
Northwestern European
Regional Contest 2014

NWERC 2014

Linköping, November 30

Problems
A Around the Track
B Biking Duck
C Cent Savings
D Digi Comp II
E Euclidean TSP
F Finding Lines
G Gathering
H Hyacinth
I Indoorienteering
J Judging Troubles
K Knapsack Collection

Do not open before the contest has started.

This page is intentionally left (almost) blank.

Problem A
Around the Track

Time limit: 2 seconds

In order to compare race tracks, we wish to compute their lengths. A racetrack is strictly
two-dimensional (no elevation). It is described by two simple polygons, where one is completely
contained inside the other. The track is the region between these two polygons. We define
the length of the track as the absolute minimum distance that one needs to travel in order to
complete a lap. This could involve traveling on the very edge of the track and arbitrarily sharp
cornering (see Figure A.1).

Figure A.1: Illustration of sample input number 3 together with the shortest route around the
track (dashed).

Input
The input consists of:

• one line with one integer n (3 ≤ n ≤ 50), the number of vertices of the inner polygon;

• n lines, the ith of which contains two integers xi and yi (−5 000 ≤ xi, yi ≤ 5 000): the
coordinates of the ith vertex of the inner polygon;

• one line with one integer m (3 ≤ m ≤ 50), the number of vertices of the outer polygon;

• m lines, the ith of which contains two integers xi and yi (−5 000 ≤ xi, yi ≤ 5 000): the
coordinates of the ith vertex of the outer polygon.

For both polygons, the vertices are given in counterclockwise order. The borders of the two
polygons do not intersect or touch each other.

Output
Output one line with one floating point number: the length of the race track. Your answer should
have an absolute or relative error of at most 10−6.

NWERC 2014 Problem A: Around the Track 1

Sample Input 1 Sample Output 1

3
1 1
2 1
1 2
3
0 0
4 0
0 4

3.41421356237309

Sample Input 2 Sample Output 2

5
1 1
5 1
5 5
3 3
1 5
4
0 0
6 0
6 6
0 6

16

Sample Input 3 Sample Output 3

5
1 1
5 1
5 5
3 3
1 5
5
0 0
6 0
6 6
3 4
0 6

16.4721359549996

NWERC 2014 Problem A: Around the Track 2

Problem B
Biking Duck

Time limit: 2 seconds

Picture by D J Shin via Wikimedia Commons, cc by-sa

Gladstone Gander is walking through Duck-
burg and needs to get to his date with Daisy
Duck as soon as possible. If he doesn’t get
there in time, Donald might show up and take
his place instead.

Duckburg has recently started providing
a very eco-friendly way of public transport:
bikes. At many bike stations throughout the
city, one can pick up a free bike, ride it to
another bike station, and drop it there. This
gives Gladstone two ways of transportion: on
foot or by bike. Biking is faster, of course,
but he must pick up and leave the bikes at the
designated stations. Gladstone can walk or
bike between any two points in a straight line.

Gladstone possesses a map of the (rectangular) center of Duckburg. His current position is
on this map and so is the meeting point with Daisy. The map also contains the locations of all
bike stations within the boundaries of the map.

There can be way more bike stations though, that are not within the boundaries of the map.
Considering his luck, you can assume that the moment Gladstone walks (or bikes) off the map,
he encounters a bike station if that suits him well. The bike stations not on the map can be
located anywhere outside the map, they do not have to lie on integer coordinates.

That leaves Gladstone with the task of figuring out which route to take. Can you help him
out? Given the map and his infinite amount of luck, what is the fastest time to his date with
Daisy?

Input
The input consists of:

• one line with two integers vwalk and vbike (1 ≤ vwalk < vbike ≤ 1 000), the speeds of
walking and of biking;

• one line with four integers x1, y1, x2 and y2 (−106 ≤ x1 < x2 ≤ 106; −106 ≤ y1 < y2 ≤
106), the bounding coordinates of the map of the center of Duckburg;

• one line with two integers xG and yG, Gladstone’s position;

• one line with two integers xD and yD, Daisy’s position;

• one line with one integer n (0 ≤ n ≤ 1 000), the number of known bike stations;

• n lines with two integers xstation and ystation each, the coordinates of the known bike stations.

All coordinates are on the map of the center, i.e., x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2.

NWERC 2014 Problem B: Biking Duck 3

https://commons.wikimedia.org/wiki/File:Unknown_Chinese_Maker_Tin_Monkey_and_Duck_on_Bike_Ha_Ha!!.jpg

Output
Output one line with the shortest possible time for Gladstone to get to Daisy. Your answer
should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1

1 8
0 0 10 10
5 1
5 9
3
5 8
2 2
9 6

3.000000000

Sample Input 2 Sample Output 2

5 100
0 -100000 100000 0
5 -30000
40000 -5
0

501.9987496

NWERC 2014 Problem B: Biking Duck 4

Problem C
Cent Savings

Time limit: 5 seconds

Picture by Tijmen Stam via Wikimedia Commons, cc by-sa

To host a regional contest like NWERC a lot
of preparation is necessary: organizing rooms
and computers, making a good problem set,
inviting contestants, designing T-shirts, book-
ing hotel rooms and so on. I am responsible
for going shopping in the supermarket.

When I get to the cash register, I put all my
n items on the conveyor belt and wait until all
the other customers in the queue in front of me
are served. While waiting, I realize that this
supermarket recently started to round the total
price of a purchase to the nearest multiple of
10 cents (with 5 cents being rounded upwards).
For example, 94 cents are rounded to 90 cents,
while 95 are rounded to 100.

It is possible to divide my purchase into groups and to pay for the parts separately. I managed
to find d dividers to divide my purchase in up to d + 1 groups. I wonder where to place the
dividers to minimize the total cost of my purchase. As I am running out of time, I do not want to
rearrange items on the belt.

Input
The input consists of:

• one line with two integers n (1 ≤ n ≤ 2 000) and d (1 ≤ d ≤ 20), the number of items
and the number of available dividers;

• one line with n integers p1, . . . pn (1 ≤ pi ≤ 10 000 for 1 ≤ i ≤ n), the prices of the items
in cents. The prices are given in the same order as the items appear on the belt.

Output
Output the minimum amount of money needed to buy all the items, using up to d dividers.

Sample Input 1 Sample Output 1

5 1
13 21 55 60 42

190

Sample Input 2 Sample Output 2

5 2
1 1 1 1 1

0

NWERC 2014 Problem C: Cent Savings 5

https://commons.wikimedia.org/wiki/File:Customer_divider_bar.jpg

This page is intentionally left (almost) blank.

Problem D
Digi Comp II

Time limit: 7 seconds

Photo by oskay from Flickr, cc by-sa

The Digi Comp II is a machine where balls
enter from the top and find their way to the bot-
tom via a certain circuit defined by switches.
Whenever a ball falls on a switch it either goes
to the left or to the right depending on the state
of the switch and flips this state in the process.
Abstractly it can be modelled by a directed
graph with a vertex of outdegree 2 for each
switch and in addition a designated end vertex
of outdegree 0. One of the switch vertices is
the start vertex, it has indegree 0. Each switch
vertex has an internal state (L/R). A ball starts
at the start vertex and follows a path down to
the end vertex, where at each switch vertex it
will pick the left or right outgoing edge based
on the internal state of the switch vertex. The internal state of a vertex is flipped after a ball
passes through. A ball always goes down and therefore cannot get into a loop.

One can “program” this machine by specifying the graph structure, the initial states of each
switch vertex and the number of balls that enter. The result of the computation is the state of
the switches at the end of the computation. Interestingly one can program quite sophisticated
algorithms such as addition, multiplication, division and even the stable marriage problem.
However, it is not Turing complete.

Input
The input consists of:

• one line with two integers n (0 ≤ n ≤ 1018) and m (1 ≤ m ≤ 500 000), the number of
balls and the number of switches of the graph;

• m lines describing switches 1 to m in order. Each line consists of a single character c (‘L’
or ‘R’) and two integers L and R (0 ≤ L,R ≤ m), describing the initial state (c) of the
switch and the destination vertex of the left (L) and right (R) outgoing edges. L and R
can be equal.

Vertex number 0 is the end vertex and vertex 1 is the start vertex. There are no loops in the
graph, i.e., after going through a switch a ball can never return to it.

Output
Output one line with a string of length m consisting of the characters ‘L’ and ‘R’, describing the
final state of the switches (1 to m in order).

NWERC 2014 Problem D: Digi Comp II 7

https://www.flickr.com/photos/oskay/

Sample Input 1 Sample Output 1

5 3
L 2 3
R 0 3
L 0 0

RLL

NWERC 2014 Problem D: Digi Comp II 8

Problem E
Euclidean TSP

Time limit: 1 second

Photo by psiaki

The famous Arora-Mitchell approximation algorithm
for the Euclidean Travelling Salesman Problem (Eu-
clidean TSP) was discovered independently by Sanjeev
Arora and Joseph S. B. Mitchell in 1998. It can approx-
imate the value of an optimal TSP tour in d dimensions
within a factor of 1 + 1/c in running time

n(log n)O((c
√
d)d−1),

where n is the number of nodes in the tour.
Miroslava works for a computer security company and it is time to renew a shared crypto-

graphic key in many data centres across Europe. To do this, Miroslava is going to rent a private
jet and deliver the key to employees waiting at all major European airports. She wants to be
back as soon as possible.

Miroslava’s company has a computer that is able to execute p billions of operations per
second. Since we can approximate Europe by a two-dimensional plane, we assume that the
Arora-Mitchell algorithm runs for exactly

n(log2 n)
c
√
2

p · 109

seconds on this computer to produce the exact (1 + 1/c)-approximation of the optimal tour.
Miroslava noticed that c is a parameter of the algorithm that can be used to her advantage,

but one also needs to be very careful when choosing the right value. If she sets c too low, the
algorithm will finish very fast but the time she spends flying around Europe will be too long. On
the other hand, setting it too high will force her to wait for an answer from the computer, while
she could be flying instead.

Miroslava used to work in a different company and from there she knows that the optimal
tour of all major European airports is s meters long, but she wasn’t ranked high enough in the
company to know the actual tour. Given the speed v of the private jet in meters per second,
Miroslava needs s(1 + 1/c)/v seconds to complete the tour produced by the algorithm run with
parameter c. For the sake of simplicity, we assume that Miroslava can land, leave a copy of the
private key and take off from each airport in an instant.

How long does it take Miroslava to first run the algorithm and then distribute all the keys,
assuming that she chooses the optimal parameter c?

Input
The input consists of one line with four numbers:

• an integer n (4 ≤ n ≤ 1 000 000), the number of airports;

• a real number p (0.001 ≤ p ≤ 5 000), the number of billions of operations the computer
can execute per second;

• a real number s (106 ≤ s ≤ 109), the length of the optimal tour of all European airports in
meters;

NWERC 2014 Problem E: Euclidean TSP 9

https://www.flickr.com/photos/pmiaki/4435889383

• a real number v (50 ≤ v ≤ 900), the speed of the private jet in meters per second.

All real numbers will have at most 10 digits after the decimal point.

Output
Output one line with the shortest possible time t in seconds to distribute the keys and the value
of the parameter c Miroslava should use to achieve time t. Your answer should have an absolute
or relative error of at most 10−6.

Sample Input 1 Sample Output 1

10 8.9 40075000 272.1 157079.04857106 15.598261092309

Sample Input 2 Sample Output 2

47 4.2 1337102.4 256 5836.2936298227 8.9113418228146

NWERC 2014 Problem E: Euclidean TSP 10

Problem F
Finding Lines

Time limit: 4 seconds

Annabel and Richard like to invent new games and play against each other. One day Annabel
has a new game for Richard. In this game there is a game master and a player. The game master
draws n points on a piece of paper. The task for the player is to find a straight line, such that at
least p percent of the points lie exactly on that line. Richard and Annabel have very good tools
for measurement and drawing. Therefore they can check whether a point lies exactly on a line
or not. If the player can find such a line then the player wins. Otherwise the game master wins
the game.

There is just one problem. The game master can draw the points in a way such that it is not
possible at all to draw a suitable line. They need an independent mechanism to check whether
there even exists a line containing at least p percent of the points, i.e., dn · p/100e points. Now
it is up to you to help them and write a program to solve this task.

Input
The input consists of:

• one line with one integer n (1 ≤ n ≤ 105), the number of points the game master has
drawn;

• one line with one integer p (20 ≤ p ≤ 100), the percentage of points which need to lie on
the line;

• n lines each with two integers x and y (0 ≤ x, y ≤ 109), the coordinates of a point.

No two points will coincide.

Output
Output one line containing either “possible” if it is possible to find a suitable line or
“impossible” otherwise.

(0,0) (10,0)

(0,10) (10,10)

(3,3)

(a) Sample input 1: A line with (at
least) 3 of the points exists.

(0,0) (10,0)

(0,10) (10,10)

(3,4)

(b) Sample input 2: No line with
at least 3 points exists.

Figure F.1: Illustration of the sample inputs

NWERC 2014 Problem F: Finding Lines 11

Sample Input 1 Sample Output 1

5
55
0 0
10 10
10 0
0 10
3 3

possible

Sample Input 2 Sample Output 2

5
45
0 0
10 10
10 0
0 10
3 4

impossible

NWERC 2014 Problem F: Finding Lines 12

Problem G
Gathering

Time limit: 3 seconds

Picture by Radosław Drożdżewski via Wikimedia
Commons, cc by-sa

The citizens of Fictitia have had enough! The city keeps getting
bigger and bigger, and all the more boring. Fictitia consists of
horizontal and vertical streets only. The distance between each
pair of neighboring parallel streets is always the same; we take
this as the unit distance. Surely some variation could not hurt?

In order to draw more support and make their unhappiness
known to the municipality, a group of citizens has agreed to
gather at an intersection of the city to protest. The question is:
which intersection? Since there is not much difference between
them, the idea was raised to select an intersection (x∗, y∗) that
minimizes the total distance everyone has to travel. Since every-
one lives close to an intersection, the individual distance travelled
by someone who lives at (x, y) is given by |x− x∗|+ |y − y∗|.

However, this could present a problem for the people who
live far away, since they might have trouble getting there in time.
Therefore it was decided that the intersection should be at most a
certain distance d away from everyone. Given that restriction, can you help them identify an
intersection that minimizes the total distance everyone has to travel?

Input
The input consists of:

• one line with one integer n (2 ≤ n ≤ 100 000), the number of citizens;

• n lines each with two integers x and y (0 ≤ x, y ≤ 109), the coordinates of each citizen’s
house;

• one line with one integer d (0 ≤ d ≤ 2 · 109), the maximum distance that each citizen
should have to travel.

It is possible for multiple citizens to live at the same intersection.

Output
Output one line with a single integer: the smallest possible total distance that all citizens
need to travel. If there is no intersection that everyone lives within a distance d of, output
“impossible” instead.

NWERC 2014 Problem G: Gathering 13

https://en.wikipedia.org/wiki/File:Airport_Oslo_Gardermoen_-_Meeting_point.jpg

Sample Input 1 Sample Output 1

5
3 1
4 1
5 9
2 6
5 3
10

18

Sample Input 2 Sample Output 2

5
3 1
4 1
5 9
2 6
5 3
5

20

Sample Input 3 Sample Output 3

5
3 1
4 1
5 9
2 6
5 3
4

impossible

NWERC 2014 Problem G: Gathering 14

Problem H
Hyacinth

Time limit: 3 seconds

Photo by Wikimedia Commons user The_wub

As a new employee at the Northwestern Europe Rout-
ing Company (NWERC), you do a lot of thinking about
wireless network architectures. Lately you learned
about a multi-channel mesh network architecture (called
Hyacinth) that equips each mesh network node with
multiple network interface cards (NICs) to increase the
network throughput. You can choose a channel fre-
quency for each NIC. In order to communicate, for
every two network nodes that are in range of each other,
their NICs must share at least one common frequency.
The theoretical throughput is optimal when the total
number of used frequencies in the network is maximal.

Your bosses at NWERC want you to figure out a pro-
cedure for assigning frequencies to the NICs such that
the number of frequencies in use is maximized, subject
to the constraint that all pairs of adjacent nodes must be
able to communicate. A frequency is considered used
if any pair of nodes within range of each other share
that frequency. In the mesh network that you will be
dealing with, each node is equipped with exactly two NICs (i.e., each node can use at most two
frequencies). Since you are new at NWERC, your bosses further restrict the network layouts to
make your job easier: the network graph will form a tree.

Input
The input consists of:

• one line with one integer n (2 ≤ n ≤ 10 000), the number of nodes in the network;

• n− 1 lines, each with two space-separated integers i and j, with 1 ≤ i, j ≤ n signifying
that the (one-indexed) network nodes i and j are in range of each other.

Output
Output a frequency assignment for each of the 2n NICs such that all adjacent nodes can
communicate and the number of used frequencies is maximized. You should output n lines,
where the ith line contains the two frequencies of network node i. Valid frequencies are
nonnegative integers less than 109.

Sample Input 1 Sample Output 1

2
1 2

23 42
42 23

NWERC 2014 Problem H: Hyacinth 15

Sample Input 2 Sample Output 2

14
1 2
1 3
1 4
2 5
2 6
3 7
4 8
4 9
4 10
7 11
7 12
7 13
7 14

4711 815
666 4711
4711 42
815 7
47 666
666 54
23 42
7 2
7 1
7 3
23 4
42 5
23 6
42 8

NWERC 2014 Problem H: Hyacinth 16

Problem I
Indoorienteering

Time limit: 9 seconds

Fredrik and Tommy lost in the B building. Photo by Tommy
Olsson. cc-by-sa

Lukáš really likes orienteering, a sport that requires locating
control points in rough terrain. To entertain the NWERC
participants Lukáš wants to organize an orienteering race.
However, it would be too harsh for the participants to be
outdoors in this cold Swedish November weather, so he
decided to jump on the new trend of indoor races, and set
the race inside the B building of Linköping University.

Lukáš has already decided on the locations of the control
points. He has also decided on the exact length of the race,
so the only thing remaining is to decide in which order the
control points should be visited such that the length of the
total race is as he wishes. Because this is not always possible,
he asks you to write a program to help him.

Note from the organizer: the NWERC indoorienteering
race for this year has been cancelled since we neglected to
apply for an orienteering permit in time from the university
administration. (We still need you to solve the problem so
that we can organize it for next year.)

Input
The input consists of:

• one line with two integers n (2 ≤ n ≤ 14) and L (1 ≤ L ≤ 1015), the number of control
points and the desired length of the race, respectively;

• n lines with n integers each. The jth integer on the ith line, dij , denotes the distance
between control point i and j (1 ≤ dij ≤ L for i 6= j, and dii = 0). For all 1 ≤ i, j, k ≤ N
it is the case that dij = dji and dij ≤ dik + dkj .

Output
Output one line with “possible” if it is possible to visit all control points once in some order
and directly return to the first one such that the total distance is exactly L, and “impossible”
otherwise.

Sample Input 1 Sample Output 1

4 10
0 3 2 1
3 0 1 3
2 1 0 2
1 3 2 0

possible

NWERC 2014 Problem I: Indoorienteering 17

Sample Input 2 Sample Output 2

3 5
0 1 2
1 0 3
2 3 0

impossible

NWERC 2014 Problem I: Indoorienteering 18

Problem J
Judging Troubles

Time limit: 4 seconds

Kattis and DOMjudge

The NWERC organisers have decided that they want to
improve the automatic grading of the submissions for
the contest, so they now use two systems: DOMjudge
and Kattis. Each submission is judged by both systems
and the grading results are compared to make sure that
the systems agree. However, something went wrong
in setting up the connection between the systems, and
now the jury only knows all results of both systems, but
not which result belongs to which submission! You are
therefore asked to help them figure out how many results could have been consistent.

Input
The input consists of:

• one line with one integer n (1 ≤ n ≤ 105), the number of submissions;

• n lines, each with a result of the judging by DOMjudge, in arbitrary order;

• n lines, each with a result of the judging by Kattis, in arbitrary order.

Each result is a string of length between 5 and 15 characters (inclusive) consisting of lowercase
letters.

Output
Output one line with the maximum number of judging results that could have been the same for
both systems.

Sample Input 1 Sample Output 1

5
correct
wronganswer
correct
correct
timelimit
wronganswer
correct
timelimit
correct
timelimit

4

NWERC 2014 Problem J: Judging Troubles 19

https://open.kattis.com
http://domjudge.org

This page is intentionally left (almost) blank.

Problem K
Knapsack Collection
Time limit: 4 seconds

Picture by Bernhard J. Scheuvens via Wikimedia Commons.

Gerald’s job is to welcome the teams for this year’s
NWERC at the airport in Linköping. One of his duties
is to stand at the luggage carousel and collect all the
knapsacks that the teams are bringing. Gerald is a lazy
person, so he just stands at the same position of the
carousel and waits for bags to pass by so he can pick
them up.

The baggage carousel consists of s luggage slots,
numbered in ascending order from 0 to s − 1. Since
the baggage carousel is cyclic, luggage slots s− 1 and
0 also lie side by side. The carousel turns in such a
way that if Gerald stands in front of slot i at some point in time, he will stand in front of slot
(i+ 1) mod s one time unit later.

In the beginning Gerald prepares a huge baggage cart at some position and stands there to
wait for luggage. When a knapsack arrives in front of Gerald, he needs t time units to take it and
put it on the baggage cart. After these t time units he is ready to pick up another knapsack. As
long as there are remaining knapsacks on the luggage carousel, Gerald always takes the next
one to arrive at his position as soon as he is ready after putting away the previous one.

Now Gerald wonders about the effect of his choice of position on the time it will take him to
finish this task. It is up to you to help Gerald calculate the minimum, maximum, and average
time to pick up all knapsacks, taken over all s possible slots, which can appear in front of Gerald
after preparation. Time starts when he has prepared the baggage cart at some slot of the baggage
carousel and ends after he has put the last knapsack on the cart.

Input
The input consists of:

• one line with three integers n (1 ≤ n ≤ 2 000), s (1 ≤ s ≤ 107) and t (1 ≤ t ≤ 107),
where n is the number of knapsacks to pick up, s is the number of slots of the carousel,
and t is the number of time units Gerald needs to pick up a knapsack from the carousel
and put it on the cart;

• one line with n integers k1, . . . , kn (0 ≤ ki ≤ s − 1 for 1 ≤ i ≤ n), the slots of the
knapsacks.

There may be several knapsacks stacked on top of each other in the same slot, but Gerald can
still only pick up one knapsack at a time.

Output
Output three lines of output containing the minimum, maximum, and average time to pick up all
the luggage, over all s positions. The average time should be output as a reduced fraction in the
form p/q.

NWERC 2014 Problem K: Knapsack Collection 21

https://commons.wikimedia.org/wiki/File:Palermo-Airport-bjs2007-03.jpg

Sample Input 1 Sample Output 1

7 10 10000000
0 0 0 0 0 0 1

70000001
70000009
350000027/5

Sample Input 2 Sample Output 2

10 10 3
0 0 2 2 4 4 6 6 8 8

39
40
79/2

Sample Input 3 Sample Output 3

9 10000000 1
0 7 2 3 4 5 6 1 8

9
10000000
12500021249991/2500000

NWERC 2014 Problem K: Knapsack Collection 22

