Probing (Light) Dark Matter by Electromagnetic Interactions

T. Beranek

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Deutschland

EMG-Klausurtagung, Mainz, 21. + 22.10.2009
Energy Density of the Universe

The stuff our world is made of...

- Total energy density is critical: $\Omega_{\text{tot}} \lesssim 1$
- Data from CMB, SN1A, baryon genesis and structure formation
- Baryonic matter contributes only $< 5\%$
- 23% contributed by Dark Matter (DM)

$$\Omega_\Lambda \lesssim 72\%, \quad \Omega_{\text{DM}} \lesssim 23\%, \quad \Omega_B \lesssim 4.6\%, \quad \Omega_\gamma \lesssim 0.005\%, \quad 0.1\% \lesssim \Omega_\nu \lesssim 1.5\%$$

Dark Matter from two points of view

- DM is needed in the cosmological Standard Model (ΛCDM) to explain Ω_{tot}
- DM appears in particle physics automatically e.g. by attempts to understand the weak scale

Energy Density of the Universe

The stuff our world is made of...

- Total energy density is critical: $\Omega_{\text{tot}} \lesssim 1$
- Data from CMB, SN1A, baryon genesis and structure formation
- Baryonic matter contributes only $< 5\%$
- 23% contributed by Dark Matter (DM)

$$\Omega_\Lambda \lesssim 72\%, \quad \Omega_{\text{DM}} \lesssim 23\%, \quad \Omega_B \lesssim 4.6\%, \quad \Omega_\gamma \lesssim 0.005\%, \quad 0.1\% \lesssim \Omega_\nu \lesssim 1.5\%$$

Dark Matter from two points of view

- DM is needed in the cosmological Standard Model (ΛCDM) to explain Ω_{tot}
- DM appears in particle physics automatically e.g. by attempts to understand the weak scale

Properties of DM Particles

Basic properties and constraints

- Data for e.g. Big Bang Nucleosynthesis, structure formation and of CMB constrain the wide candidate zoo
- Although baryonic DM is possible (Cold gas, MACHOs), it cannot explain Ω_{DM} due to contradictions to primordial nucleosynthesis \Rightarrow Need for non-baryonic DM
- DM particles are nonbaryonic, massive, stable, neutral, only interacting by weak interaction and not included in the Standard Model \Rightarrow called WIMPs (Weakly Interacting Massive Particles)
- One has to distinguish between thermal and non-thermal non-baryonic DM relics
 - non-thermal relics created non thermally in e.g. phase transitions (Axions)
 - thermal relics created thermally in the early universe (like WIMPS)
- One must distinguish between hot, warm and cold DM in case of thermal DM
Dark Matter Candidates

<table>
<thead>
<tr>
<th>Selected DM candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axions</td>
</tr>
<tr>
<td>Introduced in an attempt to solve the strong CP problem (Peccei-Quinn-Weinberg-Wilczek theory); are produced non-thermally; calculation of relic density difficult due to the lack of knowledge of their production mechanism</td>
</tr>
<tr>
<td>Neutrinos</td>
</tr>
<tr>
<td>Although included in the Standard Model of particle physics ν’s were treated as DM candidates (hot DM). Contradictions with structure formation in the early universe and their small mass \Rightarrow cannot explain Ω_{DM}</td>
</tr>
<tr>
<td>WIMPs</td>
</tr>
<tr>
<td>= Supersymmetric candidates (cold DM). Arise from explanations of unsolved weak scale questions. Possible candidates:</td>
</tr>
<tr>
<td>- Lightest Supersymmetric Particle (LSP) = Neutralino</td>
</tr>
<tr>
<td>- Gravitino</td>
</tr>
<tr>
<td>- Axino</td>
</tr>
<tr>
<td>- Dark sector hidden gauge bosons, e.g. extra $U(1)$ gauge symmetry (Fayet 1980)</td>
</tr>
<tr>
<td>and many other (proposed) particles like sterile neutrinos or light, scalar DM.</td>
</tr>
</tbody>
</table>
The 511 keV Anomaly

Excess of 511 keV photons

- Excess of 511 keV photons from galactic center caused by e^+ annihilations is known for 30 years
- Due to unprecise data a determination of positron sources was not possible
- INTEGRAL data are more precise
- Majority of radiation is emitted from galactic bulge
- Arising question: Can the source of these positrons now be determined?

"Usual" explanations of 511 keV anomaly

- Possible sources of the positrons e.g. are radioactive nuclei from supernovae, gamma-ray bursts, pulsars, black holes or cosmic ray
- Problem: predictions for possible astrophysical source candidates do not reconcile the data
- Other approaches are needed

The LDM Model

Light Dark Matter as possible explanation

- "Exotic" approaches to explain the 511 keV line are motivated by the INTEGRAL data like low-mass X-ray binaries, decaying axinos, dark energy stars or even Light Dark Matter (LDM) (Boehm, Fayet 2004)
- Decay $\text{LDM} \rightarrow e^+e^-$ can explain INTEGRAL observations, as long as DM particles are light, i.e. with mass smaller than 100 MeV
- INTEGRAL data give constraints to LDM ($M_\chi \leq 3 - 20$ MeV) and allow a precise determination of the annihilation cross section
- Model is "easiest exotic" explanation of 511 keV line

LDM particles

- LDM consists of light ($m_\chi \leq 1 - 10$ MeV), neutral, scalar particles χ
- Interaction between LDM and Standard Model matter like electrons is mediated by a light (2 MeV $\lesssim m_U \lesssim 100$ MeV), neutral vector boson U, which major decay channel is $\chi\chi^*$ or a heavy fermion F^\pm with mass $M_F >$ several 100 GeV also necessary

The LDM Model

LDM processes

\[\chi^* \rightarrow e^+ \]
\[\chi \rightarrow e^- \]

Exchange of heavy fermion \(F^\pm \)
But: **Negligible** since an s-wave suppressed annihilation cross-section is needed (Boehm et al. 2004)

\[\chi^* \rightarrow C \chi \rightarrow f_e \]
\[\chi \rightarrow U \rightarrow e^+ \rightarrow e^- \]

Exchange of light vector boson \(U \)

⇒ In our computations only \(U \) boson exchange will be taken into account

Probing Light Dark Matter in the lab?

Experimental ideas for LDM search

- Heinemeyer 2007: propose experiment to search for Light Dark Matter with "ordinary" accelerators for electron-proton scattering:
 - Collide electron beam with proton target, i.e. electron-proton scattering at very low energies \(\sim 40 \text{ MeV} \ll m_\pi \)
 - Observables: electron energy, electron scattering angle, proton scattering angle
 - LDM effects shall appear in a particular kinematical region in which elastic scattering signal and QED radiation signals are not too strong
 - Particular experimental properties will allow identification of LDM particles

- Estimates are done by Heinemeyer et al. for phase space distribution and particular cross section

The process $ep \rightarrow epU$

Basic Properties

- **Background process** of elastic electron proton scattering
- Indeed the process $e\,p \rightarrow e\,p \,U^* \rightarrow e\,p\,\chi\,\chi^*$ occurs, but **LDM particles will not be detected**.
- Feasibility studies for possible measurement at facilities like **MAMI@Mainz** shall investigate this.
- Can be treated analogously to well known **Bethe-Heitler process** ⇒ good comparability.
- But: Elastic ep scattering and Bethe-Heitler provide a huge background from which the signal must be separated ⇒ Background and LDM signal must be understood precisely (→ existing studies of Vanderhaeghen et al. concerning background).
- In this work: Coupling $U \leftrightarrow e^+\,e^-$ purely vectorial, i.e. vertex factor is $f_e\,\gamma^\mu$.

The process $e^- p \rightarrow e^- pU$

Feynman Diagrams and Amplitudes

\[M_i = \frac{-i e^2 f e \varepsilon^*_\alpha (p_3)}{k^2 \cdot (q_i^2 - m^2)} \bar{u}_p(p_2) \Gamma^\mu u_p(p_b) \bar{u}_e(p_1) \gamma_\mu i(q_i + m) \gamma^\alpha u_e(p_a) \]

\[M_f = \frac{-i e^2 f e \varepsilon^*_\alpha (p_3)}{k^2 \cdot (q_f^2 - m^2)} \bar{u}_p(p_2) \Gamma^\mu u_p(p_b) \bar{u}_e(p_1) \gamma_\alpha i(q_f + m) \gamma^\mu u_e(p_a) \]

with \[k = p_2 - p_b, \quad q_i = p_a - p_3, \quad q_f = p_1 + p_3, \quad \sum_{\alpha} \varepsilon^*_\alpha (p_3) \varepsilon_\beta (p_3) = -g_{\alpha \beta} + \frac{p_3^\alpha p_3^\beta}{m_U^2} \]
Cross Section Computation

Kinematical relations and cross section (in lab frame)

- \vec{p}_3 can be eliminated by $\delta^{(3)}$ function
- Outgoing proton 3-momentum norm $|\vec{p}_2|^2$ will not be detected \Rightarrow eliminated by remaining δ function component
- Infinitesimal momentum volume $d^3\vec{p}$ written in spherical polar coordinates
 $$d^3\vec{p} = |\vec{p}|^2 d|\vec{p}| d\phi d\cos \theta$$

Mandelstam variables: $s = (q + p_b)^2$, $t = (q - p_2)^2$, $u = (p_b - p_2)^2$, $q = p_a - p_1$

$$\frac{d\sigma}{d|\vec{p}_1|^2 d\Omega_1 d|\vec{p}_2|^2 d\Omega_2} = \frac{1}{(2\pi)^5 32M} \frac{|\vec{p}_1|^2}{|\vec{p}_a|^2} \frac{|\vec{p}_2|^2}{\sqrt{|\vec{p}_2|^2 + M^2}} |\mathcal{M}|^2 \cdot$$

$$\delta \left(\nu^L + M - \sqrt{|\vec{p}_2|^2 + M^2} - \sqrt{|\vec{q} - \vec{p}_2|^2 + m_U^2} \right)$$

$$\sqrt{|\vec{q} - \vec{p}_2|^2 + m_U^2}$$

Tobias Beranek

Probing (Light) Dark Matter by Electromagnetic Interactions
Coupling Constants

Derivation of the numerical coupling constant value

The coupling strength is connected to the thermal averaged dark matter freeze-out cross section \(\Omega_{DM} \approx 0.23 \cdot 3 \times 10^{-26} \text{cm}^3\text{s}^{-1} \) and can be constrained by e.g. contributions to \((g - 2)\) for electrons and muons:

\[
\Rightarrow |C_{\chi f_e}| \approx 10^{-6} \frac{m_U^2 - 4m_\chi^2}{m_\chi (1.8 \text{ MeV})} \sqrt{B_{\text{ann}}^{ee}}
\]

Coupling constant \(f_e \) plotted as function of \(m_U \) and \(m_\chi \) for \(B_{\text{ann}}^{ee} = 1 \) and \(c_\chi = 1 \) (left) and \(c_\chi = 10^{-2} \) (right)

Cross section

4 times Differential Cross Section

\[
\frac{d^4 \sigma}{d |\vec{p}_1|_L \, d \cos \theta_1 \, d \phi \, d \cos \theta_2} = \frac{1}{(2\pi)^4} \frac{|\vec{p}_1|_L}{32M} \frac{|\vec{p}_2|_L^2}{|\vec{p}_2|_L^2 + M^2} \cdot \frac{d \cos \theta_2}{d \cos \theta_2} \cdot \frac{1}{f'(|\vec{p}_2|_L)} \frac{|\mathcal{M}|^2}{\sqrt{q - |\vec{p}_2|_L^2 + m_U^2}}
\]

First Results

- Cross checks by $m_U \to 0$: Confirmed Bethe-Heitler computations by Vanderhaeghen et al. and these computations agree!
- Numerical integration over proton angle of $d \sigma^5 / d |\vec{p}_1|_L \, d \Omega_1^L \, d \Omega_2^cm$ leads to 3-times differential cross section
- Shown plot: beam energy $E_a^L = 40$ MeV, electron scattering angle $\theta_1^L = 90^\circ$

\Rightarrow Confirms cross section estimates by Heinemeyer et al.
Cross section

- Beam energy $E_{a}^{L} = 40$ MeV, outgoing electron energy $E_{1}^{L} = 1$ MeV and $E_{1}^{L} = 10$ MeV, respectively, electron scattering angle $\theta_{1}^{L} = 90^\circ$, out-of-plane angle $\phi = 0^\circ$

- LDM signal about 10^{-9} times weaker than Bethe-Heitler signal in

\[\frac{d^5\sigma}{dE_1^L d\Omega_1^L d\Omega_2^{cm}} \]

plots for chosen kinematics and coupling ($C_\chi = 1$, $B_{\text{ann}}^{ee} = 1$)
Cross section

- Ratio of LDM signal and Bethe-Heitler process on level of $\frac{d^5\sigma}{dE_1^L d\Omega_1^L d\Omega_2^{cm}}$
- Beam energy $E_a^L = 40$ MeV electron scattering angle $\theta_1^L = 90^\circ$, out-of-plane angle $\phi = 0^\circ$, proton scattering angle $\theta_2^{cm} = 90^\circ$, $B_{ann}^{ee} = 1$, $m_U = 10$ MeV, $m_\chi = 2$ MeV
Conclusions and Outlook

Conclusions

- 511 keV anomaly can not satisfactorily be explained by ordinary approaches
- LDM can explain observed phenomena
- Computations support idea to detect LDM effect as background of elastic electron proton scattering

Outlook

- Simulations for a wide parameter space will be done
- Present LDM model is not the only promising idea to probe Dark Matter by electromagnetic interactions, other models can be taken into account
- Precise background study must be performed
- Experiment at MESA
Backup Slides
MESA Project

- Possible Experiment at "Mainz Energy recovering Superconducting Accelerator" (MESA)
- In mode for LDM experiments: 10 mA current at 104 MeV beam energy
- Target: pseudo internal windowless H gas target
- Windowless gas target to minimize unphysical background
- First estimates: Statistics of LDM events is high enough if the physical background can be clearly separated