praise such a comparison. And indeed, especially in the view of examples following later, the 

SCORE (cm-3; cm-3) = 0.5419 does reflect a good agreement. The SCOREs standard deviation in this example 

is 0.1405 (26 %). The measuring error is based on counting statistics. The counting error could even be lowered 

by increasing the measuring time (the example has measured in a 6 s time slot). That would result in a trade in of 25 

counting statistics and variability of the aerosol. Any extended measuring time includes an averaging. 

Using a research flight with the Russian aircraft Geophysica, two Condensation Nuclei Counters (COPAS) have 

been used in EUPLEX (European Polar Stratospheric Cloud and Leewave Experiment), Kiruna 20037. Details 

are discussed elsewhere (Weigel et al., 2009). Two COPAS instruments (COPAS1, COPAS2) have been placed, 

with identical inlet systems, in one aircraft container. The instrumental temperatures have been adjusted, so 30 

particles greater than 10 nm are activated.  

The time series of February 2, 2003 (10 – 30° E; 68 – 76° N) consist of 286 data pairs. The flight elevation 

during measurements ranged from 11500 – 12000 m. The outside temperature fluctuated around 190 K. The 

correlation coefficient results in r2 = 0.9400, a very good value for observations on aircrafts. For COPAS1 and 

COPAS2 a SCORE(cm-3;cm-3) = 0.316979 is an excellent value calculated so far. Those two instruments 35 

compared very well. 

                                                           

4 Early in 2017, the major sellers of optical particle counters in Europe were unable providing such data. 
5 http://www.grimm-aerosol.com/company/grimm-aerosol/index.php, 9 Nov 2016 
6 Data provided by Prof. Dr. Konrad Kandler, 
http://www.geo.tu‑darmstadt.de/iag/personen/mitarbeiter_details_geo_4444.de.jsp 
7 Data provided by Dr. Ralf Weigel, https://www.blogs.uni-mainz.de/fb08-ipa/aerosol-und-wolkenphysik/ 
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4.2 “Global” Temperatures and Tree Rings.  

There are numerous efforts to retrieve past global atmospheric temperatures from proxy-data. One (out of many) 

method is using tree rings (Wilson et al., 2016) resulting in an atmospheric temperature time series. It is tempting 

to compare such time series with “observed” instrumental temperatures. Like observed instrumental temperature 

data, tree rings provide a very precise annual time dating. Tree ring observations could extend over a very long 5 

time scale and thus could look far into the past. 

“N-TREND” is an initiative by dendroclimatologists to improve large-scale reconstructions of temperatures8. To 

single out the temperature dependence of tree ring growth and lower the influence of available water on it, only 

series north of 40°N (and high altitude) have been selected. For the same reason, summer data only have been 

used (MJJA – May, June, July, and August). Trees grow on land only, what certainly limits a global approach. 10 

The existing time series extends from year 750 to present. It is certainly a keen step concluding from data at high 

altitude (where the selected trees are growing) to surface temperatures (sea level, where the comparison is 

made). 

As “observed” temperatures the “Met Office Hadley Centre” observations datasets HadCRUT4 time series has 

been selected. It has been screened for Northern hemisphere, land only, and JJA (June, July, and August), as this 15 

is the only selection available to us9. Errors are calculated from the upper and lower bounds of the 95% 

confidence intervals from the combined effects of all the uncertainty sources (i.e. the range within which the 

anomalies are very likely to occur according to the corresponding uncertainty model). These uncertainty sources 

are: station and grid-box sampling, bias uncertainties and coverage uncertainties. 

Both time series are deviations of temperature relative to 1961-1990. Both time series present the data with 95% 20 

confidence intervals. For both time series, the time range 1880 to 2010 has been used. That comparison is 

somehow limited. Figure 4 is showing the results. 

In looking at the time series, they seem to agree very nicely. The up and downs are following each other and 

both series show higher temperatures toward the 2020th. The correlation coefficient looks rather promising, if the 

difficulties in getting those time series are taken into account. However, in “non-visual” (SCORE), quantitative 25 

terms, the agreement is not very good. One of the reasons is certainly the “large” uncertainty (“error”) of the tree 

ring proxies. 

To a certain extent, the tree ring temperature data depend on observed instrumental data (on the HadCRUT4 

set?) set as well, as those data are used developing the temperature time series from tree rings. That means, the 

data sets are not independent from each other. 30 

5 Conclusion.  

An empirical equation has been proposed to calculate a SCORE, comparing two data or time series of observed 

or modelled variables including the errors. The proposed SCORE is a sensitive parameter. It permits a 

quantitative ranking of any comparison of two series as compared to visual (qualitative) comparison. The 

selected examples are from different fields. It remains for further applications to explore the full realm of 35 

                                                           
8 https://ntrenddendro.wordpress.com/, 20 March 2017. The data, including the errors, have been provided by 
Prof. Dr. Jan Esper, Institute of Geography, University of Mainz, https://www.blogs.uni-
mainz.de/fb09climatology/staff-and-students/jan-esper/ 
9  
http://www.metoffice.gov.uk/hadobs/crutem4/data/diagnostics/hemispheric/northern/CRUTEM.4.5.0.0.nh_JJA, 
1 May 2017 
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SCORE. One could easily expand the SCORE to two dimensional (maps) or even three dimensional 

comparisons. Two dimensional comparisons are presently often colour coded and the visual comparison thus 

depends on the colour sensitivity of the eye of the reader (what, if the reader carries colour blindness). A 

quantitative ranking would foster a better comparison. 
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s1|2, °C SCORE(°C;°C) 

0.01 0.9975 
0.03 0.9926 
0.10 0.9755 
0.30 0.9283 
1.00 0.7802 

Table 1: 𝑺𝑪𝑶𝑹𝑬(°𝐂;°C) for different s1|2.

 
time lag, 
days 

SCORE(°C;°C) Standard 
deviation, °C 

Correlation 
coefficient r2 

0 0.9283 0.0000 1.0000 
1 0.1604 0.3159 0.8811 
2 0.1175 0.2849 0.7815 
3 0.0945 0.2571 0.7242 
4 0.0972 0.2618 0.6893 
5 0.1020 0.2703 0.6645 
6 0.0869 0.2428 0.6688 
7 0.0715 0.2250 0.6413 
8 0.0908 0.2571 0.6083 
9 0.0993 0.2583 0.5874 

Table 2: Development of SCORE, its standard deviation, and 
correlation as function of time lag. 

 

                                                           
10 The algorithm has been written in MATLAB R2014a. The figures are printouts and might contain more 
information than needed in the actual case. 

Figure 1: One (almost) complete year of daily outside air temperature measurements (2 m above ground). For testing, 
both time series (x1|2) contain an identical data set (panel “Time series”) as function of DOY (only one colour is seen, 
because the series are identical. The error of reading temperatures has been assumed to be s1|2 = 0.3°C. The regression 
function (panel “Linear regression”) is shown. The squared correlation coefficient r2 = 1 (panel “Main Results”), as 
expected. In the lower right hand corner the Gaussian density (at any particular DOY of the time series) is showing 
the perfect overlap. The calculation of intersection of the Gaussian densities has been carried out in the range ±5ˑs1|2 
(“times of s” in “Setting Name”). The penalty factor is one (panel “Information” indicates ‘P-Fa’ = individual penalty 
factor – 0.92826. It has been scaled for better reading of the graph). This perfect agreement of both time series results 
in SCORE(°C;°C) = 0.9283.

10
 SCORE(°C;°C) = 1 is missed, because of the error of the temperature reading assumed. 
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Figure 2: Comparison of Grimm 1.107 and Grimm 1.109 monitors aerosol size distribution measurements. The errors 
have been calculated according to the number of counted particles. That number depends on aerosol flow and 
counting time. The counting time was set to 6 s. The resulting SCORE (cm-3; cm-3) = 0.5419 has a standard deviation of 
0.1405. The selected Normal Distribution Plot (lower right corner) shows the partial overlap of one selected pair of 
data. 

 

Figure 3: Condensation Nuclei Counters on the Russian research aircraft Geophysica at altitudes 11500 – 12000 m in 
the polar region between 68° and 76° N. The Condensation Nuclei Counters temperature was set to activate particles 
greater 10 nm. Only a few data pairs deviate from the main confidence limit of the regression line. 

 



10 
 

Figure 4: Time series of Northern hemisphere surface temperatures, HadCRUT4, for land only and JJA, N-TREND 
with limitations (northern hemisphere, extra tropical region, MJJA). Both series show the temperature deviations in 
K from 1961-90 and cover the time range 1880 to 2010. One year has been selected for comparison (Normal 
Distribution plots, lower right corner). It shows that the HadCRUT4 data have been published with rather small 
“errors”, while the N-TREND data exhibit broader uncertainties. The correlation r2 = 0.59271 looks not bad. The 
SCORE (K;K) = 0.0640939 (with a standard deviation of 3.4%) is rather small. The penalty factor (lower left corner) 
is getting smaller, as the years are progressing. 

 


