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Introduction

The A4 collaboration carries out a program of measurements of the beam trans-
verse spin asymmetry in the electron-nucleon scattering. A beam of electrons is
polarized transversely to the direction of the beam. The electrons are scattered
off a nucleon target and counted by a Cherenkov-detector. The asymmetry is cal-
culated from the count rates for both opposite polarization states. The transverse
spin asymmetry allows the access to the imaginary part of the two photon exchange
amplitude of the electromagnetic elastic scattering process. The A4 collaboration
has already measured and published the transverse spin asymmetries at two dif-
ferent momentum transfers Q2 = 0.106 (GeV/c)2 and Q2 = 0.230 (GeV/c)2 at
forward scattering angles 30◦ < θe < 40◦ using liquid hydrogen as target [1]. The
two photon exchange amplitude is of special interest because it might explain the
discrepancies observed between different methods of determination of the electro-
magnetic nucleon form factors. The measurements show that excited intermediate
hadronic states contribute substantially to the asymmetry.

Recently the detector has been rearranged to operate at backward scattering
angles, 140◦ < θe < 150◦. Measurements of the transverse spin asymmetry have
been performed for the momentum transfer Q2 = 0.230 (GeV/c)2 on both liquid
hydrogen ℓH2 and liquid deuterium ℓD2 targets. The focus of this works lies on the
deuterium data. The measured observable is the asymmetry in the cross section
of the quasielastic scattering of transversely polarized electrons off unpolarized
deuterium. The deuterium is the natural target to access information about the
structure of the neutron since in the quasielastic scattering both nucleons behave
as quasifree particles. Nevertheless the nuclear binding of both nucleons still repre-
sents a problem both in the theory framework and in the experimental realization.
In the theory the problems arise from the nuclear model dependencies to extract
information about the neutron from the deuterium data. From the experimen-
tal point of view the Fermi motion of the nucleons inside the deuteron make the
quasielastic peak in the energy spectrum broader than the elastic electron-proton
scattering peak. This makes the separation of the quasielastic peak from the ex-
perimentally observed spectra more complicated.

The second chapter gives an overview of the discussions about the two pho-
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ton exchange and about the model calculation that provides results for both the
transverse spin asymmetry on proton and neutron. Then in the third chapter we
say some words about the different nuclear models of the deuteron used to explain
the scattering process. Actually the nuclear model calculation have been applied
to the parity violating asymmetry but not yet to the transverse spin asymmetry
related to the two photon exchange.

The fourth chapter presents an overview of the experimental set up of the
A4 collaboration and of the MAMI accelerator facility. We focus on the aspects
relevant to the measurement of the asymmetry and on the characteristics of the
A4 detector at backward angles.

The fifth chapter presents the data measured with the PbF2 calorimeter for
the deuterium and compares them with the data corresponding to the hydrogen
measurements. The procedure to extract the quasielastic events from the experi-
mentally observed energy spectra of all recorded events is discussed.

The sixth chapter is devoted to the extraction of the asymmetry from the data.
The main topics of the data analysis are:

• The procedure to optimize the determination of the asymmetry from the
experimentally observed energy spectra. This optimization is necessary be-
cause the quasielastic events are mixed with neutral background processes
that are not completely separated by the detector and present a different
physical asymmetry. The procedure makes use of Monte Carlo simulations
that were performed for the actual experimental set up.

• The correction of the instrumental asymmetries arising from helicity corre-
lated beam fluctuations by means of a multilinear regression method.

In the seventh chapter we present the results for the asymmetry in the signal,
applying the methods introduced in the chapter six, and we apply them also to
extract the asymmetry in the background. Finally in the chapter eighth the multi-
linear regression method is applied to obtain the transverse spin asymmetry in the
Møller scattering from the asymmetry in the luminosity monitors. The work leads
finally to a conclusion on the model used to extract the asymmetry from the data,
separating the background, and about the dominant contributions to the system-
atic error of the asymmetry. We mention also the results of the existing theoretical
calculations of the asymmetry in the deuterium data and make an outlook of the
future work of both the experiment and the theory in this field of research.



Chapter 1

The two photon exchange and the
elastic electron-nucleon scattering

The Quantum Chromodynamics QCD is the accepted theory at the present
to explain the strong interaction. The QCD succeeds in making predictions at
high energies where the running coupling constant of the strong interaction is
small and perturbation methods can be applied. At medium energies, however,
the running coupling constant becomes large and using models about nucleon
structure becomes necessary.

This is the theoretical framework where scattering experiments to measure the
nucleons form factors make sense to access information about their structure.

The electron scattering is used as a useful tool to investigate the nucleon struc-
ture because one side of the interaction, the leptonic current, can be described re-
liably by QED. Moreover, the Born approximation that uses only the leading term
in the perturbation theory, that is, the exchange of one virtual photon, has been
enough so far to describe reliably the interaction. The elastic electron-nucleons
scattering is used thus to get information about the nucleon form factors.

1.1 The electromagnetic scattering: The Born

approximation (one photon exchange)

The elastic scattering is treated through the Born approximation (or one pho-
ton exchange), that is, the leading term in perturbation theory. The leptonic
current of the interaction can be expressed according to QED as:

jµ = −ieu(k′)γµu(k) (1.1)

where u(k) is the Dirac-spinor corresponding to the incoming electron with mo-
mentum k. The u(k′) is the Dirac-spinor associated with the outgoing electron
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10 1. The two photon exchange and the elastic electron-nucleon scattering

k k’

q

p’p

Figure 1.1. The one photon exchange diagram of the elastic electron-nucleon scatter-
ing.

of momentum k′. The γµ is the Dirac matrix. The interaction of the nucleon is
unknown but the nucleon current can be written by imposing without loss of gen-
erality some basic principles: Lorentz invariance, current conservation and parity
conservation. The most general form of the nucleon current is then [2]:

Jµ = ieu(p′)Γµu(p) (1.2)

where u(p) is the Dirac-spinor of the incoming nucleon of momentum p, u(p′) is
the Dirac-spinor of the outgoing nucleon of momentum p′ and the matrix Γµ is
given by:

Γµ = F1(q
2)γµ +

1

2M
F2(q

2)iσµνqν = (1.3)

= GM(q2)γµ +
1

2M
F2(q

2)(p+ p′)µ (1.4)

F1(q
2) and F2(q

2) are functions only of the squared four-momentum transfer q2.
They are known as the electromagnetic elastic nucleon form factors (or Pauli and
Dirac form factors, respectively). GM is a linear combination of the Pauli form
factors. GE can be defined also as a linear combination of the Pauli form factors.
Both are known as magnetic and electric Sachs form factors, respectively.
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GE = F1 − τF2 (1.5)

GM = F1 + F2 (1.6)

The electric and magnetic Sachs form factors GE and GM are closely related to
the nucleon charge distribution and the nucleon current distribution, respectively.
In the Breit reference frame, defined by the condition ~p′ = −~p, the Sachs form
factors can be expressed formally as the Fourier transform of the nucleon charge
density and the nucleon current density.

The invariant amplitude is written in terms of the leptonic current, the nucleon
current and the virtual photon propagator (∼ 1/q2).

T = jµ
1

q2
Jµ (1.7)

In order to calculate the cross section the invariant amplitude must be squared

|T |2 =
e2

q4
ηµνW

µν (1.8)

where ηµν and W µν are the second rank Lorentz leptonic tensor and the hadronic
tensor respectively.

Finally, applying current conservation and taking into account the density of
final states and the initial flux we arrive to the Rosenbluth differential cross section
for the elastic scattering of unpolarized electrons off nucleons.

( dσ

dΩ

)

=
α2

4E2 sin4(θe/2)

E ′

E
cos2 θe

2

{

(

GE

)2
+ τ

(

GM

)2

1 + τ
+ 2τ

(

GM

)2
tan2 θe

2

}

(1.9)

where
τ = −q2/4M2 is the reduced transferred momentum.
E ′ = E

1+2E/M sin2(θe/2)
is the elastic scattered electron energy.

θe is the polar scattering angle.
α = 1/137.03599911(46) is the fine structure constant.

The elastic scattering in the Born approximation occurs through exchange of
a spacelike virtual photon (q2 < 0) 1 therefore it is usual to work with the variable
Q2 = −q2.

1The squared four-momentum transfer is spacelike because in the elastic scattering we can
always think of a reference frame, the center of mass frame, where there is no energy transference,
that is ω = 0 so q2 = ω2 − |~q|2 = −|~q|2 < 0. Where ω = E − E′. In the laboratory frame ω > 0.



12 1. The two photon exchange and the elastic electron-nucleon scattering

Figure 1.2. Here is shown the discrepancy in the measurement of the ratio GE/GM

between the Rosenbluth method (blue circles) and the Polarization technique (red tri-
angles). It can be seen that the discrepancy becomes larger for higher transferred mo-
mentum. Figure taken from [3]

The square four-momentum transfer can be expressed in terms of the kinematic
variables as:

Q2 = 4EE ′ sin2
θe

2
(1.10)

where the electron mass me has been neglected since we are dealing with ultrarel-
ativistic electrons.

Determination of form factors

There are two methods to measure the elastic nucleon form factors:

• The Rosenbluth separation technique

• and the Polarization transfer technique

Both methods are based on the Born approximation.
In the Rosenbluth separation technique one uses an unpolarized beam of elec-

trons and an unpolarized target. The cross section for the elastic electron-nucleon
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scattering is measured for different kinematic conditions (E,θ) such that Q2 is kept
fixed [5].

dσ

dΩ
∝ G2

M +
ǫ

τ
G2

E (1.11)

where

ǫ =
1

1 + 2(1 + τ) tan2( θe

2
)

(1.12)

and τ is the reduced momentum transfer.
The polarization transfer technique uses a polarized electron beam. The beam

polarization is transferred to the recoiling nucleon. In the Born approximation the
proton polarization along the direction of the momentum transfer Pl is proportional
toG2

M and the proton polarization in the direction perpendicular to the momentum
transfer Pt is proportional to GMGE . Then one measures the ratio of polarization
and therefore one obtains the ratio GE/GM [5].

Pt

Pl
= −

√

2ǫ

τ(1 + ǫ)

GE

GM
(1.13)

Limits of Born approximation

A discrepancy arises between the measurements done using the Rosenbluth
separation and the Polarization transfer technique.

The results of the Rosenbluth separation measurement of the form factors
are consistent with R = µpGE/GM ≈ 1 in a Q2 range < 6 (GeV/c)2 [1]. The
measurement of the ratio R made using the Polarization technique, that is by
measuring the ratio of the transverse to longitudinal polarization of the recoil
proton can be represented by R ≈ 1 − 0.135(Q2 − 0.24) where Q2 is in units of
(GeV/c)2 [1]. The results of the measurement can be seen in the figure 1.2. It
can be clearly seen the discrepancy becomes greater for increasing values of the
four-momentum transfer Q2.

1.2 Two photon exchange

It has been suggested that the discrepancy between both methods can be ex-
plained when taking into account the two photon exchange [6].

The radiative corrections to the elastic electron-nucleon scattering of order α
with respect to the Born approximation are used in the analysis of scattering
experimental data. But this radiative corrections do not include the exchange of a
pair of hard virtual photons (whose momentum transfer is large) because the two
photon exchange (TPE) involves unknown hadronic intermediate states.
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The investigation of the two photon exchange contribution is motivated by
the recent knowledge of the hadronic structure and the discrepancy in the mea-
surements of the nucleon form factors. This investigation allows to solve the dis-
crepancy and also permits the access to information about the nucleon structure
beyond that provided by the nucleon form factors.

The two photon exchange contribution can be parametrized through six com-
plex structure functions [6] that appear in the scattering amplitude T . The scat-
tering amplitude can be splitted in two parts: one that contains terms that do not
flip the helicity Tnon−flip and another one that contains terms that flip the helicity
Tflip.

Tnon−flip =
e2

Q2
ū(k′)γµu(k) · ū(p′)

(

G̃Mγµ − F̃2
P µ

M
+ F̃3

γKP µ

M2

)

u(p) (1.14)

Tflip =
e2

Q2

me

M

[

ū(k′u(k) · ū(p′)
(

F̃4 + F̃5
γK

M

)

u(p) + F̃6ū(p
′)γ5u(p) · ū(p′)γ5u(p)

]

(1.15)
where P = p+p′

2
being p(p′) the nucleon initial(final) momentum, and K = k+k′

2

where k(k′) is the electron initial(final) momentum, me is the electron mass, M
is the mass of the nucleon, G̃M , F̃2, F̃3, F̃4, F̃5, F̃6 are complex functions of the
kinematic invariant variables ν, Q2. In the Born approximation they reduce to

G̃Born
E (ν, Q2) = GE(Q2) (1.16)

F̃Born
2 (ν, Q2) = F2(Q

2) (1.17)

F̃Born
i (ν, Q2) = 0 i = 3, 4, 5, 6 (1.18)

1.2.1 Cross section of the elastic e− p scattering

The cross section of the elastic e−p scattering can be described with the Born
approximation and adding the radiative corrections and the two photon exchange,
both of order α with respect to the Born approximation.

dσ = dσ0(1 + δ) (1.19)

where dσ0 is the cross section in the Born approximation and δ includes the ra-
diative corrections and the two photon exchange contribution. The amplitude M1

of the one-loop corrections of order α relative to the Born approximation includes
a term proportional to the Born amplitude f(Q2, ǫ)M0 that includes the radiative



1.2. Two photon exchange 15
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Figure 1.3. The two photon exchange diagram. The electron interacts through two
virtual photons with the nucleon. The bubble X in the middle represents any excited
intermediate state of the nucleon that is compatible with the kinematic conditions.

corrections independent of the hadronic structure and a term M̄1 that includes the
two photon exchange amplitude dependent on the hadronic structure [7]. That is:

M1 = f(Q2, ǫ)M0 + M̄1 (1.20)

The two photon exchange contribution appears through the interference of the
term proportional to the Born amplitude M0 and the amplitude that accounts for
the two photon exchange M̄1 [7].

δ = f(Q2, ǫ) +
2Re(M0M̄1)

|M0|2
(1.21)

The two photon exchange contribution arises in the cross section through the
real part of the structure function F̃3 [1].

dσ

dΩ
= σ0

{

|G̃M |2 +
ǫ

τ
|G̃E|2 (1.22)

+ 2ǫ

√

τ(1 + τ)
1 + ǫ

1 − ǫ

(1

τ
|G̃E| + G̃M |

)

Re
(

F̃3(s,Q
2)

)

}

+O(α2) (1.23)

The difficulties to investigate the two photon exchange contribution through
the cross section measurement are:

1. Theoretical difficulties: To calculate the real part of the structure function
Re{F̃3} one should use the one-loop diagram where all particles are off-shell.
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Therefore we need the knowledge of the off-shell form factors of the nucleon
in the intermediate state and the amplitudes for all the intermediate states
and their off-shell transition form factors [1].

2. Experimental difficulties: The two photon exchange contribution is sup-
pressed by a factor α with respect to the one photon exchange cross section.

Another observable, the normal spin asymmetry, that is proportional to the
imaginary part of the two photon exchange provides another way to access the 2γ
contribution.

1.2.2 Normal spin asymmetry

With transverse spin polarization there are two observables that allow the
access to the imaginary part of the two photon exchange amplitudes [8]:

1. Target normal spin asymmetry. The beam is unpolarized and it is
scattered by a polarized target transversely to the beam direction.

2. Beam normal spin asymmetry. The beam is transversely polarized and
the target is unpolarized.

The A4 collaboration experiment works with a polarized electron beam. So we
treat in detail the beam normal spin asymmetry.

Beam normal spin asymmetry definition If we consider a beam of trans-
versely polarized electrons, that is electrons whose spin direction is perpendicular
to their momentum, the cross section of the elastic scattering off unpolarized nucle-
ons presents an asymmetry for opposite spin states. This asymmetry is originated
only by the electromagnetic interaction. The theory predicts a zero normal spin
asymmetry if we consider only the one photon exchange approximation, due to
the time reversal invariance [8]. The beam normal spin asymmetry is originated at
leading order by the two photon exchange amplitude. The normal spin asymmetry
is defined as:

Am
⊥ =

σ+ − σ−

σ+ + σ− (1.24)

where σ+(σ−) denote the cross section of the elastic electron-nucleon scattering
for an unpolarized nucleon and a electron spin parallel (antiparallel) to the normal

polarization vector ~P shown in the picture below.
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The normal spin asymmetry has a maximum if the spin direction ~P is perpen-
dicular to the scattering plane and it cancels when the spin is contained in the
scattering plane. The normal vector to the scattering plane is defined by:

~S⊥ =
~k × ~k′

|~k × ~k′|
(1.25)

If the angle between the spin direction and the normal to the scattering plane is
φ the normal spin asymmetry is given by

Am
⊥ = A⊥ ~P · ~S⊥ = A⊥ cosφ (1.26)

�
�
�
�

~k

~k′

θe

φ-π
2

~S⊥ =
~k×~k′

|~k×~k′|

~P

φ

The momentum of the incident electron ~k and the momentum of the scattered
electron ~k′ define the scattering plane represented in the picture above in blue.
θe is the scattering angle and φ is the azimuthal angle. The plane of the spin is
defined by the spin direction ~P and the momentum of the incident electron. The
normal vector to the scattering plane ~S⊥is represented by a red arrow.

Order of magnitude As it vanishes for one photon exchange it is of order
α. Moreover as the electromagnetic interaction is of vector type the helicity is
conserved for ultrarelativistic electrons. Therefore a transversely polarized electron
interaction suffers a suppression of orderme/E. The beam normal spin asymmetry
is thus of order ∼ α ·me/E ∼ 10−2 · 10−3 = 10−5

T-odd observable Details of the following discussion can be found in [8] or
in [9] . It turns out that this asymmetry depends on the absorptive part of two
photon exchange amplitude, that is AbsT2γ . From unitarity of scattering matrix
it is proved:

i(Tfi − T †
fi) =

∑

Γ

T †
fΓTΓi (1.27)
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That means that to calculate asymmetry all intermediate hadronic states must
be taken into account. To arrive to the asymmetry expression in terms of two
photon exchange amplitude time reversal invariance is applied. Approximating to
the leading order term in α:

A⊥ =
Im(T ∗

1γAbsT2γ)

|T1γ |2
(1.28)

The two photon exchange amplitude is necessary since the scattering amplitude
is real at Born approximation.

Note that the asymmetry depends on the imaginary part of the interference
term. That is the reason why the asymmetry depends on the imaginary part of
the structure functions.

Dependence on the structure functions. The asymmetry A⊥ is given by the
imaginary part of the interference term between the one photon exchange ampli-
tude and the absorptive part of the two photon exchange amplitude. Therefore
the asymmetry depends on the imaginary part of the structure functions F̃3, F̃4,
F̃5 [10].

A⊥ =
2me

Q

√

2ǫ(1 − ǫ)

√

1 +
1

τ

(

G2
M +

ǫ

τ

)−1

{

− τGMIm

(

F̃3 +
1

1 + τ

ν

M2
F̃5

)

−GEIm

(

F̃4 +
1

1 + τ

ν

M2
F̃5

)

}

+ O(α2)

(1.29)

Relation to the cross section The imaginary part of the structure functions
Im{F̃3}, Im{F̃4}, Im{F̃5} can be extracted if we measure the asymmetry A⊥.
The knowledge of Im{F̃3} may help to calculate the real part of this structure
function Re{F̃3} by applying dispersion relations [1].

Model calculation

There is a model calculation [10] of the absorptive part of the two photon
exchange amplitude through the absorptive part of the doubly virtual Compton
scattering tensor on the nucleon. That is the tensor that describes the interaction
of nucleon with the virtual photons (the electron electromagnetic field). But since
the nucleon is a composite state we must carry out a sum over the amplitudes of
all possible intermediate excited states.
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AbsT2γ = e4
∫

d3 ~k1

(2π)32Ek1

ū(k′, h′)γµ(γ · k1 +me)γνu(k, h)
1

Q2
1Q

2
2

W µν(p′, λ′; p, λ)

(1.30)
Where the integral is carried out over all momenta of the intermediate electron.

The first factor is the Lorentz invariant phase space volume of integration. The
following factors are the Dirac spinors for incoming and outgoing electron and
the free propagator for intermediate electron with momentum k1. The factor

1
Q2

1
Q2

2

relates to the virtual photon propagators. It plays an important role since

any pole in virtualities correspond to a leading contribution of some intermediate
states. This is especially relevant at backward angles.

And the absorptive part of the doubly virtual Compton scattering tensor with
two space-like photons:

W µν(p′, λ′; p, λ) =
∑

X

(2π)4δ4(p+ q1 − pX) < p′, λ′|J†µ(0)|X >< Xλ|Jν(0)|p, λ >

(1.31)
The sum is over all intermediate on-shell hadronic states.
From the expression for AbsT2γ eq. 1.30 and using eq. 1.28 the asymmetry can

be expressed by the expression [10]:

A⊥ =
1

(2π)3

e2Q2

D(s,Q2)

∫ (
√

s−me)2

M2

dW 2 |~k1|
4
√
s

∫

dΩk1

1

Q2
1Q

2
2

Im{LαµνH
αµν} (1.32)

The denominator is given through the one photon exchange:

D(s,Q2) =
Q4

e4

∑

spins

|T1γ |2 = 8
(4M2τ)2

1 − ǫ

(

G2
M +

ǫ

τ
G2

E

)

(1.33)

Note that the integral over intermediate electron momentum d3 ~k1

(2π)32Ek1

is written

as an integral over the solid angle of the intermediate electron and an integral over
the invariant mass of the nucleon intermediate state that goes from W 2 = M2

when the intermediate state is the nucleon itself up to Wmax =
√
s − me, since

s = E2
CM = (me +W 2

max).
Where

Lαµν = ū(k′, h′)γµ(γ · k1 +me)γνu(k, h) · [ū(k′, h′)γαu(k, h)]
∗ (1.34)

and
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Figure 1.4. Model calculation of beam normal spin asymmetry in the process e−↑p →
e−p at 855 MeV and forward angles configuration as function of laboratory polar angle.
It corresponds to the transferred momentum Q2 = 0.23 GeV2. The data point from A4
is shown [1]

-70

-60

-50

-40

-30

-20

-10

 0

 0  20  40  60  80  100  120  140  160  180

A
n
 [
p
p
m

]

θlab[deg]

Figure 1.5. Model calculation of beam normal spin asymmetry in the process e−↑p →
e−p at 570 MeV beam energy and forward angles configuration as function of laboratory
polar angle. It corresponds to the transferred momentum Q2 = 0.11 GeV2. The data
point from A4 is shown [1]
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Figure 1.6. Model calculation of beam normal spin asymmetry in the process
e−↑p → e−p at 315 MeV beam energy and backward angles configuration as function of
laboratory polar angle. It corresponds to the transferred momentum Q2 = 0.23 GeV2.
A very preliminary analysis data point is shown [11]
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Hαµν = W µν · [ū(p′, λ′N)Γαu(p, λN)]∗ (1.35)

The model for the hadronic tensor W µν includes an elastic contribution, corre-
sponding with the nucleon as the intermediate state, and the inelastic contribution,
corresponding to πN intermediate states [10].

The elastic contribution is calculated using the on-shell nucleon electromagnetic
from factors. On the other hand, the pion electroproduction currents (that describe
excitation and deexcitation of the πN intermediate state) are calculated by means
of the invariant amplitudes provided by MAID. The calculation takes into account
both resonant and nonresonant pion production.

One interesting fact is that when the momentum of the intermediate electron
goes to zero k1 → 0 , that corresponds to a maximal value of the hadronic in-
termediate state mass Wmax =

√
s−me, then the virtualities of the intermediate

photons present a singularity of order of electron mass me. As the photons are
quasireal this kinematic situation is known as quasireal Compton scattering.

Q2
1 = (k − k1)

2 ≈ k2 = m2
e (1.36)

As a consequence, under some kinematic conditions these singularities will give
important contributions. In figures 2.1,1.5,1.6 we show the model calculated beam
normal spin asymmetry for scattering off proton e−↑p → e−p as a function of the
lab scattering angle for the energies 855 MeV, 570 MeV, 315 MeV respectively. The
first two energies have been employed in the A4 experiment in the forward angle
configuration corresponding to Q2 = 0.23GeV 2 and Q2 = 0.11GeV 2 respectively.
The asymmetry data points are also plotted. The plots show a slight overprediction
of model. The third energy 315 MeV corresponds to Q2 = 0.23GeV 2 at backwards
angles. The point plotted comes from a very preliminary analysis. But it also
shows a small overprediction of model.

Model calculation for neutron The model calculation has been also applied
to the process e−↑n→ e−n. We can see in the figure 1.7 a comparison of the beam
normal spin asymmetry as function of the CM polar scattering angle for both
processes: scattering off the proton (left panel) and scattering off the neutron (right
panel). The asymmetries for neutron and proton are of opposite sign and of similar
magnitude [10]. As we are measuring the asymmetry in the quasielastic scattering
off the deuteron this result is the more significant for us. The calculations have
been done for the free nucleons. The calculation for the deuteron as a bound
state of proton and neutron has not been carried out yet. According to the very
näıve static model in which the nucleus is represented as a collection of free no-
interacting nucleons at rest the measured asymmetry with the deuterium target
should be near zero.
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Figure 1.7. Comparisons fo the beam normal spin asymmetry for the processes at
beam energy 570 MeV as a function of CM scattering angle for different hadronic inter-
mediate states.
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Chapter 2

Quasielastic e-d scattering

2.1 Quasielastic electron-nucleus scattering

The scattering of high energy electrons off nuclei present some features in the
energy spectrum depending on the energy loss. For low energy loss one can see
a peak corresponding to the elastic scattering of the electron from the nucleus
as a whole. Other peaks appear that are associated with inelastic processes of
excitation of nuclear bound states.

When a larger amount energy is lost by the electron a broad peak arises due to
the quasielastic scattering on the bound nucleons of the nucleus. As the nucleons
are confined in nucleus whose size is of the order of 1 fm the wave function in the
momentum space is spread over some distribution of momenta whose size is of order
of 100 MeV. It is said the bound nucleons undergo Fermi motion. The quasielastic
scattering is therefore the scattering of the electron from an individual moving
nucleon. The Fermi motion is the cause of being the quasielastic peak broader.
The knock-out nucleon is ejected from the nucleus after interacting with the other
nucleons [12].

At larger energy losses some peaks appear that correspond to the excitation
on the nucleon of different resonances. At very large energy losses a structureless
continuum due to the Deep Inelastic Scattering on quarks of the bound nucleons
appears.

Some general features of the quasielastic scattering are:

• The quasielastic cross section integrated over electron energy loss is propor-
tional to the sum of electron-nucleon cross section.

• The quasielastic peak width is a measure of the average momentum of the
nucleons in nuclei and can be used to determine the nuclear Fermi momen-
tum.

25
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Figure 2.1. Schematic representation of inclusive cross section as function of energy
loss. Taken from [12]

• The shape of the quasielastic peak depends on the distribution in energy
E and momentum k of the initial bound nucleons. The nuclear structure
function S(E, k) describes the momentum distribution.

2.2 Quasielastic electron-deuteron scattering

The deuteron is a very weakly bound system composed of a neutron and a
proton. The deuteron binding energy is only ε = 2.2 MeV. On the other hand the
kinetic energy of the deuteron’s bound nucleons, the Fermi motion, is not negligible
since the potential is about 20 MeV deep. Several models and approximations of
the nuclear aspects of the interaction with the electron are unavoidable to extract
information about the nucleon structure functions even when treating with such a
simple nuclear system as the deuteron.

The scattering process of the electron can be a coherent elastic scattering off the
deuteron as a whole remaining the deuteron in the ground state after the collision,
or it can be an incoherent quasielastic scattering with electrodisintegration of the
deuteron, that is an unbound neutron and proton in the final state. The scattering
occurs from one of the bound nucleons as a quasifree process while the other
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nucleon acts as a spectator. For momentum transfers which are large compared to
the deuteron size we expect the quasielastic scattering to be the dominating [13].

Investigations of the nuclear model dependences of the two photon exchange
asymmetry in the quasielastic scattering are not available so far. Nevertheless some
examinations have been done for the nuclear physics aspects of the parity violating
asymmetry in the quasielastic e-d scattering [15] which is also an objective of the
A4 collaboration experiment. Despite the parity violating asymmetry is due to
a different physical process, the interference of the one photon exchange and the
Z0 boson exchange, the nuclear models employed to understand the asymmetry in
the quasielastic scattering might be useful to have some hints about the existing
nuclear models and the path to follow in the investigation of the two photon
exchange asymmetry in the quasielastic e-d scattering. Therefore we present the
descriptions of the nuclear models and the results corresponding to the parity
violating asymmetry given by [15].

• The static approximation It is the simplest of the models. The nucleons
are supposed to be free nucleons at rest so that the nuclear matrix elements
are incoherent sums of matrix elements of the single-nucleon at rest.

• Nonrelativistic calculation with final-state interactions (FSI) The
system np is treated in terms of nonrelativistic solutions of the Schrödinger
equation with realistic NN potentials. The matrix elements of the nu-
clear charge density and the nuclear current are taken between the deuteron
ground state and the np final state expanded in partial waves. Some partial
waves are considered and those with lower angular momentum are solutions
of the Schrödinger equation while the rest are plane-wave solutions.

• Plane-wave Born approximation (PWBA) The PWBA is obtained
from the FSI model by replacing the final interacting np state by a plane-
wave state.

• Plane-wave impulse approximation (PWIA) The factorized relativistic
plane-wave impulse approximation is the model used at high momentum
transfer when the relativistic effects become important. In this model the
interaction occurs with a bound nucleon assumed to be quasifree and the
other nucleon acts as a spectator. The bound nucleons have a Fermi motion
due to the nuclear binding. Therefore the scattering is not with a nucleon at
rest but with a moving nucleon. The nucleon motion is described through
the deuteron wave-function in the momentum space that is related to the
probability of finding a the nucleon with determined energy and momentum.
Since the deuteron binding energy is small compared to the free nucleon mass
(939 MeV) the bound nucleon masses receive small binding corrections. The
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cross section of the quasielastic scattering in the PWIA can be factored in
two terms:

– the spectral function that represents the probability to found a bound
nucleon with a given momentum and energy

– and the half-off-shell single nucleon cross section, using for example the
parametrization of de Forest [14].

2.2.1 Nuclear model dependencies for the parity violating

asymmetry

In the work [15] they have calculated the parity violating asymmetry in the
quasielastic e-d scattering using the static approximation, the FSI model with two
different models for the NN interaction, the PWBA and the PWIA. They show
the results at two different angles: at forward angle 35◦ and an extreme backward
angle 170◦. The asymmetry is in function of the energy loss ω for a wide range of
momentum transfers q = 150, 300, 500, 1000 and 1500 MeV/c. See figures [?] and
[?].

The results of [15] show significant model dependencies at low momentum
transfers. On the other hand, the model dependencies disappear at sufficiently
high momentum transfers q. In the regions away from the QE peak the model
differences are more important that in the QE peak itself. At the QE peak the
model calculations converge as the momentum transfer increases. The convergence
is slower for forward angles 35◦ and faster for backward angles 170◦.
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Figure 2.2. The magnitude of the PVA as a function of the energy transfer ω, at
q = 150 MeV/c for two values of the electron scattering angle. Results of different
nuclear models are shown: FSI with SdT potential with solid line, FSI with the
Yale potential (dashed), PWBA (dashed), and PWIA (dot-dashed). The (+) and
(-) signs indicate positive and negative values of the asymmetry. The vertical line
indicates the position of the quasielastic peak and the arrows at right vertical axis
indicate the value of the absolute PVA at the QE peak in the static approximation.
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Figure 2.3. The magnitude of the PVA as a function of the energy transfer ω, at
q = 500 MeV/c for two values of the electron scattering angle. Results of different
nuclear models are shown: FSI with SdT potential with solid line, FSI with the
Yale potential (dashed), PWBA (dashed), and PWIA (dot-dashed). The (+) and
(-) signs indicate positive and negative values of the asymmetry. The vertical line
indicates the position of the quasielastic peak and the arrows at right vertical axis
indicate the value of the absolute PVA at the QE peak in the static approximation
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The A4 experiment

3.1 Measurement principle

The objective of this work is the measurement of an asymmetry in the cross
section of transversely polarized quasielastic scattered electrons off an unpolarized
deuterium target. The asymmetry in the cross section is defined as:

A =
dσ+ − dσ−

dσ+ + dσ− (3.1)

A beam of transversely polarized electrons arrives to the unpolarized deuterium
target. A detector counts the number of quasielastically scattered electrons cor-
responding to both polarization states N+ and N−. From these counts a raw
asymmetry can be obtained:

A =
N+ −N−

N+ +N− (3.2)

The raw asymmetry is a first good approximation to the asymmetry in the
cross section σ, because the cross section is the quotient between the count rate R
and the luminosity L, σ = R/L and the absolute value of the luminosity is equal
for both polarization states.

3.2 an overview of the set up

The A4 experiment is carried out at the MAMI accelerator facility. There
is a source of a polarized electron beam. The beam is accelerated up to the
desired energy and the spin orientation of the electrons is selected. In this work
the spin orientation is perpendicular to the beam direction and contained in the
accelerator horizontal plane. The beam is transported to the A4 experimental hall
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Figure 3.1. Schema of the experimental concept.
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where the target is. In the target the electrons are scattered. A detector counts the
number of the scattered electrons. Before the target several beam monitors control
the fluctuations in the beam properties like position, angle, energy and current
intensity since any helicity correlated differences in these properties will produce
false asymmetries. The analysis and the correction of these false asymmetries are
a central topic of this thesis. In the A4 experiment several polarimeters are used
to measure the beam polarization degree Pe that is also a crucial point of the
asymmetry measurement, since Pe reduces the value of the measured asymmetry
Am with respect to the physical asymmetry Aph by the relation:

Am = Pe · Aph (3.3)

The beam source is also relevant for the asymmetry measurement, because it
may be the source of the helicity correlated beam properties differences, which are
mentioned before.

3.3 The source of polarized electrons

The source consists of a photocathode ′′strained layer′′ GaAs crystal that emits
longitudinally polarized electrons when it is illuminated by a circularly polarized
laser light. The electron beam has a current intensity for our experiment of 20 µA
and a polarization degree of around 80 %. The helicity of the laser is switched
every 20 ms so that the helicity of the emitted electrons is switched in the same
period.

Basic optical components

The laser light is produced in pulses of 100 ps of width by a semiconductor-
laser whose frequency is synchronized with master frequency of MAMI that is 2.45
GHz. The laser light is collimated and it crosses a polarizer emerging with an
optimum linear polarization.

The linear polarized light goes through a Pockels cell that acts as a λ/4 plate.
The Pockels cell converts the input linear polarized light into circularly polarized
light. The optical properties of the Pockels cell can be changed applying an electric
field. A control device generates a sequence of states that change the sign of the
voltage in the Pockels cell and therefore its optical axis so that the Pockels cell
can be used to switch the helicity of the circularly polarized light. The Pockels
cell allows a fast reverse of the polarization states. The circularly polarized laser
light illuminates the photocathode.
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Figure 3.2. Schematic picture of the polarized beam source. Picture taken from [16].

Control of false asymmetries at source

Helicity sequence The A4 electronic system specifies the spin state change
every 20 ms. It is synchronized with the electrical network frequency of 50 Hz.
The reason is that if these frequencies do not match the electrical network becomes
a source of electronic noise that one wants to avoid. The polarization pattern is
generated in a set of four 20 ms long states. The first period is chosen randomly;
the second period is the complementary of the first one. The third and the fourth
periods are the complementary of the first two. That is, patterns of the type
+ − −+ or − + +−, where + and − denote the helicity states, are randomly
generated. This ensures that the polarization states and their transitions are
produced with the same probability and it allows to avoid any correlation between
the measured asymmetry and the polarization switching frequency. Finally the
state sequence is transmitted to the A4 data acquisition system.

Optical devices Due to either optical imperfections or deviations in the ap-
plied voltage in the Pockels cell, a small degree of linear polarization components
appears [16]. These linear components might be helicity correlated because of
their dependence on the applied voltage to the Pockels cell. Since the photocath-
ode is also sensitive to these linear polarized light components, a non-vanishing
asymmetry in current intensity will arise. That asymmetry will be high enough
to dominate the physical asymmetry and for that reason its dependence on the
source parameters must be investigated in order to reduce it.

A rotable half wave plate, which is located between the Pockels cell and the
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photocathode, is used to minimize the current asymmetry. The minimization is
based in the fact that the photocathode behaves as an imperfect dichroic polarizer
since it is an asymmetric crystal [16]. That means that the abortion depends on
the orientation of the incoming linear polarized light. As the emission current is
proportional to the absorbed light there is a modulation of the emitted current
with respect to a rotation of the polarization. The switch of helicity generates a
90◦ rotation of the residual linear components. This gives rise to a nonzero helicity
correlated beam intensity asymmetry. The half wave plate can be rotated in a way
that this asymmetry is minimized.

A telescope is also used to focus the laser beam onto the photocathode. It
reduces the angular deviations.

An additional half wave plate is introduced before the Pockels cell so that the
helicity is switched independently of the action of the Pockels cell. This half wave
plate is known as GVZ (general sign changer). The duration of GVZ changes is
much longer than the Pockels cell switching. It is changed during the A4 data
taking in periods between 25-100 hours of effective measurement. All devices
are in principle unaware of the actual GVZ state. It allows the experimenter an
independent way of checking the correct change in sign of asymmetries. Some
false asymmetries probably depend on voltages states of Pockels cell so they will
not change sign when changing this GVZ status. On the other hand the physical
asymmetry should change sign. This has a crucial role in correcting the physical
asymmetry from false asymmetries via the multilinear regression method as we
will discuss later. In addition, some false asymmetries that do not change sign
depending on the GVZ status, like that due to differences in time duration of
polarizations states, are reduced when GVZ samples are combined because the
sign of the measured asymmetry in GVZ=IN samples must be changed to make
the combination with GVZ=OUT samples and therefore the false asymmetries
mostly cancel out.

3.4 The accelerator

The MAMI accelerator consists of an injector, a linear accelerator where the
beam reaches the energy of 3.46 MeV, and three race-track microtrons (RTM).

One RTM consists of two dipoles and a linear accelerator that is located be-
tween the dipoles (see figure 3.3). The linear accelerator consists of high frequency
cavities that work at the MAMI master frequency of 2.45 GHz. The beam is de-
viated by the dipole magnetic field with an increasing radius every turn it gains
energy. The dipoles redirect the beam to the linear accelerator where it is accel-
erated again.

The RTMs accelerate the beam up to energies of 14.35 MeV, 180 MeV and
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Magnetic dipolExtraction

Accelerating section

Figure 3.3. Race-track microtron. The electron beam obtains energy in the accel-
erating section through the action of microwave resonant cavities. Then the electron
trajectory is bent by the perpendicular dipole field. A set of pipes that fit with the in-
creasing bending radius of the electron trajectory lead the electron to the opposite dipole
where the beam is redirected to the linear accelerator. If in each turn the electrons gains
the energy ∆E after n turns its energy will be n · ∆E. Picture from [17]

854.3 MeV, respectively. Through early beam exits in the last RTM the energy
can be chosen between 180 MeV and 854.3 MeV in skips of 15 MeV. After running
the three microtrons the beam is transported to the several experimental halls.

3.5 Spin dynamics in the accelerator

The spin motion in an electromagnetic field is described by the Thomas-BMT
equation [18] given by

~ωs =
e

mγ
[(1 + a) ~B‖ + (1 + aγ) ~B⊥ −

(

a+
1

1 + γ

) γ

c2
~v × ~E] (3.4)

where γ is the Lorentz factor, ~E is the electric field, ~B⊥ is the component of the
magnetic field perpendicular to the electron momentum, ~B‖ is the component of
the magnetic field parallel to the momentum and a = g−2

2
≈ 1

862
is the electron

anomalous magnetic moment.
The electron is accelerated by an electric field ~E parallel to its momentum. The

guiding magnetic field ~B is perpendicular to its momentum. The spin precesses
around the magnetic field with an angular frequency

~ωs = (1 + aγ)~ωc (3.5)
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where ωc = eB
meγ

is the cyclotron frequency.
Since ωs is not a multiple integer of ωc the final spin direction of the electron is

no longer parallel to its momentum direction as it is when the electron are emitted
from cathode. Using this property of spin dynamics any orientation for the spin
(in the plane of the accelerator) can be obtained. However as the number of times
the electron crosses the dipole magnetic field is related with the reached energy
only a determined energy is the suitable for a given spin direction.

In order to achieve a higher flexibility in both the choice of the beam energy
and the spin orientation a Wien-Filter is used.

3.6 Wien Filter

A Wien-Filter spin-rotator is installed in the injection beam line at a beam
energy of 100 KeV. It consists of a homogeneous electric ~E and magnetic ~B field
which are perpendicular to each other and transverse to the direction of the particle
motion. If we want to achieve an angle θs of spin rotation without deviating the
electron from its straight line trajectory the fields must fulfil the equilibrium force
relation

~B × ~v = ~E (3.6)

If the equilibrium force relation is satisfied and assuming a << 1, the relation
between the magnetic field B and the spin rotating angle θs is [19]

B =
mcγ2βθs

eL
(3.7)

where γ is the Lorentz factor, β = v/c and L is the effective field length.

3.7 Target

The target material consists of liquid deuterium ℓD2 contained in a target cell.

Target cell The target cell is a paraboloid-shaped thin aluminium container.
The length of the cell along the beam axis is 10 cm at forward angles and 23.3 cm
at backward angles. The target cell is symmetric with respect to the beam axis as
one can see in figure 3.4.

Deuterium as target In the table below, we show the physical properties of
liquid deuterium and compare them with those of liquid hydrogen. The liquid
deuterium radiation length is smaller than that of hydrogen. Therefore the beam
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Figure 3.4. Side view of the target at backward angles. The dimension of the target
length is in mm

loses more energy as it crosses the liquid deuterium. At backward angle configura-
tion (l = 23.3 cm) beam goes through about 3.5× 10−2 radiation lengths for ℓ-D2

and about 2.7 × 10−2 radiation lengths for ℓ-H2.

target X0(cm) ρ M(g/mol) Tboil(K) Tfrz(K)
ℓ-H2 866 0.0708 1.0079 20.4 14.0
ℓ-D2 724 0.1624 2.0140 23.6 18.6

We show the density, the molar mass, the boiling point temperature and the
freezing point temperature [20].

The target is kept as liquid in order to have a high density that guarantees
a high luminosity. To keep them as liquids we have developed a sophisticated
cooling system [21]. The power deposited by the beam is 100 W . The heat de-
position produces an increase of the target temperature and may produce boiling.
The boiling diminishes the effective target density and generates target density
fluctuations. The density fluctuations originate a false asymmetry when they are
helicity correlated and a broader asymmetry distribution if they are not helicity
correlated. To avoid boiling and density fluctuations, the liquid is kept in a tur-
bulent flow so that the transverse exchange of heat is made more efficiently. The
liquid target temperature is kept close to the freezing point so that there is space
for temperature increasing due to the energy deposition.

The density of target nuclei per unit volume ρt is given by

ρt =
N

V
=
NAm/M

V
=
ρNA

M
(3.8)
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where NA is the Avogrado number, m is the total mass, M is the atomic molar
mass of target and ρ is the target density (mass per unit volume). The densities
ρt of the hydrogen and the deuterium are

ρt =
(N

V

)

H2

= 4.228 · 1022 (nuclei/cm3) (3.9)

ρt =
(N

V

)

D2

= 4.857 · 1022 (nuclei/cm3) (3.10)

The number of nuclei per unit volume in liquid deuterium is a factor 1.15
greater than that of liquid hydrogen.

3.8 Luminosity monitors

Definition of luminosity and its value The luminosity is defined as the prod-
uct of incident flux of particles Φ and the density per unit area of target scattering
centers. The flux of incident particles can be calculated as the quotient of the
beam current intensity and the electron charge Ie/e. The number of target nuclei
per unit area can be calculated as the product of the density of target nuclei per
unit volume ρt times the effective target length lt. The luminosity is given by

L = Φ · ρt · lt (3.11)

configuration target lt(cm) L(s−1cm−2)
forward ℓH2 10.0 cm 5.37 · 1037

backward ℓH2 23.3 cm 1.23 · 1038

backward ℓD2 23.3 cm 1.41 · 1038

Physical principle The luminosity can be measured by the Møller scattering
that has the following properties:

• The Møller scattered electrons do not arrive to the calorimeter because they
are scattered at small forward scattering angles, since both the incident and
the scattered particles have the same mass and the energy is ultrarelativistic.

• The luminosity monitors receive both Møller scattered electrons and elec-
trons scattered off nucleons. These processes can be distinguished by the
luminosity monitors because they have different kinematics.

• The electron is a pure Dirac pointlike particle without structure (up to the
present knowledge) so that the QED provides completely the Møller scatter-
ing cross section.
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• At small forward angles the Møller scattering cross section is dominant com-
pared to the cross section of the elastic scattering off the nucleon.

Luminosity monitors The Luminosity monitors are eight water Cherenkov de-
tectors installed at small forward angles 4◦ − 10◦ and optimized to detect Møller
scattered electrons [22]. They measure a current that is proportional to the rate
of incident particles. The luminosity of the whole process is proportional to the
signal of the luminosity monitors. The measurement is relative. The luminosity
is measured for every 20 ms polarization state to obtain any helicity correlated
luminosity asymmetry. The absolute value of luminosity can be deduced from the
known values of incident beam current and mean effective target density.

Asymmetries in luminosity monitors The physical process to measure the
luminosity should present no spin asymmetry nor azimuthal modulation.

For longitudinally polarized electrons the Mφller scattering shows a parity vio-
lating Asymmetry (PVA) due to the axial-vector nature of electroweak interaction.
The Møller scattering occurs at small forward angles where the momentum trans-
fer is low and therefore the PVA is small, of order 10−9, negligible compared to the
PVA of elastic scattering off nucleons, that is of order 10−6. The PVA is symmetric
over the azimuthal angle.

When the electrons are transversely polarized the Møller scattering cross sec-
tion presents a non-negligible two photon exchange asymmetry in the order of tens
of ppm that exhibits an azimuthal modulation with cosφ. In the analysis, the lu-
minosity must be averaged over the eight luminosity monitors, that is, averaged
over the whole azimuthal angle. As the asymmetry is modulated by cos φ it should
average out.

The Møller two photon exchange asymmetry can be calculated in the framework
of QED.

3.9 Beam monitors

To understand and correct the systematic uncertainties it is necessary to mea-
sure additional quantities during the experiment as beam energy, beam current
intensity, beam position, beam angle and target density because they have helicity
correlated differences that lead to systematic changes in the measured asymmetry.

3.9.1 Beam position monitors

At the A4 experimental halls, there are two beam position monitors (XYMO20,
XYMO27). They are placed at 8.4 m and 1.2 m before the target cell. The beam
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position measurement is integrated in the A4 data acquisition system. Theses
measurements allow to have data about the beam state (position and angle) for
both helicity states. Helicity correlated beam differences are in the order of 0.05−
0.4 µm. They are kept so low through a feedback loop that allows the adjustment
of beam position at MAMI systems.

3.9.2 Energy monitor

The energy of electrons is measured in the stage RTM3 of the microtron with
the energy monitor called ENMO. The energy is determined through the time
necessary for the electrons to pass through the second dipole magnet of RTM3. It
is measured during the beam extraction using two high frequency cavities placed
before and after the dipole magnet. The measurement is also employed to stabilize
the beam energy. The injection in the RTM3 is done such that the time of travel
between both cavities and thus the electron energy is kept constant.The signal
corresponding to the energy is taken into account in the A4 data acquisition sys-
tem. The beam stabilization allows to keep helicity correlated differences of order
∼ 10 eV. This allows to reduce the false asymmetries that are due to the energy
fluctuations.

3.9.3 Current intensity monitors

To measure the beam current intensity, several devices are installed along the
beam transport line: intensity monitors and the Foerster probe.

The intensity monitors are HF resonant cavities that are sensitive to the beam
current passing through them. The signals of two intensity monitors, PIMO08
and PIMO27, are integrated in the A4 data acquisition system. The intensity
monitors are also used for the beam stabilization. Any signal deviation is corrected
at the source with the help of the master oscillator of the laser diode. However
the intensity monitors do not measure absolute values. The calibration of the
intensity monitors is carried out with the help of the Foerster probe which allows a
measurement of the absolute beam current with a precision of 1% with a bandwidth
of ∼ 0.1 Hz.

3.10 PbF2 calorimeter

The A4 experiment is designed as a single-arm calorimeter measurement. The
calorimeter detects the scattered electrons and measures their position and energy.
The kinematics of the scattering is completely determined knowing the scattering
energy and the scattering angle. The recoil protons are not detected.
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Figure 3.5. Drawing of the complete detector set up. Picture taken from [23]. In the
picture one quarter of the calorimeter has been cut so that we can see the scintillators
that are installed at backward angles. We can see also the scattering chamber and
the window of indicates the position of the target,just in the middle of the scattering
chamber. All the detector is mounted over the rotating platform so that it can rotate
180◦ from forward configuration to backward configuration. At forward configuration
the beam enters from the left of the pictures. At backward configuration the beam enters
from the right.
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3.10.1 Description of demands

1. Fast detector response. A high number of detected quasielastic events N is
required due to the counting statistics σ(A) = 1√

N
. The count rate must

be high enough during a reasonable measurement time. This leads to the
necessity of a fast detector response.

2. Good energy resolution. We are interested in the asymmetry of the quasielas-
tic e−d-scattering cross section. The detector should have a sufficient energy
resolution for a proper separation of the quasielastic events and events com-
ing from another processes.

3. Resistance to radiation. Due to the high count rate, the detector will suffer
a high radiation deposition during the measurement. The detector should
maintain in time a good efficiency and a good energy resolution.

3.10.2 Set up

The A4 detector is a homogeneous fully absorbing segmented calorimeter that
uses PbF2 crystals. The lead fluoride is a pure Cherenkov radiator material without
scintillation component and presents a high transmission of light from the visible
light to the ultraviolet one. The refraction index is 1.8 for a wavelength of 400 nm.
The PbF2 radiation length is X0 = 0.93 cm and its Moliere radius RM 1.8 cm. For
more details about the calorimeter consult the reference [24].

The calorimeter is symmetric with respect to the beam axis. It is arranged
in 146 frames that cover the whole 2π azimuthal angle. Each frame contains 7
crystals set out vertically that constitute 7 concentric rings. The seven rings cover
near 10◦ of scattering angle. The calorimeter consists of 1022 crystals altogether.

The calorimeter is mounted over a rotating platform that allows a rotation of
detector of 180◦ such that the detector can operate at both forward and backward
angles.

At forward configuration it covers the scattering angle 30◦− 40◦. At backward
configuration it covers the scattering angle 140◦ − 150◦.

The geometry of the crystals is design so that at least a 90 % of the incident
energy is deposited in a 3×3 cluster of neighbouring crystals. The incident energy is
deposited through a development of an electromagnetic shower. The length of the
crystal corresponds to 16 radiations lengths of PbF2. The transversal development
of the electromagnetic shower is contained in a cluster of 9 crystals as they cover
a cylinder of radius R = 2RM .

The energy deposition in the crystal produces Cherenkov optical photons. At
the end of thecrystal it is mounted a photomultiplier. The current is proportional
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to the detected light. The current is integrated and the integral, that is the
collected charge is a measure of the incident energy.

3.10.3 Advantages

The PbF2 is a suitable material for our calorimeter as it fulfils the A4 demands.

• The duration of the Cherenkov pulses is very short. Therefore the calorimeter
response is very fast. The integration time for a single signal is 20 ns. This
allows a theoretical rate of 1/20 · 10−9 = 50 MHz per each crystal.

• The PbF2 yields a high light output. The energy resolution of the detector is
directly related to the Poisson statistical fluctuations of the number of optical
photons generated by the electromagnetic cascade. The energy resolution of
the detector is 3.9 %/

√

E(GeV ) [3]

• The PbF2 presents a better resistance to radiation than other tested materi-
als. The crystals damages can be healed illuminating it after the beamtime
with blue and ultraviolet light [24].

• Symmetry. The azimuthal symmetry of the detector gives a good angular
resolution. Moreover some false asymmetries like those due to helicity cor-
related differences in the beam positions or beam angles cancel out in the
whole calorimeter due to the azimuthal symmetry. For the two photon ex-
change asymmetry experiment the 2π coverage in the azimuthal angle of the
detector allows the detection of the cosines modulation of the asymmetry.

3.11 Electronics

The fast response of the PbF2 calorimeter of around 20 ns needs also a fast
electronics to treat the signal with a minimal dead time. Each calorimeter module
has its own electronic channel so that signal can be treated in parallel. The
1022 single electronic module consists of two galvanic separated units, one analog
part and one digital part. The analog part integrates the signal of the PMT,
sums up analogically the signals of its 8 neighbours and provides trigger and veto
information. The digital part converts the analog signals into 8 bits digital values
and stores them in a histogram memory. Details can be found in [25]

3.12 Scintillators

A set of plastic scintillators are used at backward angle configuration to dis-
tinguish between charged and neutral particles. At backward angles, there is a
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Plastic scintillators

Scattering chamberElectron beam

calorimeter

Figure 3.6. Schematic drawing of detector at backward angles. The scintillators are
located between the scattering chamber and just before the calorimeter. The electrons
are detected by the scintillators as they are charged particles. Photons are not detected
in principle. However there is some probability that photons convert into pairs e+ − e−

such that generate a signal in the plastic scintillators. The conversion can happen in the
scattering chamber walls or in the plastic scintillators themselves.

no negligible background of neutral particles that mainly come from the decay
of neutral pions π0 → 2γ of the inelastic scattering. These γ’s have a detector
response in the PbF2 which is very similar to that of electrons since both electron
and γ develop electromagnetic showers in the Cherenkov material.

The scintillators are located between the scattering chamber and just before the
calorimeter crystals (see figure 3.6. Since at backward angles the rate is low they
cover a range of 2 frames including the respective seven rings, that is 14 crystals
altogether. Scintillators should have a symmetric arrangement due measurement
requirements. They constitute a system of 72 plastic scintillators. 70 of them cover
2 frames (14 crystals) and the other 2 cover 3 frames (21 crystals).

Whenever a charged particle crosses a scintillator scintillation light is produced
which is detected by a photomultiplier.

As some advantages of these scintillators we can quote: high efficiency in de-
tecting charged particles (almost 100%), consistency between the spectral range of
their radiation and the photomultipliers spectral response and finally, a very rapid
decay time of the order of a few ns.

The scintillators electronic generates an additional bit in the calorimeter his-
togram memory such that two different kind of histograms are built: Those with
coincidence of calorimeter and scintillators, which we will refer to as coincidence

spectrum, and those where only the PbF2 calorimeter produced a signal, which we
will call noncoincidence spectrum to.
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3.13 Polarimeter

The experimental asymmetry is proportional to the beam degree of polarization
which has to be measured. The precision of the polarization degree measurement
has an influence in the precision of the measured asymmetry.

Aph =
Am

Pe
(3.12)

Two polarimeters are installed outside the A4 set up. A Møller polarimeter
from the A1 collaboration provides absolute measurements of the polarization with
a statistical uncertainty of ∼ 1% and a systematic uncertainty of ∼ 1%. Those
measurements are carried out usually once per week during the data taking period.
A Mott polarimeter located close to the source provides relative measurements with
∼ 1% statistical uncertainty which can be gauged with the A1 polarimeter. The
Mott measurements are usually performed every 2 days during the data taking pe-
riod. Two polarimeters are installed in the A4 set up: The Transmission Compton
polarimeter and the Backscattering Compton polarimeter.



Chapter 4

Extraction of the count rates

4.1 Introduction

One of the objectives of the experiment is the measurement of the transverse
spin asymmetry in the quasielastic electron scattering off deuterium.

By means of the PbF2 calorimeter the scattered electrons are counted and
their energy E ′ is measured. The detector allows also the determination of the
scattering polar angle θ (through the knowledge of the crystal position where the
electron hits the calorimeter). These variables (E′, θ)1 determine completely the
scattered electron kinematics (omitting the Fermi motion of the nucleons) such
that no detection of the recoil nucleon is necessary to distinguish the quasielastic
scattered electrons from the inelastic scattered electrons.

In order to determine the asymmetry from the data the count rates of quasielas-
tic events for the opposite spin states (+ and -) must be extracted from the ex-
perimentally measured energy spectra. First we will give a general description of
the different experimental configurations that have been used by the A4 collabora-
tion in order to compare the measured PbF2 energy spectra. We say some words
about the Monte Carlo simulation of the A4 detector response that is carried out
to reproduce the experimental spectra so that the background can be subtracted.
Finally the count rates and the cross sections obtained by this procedure will be
compared with the expectations based in the theoretical calculations.

4.2 Description of the energy spectrum

The experimental configurations that have been used so far to measure both the
parity violation asymmetry with longitudinal spin and the two photon exchange

1The kinematic parameters E′ and θ are equivalent to Q2 and ω, that is, the square four-
momentum transfer and the transferred energy in the laboratory system
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asymmetry with transverse spin are:

Config. Target Scattering E (MeV) Q2 (GeV2) Detector

Forward lH2 Elastic
855 0.23

PbF2570 0.11

Backward
lH2 Elastic

315 0.23 PbF2/Scintil
lD2 Quasi-Elastic

At forward angles there is a clear separation of the elastic peak from the in-
elastic events. The details of the extraction of the elastic events to calculate the
transverse spin asymmetry can be found in the frame of two works [9] and [3].

At backward angles there is a non-negligible background of neutral particles
coming from the neutral pion decay mainly π0 → 2γ. The elastic peak is not
separated in the energy spectrum any more. A set of plastic scintillators are
necessary to distinguish the charged and neutral particles. As explained in the
section 3.12 two spectra are generated:

A non-coincidence spectrum when a signal occurs in the calorimeter but not in
the corresponding scintillator. The non-coincidence spectrum contains the
neutral particles background. An example is shown in the figure 4.6

and a coincidence spectrum when a signal occurs in both the calorimeter and the
corresponding scintillator. The coincidence spectrum contains the charged
particles events, including the (quasi)-elastic scattered electrons. The (quasi)-
elastic peak can be distinguished in the coincidence spectrum. So we will
extract the true events from the coincidence spectrum to calculate the asym-
metry. An example of a coincidence spectrum can be seen in figure 4.7 for a
H2 target. In this figure the elastic peak can be recognised.

At backward angles two different targets are used, corresponding to slightly
different physical processes:

• Liquid hydrogen ℓ-H2 The process of interest is the elastic scattering of
the electrons off the proton.

• Liquid deuterium ℓ-D2 The process of interest is the quasielastic scat-
tering of the electrons, that is, the scattering of the electron with one of the
bound nucleons. The cross section of the elastic scattering with the deuteron
as a whole is strongly suppressed.
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Figure 4.1. In the figure we can see the a H2 target energy spectrum measured
at forward angles with a beam energy of 855 MeV. In the x-axis it is represented the
signal in ADC channels (which is proportional to the energy), in the y-axis the number
of counts. From right to left we can recognise the elastic peak that corresponds to 734
MeV, the pion threshold and the peak of the broad ∆(1232) resonance to the left of the
pion threshold; beyond the delta resonance there is a background composed probably
of γ’s of the π0 decay, at the low end of the spectrum the discriminator threshold and
the pedestal at ∼ −10ADC. The elastic peak corresponds to a definite energy, ideally
the spectrum would be a Dirac delta (ignoring the radiative tail). But due to the finite
energy resolution of the detector the elastic delta is convoluted with a detector response
function, that is assumed to be a gaussian function.
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Figure 4.2. H2 target: The upper figure shows the noncincidence histogram in red
and the coincidence histogram in blue corresponding to one module, the 32, and one
single run. The purple vertical lines correspond to the position of the elastic peak the
second (from the left) and the position of the pion threshold the first. The noncoincidence
histogram height is about a factor 10 larger than that of the coincidence histogram. The
elastic peak is isolated in the coincidence histogram. The coincidence histogram is shown
in the lower figure in a larger scale. The flat region between the elastic peak left slope
and the pion threshold probably corresponds to the neutral background due to the γ’s
that leave a signal in the scintillators.



4.2. Description of the energy spectrum 51

4.2.1 Spectrum at forward angle

In the figure 4.1 we can see the an energy spectrum measured at forward
angles with a beam energy of 855 MeV. In the x-axis it is represented the signal
in ADC channels (which is proportional to the energy). From right to left we can
recognise the elastic peak, the pion threshold and the peak of the broad ∆(1232)
resonance beyond the pion threshold. The elastic peak corresponds to a definite
energy, ideally the spectrum would be a Dirac delta. But due to the finite energy
resolution of the detector the elastic delta is convoluted with a detector response
function, that is assumed to be a gaussian function.

The elastic peak is clearly isolated as it is shown in the figure 4.1. The elastic
and inelastic scattering events are energetically separated. The pion threshold line
is thus a point of reference to delimit the elastic peak region. Nevertheless as the
detector presents a finite energy resolution there is some degree of overlap between
elastic and inelastic events. So it becomes necessary to choose convenient cuts to
delimit the elastic peak region.

2
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Figure 4.3. Schematic drawing of the forward angle configuration.

4.2.2 Backward angle coincidence spectrum

Two features of the backward angle coincidence spectrum make the choice of
the cuts defining the elastic peak region more complicated.

• For the experiment at backward angles the beam energy is 315.1 MeV, lower
than the beam energies corresponding to the forward angle configuration.
Therefore the scattered electron energy and the pion threshold energy are
lower than those at forward angles. The energy resolution of the detector
for the backward energy is thus larger because its dependence on energy
is ∆E/E = 3.5%/

√

E(GeV ) [3]. A higher degree of mixing between the
(quasi)elastic scattered electrons and the inelastic scattered electron can be
expected.
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• Despite of being the γ’s background eliminated by means of the scintillators
some photons may still produce a signal in the scintillators and be recorded
as coincidence events. This happens through the interaction of photons with
matter i.e. pair production, Compton scattering and photoelectric effect
that occur in the materials between the scattering chamber and the plastic
scintillators: the scattering chamber walls and the scintillators themselves.
As a consequence there is some amount of background in the coincidence
spectrum, even in the region of the elastic peak.
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Figure 4.4. Schematic drawing of the backward angle configuration.

4.2.3 Backward coincidence spectrum for D2

At A4 experiment energy range the electron scattering process that dominates
is not the elastic scattering in the deuteron as a whole but the so called quasielastic
scattering off one of the deuteron’s nuclear bound nucleons (proton or neutron).
According to the impulse approximation the scattering with the nucleon occurs
as if it were free but assuming it has certain momentum distribution given by
the deuterium wave function in the momentum space. The other nucleon acts
as a spectator. This movement of the nucleon inside the nucleus is known as
Fermi motion. The Fermi motion of the bound nucleons leads to a smearing of
the scattered electron energy and therefore to an effective increase of the energy
resolution. The smearing effect can be accounted adding quadratically a constant
term (no dependent on the energy) to the energy resolution give by 4.6. Since
the scattering off the proton does not present the smearing in the energy it can
be assumed that the energy resolution for the scattering off D2 equals the energy
resolution for the scattering off H2 plus an additional term that accounts for the
smearing in energy, added quadratically, that is:

(∆E

E

)2

D2

=
(∆E

E

)2

H2

+
(cF
E

)2

(4.1)
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Figure 4.5. D2 target: In the upper panel the noncoincidence histogram in red
and the coincidence histogram in blue are shown. In the lower panel the coincidence
histogram is shown with a larger scale. The purple vertical lines represent the pion
threshold the first (from the left) and the quasielastic peak the second. One can observe
that the height of the quasielastic peak is greater than that of the elastic peak in the H2

spectrum. The quasielastic peak is broader than the elastic peak. One can observe also
that the quasielastic peak position is shifted to lower energies about two adc channels
with respect to the position of the elastic peak. On the other hand, the flat region
between the quasielastic left slope and the pion threshold is higher with respect to the
quasielastic peak than the corresponding flat region in the H2 spectrum with respect to
the elastic peak. That is, the dilution background degree is larger in the case of the
deuterium.
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where cF/E is the constant term that accounts for the energy smearing due to
the Fermi motion.

Moreover, the electroproduction of pions on the deuterium occurs both inco-
herently and coherently, that is, the pion is produced on the nucleon as if it were
a free particle but also it can be produced on the deuteron as a whole coherently.
As we will see later, this means that the pion threshold energy for the deuterium
is higher than the threshold for the hydrogen. Therefore the mixing of inelastic
and elastic events will be larger.

4.3 Extraction of the quasielastic events

4.3.1 Separation of elastic and inelastic events

Separation of inelastic events from elastic ones is necessary, since they have
different physical asymmetries. These processes are separated through the energy
measurement as they have different scattering energies. The unique electron energy
loss during the elastic scattering is due to the nucleon recoil. In the inelastic
scattering, on the other side, the electron delivers more energy for the creation of
extra particles.

Conservation of energy and momentum determines the energy of the elastic
scattered electron in the laboratory system:

E ′ =
E

1 +
2E

M
sin2

θe

2

(me = 0) (4.2)

where E ′ is the energy of the elastic scattered electron, E is the energy of the
incident electron, M is the nucleon mass and θe is the polar scattering angle of the
electron in the laboratory system.

The energy of the inelastic scattered electron when it has excited a state of
invariant mass W on the nucleon is:

Eπ0

Thres =
E −

W 2 −M2

2M

1 +
2E

M
sin2

θe

2

= E ′ ·
(

1 −
W 2 −M2

2ME

)

(4.3)

In the elastic scattering the invariant mass equals the nucleon mass W 2 = M2.
At the pion threshold the invariant mass equals the nucleon mass plus the pion
mass W 2 = (M +mπ)2.

In the table below the relevant kinematic parameters of the different kinematic
configurations used in the A4 experiment are shown. One can see the kinematic
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conditions at forward angle with hydrogen target at two different energies corre-
sponding to different squared four-momentum transfer, and the backward angle
configuration with the squared four-momentum transfer Q2 = 0.23 GeV2 equal to
that of one of the forward configurations. At backward angle the A4 collaboration
uses liquid hydrogen as well as liquid deuterium as targets.

θ E MeV Q2 GeV2 E ′ MeV Eπ0

Thres MeV target
30◦ − 40◦ 855 0.23 734 605 H2

30◦ − 40◦ 570 0.11 514 378 H2

140◦ − 150◦ 315 0.23 195 88 H2

140◦ − 150◦ 315 0.23 195 100 D2

4.3.2 Fit of elastic peak and energy calibration

As the (quasi)elastic peak is clearly separated (at forward angle in the energy
spectrum provided by the calorimeter, at backward angle in the coincidence energy
spectrum) a function can be found to fit the peak.

The most reasonable function to try with is a gaussian. However, taking into ac-
count the radiative corrections to the elastic scattering cross section, it is clear that
some elastic scattered electrons lose energy through the emission of bremsstrahlung
photons. Therefore the elastic peak is not symmetric because of the presence of a
radiative tail.

The radiative tail is considered in the fitting by including an exponential func-
tion in the left side. The fitting function that is employed in the A4 analysis is
then [3], [24].

f(x) =
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From the fit parameters of the right gaussian curve we can estimate the energy
resolution at the elastic peak energy.

∆E

E
=

σR

µ− p
(4.4)

where p is the pedestal of the calorimeter module.
As the signal is linear with the energy we can calibrate the ADC for each

Medusa module using the energy of the elastic peak and the ADC channel given
by the fit parameter µ. The offset is the pedestal of the module.
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E ′ = m · (xADC − p) (4.5)

Once the ADC is calibrated we can find the pion threshold channel by using the
pion threshold energy calculated with the equation 4.3. And now we can calculate
also the energy resolution at the pion threshold energy.

4.3.3 Energy resolution

Energy resolution at the elastic peak

The relative energy resolution is parametrized with three parameter as follows:

∆E

E
=

c1
E(GeV )

⊕ cs
√

E(GeV )
⊕ c3 (4.6)

where c1 is the energy independent contribution of the electronic noise, c1 =
0.6 %. cs is the statistical contribution to the energy resolution, cs = 4.69 % [3],
and c3 is related to an energy proportional term that takes into account signal
losses when the volume in which the energy deposition would be developed does
not fit in the detector size, c3 = 0.4 %.

For the elastic scattered electron energy of 0.195 GeV one can calculate the
relative energy resolution at the elastic peak: ∆E/E = 11 %. On the other
hand the energy resolution at the elastic peak for every calorimeter module is
calculated from the experimental energy spectrum using the equation 4.4. They
are statistically distributed and the average relative energy resolution corresponds
to ∆E/E|exp = 11 %.

Energy resolution at the quasielastic peak

From parameters obtained fitting the quasielastic peak we can estimate the
energy resolution at the quasielastic peak of deuterium. Since contributions to
energy resolution given by the statistical term, noise and loss of events can be
supposed to be equal for deuterium, the quadratic difference is a measure of the
energy broadening due to Fermi motion.

The quasielastic peak corresponding to the energy spectrum for the deuterium
target is also fitted to the function 4.3.2. The fit parameters are used to calculate
the relative energy resolution at the quasieleastic peak through the relation 4.4.
The energy resolution calculated for every module is also distributed with an av-
erage greater that that of hydrogen data. The average relative energy resolution
at the quasielastic peak is ∆E/E|exp = 16.7 %

Assuming that the only difference between the energy resolution shown by the
elastic peak (hydrogen data) and the quasielastic peak (deuterium data) is due to
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the energy smearing this term can be calculated through the quadratic relation
4.1

From the experimental values of the relative energy resolution for both hydro-
gen and deuterium data and using the energy 0.195 GeV for the elastic scattered
electrons the smearing parameter cF (where the F comes from the Fermi motion)
is calculated to be:

cF ≈ 24 MeV (4.7)

On the other hand the energy smearing can be estimated theoretically using
the known Fermi momentum for the deuteron, given by pF = 55 MeV . The
energy smearing can be related to the Fermi momentum through the relativistic
expression E2 = p2 +m2 taking differentials:

EdE = pdp (4.8)

Identifying the energy difference with the energy smearing dE = δω and the
momentum difference with the Fermi momentum dp = pF one obtains:

δω =
qpF

√

M2 + q2
(4.9)

where the momentum of the nucleon has been identified with the tri-momentum
transfer q. The tri-momentum transfer is related to the energy transfer δω and
the four-momentum transfer Q as follows:

Q2 = q2 − ω2 (4.10)

The energy transfer in the elastic scattering can be calculated through the
relation:

ω =
Q2

2M
= 122 MeV (4.11)

where M is the nucleon mass M = 939 MeV. It turns out that q = 495 MeV/c.

δω = 25.6 MeV (4.12)

This value of energy smearing is very close to that estimated using the quasielas-
tic peak fit parameters.
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4.3.4 Definition of cuts

In order to extract the number of elastic events we should determine the bound-
aries fo the elastic peak region. To do so both a lower cut and an upper cut in
energy are defined. The upper cut has the function of excluding the pile-up events
with more energy than that of a single event. The lower cut intends to separate
the elastic events from the inelastic events. Some degree of background in is un-
avoidable, especially at backward angles, therefore we must find an optimum place
in the ADC channel axis to locate the lower cut so that the systematic errors of
the asymmetry measurement are minimized. The choice of the lower cut will be
discussed in detail in the chapter 5.

The lower cut is taken to the right of the pion threshold. The distance of the
lower cut to the pion threshold is usually expressed in terms of k times the energy
resolution at the pion threshold energy. That is

Elowcut = Eπ0

Thres + k · ∆EThres (4.13)

At forward angle measurement the value k = 1.6 was chosen. At backward
angles we expect higher values of the cut k.

4.4 Monte Carlo simulation of the energy spec-

trum

In the A4 collaboration experiment a Monte Carlo simulation of the detector
response is carried out [26]. The simulation is able to reproduce the experimentally
observed energy spectra. We are interested here in the simulation at backward
angles for both hydrogen and deuterium target.

The simulation uses Geant42, an object oriented programming toolkit for simu-
lating the passage of radiation through matter. Geant4 uses Monte Carlo methods
for tracking particles.

The simulation carried out for the hydrogen target is discussed here. The
results can be easily transferred to the deuterium case.

4.4.1 Physical processes and detector response

The simulation can be divided in two parts: the physical processes occurring
during the interaction in the target and the detector response.

2http://www.geant4.org/geant4/
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Interaction in the target. The beam electrons interact with the materials of
the target cell and the target and therefore suffer an energy loss through ionization
and bremsstrahlung. As a consequence, instead of having a beam with a definite
energy, the beam electrons energy has a certain probability distribution function,
known as straggling function.

The main particles and physical processes that occur during the interaction
with the target are:

• Elastic scattering of the electron

~e− + p→ e− + p

• Inelastic scattering of the electron with the production of either a charged
pion or a neutral pion. Most of the pions are produced through the excitation
of the ∆(1232) resonance with a very short lifetime that decays producing
both a nucleon and a pion. The creation of pions through the inelastic scat-
tering of electrons is called electroproduction.

~e− + p→ e− + p+ π0

~e− + p→ e− + n+ π+

~e− + p→ e− + ∆(1232) → e− + p+ π0

~e− + p→ e− + ∆(1232) → e− + n + π+

• Neutral pions generated by photoproduction, through bremstrahlung pho-
tons. That is, beam electrons radiate γ’s when passing through matter via
bemstrahlung. These γ’s have certain probability to produce pions. This
process is called pion photoproduction.

~e− → e− + γ ⇒ γ + p→ p+ π0

• γ’s produced by the neutral pion decay.

π0 → 2γ

Detector response Before reaching the calorimeter the charged particles lose
energy as they pass through the materials between the target cell and the calorime-
ter like the scattering chamber walls and the plastic scintillators.

Once in the calorimeter the scattered electrons and the γ’s develop electromag-
netic showers. The fast particles of the electromagnetic showers are the responsible
for the production of Cherenkov radiation. The Cherenkov radiation is transmitted
through the calorimeter crystal and detected by the photomultipliers. The amount
of Cherenkov optical photons is proportional to the incoming particle energy.



60 4. Extraction of the count rates

4.4.2 Non-coincidence and coincidence spectra

The simulation must reproduce both the non-coincidence spectrum and the
coincidence spectrum.

The noncoincidence spectrum consists of the neutral particles background
that do not produce a signal in the scintillators. It is explained mostly by the
decay of neutral pions into photons π0 → 2γ. The simulated spectrum generated
by the neutral pion decay process is shown in the figure 4.6

The beam energy 315 MeV is sufficient to reach the pion production threshold.
During the inelastic scattering of a beam electron the production of either a neutral
pion or a charged pion is induced. Most of the pions are produced through the
excitation and decay of the ∆(1232) resonance. The π0 mean life is 8.4 × 10−17

s, since it decays via the electromagnetic interaction, and it is so short, even
considering the relativistic γ factor 3, that the π0’s do not reach the detector,
which is located at a distance of about 1 m from the target cell, but they decay
into γ’s. These γ’s have an energy comparable to that of the scattered electrons,
as they obtain energy also from the rest mass of the π0. The γ’s arrive to the
calorimeter where they develop electromagnetic cascades. The calorimeter is not
able to distinguish between the γ’s of the π0 decay and the scattered electrons.
On the other hand these γ’s do not produce a signal in the plastic scintillators and
therefore they are stored in the noncoincidence spectrum.

Pion Mass (MeV) Lifetime (s) Decay modes
π± 139.579 2.60 · 10−8 µνµ(100%)
π0 134.97 8.4 · 10−17 γγ(98%)

γe+e−(2%)

Values taken from [20]
On the other hand charged pions are also produced. They are generated in

a similar amount as the neutral pions but their contribution to the spectrum is
much less and it occurs mainly at low energies of the experimental spectrum. The
charged pions have a large lifetime since their decay modes occur via the weak
interaction. The π± mean life is 2.60 · 10−8 s = 26 ns so that most of them arrive
to the calorimeter before the decay occurs 4. In the calorimeter the π±’s lose energy
until they stay at rest since they are heavy particles 5. The main decay mode of the

3The kinetic energy of the pions would be at most of order of 100 MeV. The relativistic factor

γ = 1 +
Eπ

K

mπ

≈ 2.

4With a kinetic energy of order of 100 MeV a pion has a relativistic factor γ ∼ 2, that is
v ∼ 0.87c and the time to reach the calorimeter, at a distance of ∼ 1 m is about 4 ns

5The calorimeter is a Cherenkov detector. So for low velocities the signal is no longer linear
with the energy.
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Figure 4.6. The simulated noncoincidence spectrum for the H2 target is shown in
yellow. This simulation includes only the contribution of the π0 → 2γ, the neutral pions
being those originated in the target by both electroproduction and photoproduction.
The histogram in red is the experimentally observed noncoincidence spectrum. The
agreement of the simulated spectrum with the experimentally observed is very good
at the high energies. For the lower energies one can observe a discrepancy between
the simulated and the experimentally observed spectrum. This region probably can be
explained by the contribution of the decay products of the charged pions produced by
the beam electrons in the target. Figure taken from [27]
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Figure 4.7. The simulated contribution of both the elastically and inelastically scat-
tered electrons to the coincidence spectrum for the H2 target is shown in green. The
yellow region corresponds to the simulation of the contribution of the π0 → 2γ to the
coincidence spectrum. The γ’s deliver their energy to electrons through processes like
pair production, Compton scattering or photoelectric effect during the interaction with
the materials between the target cell and the scintillators, included. By this way the
γ’s of the π0 decay contribute to the coincidence spectrum. The histogram in red cor-
responds to the experimentally observed coincidence spectrum. The agreement is good
in the elastic peak. The disagreement is greater for low energies. This disagreement is
due to the lack of the contribution of the decay products of the charged pions as in the
noncoincidence case. Figure taken from [27]
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charged pions is the decay into muons, which have a large mass mµ ≈ 105 MeV.
Finally the muon µ± decays into an electron (or positron) and a neutrino. If the
electron produces a signal it is not in coincidence with the scintillator signal so that
it is stored in the noncoincidence histogram. For all these reasons the contribution
of the charged pions is only visible in the low energy part of the noncoincidence
spectrum.

The simulated coincidence spectrum is composed of the elastic scattered
electrons and the inelastically scattered electrons corresponding to the pion pro-
duction. The coincidence spectrum incorporates as well the γ’s of the π0 decay
that leave a signal in the plastic scintillators as they deliver totally or partially
their energy to electrons during the interaction of the γ’s with the materials lo-
cated between the target cell and the plastic scintillators: the scattering chamber
walls and the plastic scintillators themselves. This effect might happen through
the following processes: a γ converts into a electron-positron pair, suffers Compton
scattering or photoelectric effect. Further the photon itself or the electron delivers
its energy in the calorimeter producing thus a signal in both a plastic scintillator
and the calorimeter so that this event is recorded in the coincidence spectrum (see
the figure 4.7).

4.5 Model for background subtraction

The simulation of the detector response to the neutral background of γ’s sug-
gests using a simple model to subtract the neutral background mixed in the co-
incidence spectrum. The idea is using the non-coincidence spectrum Nnon(x) to
estimate the amount of neutral background Nbk(x) present in the coincidence spec-
trum in each bin x. The model has two basic parameters:

Nbk(x) = ǫ ·Nnon(x+ δ) (4.14)

• A scaling factor ǫ: It is related to the probability of conversion of γ’s into
e− − e+ pairs. Therefore we must multiply the noncoincidence spectrum by
this scaling factor ǫ to estimate how many gamma photons produce a signal
in the scintillators and therefore how many are present in the coincidence
spectrum.

• A shift δ in the energy: It takes into account the difference in energy loss
between electrons that produce a signal in the scintillators and photons that
do not produce a signal in the scintillators.

The parameters of the model ǫ and δ can be determined either by the simulation
or by the following simple estimation: The dominant process by which the γ’s
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Figure 4.8. H2 target:The black histogram corresponds to the coincidence spectrum
for hydrogen. The red histogram is obtained from the noncoincidence histogram applying
the scaling and shifting model. It is an estimation of the background in the coincidence
spectrum. The histogram in blue is the difference between the coincidence histogram
and the histogram of the background present in the coincidence spectrum. The blue
histogram represents the true elastic events. One can observe that at the left of the
elastic peak the number of true events is not zero. This is correct because the histogram
of the true events must contain the radiative tail. For the lower energy part of the
energy spectrum, though, the histogram of the true events becomes negative showing
the limitations of the scaling and shifting model.
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Figure 4.9. D2 target: The black histogram corresponds to the coincidence spectrum
for hydrogen. The red histogram is obtained from the noncoincidence histogram applying
the scaling and shifting model. It is an estimation of the background in the coincidence
spectrum. The histogram in blue is the difference between the coincidence histogram
and the coincidence background histogram. The blue histogram represents the true
quasielastic events.One can observe that at the left of the quasielastic peak the number
of true events is not zero. This is correct because the histogram of the true events must
contain the radiative tail. For the lower energy part of the energy spectrum, though,
the histogram of the true events becomes negative showing the limitations of the scaling
and shifting model. One can observe that the degree of neutral background mixed in
the quasielastic peak is larger than at the elastic peak.
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deliver energy to electrons and therefore generate a signal in the scintillators is the
pair production. The pair production probability in the scattering chamber walls
and in the scintillators can be estimated. The probability per unit length of pair
production is the product of the pair production cross section and the material
density of atoms. It is equal by definition to the inverse of the pair conversion
length that is related with the material radiation length [28].

p/l = Nσ =
1

λpair

≃ 7

9

1

X0

(4.15)

where p/l refers to the probability per unit length, σ is the pair production cross
section, N is the density of atoms in the material, λpair is the pair conversion
length and X0 is the material radiation length. This formula defines a probability
per unit length. Now we consider the Aluminium scattering chamber wall with a
thickness of 5 mm in the trajectory of electrons and the plastic scintillators whose
thickness is 2 cm. The aluminium radiation length is XAl

0 = 8.9 cm [20] and the
plastic scintillators radiation length is XP lS

0 = 42.5 [20].

p = Nσ∆x ∼ 7

9

∆x

X0
=

7

9

( 0.5/ sin 35◦

8.9
+

2/ sin 35◦

42.5

)

= 7.6 % + 6.4 % = 14 %

(4.16)
However if the pair is produced at the end of the passage through the plastic
scintillator no signal will be generated in the scintillator. Therefore the probability
for pair production in the materials between the scattering chamber and the plastic
scintillator is overestimated. The estimation of the probability that the γ’s produce
a signal in the scintillators given by the scintillators is ǫ ≈ 0.10 [29]

The charged particles suffer an energy loss by ionization and radiation as they
pass through the scintillators material and through the materials between the
target and the scintillators. That means that there is a shift between coincidence
and noncoincidence histograms provided photons do not lose so much energy. We
can estimate the energy loss of the electrons as they cross the plastic scintillators
and the scattering chamber wall.

(∆E)loss = ρ

(

dE

dx

)(

∆x

sin θe

)

(4.17)

where ρ is the density of the material in g/cm3, dE/dx is the stopping power in
MeV·g/cm2, ∆x is the width of the material and θe is the scattering angle.

Material ρ(g/cm3)
dE

dx
(ion)

dE

dx
(rad) ∆x (cm) (∆E)loss

Al 2.70 1.892 6.909 0.5 20.65
Pl. Scint. 1.032 2.198 3.710 2.0 21.29
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Figure 4.10. The left panel contains the noncoincidence spectrum in red and the coin-
cidence spectrum in blue. The purple vertical lines represent the pion threshold and the
quasielastic peak. The black vertical line represents the lower cut in energy and the green
vertical line the upper cut. Both lines delimit the quasielastic peak region. The noncoin-
cidence histogram is integrated between the cuts corresponding to the quasielastic peak
after applying to them a shift according to the model for the subtraction of background.
The integrated region appear in red. The coincidence histogram is integrated between
the lower and the upper cut. This integral is coloured in blue. The right panel contains
the coincidence histogram in a greater scale. The green histogram is obtained from the
noncoincidence histogram applying a shift and a scaling factor. The integrated region
in green represents the background in the coincidence spectrum.

where the stopping power is given in MeV·g/cm2 and corresponds to the energy
180 MeV. The densities are taken from [20] and the stopping powers are given by
[30]. The electron energy loss at these materials is overestimated because some γ’s
emitted by the electrons are not absorbed and arrive to the detector since the γ’s
are emitted in a narrow cone in the direction of the scattered electron.

The shift in the energy is estimated by the simulation to be δ ≈ 35 MeV
according to [29].

In the analysis of the data the values of ǫ and δ provided by the simulation [29]
are used.

4.6 Application of the model to extract the quasielas-

tic events

The neutral background in the coincidence spectrum can be estimated from the
noncoincidence spectrum applying to it the shift δ in energy and multiplying by
the conversion factor ǫ. Let y(x) be the content of the coincidence background his-
togram for the energy x. Let h(x) be the content of the noncoincidence histogram
at the energy x. Then:
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y(x) = ǫ · h(x+ δ) (4.18)

In the figures 4.8 and 4.9 we can see for the H2 target and the D2 target, re-
spectively, the coincidence histogram in black. In red we can see the coincidence
background histogram after applying the scaling and the shift to the noncoinci-
dence histogram. The histogram in blue is the subtraction of the background from
the coincidence histogram and corresponds to the true elastic events (for the H2

target) or to the quasielastic events (for the D2 target) .
In order to extract the rate of (quasi)elastic events the (quasi)elastic peak must

be integrated between the lower cut and the upper cut. The best choice of the lower
cut is discussed in the chapter 5. The coincidence histogram should be integrated
as it is shown in the figure 4.10, the blue region in both panels. The integral for
both polarization states is calculated separately, calling them N+

co and N−
co.

N±
co =

up
∑

i=low

N±
i,co (4.19)

where low represents the ADC channel of the lower cut in energy and up has an
analog meaning for the upper cut in energy, the N±

i,co represents the number of
counts for the ADC channel i of the coincidence histogram.

In order to calculate the background dilution the integral of the non-coincidence
histogram is performed. The shift is applied by performing the integral with the
shifted lower and upper cuts. The shifted integrated region can be seen in the first
panel of the figure 4.10 in red. The integrals of the noncoincidence spectrum are
performed for both polarization states separately, calling them N+

non and N−
non.

N±
non =

up+δ
∑

i=low+δ

N±
i,non (4.20)

where low and up have the same meaning as in the last equation, the N±
i,non

represents the number of counts for the ADC channel i of the noncoincidence
histogram and δ is the shift in energy that is applied to the lower and the upper
cut.

Afterwards the nonconcidence number of counts N±
non is multiplied by the con-

version factor ǫ to obtain the amount of background in the (quasi)elastic peak.
This amount can be seen in both panels of the figure 4.10 in green.

Now we can calculate the number of estimated true (quasi)elastic counts sub-
tracting the background events and the coincidence events, that is:

N±
good = N±

co − ǫN±
non (4.21)
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4.7 Rate estimation and the experimentally ob-

served

After extracting the count rate of quasielastic events from the energy spectrum
the experimentally observed rates and hence the cross section shall be compared
here with the predicted rates from the theoretical cross section in order to check
that the physical processes agree with what is expected. The comparisons are
based, throughout, on the assumption that the Rosenbluth cross section is a good
first approximation for the elastic scattering. Moreover for the quasielastic scatter-
ing on the deuteron we resort to the static approximation in which the deuteron
is modelized as two free nucleons (proton and neutron) at rest. Therefore the
quasielastic scattering cross section is the sum of the elastic scattering cross sec-
tions for both nucleons.
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(4.22)

where the Rosenbluth cross section is:

dσ

dΩ
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∣

∣

∣

Ros

(E, θ) =
dσ

dΩ

∣
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∣

∣
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2

}

(4.23)

the Mott cross section is:

dσ

dΩ

∣

∣

∣

∣

Mott

(E, θ) =
α2

4E2 sin4
θe

2

· E
′

E
cos2

θe

2
(4.24)

The parameters have the same meaning as those defined in the equation 1.9 in the
section 1.1. In our case E = 315.1 MeV. Now we list the parameters that depend
on the polar angle.

Ring θ E ′ (MeV) Q2 (GeV2) Gp
E Gp

M Gn
E Gn

M

1 140.78 197.5 0.2208 0.5878 1.6598 0.0237 −1.1432
2 142.31 196.8 0.2205 0.5862 1.6554 0.0238 −1.1402
3 143.80 196.2 0.2233 0.5847 1.6513 0.0239 −1.1374
4 145.23 195.6 0.2244 0.5833 1.6475 0.0239 −1.1348
5 146.61 195.0 0.2254 0.5820 1.6440 0.0240 −1.1324
6 147.94 194.5 0.2264 0.5808 1.6408 0.0241 −1.1302
7 149.23 194.1 0.2272 0.5797 1.6378 0.0241 −1.1282

where we have calculated the scattered electron energy E ′ using the equation 4.2,
the square four-moment transfer Q2 using the equation 1.10 and the electromag-
netic Sachs form factors for both the neutron and proton have been calculated
using the Friedrich and Walcher parametrization given by [31].
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As we want to compare both the count rates and the differential cross sections,
we need both quantities as an average over the detector acceptance and the target
length:

(

dσ

dΩ

)

av

=
1

∫

target
dl

∫

Ω
dΩ

∫

target

dl

∫

dσ

dΩ
(E, θ)dΩ (4.25)

R = L
1

∫

target
dl

∫

target

dl

∫∫

dσ

dΩ
(E, θ) sin θ dθ dφ (4.26)

Comparison of the experimentally observed and the expected rates

The experimentally observed cross section is calculated as the quotient of the
luminosity L and the count rate R

σ =
R

L
(4.27)

where the count rate is calculated for every ring as they cover the whole 2π az-
imuthal angle and a small interval of the polar scattering angle. The number of
counts for one ring is calculated using a single run (to keep the beam conditions as
stable as possible) and adding the number of counts of all the frames correspond-
ing to one ring. In each single module the number of counts for both polarization
states are added.

Ni,Ring =

146
∑

fr=1

Ni,mod

(

Ni,mod = N+
i,mod +N−

i,mod

)

(4.28)

The number of counts per ring is divided by the duration of one single run Ti = 300
s. The particular value of the beam current intensity for the run used is provided
by the PIMO27 beam current monitor. The count rate is normalized to the beam
current intensity of 20 µA and is normalized to the total number of frames per
ring, as some of them are not included in the analysis because they are damaged
or not working.

Ri,Ring =
Ni,Ring

Ti

20µA

Ii

146

nDet
i,Ring

(4.29)

In the table below we show the average polar angle θ̄, the solid angle ∆Ω, the
theoretical Rosenbluth cross section σtheo and the experimentally observed cross
section calculated from the data σexp for the seven rings of the calorimeter. The
values of both the experimental and the theoretical cross sections are plotted in
the figure 4.11. The Rcal is calculated by means of the equation 4.26. On the
other hand, the experimentally observed count rate Rexp is the calculated using
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the equation 4.29. In the last column the ratio of the experimental rate to the
predicted rate Rexp/Rcal is shown for comparison.

Ring θ ∆Ω(sr) Rcal(kHz) Rexp(kHz) σtheo(nb) σexp(nb) Rexp/Rcalc

1 140.78 0.1040 299 225 20.84 17.49 75.0%
2 142.31 0.1006 272 210 20.28 16.94 77.3%
3 143.80 0.0972 246 190 19.77 15.85 77.3%
4 145.23 0.0938 225 169 19.32 14.63 75.2%
5 146.61 0.0905 205 152 18.91 13.63 74.3%
6 147.94 0.0873 186 130 18.54 12.06 69.9%
7 149.23 0.0842 169 113 18.21 10.84 66.6%

The measured cross sections are smaller than the theoretical results. Neverthe-
less we are using the very näıve model of the deuteron cross section (see equation
4.22) based in the static approximation that is not sufficient to account for the
quasielastic process in the deuteron. Moreover we have not considered the radia-
tive corrections that deplect the quasielastic cross section as occurs in the case of
the elastic cross section (as can be seen in the frame of the diploma [26]). We have
shown here all the seven rings but the ring 1 and 7 should be discarded because
in those rings the crystals are not surrounded by the complete set of eight crystals
necessaries so that the energy deposition of the incident particles can be devel-
oped almost completely. The comparison in the figure 4.11 of the calculated cross
section and the experimentally observed cross section shows that they present dif-
ferent slopes. The discrepancy between them increases with the scattering angle.
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Figure 4.11. In red triangles the calculated cross section with the rough approximation
(dσ/dΩ)d ≈ (dσ/dΩ)p + (dσ/dΩ)n for every ring is shown. In black one can see the
experimentally observed cross section with the error bars.
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Chapter 5

Determination of the physical
asymmetry

The aim of this work is the extraction of the asymmetry in the quasielastic
scattering. For this purpose the measured spectra described in the last chapter
are used to obtain the number of counts for both opposite polarization states.
The quasielastic peak appears isolated in the coincidence spectrum and we have
the model described in section 4.5 to subtract the neutral background from the
coincidence spectrum. Nevertheless due to the uncertainties inherent to the model
parameters the extraction of the true events is not trivial. The first part of this
chapter is thus devoted to the discussion of the optimum procedures to apply the
model to obtain the true events. Two procedures are discussed: one based in
the search of an optimum lower cut in energy; and another based in a weighted
binwise method. First of all we present a discussion on the statistical behaviour
of the number of counts and the measured asymmetry that will be useful in the
following discussion of the above-mentioned procedures. Once the raw asymmetry
has been extracted from the spectra we will check that the asymmetry azimuthal
dependence is the expected one for the transverse spin asymmetry. The second
part of the chapter is devoted to the correction of the raw asymmetry from the
false asymmetries due to helicity correlated changes in the beam parameters or in
the luminosity. The method employed is the multilinear regression analysis.

5.1 Statistical considerations

First we will make some considerations about the statistical behaviour of the
measured asymmetry and about the number of counts. We will derive the ex-
pression for the statistical uncertainty in the measured asymmetry and also the
expected statistical uncertainty in the number of counts as both the asymmetry

73
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and the number of counts uncertainties are closely related.

Number of counts The probability of scattering of beam electrons to the
calorimeter solid angle is very small. It can be estimated as the quotient of the
scattered electrons rate for the whole calorimeter R ≈ 1022 · 1.4 kHz and the flux
of incident beam electrons Ie/e where Ie = 20 µA is the beam current intensity
and e is the electron charge:

p =
R

Ie/e
≈ 10−8 (5.1)

As the probability of scattering is very small and the incident flux of electrons
is large Ie/e = 1.25 · 1014 s−1, the number of events is expected to follow a Poisson
parent distribution 1. If the mean of the number of counts, that is, the number of
observed scattered electrons, for a certain time period is N the standard deviation

will be the square root of the mean σ =
√
N . Moreover since the mean of the

number of counts for a certain time period is large the Poisson parent distribution
fulfils the gaussian limit. Hence the parent distribution of the number of counts,
if the statistical fluctuations of the beam parameters, especially the beam current
intensity, are not considered, is a gaussian whose width σ is the square root of the
mean.

Asymmetry The asymmetry in the number of counts for the opposite polariza-
tion states, called the raw asymmetry, is defined as:

A =
N+ −N−

N+ +N− =
∆N

N
(5.2)

The asymmetry is expected to follow a gaussian parent distribution. The stan-
dard deviation of the asymmetry can be expressed as a function of the statistical
uncertainty in the number of counts. For that purpose we can use the theory of
error propagation. Or equivalently: the squared relative error of a quotient is the
sum of the squares of the relative errors:

σ2(A)

A2
=
σ2(∆N)

(∆N)2
+
σ2(N)

N2
(5.3)

Now we use the fact that σ(∆N) = σ(N) to write

σ2(A)

A2
=
σ2(N)

(∆N)2
+
σ2(N)

N2
(5.4)

1In the processes that lead to the Poisson distribution we consider only the scattering but of
course in the real experiment the probability of detection should be also taken into account
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And using the definition of the asymmetry ∆N = A ·N

σ2(A)

A2
=
σ2(N)

(AN)2
+
σ2(N)

N2
(5.5)

Taking out a common factor

σ2(A)

A2
=
σ2(N)

N2

(

1 +
1

A2

)

(5.6)

So finally

σ(A) =
σ(N)

N

√
1 + A2 (5.7)

If the asymmetry is very small A ≈ 10−6 the statistical error might be approxi-
mated by

σ(A) =
σ(N)

N
(5.8)

In the case the number of counts has a Poisson parent distribution σ(N) =
√
N

we obtain the very familiar expression for the asymmetry standard deviation

σ(A) =
1√
N

(5.9)

The last derivation has taken into account only the statistical fluctuations of
the underlying scattering process. If there are other processes whose statistical
fluctuations have influence on the asymmetry value like fluctuations of either the
beam current intensity or the target density, it is expected, according to the Central
Limit Theorem, the asymmetry to follow a broader gaussian distribution; just in
the case those fluctuations are not helicity correlated. These contributions to
the asymmetry error are known as non helicity correlated systematic errors. On
the other hand if those fluctuations are helicity correlated they shift the mean of
the asymmetry distribution and are called helicity correlated systematic errors.
A schematic drawing of the difference between the helicity correlated systematic
errors and the non helicity correlated fluctuations is shown in the figure 5.1.

5.2 Determination of the raw asymmetry from

the experimentally observed spectra

Now we focus in how to determine the asymmetry in the quasielastic scatter-
ing from the coincidence and noncoincidence spectra. For that purpose the true
quasielastic events must be extracted from the experimental histograms for both
polarization states. The raw asymmetry is calculated as:
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Uncorrelated noise:

The measured asymmetry

distribution is broader 

Helicity correlated systematics:

The measured asymmetry

distribution is shifted

N

A

N

ΔA

 →

A

Figure 5.1. The upper picture illustrates the effect of the fluctuations that are not
helicity correlated: they just make the asymmetry distribution broader. On the other
hand if there are helicity correlated fluctuations of beam properties or target fluctuations
a shift of the mean asymmetry occurs [22].

Aph =
N+

ph −N−
ph

N+
ph +N−

ph

(5.10)

As it was explained in the last chapter the quasielastic peak is delimited by
two cuts in energy: an upper cut to exclude the pile up events, and a lower cut to
separate the quasielastic events from the inelastic events. The neutral background
mixed in the quasielastic region can be subtracted using the scaling and shifting
model. However the uncertainties in the parameters of the model introduce a
source of error in the extraction of the asymmetry.

Two different methods will be used to extract the true events by means of the
scaling and shifting model and to handle the source of error introduced by them:

• applying an optimum lower cut in energy

• and the weighting procedure.
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The first method, the application of an optimum lower cut, has been studied
with much more intensity in the framework of this thesis and therefore it will be
presented here more detailed than the other one.

5.2.1 Applying cuts

In this procedure the number of quasielastic events are obtained integrating
the histograms between convenient cuts in energy and applying the scaling and
shifting model. Then the dependence of the measured asymmetry error on the
position of the lower cut in energy is studied so that an optimum lower cut can be
found to minimize the error.

First the quasielastic peak (in the coincidence histogram) is integrated between
a lower cut and an upper cut in energy for both polarization states and the number
of counts obtained from these integrals are called N+

co and N−
co. The asymmetry

associated with these numbers of counts of the coincidence histogram is:

Aco =
N+

co −N−
co

N+
co +N−

co

(5.11)

Afterwards the noncoincidence histogram is integrated between the same lower
and upper cuts in energy as in the coincidence histogram, but both cuts shifted to
the right by the amount δ provided by the model. The noncoincidence integrals are
performed also for both polarization states. The number of counts resulting from
these integrals are called N+

non+δ and N−
non+δ, where the subindex δ has been in-

cluded to remind that the integral in the noncoincidence histogram is done between
the shifted cuts. The asymmetry associated with the noncoincidence histogram
events is:

Anon =
N+

non+δ −N−
non+δ

N+
non+δ +N−

non+δ

(5.12)

Finally, in order to obtain an estimation of the background in the quasielastic
peak region in the coincidence histogram the N±

non+δ are multiplied by the model
scaling factor ǫ. This estimated background is subtracted from the coincidence
number of counts.

N±
ph = N±

co − ǫN±
non+δ (5.13)

The raw asymmetry in the quasielastic events in thus calculated from these
estimated true quasielastic number of counts N±

ph.

Aph =
(N+

co − ǫN+
non+δ) − (N−

co − ǫN−
non+δ)

(N+
co − ǫN+

non+δ) + (N−
co + ǫN−

non+δ)
(5.14)

The expression for the asymmetry in the quasielastic events can be written in
terms of both the coincidence and noncoincidence asymmetries.
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Regrouping terms in the equation 5.14

Aph =
(N+

co −N−
co) − ǫ(N+

non+δ −N−
non+δ)

(N+
co +N−

co) − ǫ(N+
non+δ −N−

non+δ)
(5.15)

using now the definitions of both Aco and Anon and calling Nco = N+
co + N−

co and
Nnon+δ = N+

non+δ +N−
non+δ

Aph =
AcoNco − ǫAnonNnon+δ

Nco − ǫNnon+δ
(5.16)

Dividing both numerator and denominator by Nco

Aph =
Aco −

ǫNnon+δ

Nco

Anon

1 −
ǫNnon+δ

Nco

(5.17)

Observe that ǫNnon+δ

Nco
= ǫNnon+δ

Nph+ǫNnon+δ
is the proportion of events inside the coinci-

dence histogram integrated region that correspond to the background. We will
call this proportion the dilution factor f :

f =
ǫNnon+δ

Nco

=
ǫNnon+δ

Nph + ǫNnon+δ

(5.18)

The dilution factor satisfies 0 ≤ f ≤ 1

Aph =
Aco − fAnon

1 − f
(5.19)

The equation 5.19 is the basic formula to calculate the physical asymmetry.
It means that the noncoincidence asymmetry must be taken into account for the
background events in the coincidence histogram in order to calculate the asymme-
try in the quasielastic scattering.

The choice of a convenient lower cut is not trivial. We sum up the reasons that
make it necessary to find a criterium in order to choose an optimum lower cut:

• The finite energy resolution of the detector that mixes both the quasielastic
and inelastic events. This fact is common for all the configurations even at
the forward angles.

• The presence of some degree of neutral background in the coincidence spec-
trum at the backward configuration. This presence is even more acute in the
case of deuterium data.

The second reason is the dominant in our particular configuration.
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Energy ADC
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Figure 5.2. The coincidence histogram is shown in blue. The noncoincidence his-
togram is shown in red. Both correspond to the deuterium target. The pointed lines
represent the quasielastic peak and the pion threshold. The black line to the right corre-
sponds to the upper cut in energy of the quasielastic peak. And the black line in the left
corresponds to the lower cut. The coincidence histogram is integrated between the lower
and the upper cuts to obtain the coincidence counts. The integrated region is filled with
blue. The noncoincidence histogram is integrated applying the model shift δ to the cuts.
The red region is the integrated region where the noncoincidence events are extracted
from. The black histogram corresponds to the background in the coincidence spectrum,
according to the model. It is obtained from the noncoincidence histogram applying the
shift δ and the scaling factor ǫ. The green region corresponds to the background inside
the quasielastic peak. The integral corresponding to the green region is equivalent to
multiplying the noncoincidence red region by the scaling factor ǫ. The spectra shown in
the figure correspond to the module 32, in the ring 4.
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Uncertainty of the extracted physical asymmetry as a function of the
lower cut position

From the equations 5.13 and 5.19 the necessity of an optimum lower cut can
be understood.

The presence of a background in the coincidence spectrum will introduce a
systematic error due to the uncertainty in the parameters δ and ǫ of the model.
If the lower cut is moved to the right we lose statistics but the systematic error
also decreases. On the other hand if the lower cut is moved to the left to gain
statistics, the systematic error is increased.

From equation 5.13 we get

σ2(Nph) = σ2(Nco) + ǫ2σ2(Nnon+δ) = Nco + ǫ2Nnon+δ (5.20)

where we have not taken into account for the moment the error in the parameters.
And finally we get for the error of the asymmetry, using the equation 5.8:

σ2(Aph) ≈
σ2(Nph)

N2
ph

=
Nco + ǫ2Nnon+δ

(Nco − ǫNnon+δ)2
(5.21)

And dividing both numerator and denominator by N2
co

σ2(Aph) ≈
1

(1 − f)2

1

Nco
+

f 2

(1 − f)2

1

Nnon+δ
(5.22)

This approximate formula for the asymmetry shows that both terms are a product
of two factors

• The first factors 1/(1−f)2 or f 2/(1−f)2 that are decreasing when the lower
cut is moved to the right. Because when going to the right the background
dilution f decreases.

• The second factors 1/Nco and 1/Nnon+δ increase when the lower cut is moved
to the right because both Nco and Nnon+δ decrease.

Therefore the σ(Aph) presents a minimum for some position of the lower cut
or equivalently for some value of the dilution factor f .

Effectively when the lower cut is moved to the left the number of true events Nph

increases and therefore we would expect a decrease of the asymmetry statistical
error but at the same time we must subtract a greater amount of background in
order to get the true events. The error of the difference, that is quadratically
additive, σ(Nph) =

√

σ2(Nco) + σ2(ǫNnon+δ) increases the statistical error σ(A) =
σ(Nph)/Nph.
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Exact formula for the physical asymmetry error

After this discussion we can define the σ(A) physical asymmetry error as the
figure of merit.

In order to calculate the exact formula for σ(Aph) we can apply the theory of
propagation of errors to the formula 5.19. Since the dilution factor is given by
f = ǫNnon+δ/Nco the uncertainty of f comes from the uncertainty in the model
parameters δ and ǫ and from the error in the number of counts of the coincidence
histogram Nco and the number of counts of the noncoincidence histogram Nnon+δ.
Moreover, the asymmetry in the noncoincidence spectrum Anon depends on the
value of the δ parameter because the asymmetry of the neutral background, that
is a mixture of several physical processes with different physical asymmetries,
depends on the energy cut. The error in the physical asymmetry is thus calculated
as:

σ2(Aph) =

(

∂Aph

∂Aco

)2

σ2(Aco) +

(

∂Aph

∂Anon

)2

σ2(Anon) +

(

∂Aph

∂Nco

)2

σ2(Nco)+

+

(

∂Aph

∂Nnon+δ

)2

σ2(Nnon+δ) +

(

∂Aph

∂ǫ

)2

σ2(ǫ) +

(

∂Aph

∂δ

)2

σ2(δ) (5.23)

Doing the derivatives we arrive to the formula:

σ2(Aph) =
1

(1 − f)2
σ2(Aco) +

f 2

(1 − f)2
σ2(Anon)+

+ (Aph − Anon)2 f 2

(1 − f)2

[

σ2(Nco)

Nco
+
σ2(Nnon+δ)

Nnon+δ
+
σ2(ǫ)

ǫ2

]

+
f 2

(1 − f)2

[

(Aph −Anon)
1

Nnon+δ

∂Nnon+δ

∂δ
− ∂Anon+δ

∂δ

]2

σ2(δ) (5.24)

Looking carefully at the formula 5.24 we see that the error in the dilution factor
is suppressed by the factor

(

Aph − Anon

)

if the asymmetries differ in some tens
of ppm as we expect, that is Aph − Anon ≈ 10−5. Let us compare the order of
magnitude of each term included in the formula 5.24 so that we can see which
terms are the relevant.

The following relations and values will be used to estimate the order of mag-
nitude:

σ(Aco) =
1√
Nco

(5.25)

σ(Anon) =
1√

Nnon+δ

(5.26)
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The rough estimation of the background dilution factor f = 0.2 The estimated
number of coincidence counts used in this analysis is Nco = 4 · 105 · 1022 · 700 =
2.8·1011 . Equivalently for the noncoincidence histogram: Nnon+δ = 106·1022·700 =
7 ·1011 The rough estimation of the difference in the asymmetry in the quasielastic
scattering and the asymmetry in the noncoincidence events |Aph − Anon| = 10−5.
We assume that the relative errors in the model parameters ǫ and δ are around
10%.

Order of magnitude

1
1

1 − f
σ(Aco) 2.36 ppm

2
f

1 − f
σ(Anon) 0.30 ppm

3
f

1 − f
|Aph − Anon|

σ(Nco)

Nco
4.7 · 10−6 ppm

4
f

1 − f
|Aph − Anon|

σ(Nnon+δ)

Nnon+δ
3.0 · 10−6 ppm

5
f

1 − f
|Aph − Anon|

σ(ǫ)

ǫ
0.25 ppm

6
f

1 − f
|Aph − Anon|

∣

∣

∣

1

Nnon+δ

∂Nnon+δ

∂δ
−

∂Anon+δ

∂δ

∣

∣

∣
σ(δ) 1.3 ppm

One can observe that the first term is the dominant. The systematic contributions
due to uncertainties in the model parameters, terms 5 and 6, start competing
with the second term when the complete set of data, that is all the counts, is
used in the analysis. The first term is the dominant and the terms 2 and 5 give
a small contribution of the same order of magnitude between them. The terms
3 and 4 are completely negligible. Finally the contribution to the error arising
from the dependence of the Anon on the energy cut is given in the row 6. This
contribution has been estimated using the results of the analysis of the asymmetry
in the noncoincidence spectrum that will be introduced in the section 6.3.

Let us define as statistical error those terms that are decreasing functions of
total integrated number of events. On the other hand, it makes sense defining
the last terms as the systematic error. Any uncertainty in the knowledge of the
conversion factor or the shift will produce a change of the measured asymmetry.
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∆2
stat(Aph) =

1

(1 − f)2
σ2(Aco) +

f 2

(1 − f)2
σ2(Anon) (5.27)

∆2
syst(Aph) = (Aph − Anon)2 f 2

(1 − f)2

σ2(ǫ)

ǫ2
+

+
f 2

(1 − f)2

[

(Aph − Anon)
1

Nnon+δ

∂Nnon+δ

∂δ
− ∂Anon+δ

∂δ

]2

σ2(δ) (5.28)

The terms depending on σ(N) are suppressed by (Aph − Anon)2.

Data analysis-finding the optimum lower cut

In the figure 5.2.1 one can see how the total integrated number of events de-
pends on the lower cut. The particular module 32, at the central ring 4, for one
single run is used as an illustration without limiting the generality of the discus-
sion. In red is shown the dependence of the noncoincidence counts on the lower
cut and in blue the dependence of the coincidence counts on the lower cut. In the
figure 5.5 one can observe the dependence of the dilution factor on the position of
the lower cut. With this information the asymmetry error is calculated according
to the equation 5.24 for one module as a function of the position of the lower cut.
This function is shown in the figure 5.6. The curve shows that the error decreases
if the lower cut is moved to the right, up to a minimum value, at the ADC channel
30 (for this particular module) and then it starts increasing quickly. So if we want
to minimize the asymmetry error the optimum cut for this module would be at
ADC = 30. It corresponds to a dilution factor f ≈ 20 %.

Instead of finding the optimum cut in terms of the k defined in 4.3.4 for each
single module a more practical procedure is used. This procedure consists in
labelling the lower cut with the dilution factor f given according to the scaling
and shifting model. The lower cut for each module and for each single run in
selected so that the dilution factor is the same in all the channels and all the runs
used in the analysis. To investigate this dependence all the runs of the transversal
spin data are used. The samples of runs and the corresponding information about
the GVZ half-wave plate are shown in the table below.

Sample Run numbers GVZ
1 44662 − 48000 IN
2 44802 − 44938 OUT
3 49153 − 49413 OUT
4 49415 − 49682 IN
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In order to extract the asymmetries from the data several lower cuts have been
used that correspond to the values of the dilution factor f = 29%, 23%, 20%,
17%, 14%, 11%, according to the simple model to subtract the background from
the coincidence spectrum. In the figure 5.7 the raw asymmetry distributions for a
single sector corresponding to the different values of the dilution factor are shown.
The width of the gaussians are used to estimate the error of the asymmetry. The
errors are shown in the table below

dilution ∆(Araw
⊥ )(ppm)

29% 8.84
23% 8.57
20% 8.62
17% 8.61
14% 8.74
11% 8.96

In this table we can observe the dependence of the error in the asymmetry with the
dilution factor, that is, with the lower cut. The general tendency in all the sectors
is that the error decreases with the dilution factor until it reaches a minimum at
f = 17% and then the error starts increasing. There are, though, some fluctuations
as that we can observe at f = 23% where the error is minimum and it breaks the
tendency. In order to increase the statistics it is better to collect all the sectors.
As it is explained in the next section 5.3 we can obtain the error of the asymmetry
combining all the sectors. The table below contains the error of the amplitude
of the asymmetry when the asymmetries corresponding to each sector are plotted
and fitted to a cosine.

dilution Araw
⊥ (ppm) ∆stat(A

raw
⊥ )(ppm)

29% −30.76 4.34
23% −34.40 4.20
20% −35.50 4.20
17% −36.21 4.14
14% −37.86 4.17
11% −40.69 4.32

The table above confirms that the asymmetry error decreases as the dilution
factor goes down, it reaches a minimum and afterwards it starts increasing. The
minimum corresponds to the dilution factor f = 17%. It shows also a systematic
drifting of the raw asymmetry value as the dilution factor changes. This drifting
is a little larger than the asymmetry error. It is an evidence of the insufficiency
of the model. The relation of the background in the coincidence spectrum with
the photon spectrum, that is, the noncoincidence histogram is not so simple as the
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Figure 5.3. The picture shows the coincidence histogram in blue for D2 data. The
histogram in red is obtained from the noncoincidence histogram applying a shift δ and a
scaling factor ǫ. The vertical lines represent the different lower cuts used in the present
analysis to define the quasielastic peak. They are designed by the corresponding dilution
factor f . From left to right they correspond respectively to f = 29%, 23%, 20%, 17%,
14%, 11%.
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model assumes. Probably when the model is used the degree of remaining neutral
background present in the coincidence spectrum depends on the position of the
lower cut since the relation of the background in the coincidence spectrum with
the noncoincidence histogram is not simple.
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Figure 5.4. The figure shows in red the number of counts of the noncoincidence
histogram and in blue the number of counts of the coincidence histogram as function
of the lower cut. The points have been calculated for a particular module (32) and one
run but the number of counts has been scaled, so that it represents the total expected
number of counts, multiplying by the total number of runs 700 and the total number of
modules of the calorimeter, 1022. The vertical lines represent the different lower cuts
used in the present analysis to define the quasielastic peak. From left to right they
correspond respectively to f = 29 %, 23%, 20%, 17%, 14%, 11% (see figure 5.5)
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Figure 5.5. The dilution factor f = ǫNnon+δ/Nco as function of the lower cut for a
representative module (module 32 whose spectra can be seen in the figure 5.7). The
lower cut is represented as the ADC channel of the corresponding module. The error of
the dilution factor is represented as well.
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Figure 5.6. The error asymmetry given by the equation 5.24. The error has been
obtained using the number of counts of the module 32 for one run as a function of
the lower cut. Then it has been multiplied by the total number of channels and by
the total number of runs 700 to estimate the error of the mean asymmetry. Both the
statistic and the systematic error are taken into account. The systematic error starts
to compete with the statistical error when we consider all the statistics provided by the
whole calorimeter and the complete set of runs. The vertical pointed lines represent
the ADC channels corresponding to determined dilution factor. From left to right they
correspond respectively to f = 29%, 23%, 20%, 17%, 14%, 11% (see figure 5.5). The
minimum of the asymmetry corresponds to the dilution factor f = 17%.
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Figure 5.7. The nine panels shown the distribution of the asymmetries extracted
for one sector (sector 8) using all the runs corresponding to the transversal data. In
each panel the asymmetries have been calculating applying the lower cut associated to
a value of the dilution factor f . The fit of the asymmetries distributions to a gaussian
is extremely good in all the cases. One can observe the dependence of the width of the
gaussian on the dilution factor.



5.3. Azimuthal angle dependence 91

5.2.2 The weighting procedure

In the last section 5.2.1 a procedure to extract the raw asymmetry has been
explained. The raw asymmetry is calculated from the number of counts obtained
integrating the quasielastic peak between the lower cut in energy and the upper
cut in energy. The lower cut is chosen so that the asymmetry error is minimized.
The disadvantage of this method is that the genuine events at the left of the lower
cut are lost.

In order to include all the genuine quasielastic events in the analysis a weighting
procedure can be applied. It consists in taking the lower cut at a distance of one
energy resolution from the pion threshold so that all the genuine quasielastic events
are contained in the region under analysis. The asymmetry is calculated for every
histogram bin through the equation 5.19 where the variables refer in this case
refereed to one bin. The asymmetry in the whole quasielastic peak is calculated as
a weighted average of the binwise asymmetries. Every bin asymmetry is weighted
with the inverse of the square of the asymmetry error given by the equation 5.23,
where as before all the variables are referred to single bins.

Aav =

u
∑

i=l

1

σ2(Ai)
Ai

u
∑

i=l

1

σ2(Ai)

(5.29)

and the error is
1

σ2(Aav)
=

∑

i

1

σ2(Ai)
(5.30)

where

σ2(Ai) =
1

(1 − fi)2
σ2(Aco

i ) +
f 2

i

(1 − fi)2
σ2(Anon

i ) (5.31)

The weighting procedure is necessary used when the asymmetry presents an
energy dependence. The asymmetry we are measuring is equal for all the quasielas-
tic events. But the presence of a background in the coincidence spectrum whose
degree of dilution depends on the energy justifies using the weighting procedure.
Actually the asymmetry of the background depends on the energy.

5.3 Azimuthal angle dependence

The accelerator provides a transversely polarized electron beam. The spin of
the beam polarized electrons is perpendicular to the incident electron momentum
and it is contained in the horizontal accelerator plane. The detector covers the
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whole 2π azimuthal angle range. The convention for the azimuthal angle is shown
in the figure 5.8.

Figure 5.8. The calorimeter divided in eight sector as seen from the beam dump.
The ~k stands for the incident electron momentum and it points out of the paper plane.
The spin ~Se is contained in the horizontal plane, perpendicular to the beam direction,
oriented to the right of the beam. The θs stands for the angle between the electron
momentum and the spin direction. The azimuthal angle φ has the origin below the
plane that contains the momentum ~k and the spin ~Se and increases clockwise, as seen
from the beam dump.

The transverse spin asymmetry of the quasielastic e−d scattering takes a max-
imum when the electron spin direction is perpendicular to the plane of scattering.
If the spin direction is contained in the plane of scattering the asymmetry is zero.
The plane of scattering is determined by the momentum of the incident electron
~kin and the scattered electron momentum ~kout. The vector

~S =
~kin × ~kout

|~kin × ~kout|
(5.32)

defines the normal direction to the scattering plane and also its positive orienta-
tion. Since the scattering of the electrons is symmetric in the azimuthal angle only
the projection of the polarization vector Pe in the direction of the normal to the
scattering plane, defined in 5.32, contributes to the two photon exchange asymme-
try. Therefore the transverse spin asymmetry presents an azimuthal modulation
with the cos φ.

Am
⊥ =

σ↑ − σ↓
σ↑ + σ↓

= A⊥(θ)~Pe · ~S = A⊥ cos φ (5.33)
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the amplitude of the asymmetry depends on the scattering angle θ. In the analysis
the amplitude of the asymmetry corresponds to an average of the asymmetry over
the detector scattering angle range.

As the photon exchange asymmetry exhibits an azimuthal modulation A⊥ =
A◦

⊥ cosφ in order to gain statistics it is an established procedure in th A4 experi-
ment to divide the calorimeter in 8 sectors (see figure 5.8). Each sector corresponds
to one of the luminosity monitors. The size of the sectors is such that it is a com-
promise between the spatial resolution and the statistics.

Given a sector the asymmetry is calculated for every run. The sign of the
asymmetry corresponding to the runs of the samples with the GVZ half wave
plate introduced (IN) is changed A⊥ = −AIN

⊥ so that all the asymmetries can be
collected.

In order to obtain the asymmetry error one can use the known estimators of
the mean and the standard deviation:

Ās
⊥ =

1

Nr

r
∑

i

As
i (5.34)

σ(As
⊥) =

1

Nr − 1

r
∑

i

(As
i − Ās

⊥)2 (5.35)

One can plot also the set of asymmetries extracted from data in a histogram to
study how they are distributed. The gaussian fits to the data. The fit parameter
σ is an estimator of the width of the parent distribution.

As explained in the section 5.2.1 we have calculated the raw asymmetries using
all the runs corresponding to transversal deuterium data. First we calculate the
asymmetry for every frame averaging the asymmetry over the five inner rings to
gain statistics. In the figure 5.9 we show the plot. The raw asymmetries exhibit
the known cosφ azimuthal modulation. The set of data fits extremely well to the
function

A⊥ = A0
⊥ cos(φ+ δ) + b (5.36)

where δ is a phase and b is the offset.
The plot of the extracted raw asymmetries for the eight sectors is also shown

in the figure 5.10. It is obvious that the function 5.36 fit is also extremely good
despite we are dealing with raw data that have been neither normalized to the
target density nor corrected from the false asymmetries.

Also shown are the asymmetries for the eight sectors that are obtained using
the weighting procedure (5.11). It is notable that the error in the asymmetry in
this case is about 0.25 ppm smaller than the error obtained by the cut method.
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A(φ) = A⊥ cos(φ+ δ) + b
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Figure 5.9. The extracted raw asymmetries for the 146 calorimeter frames show a
clear cosine dependence on the azimuthal angle φ. The asymmetry for each frame is
averaged over the polar scattering angle using the seven calorimeter rings. The fit to
the cosφ is extremely good with a small reduced χ2/ν = 0.91 and a high probability
p(χ2/ν ≥ 0.91) = 0.78 to occur.
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Fit function: A(φ) = A⊥ cos(φ+ δ) + b
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Figure 5.10. The extracted raw asymmetries for the eight sectors show also an ex-
tremely good fit to the cosine function. This asymmetries are extracted with a lower cut
corresponding to the dilution factor f=17%. Note that both the phase and the offset are
compatible with zero.
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A(φ) = A⊥ cos(φ+ δ) + b
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Figure 5.11. Raw asymmetry extracted for the eight sector using the weighting pro-
cedure. Observe that the asymmetry error is smaller that those obtained using the
different lower cuts.
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5.4 Target density fluctuations and luminosity

The asymmetry that is aimed to be measured is properly an asymmetry in the
cross section. The cross section in the elastic scattering is the quotient between
the rate of the scattering events and the luminosity. The luminosity is the product
of the incident particles flux and the target density. At first approximation it is
sufficient the calculation of the asymmetry in the rates as the overall luminosity
should be equal for both polarization states and therefore it cancels out.

The luminosity presents, though, helicity correlated fluctuations that lead to
a change of the physical asymmetry. That is, the luminosity has a non zero
asymmetry defined as:

AL =
L+ − L−

L+ + L− (5.37)

Therefore the count rates should be normalized to the luminosity for both
polarization states.

A =
N+/L+ −N−/L−

N+/L+ +N−/L− (5.38)

The asymmetry in the luminosity can be produced by an asymmetry in the
beam current intensity and by an asymmetry in the effective target density. Let
us write L = Iρ

AL ≈ dL

2L
=
d(Iρ)

2Iρ
=
ρdI + Idρ

2Iρ
=
dI

2I
+
dρ

2ρ
= AI + Aρ (5.39)

The asymmetry in the beam current intensity is measured by means of the
intensity monitors PIMO27 so that it can be separated from the luminosity asym-
metry that therefore is a measure of the target density fluctuations. Instead of
normalizing the asymmetry to the luminosity one can normalize it to the target
density. The correction from the current asymmetry is postponed to the multi-
linear regression method used to correct the physical asymmetry from the false
asymmetries due to the helicity correlated differences in the beam parameters.
This procedure will be explained in detail in the next section 5.5. The asymmetry
will be normalized thus to the target density:

A =
N+/ρ+ −N−/ρ−

N+/ρ+ +N−/ρ−
(5.40)

A ≈ d(N/ρ)

2N/ρ
=
dN/ρ−Ndρ/ρ2

2N/ρ
=
dN

2N
− dρ

2ρ
= AN −Aρ (5.41)

A ≈ AN − Aρ ≈ AN −AL + AI (5.42)
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The asymmetry in the target density can be originated from helicity correlated
target density fluctuations or from asymmetries in the process in which is based
the measurement of the luminosity: the Møller scattering.

The target density fluctuations are strongly suppressed by the cooling system
at the target cell with the target kept in a turbulent flow. The transverse spin
Møller asymmetry is not negligible at all. Its order of magnitude is comparable to
the transverse spin asymmetry in the elastic scattering off the nucleon. Moreover
the Møller transverse spin asymmetry exhibits as well an azimuthal modulation
with the cos φ. Therefore instead of normalizing the asymmetry extracted from
one sector to the luminosity given by the corresponding opposite luminosity mon-
itor the asymmetry will be normalized to the average luminosity over the eight
luminosity monitors. Since the Møler transverse spin asymmetry averaged over
the eight luminosity monitors, that cover the whole azimuthal angle, is expected
to average out. A detailed analysis on the Møller asymmetry provided by the
luminosity monitors will be presented in the next chapter.

5.5 Helicity correlated systematic errors. Beam

parameters

The cross section of the elastic (or quasielastic) scattering off the nucleon (nu-
cleus) is a function of both the beam energy E and the polar scattering angle θ,
σ = σ(E, θ). Therefore any helicity correlated differences in the beam parameters
like the beam energy, the beam position or the beam angle lead to trivial differ-
ences in the cross section for both polarization states which result in asymmetries
we refer to as “false asymmetry′′ or “apparative asymmetry′′.

The beam parameter differences (for both polarization states) are: the beam
energy difference ∆E, the horizontal beam position difference ∆x, the vertical
beam position difference ∆y, the horizontal beam angle difference ∆α and the the
vertical beam position difference ∆β. The false asymmetry due to the helicity
correlated changes in the beam current intensity is also included in the multilinear
regression through the beam current intensity asymmetry, defined as

AI =
I+ − I−

I+ + I−
(5.43)

It can be assumed a linear relation between the beam parameter difference
Xi = x+

i − x−i and the induced false asymmetry if the beam parameter difference
is small enough.
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Afalse =
σ(x+ ∆x) − σ(x)

σ(x+ ∆x) + σ(x)
≈ σ(x) + dσ

dx
∆x− σ(x)

σ(x) + dσ
dx

∆x+ σ(x)
(5.44)

≈ 1

2σ(x)

dσ

dx
∆x = a · ∆x (5.45)

the parameter ai is the amount of false asymmetry generated by each unit of
the beam parameter helicity correlated difference

a = Afalse/Xi. (5.46)

The measured asymmetry contains not only the physical asymmetry but also
the contributions of the false asymmetries:

Ameas = P ·Aph +
6

∑

i=1

Ai
false (5.47)

This relation can be written if the linear relation holds as:

Ameas = P · Aph +
6

∑

i=1

aiXi (5.48)

5.5.1 A model calculation of the false asymmetries

The false asymmetries can be evaluated with a simple model numerical cal-
culation. In order to obtain the false asymmetry for one beam parameter one
calculates the asymmetry in the rate of scattered electrons corresponding to no
deviation of the beam parameters

R0 = R0(E, θ, I) (5.49)

and the rate with a slight variation of the corresponding beam parameter:

R1 = R1(E, θ + dθ, I) (5.50)

The false asymmetry is:

Afalse =
R1 −R0

R1 +R0

(5.51)

The model is based in the assumption that the Rosenbluth cross section is a
good approximation for the elastic scattering in order to obtain the false asymme-
tries, as trivial asymmetries in the cross section. This numerical calculation has
been done for the backward angle configuration and the D2 target (with the static
approximation assumption σd = σp + σn). In this case E = 315 MeV and the
current intensity is I = 20 µA.
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Results of the calculation

The calculation has been done numerically. The table below shows the calcu-
lated parameters for every sector. Only the ∆x and the ∆α are calculated since
due to the detector azimuthal symmetry they are related with the values of ∆y
and ∆β at different sectors.

Sector ∆x(µm) ∆α(µdeg) ∆E(eV ) AI (ppm)
1 0.2433 0.0066 −0.0038 1.0000
2 0.1045 0.0028 −0.0038 1.0000
3 −0.0990 −0.0027 −0.0038 1.0000
4 −0.2433 −0.0066 −0.0038 1.0000
5 −0.2433 −0.0066 −0.0038 1.0000
6 −0.1045 −0.0028 −0.0038 1.0000
7 0.0990 0.0027 −0.0038 1.0000
8 0.2433 0.0066 −0.0038 1.0000

where the numbers listed in the table are the calculated false asymmetries corre-
sponding to a helicity correlated variation of one unit of the beam parameter. The
units are shown in parenthesis.

It can be observed that the false asymmetry owing to the beam energy differ-
ence ∆E is equal for the eight detector sectors, that is, it does not depend on the
azimuthal angle. The effect of this false asymmetry is introducing an offset in the
azimuthal transverse spin function A⊥ = A0

⊥ cos φ. The false asymmetry associ-
ated with the beam current intensity asymmetry introduces an offset as well. On
the other hand both the position and angle deviation false asymmetries present
a modulation with the azimuthal angle given by cosφ. Because the deviation in
the beam horizontal position, for example, must be projected for every sector de-
pending on the azimuthal angle. As the horizontal position is modulated by a
cosφ and the vertical position by a sin φ the overall effect of the beam position
deviation will be a modulation in cos(φ+ ψ), that is, the effect of the beam posi-
tion deviation will be the introduction of a phase ψ in the asymmetry azimuthal
modulation. The same effect can be expected from the horizontal and vertical
beam angle deviations.

5.5.2 Multilinear regression analysis

The asymmetry measured is the sum of the physical asymmetry Aph reduced
by the beam polarization degree P and the false asymmetries due to the helicity
correlated differences in the beam parameters. The false asymmetries depend
linearly on the helicity correlated beam parameter differences.
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Ameas = P · Aph +
6

∑

i=1

aiXi (5.52)

The measured asymmetry for every single run and the false asymmetries or
the beam parameter differences present fluctuations. The beam parameter differ-
ences are measured for every run by means of the beam monitors. The multilinear
regression analysis is used to obtain estimates of the fit parameters ai that corre-
spond to the false asymmetry per unit Xi. Once the fit parameter estimators are
known the value of the asymmetry in the origin, that is, where all the Xi = 0 can
be calculated. This extrapolation of the measured asymmetry to the case in which
all the helicity correlated differences in the beam parameters are zero stands for
the physical asymmetry, multiplied by the polarization degree.

P ·Aph =
1

N

N
∑

i=1

(

X0
i −

6
∑

j=1

ajX
j
i

)

(5.53)

The details of the multilinear regression method are presented in the appendix
A.It has been assumed so far that the uncertainties ∆X0 of the data points are
all equal in order to simplify the formulae. If the uncertainties of the data points
are not equal one must carry out the weighted fit. The details and the formulae
of the weighted fit can be found in [3] and in [32]. In this section we present the
equation to calculate the physical asymmetry subtracting the estimates of the fit
parameters, that is, the false asymmetries 5.53. Below we present the formulae
to calculate the errors in the estimates of the fit parameters and the error in the
physical asymmetry.

The errors in the fit parameters and in the physical asymmetry are obtained
from propagation of errors [32]

∆aj =
∆X0

√
N − 1sjj

√

r−1
jj (5.54)

∆(P · Aph) =

√

√

√

√

1

N
+

1

N − 1

6
∑

j=1

6
∑

k=1

X
j
X

k

sjj skk

r−1
jk ∆X0 (5.55)

In the work [3] there is a study of the linear regression for one dimension and
two dimensions. This study gives some insight on how the errors depend on other
parameters, like the mean of the beam parameter differences X and the standard
deviation σX . The errors of the one dimensional linear regression analysis are the
following:
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∆aj =
∆X0

√
N − 1σXj

(5.56)

∆(P · Aph) =

√

σ2
A

N
+

σ2
A

N − 1

X

σX
(5.57)

The comparison with the one-dimensional regression method is important be-
cause it permits the interpretation of what is happening during the analysis. More-
over, from the one-dimensional errors we can extract information about the con-
ditions in which the multilinear regression method can be applied successfully [3].



Chapter 6

Results

In this chapter we present the results of applying the multilinear regression
analysis to the raw asymmetries. The first section is devoted to the asymmetry
in the signal. First we deal with the beam parameters and the application of the
multilinear regression. Then several sources of systematic errors are discussed: the
false asymmetries, the polarization degree and the deviation of the spin. Finally
some plots and histograms are presented. The second section is centered in the
investigations on the asymmetry in the noncoincidence energy spectrum.

The samples of runs that have been used in the analysis of the transversal data
are shown in the table below. They correspond to two different beamtimes. The
samples are divided in those labelled with GVZ=IN corresponding to the presence
of the (sign changer) half-wave plate before the Pockels cell in the polarized beam
source and those labelled with GVZ=OUT that means that the half wave plate
(sign changer) has not been introduced. The measured values for each sample of
the polarization P and the spin angle θS with their respective errors are also listed.

Sample Run numbers P θS GVZ
1 44662 − 48000 0.79 ± 0.03 (90 ± 4)◦ IN
2 44802 − 44938 0.79 ± 0.03 (90 ± 4)◦ OUT
3 49153 − 49413 0.87 ± 0.03 (88 ± 4)◦ OUT
4 49415 − 49682 0.87 ± 0.03 (88 ± 4)◦ IN

6.1 Asymmetry in the signal

6.1.1 Beam parameters

In the figure 6.1 one can see the beam parameter distributions for the all
the runs used in the analysis of the transverse spin data. The beam parameter
differences Xi exhibit some degree of dispersion. This dispersion is crucial for

103
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the multilinear regression analysis. Actually the error in the physical asymmetry
obtained using the multilinear regression method depends on the relation between
the mean X and the degree of dispersion σX of the beam parameter difference. If
the systematic error for the physical asymmetry is to be lower than the statistical
error, σsyst(Aph) < σstat(Aph) the parameters X and σX should fulfil the following
relation:

X
2

(N − 1)σ2
X

<
1

N
(6.1)

This relation can be derived trivially from the formula of the asymmetry error in
one dimension 5.57 if the first term in the square root is defined as the square of the
statistical error and the second term is identified with the square of the systematic
error (due to the false asymmetries). The relation above can be simplified to:

|X| < σX (6.2)

The beam parameter differences distributions at the energy used at backward
angles are such that the quotient between the mean and the standard deviation are
greater than 1 except for the beam current asymmetry and the beam energy differ-
ence as one can see in the figure 6.1 where the mean and the standard deviation of
the distributions are shown. This fact implies that the multilinear regression would
yield large systematic error as the beam parameters are not enough dispersed com-
pared to their distance to the origin. Therefore any attempt to extrapolate the
asymmetry to the axis where Xi = 0 would yield a high uncertainty.

However the use of the GVZ half-wave plate allows to overcome this situation
and makes it possible the performance of the multilinear regression.

6.1.2 The importance of the GVZ half-wave plate

As it was explained in the section 3.2 the half-wave plate is introduced to have
some control on the systematic effects. Since it reverses the sign of the beam
helicity, the physical asymmetry changes sign.

Aph =

{

Aph GVZ = OUT
−Aph GVZ = IN

(6.3)

On the other hand, the helicity correlated differences in the beam parameters
are not sensitive to the presence of the GVZ half wave plate. The cause is that
probably they are originated in the polarized beam source due to optical imper-
fections that are correlated with the Pockels cell voltage switching. Therefore the
beam parameter differences are sensitive to the fast switch of the helicity produced
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Figure 6.1. The distributions of the beam parameter differences for the transversal
data are shown. From left to right and from up to down: Beam current intensity
asymmetry AI in ppm, horizontal beam position difference ∆x in µm, vertical beam
position difference ∆y in µm, horizontal beam angle difference ∆α in µdeg, vertical
beam angle difference ∆β in µdeg, beam energy difference ∆E in eV.
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Figure 6.2. The distributions of the beam parameter differences for the transversal
data are shown taking into account the different GVZ states. The difference with respect
to 7.1 is that for the runs corresponding to GVZ=IN the sign of the beam parameters
differences has been changed Xi → −Xi because of the sign rule 6.6. The multilinear
regression is applicable now.
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by the Pockels cell but they are not aware of the slow helicity flip due to the in-
troduction of the GVZ half-wave plate. This fact has a great importance in the
correction of the false asymmetries as they do not change their sign when the GVZ
is introduced but at the same time the physical asymmetry does change the sign.

When the GVZ-OUT samples are combined with the GVZ-IN samples the sign
of the measured asymmetry Ameas should be changed for the runs where GVZ is
IN in order to take into account the changing of the physical asymmetry Aph sign.
Therefore when this changing sign rule is applied, the physical asymmetry recovers
the sign corresponding to the GVZ-OUT samples but the false asymmetries change
their sign simultaneously. This is equivalent to changing the sign of the beam
parameter differences X as can be seen in the relations below:

For the runs where GVZ = OUT

Am = Aph +
6

∑

i=1

aiXi (6.4)

For the runs where GVZ = IN

Am = −Aph +

6
∑

i=1

aiXi (6.5)

−Am = Aph −
6

∑

i=1

aiXi (6.6)

As a consequence, the dispersion of the beam parameters, after combining the
GVZ samples and applying the sign rule, becomes more symmetric (see figure 6.2),
so that the σX gets larger and the mean X gets smaller. The relation 6.1 is thus
fulfilled. This is a crucial feature of the multilinear regression method.

In the table below one can see the average X and the dispersion σX of the beam
parameters in the beam conditions corresponding to the transversal data samples.
The changing sign rule 6.6 has been applied to the beam parameter differences.
For that reason they exhibit a good behaviour.

Beam Xj σXj X
j
/σXj

AI (ppm) 0.4350 1.65 0.264
∆x (µm) 0.011 0.2143 0.051
∆y (µm) −0.0025 0.048 0.052
∆α (µdeg) −0.066 1.20 0.055
∆β (µdeg) −0.0132 0.276 0.048
∆E (eV) 0.0846 2.90 0.029
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It can be observed that the quotientX
j
/σXj is less than one in all the cases. It is

similar in magnitude for the position and the angular beam parameters X
j
/σXj ∼

0.05. The quotient is smaller for the beam energy difference and it is larger for
the beam current intensity asymmetry.

6.1.3 The multilinear regression

The results shown here are all based on the analysis of a single sector (sector
8) but all sectors show in general the same behaviour.

As explained in the appendix A the multilinear regression method finally re-
duces to solving a matrix equation A.12

r = R · b

where R is the matrix (6×6) of covariances rjk between the six beam parameters,
and the independent terms column vector r is composed of the covariances rj0

between the six beam parameters and the measured asymmetry. The column
vector of unknowns b is related to the false asymmetries coefficients ak through
the relation A.11.

As both the false asymmetries and the transverse spin asymmetry depend on
the azimuthal angle the analysis is performed for every calorimeter sector. The
matrix of beam parameter covariances for the sector 8 is shown below:

R =

















1.0000 0.1165 0.1099 0.1153 0.1039 -0.0446
0.1165 1.0000 0.9983 0.9996 0.9946 0.6295
0.1099 0.9983 1.0000 0.9979 0.9980 0.6521
0.1153 0.9996 0.9979 1.0000 0.9941 0.6318
0.1039 0.9946 0.9980 0.9941 1.0000 0.6598

-0.0446 0.6295 0.6521 0.6318 0.6598 1.0000

















where the rows from up to down and the columns from left to right correspond to
the beam parameters in the following order: AI , ∆x, ∆y, ∆α, ∆β, ∆E.

The diagonal elements are identically 1 as they should. The off-diagonal ele-
ments correspond properly to the covariances between the different beam param-
eters. Note that the covariances of the current asymmetry with the rest of the
beam parameters are ∼ 0.1, quite less than one. It is evident that the position
and angle beam parameters are strongly correlated among them with covariances
close to 1. The beam energy difference presents also large covariances ∼ 0.6, that
is, it is also correlated with the position and angle beam parameters although it is
not so strongly correlated as they are between them.
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Below it is shown the r0 column vector of the covariances between the measured
asymmetry and every beam parameter.

r =

















−0.0004
0.0443
0.0422
0.0453
0.0412
0.0218

















The output of the multilinear regression is listed below. The fit parameters
ai, that is, the false asymmetries per unit Xi are shown together with their error
calculated from the equation 5.54. In the last column the one dimensional errors
are listed, that is, the errors of the fit parameters if the correlations between the
beam parameters are not taken into account.

Xj aj ± σ(aj) σ(aj)1D

AI (ppm) 1.76 ± 5.21 5.10
∆x (µm) 413 ± 1706 39..
∆y (µm) 5517 ± 59678 174.
∆α (µdeg) −238 ± 257 7.
∆β (µdeg) −275 ± 547 31.
∆E (eV) −1.40 ± 4.48 3.0

One can see that the error of the fit parameters are quite large. The one
dimensional errors are high and the strong correlations between beam parameters
increase the errors even more. The statistics taken for the transversal data is low,
chosen to obtain an error of 5% in asymmetries of several tens of ppm. On the other
hand the false asymmetries per unit Xi are very small, less that 1 ppm. Therefore
the relative errors for the fit parameters are expected to be large. Furthermore, as
the beam quality has improved in the recent beamtimes the false asymmetries are
lower than before, but the fluctuations of the beam parameters have also decreased.
The reduction of the beam parameters dispersion implies that the errors of the fit
parameters are larger than before (see equation 5.54).

Multilinear regression for the longitudinal data

The longitudinal data (that are taken with equivalent experimental conditions:
backward angles, beam energy of 315.1 MeV and deuterium target) can be used as
an alternative to estimate the fit parameters with lower errors. A larger measuring
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time is spent to take longitudinal data because more statistics are needed to mea-
sure with an error of 5% the parity violating asymmetry, expected to be smaller
than the transverse spin asymmetry. The multilinear regression fit is performed
with the available longitudinal data to obtain the fit parameters with higher pre-
cision and accuracy. Afterwards the estimates of the fit parameters are used in
the multilinear regression analysis performed with transversal data.

Analysis per sectors

In the table below we show the fit parameters obtained applying the multilinear
regression method to the longitudinal data. The analysis has been carried out for
every sector. In the table below the results corresponding to the sector 8 are
shown. The fit parameters errors have improved but they are still quite large.

Xj aj ± σ(aj) σ(aj)1D

AI (ppm) 1.21 ± 2.67 2.65
∆x (µm) 86 ± 220 12.4
∆y (µm) −362 ± 981 57.
∆α (µdeg) 0.84 ± 32 2.0
∆β (µdeg) 25 ± 99 12.
∆E (eV) 0.28 ± 0.88 0.49

Whole detector

The longitudinal spin asymmetry (parity violating asymmetry) does not present
any azimuthal modulation. Performing the multilinear regression method on the
whole detector allows to gain statistics and therefore it allows obtaining the fit
parameters with lower errors. However, when integrating over the whole detector,
the position and angle beam parameters cancel out. They are different depending
on the sector considered. On the other hand, the beam current asymmetry and the
beam energy difference do not depend on the azimuthal angle. As a consequence
one can estimate the current and the energy fit parameters using the multilinear
regression on the whole detector.

Xj aj ± σ(aj) σ(aj)1D

AI (ppm) −2.26 ± 1.10 1.09
∆x (µm) 90 ± 91 5.1
∆y (µm) −389 ± 4048 24
∆α (µdeg) −8.6 ± 13 0.8
∆β (µdeg) −47 ± 41 5.0
∆E (eV) −0.50 ± 0.36 0.2
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6.2 Physical asymmetry and systematic errors

The value of the fit parameters ai yielded by the multilinear regression allows
the subtraction of the false asymmetry and therefore the calculation of the physical
asymmetry through the equation 5.53. Note that in order to extract the physical
asymmetry the correction of the polarization degree is also applied.

6.2.1 Systematic error associated with the false asymme-

tries

A non orthodox mathematical multilinear regression is applied to correct the
false asymmetries mixing both the multilinear regression done with the longitudi-
nal data and the multilinear fit performed with the transversal data. Therefore the
formula for the asymmetry error 5.55 is modified so that it includes the errors of the
fit parameters provided by the longitudinal data fit and the covariances between
the beam parameters corresponding to the beam conditions of the transversal data
fit.

∆2
syst(P · Aph) =

σ2
A

N − 1

6
∑

j=1

6
∑

k=1

Xj Xk

sjj skk
r−1
jk (6.7)

This formula corresponds to the second term of the equation 5.55. It is defined as
the systematic error due to the false asymmetries.

∆2
syst(P · Aph) =

6
∑

j=1

6
∑

k=1

σA√
N − 1sjj

σA√
N − 1sjj

Xj Xk r−1
jk (6.8)

where the factors have been rearranged. Observe that the first two factors in the
sum can be identified with the error of the fit parameter in the one dimensional
case .

∆2
syst(P · Aph) =

6
∑

j=1

6
∑

k=1

∆1dim(aj) ∆1dim(ak)Xj Xkr−1
jk (6.9)

This formula is the modified expression for the asymmetry systematic error. The
first two factors ∆1dim(a) are the one dimensional errors 6.2.1 of the fit parameters
obtained by means of the longitudinal data fit. The following factors X correspond
to the mean of the difference in the beam parameter calculated from the transversal
data. The rjk are the covariances between the beam parameters of the transversal
data.

The systematic error of the physical asymmetry that one can associate with
the false asymmetries due to the helicity correlated beam parameters fluctuations
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is:

∆false
syst (Aph) =

1

P

√

√

√

√

6
∑

j=1

6
∑

k=1

∆1dim(aj) ∆1dim(ak)Xj Xkr−1
jk (6.10)

where P is the mean of the polarization degree.

6.2.2 Systematic error associated with the polarization

The polarization degree of the transversely polarized beam is, for the beam-
times that we are using in the analysis, P = (0.79 ± 0.03) and P = (0.87 ± 0.03).
The relative error of the polarization degree is 4%. Now we want to calculate how
the uncertainty in the measurement of the beam polarization contributes to the er-
ror of the physical asymmetry. For that purpose we start from the relation between
the physical asymmetry, the beam polarization and the measured asymmetry:

Aph =
A

P
(6.11)

where A stands for the right side of equation 5.53, that is the asymmetry without
polarization correction. Using propagation of errors

∆Aph

Aph
=

∆A

A
⊕ ∆P

P
(6.12)

From the equation 6.12 it can be understood that the precision of the polariza-
tion measurement is as important as that of the asymmetry. Now one can write
the contribution to the asymmetry error of the polarization correction:

∆Pol
syst(Aph) = Aph

∆(P )

P
(6.13)

6.2.3 Systematic error associated with the spin angle

In the table at the beginning of this chapter one can see the spin angle and the
spin angle error given by the Transmission Compton Polarimeter. The spin is not
completely perpendicular to the beam direction but it presents some deviation δθs

from the 90◦. Therefore there is a small longitudinal component of the spin. The
flip of the transverse spin component originates a two photon exchange asymmetry
A⊥ and the flip of the longitudinal spin component gives rise to a parity violating
asymmetry APV .

Aph = A⊥ cosφ cos δθs − APV sin δθs (6.14)
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A preliminary analysis of the longitudinal data taken so far has been carried
out to obtain a measurement of the parity violating asymmetry for deuterium at
backward angles. From the value of the asymmetry extracted from the trans-
verse spin data Aph and from the parity violating asymmetry the transverse spin
asymmetry can be derived:

A⊥ =
Aph

cos δθs
− APV tan δθs (6.15)

The correction to the measured asymmetry due to the spin angle deviation is
give by :

δA⊥ = Aph

(

1 − 1

cos δθs

)

+ APV tan δθs (6.16)

The numerical values are:

δA⊥ ≈ 40 ·
(

1 − 1

cos 2◦

)

+ 25 · tan 2◦ = 0.9 ppm (6.17)

Now we can obtain the systematic error of the transverse spin asymmetry
arising from the error in the spin angle:

∆2(A⊥) =
∆2(Aph)

cos2 δθs
+ ∆2(APV ) tan2 δθs +

(

Aph sin δθs + APV

cos2 δθs

)2

∆2(δθs) (6.18)

The numerical values are:

∆syst(A⊥) =
∣

∣

∣

Aph sin δθs + APV

cos2 δθs

∣

∣

∣
∆(δθs) ≈ 25 · 40 · π

180
= 1.4 ppm (6.19)

6.2.4 Other systematic effects

We present here a brief discussion of other systematics effects:

• Aluminium: the transverse spin asymmetry in the cross section of the
quasielastic electron-Al scattering. This asymmetry must be considered and
subtracted from the measured asymmetry [3]. We need a model calculation
of the transverse spin asymmetry in the quasielastic scattering off aluminium
for backward angles. The model calculation is not yet available, though.

• Pile-up: the pile-up events in the calorimeter may present helicity correlated
differences that lead to a false asymmetry in the measured rate [22]. This
pile-up asymmetry has not been corrected in the frame of this work. We
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expect, though, a small contribution since the pile-up effects strongly depend
on the count rate and the count rate at backward angles is much smaller than
the count rates at the forward angle configuration.

• Nonlinearity of luminosity: The measurement of the luminosity signal
through the luminosity monitors is not linear. This nonlinearity in the lumi-
nosity signal must be corrected so that the normalisation of the asymmetry
to the target density can be done properly. We will discuss this subject in
more detail in the chapter 7. We advance that the nonlinearity of the lumi-
nosity signal is not yet corrected. However we expect a negligible influence
of the luminosity nonlinearity on the asymmetry of the signal because the
target density fluctuations are strongly suppressed.

6.2.5 Results

The table below shows the corrected asymmetry for every sector. In the sec-
ond column the systematic errors due to the false asymmetries are listed. They
represent a small contribution to the total error. In the last column the errors
associated with the polarization correction of data appear.

Sector APh
correct(10−6) δsyst

A δpol
A

1 −49.56 ± 11.05 0.75 1.96
2 −26.52 ± 10.24 1.02 1.00
3 22.24 ± 9.95 0.74 0.92
4 33.65 ± 10.00 0.75 1.38
5 41.29 ± 10.33 0.79 1.67
6 6.16 ± 14.24 0.85 0.29
7 −18.14 ± 10.43 0.79 0.70
8 −38.38 ± 10.43 0.86 1.49

The distribution of the transverse spin asymmetries for the sector 8 can be seen
in the figure 6.3. The data fits perfectly to a Gauss distribution. In the figure 6.4
the GVZ-OUT and the GVZ-IN samples have been separated. In green one can see
the OUT asymmetry distribution fitted to a gaussian. The asymmetry distribution
corresponding to GVZ-IN is plotted in red. The means of the distribution are
opposite in sign and compatible in magnitude. This is an evidence of a good
behaviour of the asymmetry under the GVZ half-wave plate.

The physical asymmetry exhibits the azimuthal modulation with the cosφ as
one can see in the figure 6.5. In this figure the physical asymmetry normalized
to the target density, corrected from the false asymmetries and corrected from
the beam polarization degree has been plotted. The fit to the function A(φ) =
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A⊥ cos(φ+ δ) + b is extremely good. The phase δ and the offset b are compatible
with zero.

The figure 6.6 shows the corrected physical asymmetry corresponding to the
samples with GVZ=OUT. As it is normal the fit is a little worse but still accept-
able. The amplitude has the correct negative sign. The phase δ is compatible with
zero but there is a small offset b. On the other hand the figure 6.7 contains the
corrected physical asymmetries corresponding to the samples with GVZ=IN. One
observes a better goodness of the fit. The sign of the amplitude is reversed as it
should be. There is also a small offset but it has the same sign as the OUT asym-
metry offset so that when combining the data (the sign of the GVZ=IN samples
is reversed) they cancel out.

In order to calculate the normal spin asymmetry we can use, instead of the cosφ
fit procedure, the collection of the asymmetries found for each sector multiplied
by a suitable geometric factor, due to the azimuthal dependence of the transverse
spin asymmetry. This procedure, explained in detail in [3] takes into account
the different angular widths (in number of frames) of the sectors employed in the
analysis. The geometrical factors Fs are defined by

Fs =

∫ φ2

φ1
dφ

∫ φ2

φ1
cosφdφ

(6.20)

The total asymmetry is calculated from the asymmetries for each sector multiplied
by the geometrical factor Fs:

Aph =
1

P

1

8

8
∑

s=1

FsA
ph
s (6.21)

The result of the asymmetry given by this procedure is

Aph = (−48.90 ± 2.64stat ± 0.83syst)ppm (6.22)

the second term stat stands for the statistical error and the third term syst stands
for the systematic error (it includes the contribution of the false asymmetries and
the normalization to the target density).

In the table below we show the contribution to the systematic error from the
different background processes:
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Systematic error contribution
False asymmetries 0.62 ppm

Target density 0.55 ppm
Polarization 1.92 ppm

Model parameter ǫ 0.25 ppm
Model parameter δ 1.3 ppm

Spin deviation 1.4 ppm
Aluminium —

Pile-up —
Nonlinearity LuMo —

Total 2.84 ppm

Average over the whole detector The regression method is applied also to
the whole detector. That is the asymmetries calculated using all the modules.
This whole asymmetry is expected to be zero because it is azimuthally modulated
by a cosφ whose average over the whole azimuthal angle is zero. Both the raw
asymmetry and the corrected asymmetry yields are compatible with zero as it is
expected.

APh
raw(10−6) APh

correct(10−6) δsyst
A

−2.79 ± 3.85 −1.92 ± 3.91 0.58
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Figure 6.3. The distribution of the asymmetries extracted for the sector 8 using all the
runs corresponding to transverse spin data. The asymmetry distribution fits extremely
well to a Gauss.
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Figure 6.4. In figure raw asymmetries extracted for sector 8 are shown for every 5
minutes run used in analysis. The fluctuation of asymmetry does not present any obvious
deviation from statistical behaviour.
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Fit function: A(φ) = A⊥ cos(φ+ δ) + b

(6.23)
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b        3.6478) ppm± (-0.4092 

Figure 6.5. Extracted transverse single spin asymmetries for the eight sectors of
calorimeter. They show a clear dependence on azimuthal scattering angle φ. Fit of
curve cos φ to asymmetries is astonishing good with a very small reduced χ2 and a near
one probability to occur. So extremely good fit has been also found independently for
H2 data [4]. It is probably a consequence of the higher quality in beam conditions, with
respect to measurements at forward angles.
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Fit function: A(φ) = A⊥ cos(φ+ δ) + b

(6.24)
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Figure 6.6.
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Figure 6.7.
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Fit function: A(φ) = A⊥ cos(φ+ δ) + b

(6.25)
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Figure 6.8. This plot corresponds to asymmetries obtained applying the weighting
procedure. They have been normalized to effective target density. Also multilinear
regression analysis have been used to correct false asymmetries.
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6.3 Asymmetry in the noncoincidence energy spec-

trum

The normal spin asymmetry in the noncoincidence energy spectrum is also
investigated. For the asymmetry in the background a similar behaviour was ex-
pected to that of the asymmetry in the signal, that is, an azimuthal modulation
with the cosφ. Moreover, we expect the asymmetry in the background to vary with
the energy cut because the neutral background is constituted by several physical
processes with different asymmetries.

The asymmetry in the noncoincidence spectrum, defined by the equation 5.12,
is calculated in parallel to the asymmetry in the quasielastic scattering, applying
the shifted energy cuts, as explained in the section 5.2.1. This background asym-
metry has been normalized to the target density, corrected from the false asym-
metries and the polarization degree. In the figure 6.9 the results of the analysis for
the background asymmetry are shown in function of the azimuthal angle. The top
panel shows the background asymmetry extracted from the samples of runs with
GVZ=OUT. The panel in the middle shows the background asymmetry extracted
from the samples with GVZ=IN. And the bottom panel shows the background
asymmetry extracted from all the samples (with GVZ=OUT and GVZ=IN) col-
lected, as explained in the section 6.1.2. The asymmetry in the background for
the collected samples exhibits the expected cosφ azimuthal dependence. How-
ever the asymmetries separately extracted from each GVZ set deviate from the
expected behaviour and exhibit unexplained oscillations. The oscillations are such
that the expected cos φ azimuthal modulation is recovered if both GVZ samples
are combined.

The following function fits quite well to the asymmetry in the background for
the separated GVZ samples

A⊥ = A1 cos φ− A2 sin 2φ+ b (6.26)

the cos φ term is motivated by the expected azimuthal dependence of the trans-
verse spin asymmetry and the second term is motivated by the dependence of the
pion electroproduction cross section on sin 2φ. Several combinations of circular
functions depending on φ and 2φ have been tested. The function 6.26 seems to be
the best function to fit the data.

We expected the first term to change sign with the GVZ, as it probably arises
from the two photon exchange physics. On the other hand we expected the second
term not to change sign so that when both GVZ samples are combined the sin 2φ
terms would cancel out (since the GVZ=IN samples are changed of sign to collect
all the GVZ samples).

From figure 6.9 one can observe that the amplitude of the sin 2φ in both GVZ
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samples are of similar magnitude (equal inside the error margin) and of equal sign,
as they should if they are to cancel out when the GVZ samples are combined.
Nevertheless the astonishing fact is that the cosφ amplitudes are of different mag-
nitude, the difference is large, and for the cuts selected (corresponding to the
dilution factor f = 17%), they are even of the same sign. If the cosine term would
be originated only from the two photon exchange physics the amplitudes should
be equal and of opposite sign. So we can see that the sine terms cancel out when
the GVZ samples are combined and the cosine amplitude of the combination is
just the average of the cosine amplitudes of the separated samples.

In the table below we show the results of the fit of the function 6.26 to the
asymmetry in the noncoincidence spectrum for different energy cuts, corresponding
to different dilution factors in the coincidence spectrum. In the first column one
can see the fit amplitudes for the GVZ-OUT samples, in the middle the fit results
for the GVZ-IN samples and the right column shows the fit amplitudes for the
combined samples. The cosine amplitude A1 is shown in the top and the sine
amplitude A2 is shown in the bottom.

f OUT IN AOUT-AIN

11%
55±7 111±7 −31±5
81±8 70±8 1±5

14%
34±6 108±6 −40±4
73±7 62±7 1±4

17%
15±6 112±6 −53±
68±6 61±6 −1±4

20%
4±5 116±5 −59±3

61±6 55±6 −1±3

23%
−7±5 114±6 −63±3
51±6 42±6 0±3

29%
−21±4 110±5 −67±2

40±5 41±5 −2±2

One can observe that the A1 of the GVZ=OUT set decreases as the lower cut
is moved to the left, that is, for increasing dilution factor (see figure 6.10). For
higher energy cut (small dilution factor) the A1 is positive, at middle energy it
crosses zero and at low energy it becomes negative. The A2 also decreases (from 80
ppm to 40 ppm) when the lower cut is moved to the left but it keeps the positive
sign. The A1 of the GVZ=IN samples remains quite stable, around 110 ppm as the
cut is moved. The A2 of the GVZ=OUT also decreases. It is a little smaller than
that of the GVZ=OUT part but they are compatible in magnitude. The A1 of
the combined data is negative and increases in magnitude as the lower energy cut
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Figure 6.9. The results of the analysis for the asymmetry in the noncoincidence energy
spectrum are shown in function of the azimuthal angle. The top panel shows the back-
ground asymmetry extracted from the samples of runs with GVZ=OUT. The panel in
the middle shows the background asymmetry extracted from the samples with GVZ=IN.
And the bottom panel shows the background asymmetry extracted from all the samples
(with GVZ=OUT and GVZ=IN) collected, as explained in the section 6.1.2. The asym-
metry in the background for the collected samples exhibits the expected cos φ azimuthal
dependence. However the asymmetries separately extracted from each GVZ set deviate
from the expected behaviour and exhibit unexplained oscillations. The oscillations are
such that the expected cos φ azimuthal modulation is recovered if both GVZ samples
are combined.
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is moved towards the lower energies. The A2 of the combined data is compatible
with zero.

As there is a clear dependence of these amplitudes with the energy we have
divided the noncoincidence spectrum in strips whose borders are defined by the
energy. That is all the modules and all the runs have cuts corresponding to the
same energy. The energy strips for the noncoincidence spectrum are shown in the
figure 6.11.

We have performed this analysis for both the transversal data and the lon-
gitudinal data, both corresponding to the D2 target. The figure 6.12 shows the
asymmetry in the noncoincidence spectrum for the transversal data with D2 tar-
get. The figure 6.13 shows the asymmetry in the noncoincidence spectrum for the
longitudinal data with D2 target. The table below shows the results of the fit to
the function 6.26 for the transversal and longitudinal data, corresponding to the
four energy strips.

TRANS LONG

OUT IN AOUT-AIN OUT IN AOUT-AIN

−48±6 116±6 −83±4 40±2 38±3 11±1
32±7 32±7 −1.5±4 34±2 43±4 5±1

−11±5 −20±7 5±3 −6±2 −6±2 −1±1
−11±7 125±7 −71±4 55±2 58±3 10±2

55±7 55±7 −3±5 50±2 53±4 9±2
−18±5 −11±5 −2±3 −6±2 −8±3 −1±1

59±9 112±9 −31±6 75±3 83±4 16±2
76±5 78±10 −5±6 75±3 75±4 19±2

−21±7 −13±7 −3±4 −5±2 −8±3 −0.3±1.4
149±17 45±16 48±12 100±4 121±6 16±3
119±18 92±17 9±12 104±5 110±6 23±14
−36±12 −7±12 −14±8 −9±3 −16±4 0.75±2

These data suggests that there is a contribution of

b1 cos φ+ A2 sin 2φ (6.27)

that does not change of sign when the GVZ is introduced. This components
increase with the energy and they are present, we assume, in both the transversal
and the longitudinal data. We make the hypothesis that these components, as they
are independent of the two photon exchange physics, have the same magnitude in
both the transversal and longitudinal data.

On the other hand there is a component

a1 cos φ (6.28)
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whose sign is reversed by the GVZ and that probably arises from the two photon
exchange physics. This component is only present in the transversal data. The
amplitude a1 decreases with the energy (the magnitude decreases with the energy
but because it is negative it becomes less negative).

This model can explain the difference in the amplitude of the cosine for the
separated GVZ sets and why the amplitude corresponding to the GVZ=OUT
varies with the energy and the amplitude of the GVZ=IN remains approximately
constant.

For the GVZ=OUT both cosine terms combine so that a1 + b1 = A1 increases
with the energy. For low energies the a1 dominates so that A1 is negative. For
high energies the b1 dominates and therefore the A1 is positive. On the contrary
for the GVZ=IN the sign of the a1 is reversed and the sign of the b1 is not reversed
and therefore when they are combined the sum remains constant. This model can
not explained, though, some inconsistencies of the data like those appearing in the
energy strip 4.
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Figure 6.12. The transverse spin asymmetry in the noncoincidence spectrum (energy
strip 2) is shown. The top panel shows the asymmetry calculated from GVZ=OUT
samples separately. The panel below shows the asymmetry calculated from GVZ=OUT
samples. The third panel (from top) shows the asymmetry calculated with all GVZ sam-
ples combined (changing the sign of GVZ=IN asymmetries) and the botton panel shows
the combination of all GVZ samples without changing the sign of GVZ=IN asymmetries.
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Figure 6.13. The transverse spin asymmetry in the noncoincidence spectrum (energy
strip 2) is shown. The top panel shows the asymmetry calculated from GVZ=OUT
samples separately. The panel below shows the asymmetry calculated from GVZ=OUT
samples. The third panel (from top) shows the asymmetry calculated with all GVZ sam-
ples combined (changing the sign of GVZ=IN asymmetries) and the botton panel shows
the combination of all GVZ samples without changing the sign of GVZ=IN asymmetries.
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6.3.1 Comparison in different experimental conditions

In order to obtain information about the unexpected and unknown behaviour
of the asymmetry in the noncoincidence energy spectrum the asymmetries can be
investigated under the different A4 experimental conditions.

• Dependence on energy.

• Transversal data and longitudinal data.

• Signal and background (coincidence and noncoincidence spectra).

• H2 target and D2 target.

• Forward angle configuration and backward angle configuration.

• Asymmetry in the luminosity monitors.

The first two points have been treated before.
There is evidence that there are also azimuthal modulations described by the

fit function 6.26 in the noncoincidence asymmetry of the hydrogen data, see figure
6.14. This effect is thus not exclusive of the deuterium. However the amplitude of
the sine is relatively smaller with respect to the cosine component in the case of the
hydrogen. Probably it is due to the fact that the two photon exchange asymmetry
in the background of the deuterium data is smaller than that of the hydrogen data
and therefore the unknown oscillations are more visible in the deuterium data.

An analysis has been carried out of the asymmetry in the ∆(1232) resonance
region at forward angles. Some modulations are observed in this case, see figures ??
and 6.16. Some theoretical calculations are being done to investigate the azimuthal
dependences in the ∆(1232) resonance production.

On the other hand, the asymmetry in the luminosity monitors, which presents
also an azimuthal modulation due to the two photon exchange physics in the Møller
scattering shows no evidence of this kind of modulation we are investigating. The
luminosity monitors show, though, unexpected behaviours in the direction of the
spin of the beam electrons. The results of the analysis of the transverse spin
asymmetry in the Møller scattering cross section show that there is a non-zero
phase in the cos φ fit function. This phase probably corresponds to the fact that
the spin of the polarized beam electrons is not contained in the plane of the
accelerator but it forms a small angle with respect to this plane.

We can measure the spin of the electrons through the analysis of the asymmetry
in the luminosity monitors in the longitudinal data. The spin direction is not
completely longitudinal but it has a small component in the transverse direction.
When the GVZ half wave plate is introduced the spin direction should be reversed.
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Figure 6.14. The results of the analysis of the transverse spin asymmetry in the
noncoincidence spectrum for the H2 [11] are shown. From top to bottom the data
corresponding to GVZ=OUT, the GVZ=IN data and the data for the GVZ samples
combined. The separated GVZ samples exhibit the sine azimuthal modulation. The
amplitudes of the sine are of compatible magnitude and the amplitude of the cosine are
of different magnitude but the signs are the expected. The sine terms cancel out when
the GVZ samples are combined so that the asymmetry azimuthal modulation goes with
the cos φ as in the case of deuterium.
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Figure 6.15. Transverse spin asymmetry for the for the ∆ (1232) resonance at forward
angles and energy of 570 MeV calculated separately for the samples with GVZ=OUT
[11].

Figure 6.16. Transverse spin asymmetry for the for the ∆ (1232) resonance at forward
angles and energy of 570 MeV calculated separately for the samples with GVZ=IN [11].
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We have observed, though, that only the longitudinal component of the spin is
reversed with the introduction of the GVZ while, on the other hand, the transverse
component of the spin is not reversed.

We can suspect, therefore, that the GVZ half-wave plate is not reversing the
spin direction as it is supposed to do. Even we can wonder if any azimuthal
modulation can arise from a fail of the Pockel cell in the fast reversing of the spin
direction.

Nevertheless this effects would lead to a damping effect of the asymmetry but
we can not see how these deviations can lead to azimuthal modulations. This
hypothesis can not explain, though, why there is no effect in the signal of the
calorimeter detector or in the luminosity monitors.

The azimuthal modulation for the separated GVZ samples in the signal is very
small. The modulation do not disappear if we add the coincidence spectrum and
the noncoincidence spectrum, that is, if we consider the energy spectrum provided
by the calorimeter without intervention of the scintillators. This fact eliminates
the hypothesis of a systematic effect originated in the plastic scintillators.

The turn corresponds to the theory to investigate with detail the azimuthal
dependences in the electroproduction of pions or in the excitation of the ∆(1232)
resonance. We must keep in mind, though, that we are searching for azimuthal
dependences in spin asymmetries. Some experimental tests are also planned for
the next beamtimes. One idea is making the slow reversing of the spin, not using
the GVZ half-wave plate as usual, but by means of a shift in the energy of the
beam, since the spin direction, if the Wien filter is untouched, changes with the
energy of the beam an approximate amount of 45◦ per each MeV.



Chapter 7

Transverse spin asymmetry in the
luminosity monitors

In the A4 collaboration experiment the luminosity is measured by means of
eight luminosity monitors placed at small forward angles, covering the range
4◦ − 10◦ of the scattering angle. They are optimized to detect the electrons that
suffer Møller scattering. This process, the scattering of a beam electron off an
atomic electron, presents also, if the beam is transversely polarized, a transverse
spin asymmetry due to the two photon exchange at leading order. This asymmetry
can be calculated completely in the frame of QED and it is expected to be of the
order of tens of ppm, that is, comparable to the transverse spin asymmetry of the
elastic scattering off nucleons. This transverse spin asymmetry in the Møller scat-
tering exhibits also a modulation in the azimuthal angle given by cosφ. In this
chapter we will use the asymmetry in the luminosity to measure the transverse
spin asymmetry in the cross section of the Møller scattering. Comparison of the
observed asymmetry in the Møller scattering with the value predicted by the QED
calculations can be used as a systematic check. This is useful for the PbF2 data
analysis since the count rates are corrected from false asymmetries in the lumi-
nosity. The measurement of the asymmetry in the Møller scattering cross section
through the luminosity signal is possible because the beam current asymmetry can
be separated and the target density fluctuations are strongly suppressed as we will
discuss below. The luminosity monitors measure the luminosity for both opposite
polarization states, L+ and L−, the asymmetry in the luminosity is then:

AL =
L+ − L−

L+ + L− (7.1)

The asymmetry in the luminosity is originated by the asymmetry in the beam
current intensity and the helicity correlated asymmetries in the target density
fluctuations. Moreover for transverse spin data the asymmetry in the Møller scat-
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tering, proportional to cosφ, also contributes to the asymmetry in the luminosity
signal.

The asymmetry in the beam current, measured by the beam current intensity
monitor PIMO27, can be separated from the asymmetry in the luminosity signal.
For that purpose, instead of using the asymmetry in the measured luminosity the
asymmetry in the luminosity normalized to the beam current will be used

AL/I =
L+/I+ − L−/I−

L+/I+ + L−/I−
(7.2)

This expression can be separated into the asymmetry of the measured luminosity
and the asymmetry of the beam current intensity [3]

AL/I =
L+/I+ − L−/I−

L+/I+ + L−/I−
=

AL − AI

1 − AL · AI
(7.3)

If both asymmetries are small this expression can be approximated by

AL/I ≈ AL − AI (7.4)

On the other hand the target density fluctuations have been reduced with the
target cooling system used by the A4 collaboration [22]. The fluctuations in the
luminosity signal follow basically the fluctuations of the beam current intensity,
that is, the current fluctuations are the dominant and the influence of the target
density fluctuations is negligible. This suppression of the target density fluctua-
tions allows a reliable measurement of the asymmetry in the cross section of the
Møller scattering by using the asymmetry in the measured luminosity.

The helicity correlated differences in the beam parameters lead also to false
asymmetries that distort and shift the asymmetry in the Møller scattering. The
multilinear regression method, explained in 5.5.2 and the appendix A, to correct
for the false asymmetries is also applied to correct the asymmetry in the luminos-
ity from the false asymmetries. We expect the fit parameters, that is, the false
asymmetries per unit Xi, to be different because they are trivial asymmetries in
the cross section of a different physical process, the Møller scattering, and they
correspond to different kinematic conditions, that is, small forward angles.

We applied first the multilinear regression method to the eight monitors sep-
arately. In the table below we can see the results for the fit parameters for one
monitor.

Xj aj ± σ(aj)
AI (ppm) −0.35 ± 0.05
∆x (µm) 31 ± 18
∆y (µm) 15 ± 62
∆α (µdeg) −4.6 ± 2.7
∆β (µdeg) −0.42 ± 5.72
∆E (eV) 0.012 ± 0.047
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The fit parameters of the current asymmetry is known with quite high precision.
The errors of the fit parameters corresponding to the beam position and angle
differences are large as these beam parameters present large correlations. The most
remarkable result is the fit parameter associated to the beam current asymmetry.
From the equation 7.4 we expect a beam current coefficient around −1. The expe-
rimentally observed fit parameter has the correct sign but is smaller in magnitude
than expected. Similar results are obtained for the other monitors.

The table below shows the luminosity asymmetry normalized to the beam
current intensity and corrected from the false asymmetries. The asymmetries in
the luminosity signal for the eight luminosity monitors calculated for the separate
GVZ samples are shown in the figures 7.2 and 7.3.

Sector APh
correct(10−6)

1 −21.73 ± 0.20
2 −8.54 ± 0.38
3 7.84 ± 0.65
4 18.06 ± 0.51
5 17.63 ± 0.35
6 8.28 ± 0.19
7 −9.10 ± 0.74
8 −19.65 ± 0.11

The analysis has been also performed for the asymmetry in the luminosity
averaged over the eight sectors. This asymmetry should average out. Moreover
we expect the fit parameters corresponding to the beam position and angle differ-
ences to average out when the eight luminosity monitors, and therefore the whole
azimuthal angle, are considered. In the table below we show the results of the
multilinear regression analysis applied to the average of the asymmetry in the
luminosity over the eight monitors.

Xj aj ± σ(aj)
AI (ppm) −0.44 ± 0.07
∆x (µm) −8 ± 23
∆y (µm) −47 ± 79
∆α (µdeg) −0.4 ± 3.4
∆β (µdeg) 4 ± 7
∆E (eV) −0.09 ± 0.06

The fit parameters associated with the beam position and angle differences are
compatible with zero as it is expected. Again the fit parameter of the beam
current asymmetry is about one half of the expected value.

Below we show the result of the asymmetry averaged: the raw asymmetry at
the left, the corrected asymmetry in the middle. We see in both cases that the



136 7. Transverse spin asymmetry in the luminosity monitors

averaged asymmetry in the luminosity is not compatible with zero. The average
asymmetry is small though.

APh
raw(10−6) APh

correct(10−6) δsyst
A

0.67 ± 0.13 0.88 ± 0.14 0.04

The discrepancy of the fit parameter associated to the beam current asymme-
try with respect to the expected value of about −1 is probably explained by the
nonlinearity of the luminosity measurement. We know how to correct the nonlin-
earity in the luminosity signal [22]. The luminosity signal is plotted versus the
rate of the PbF2 calorimeter because both detectors see the same luminosity and
the calorimeter answer is assumed to be linear because dead time losses are very
small. A tanh fit functions turns out to be useful to correct the nonlinearity in
the luminosity signal (see figure 7.1). Nevertheless the correction of the luminosity
has not been performed yet for the backward data. Since the nonlinearities of the
individual monitors are different, the lack of correction might also explain why in
the averaged luminosity there is still an asymmetry not compatible with zero. This
fact might also introduce a false asymmetry to the data from the PbF2 calorimeter
when the count rates are normalized to the luminosity. But, as we can see here,
the impact is rather small, 0.88 ppm, compared to 40 ppm.

The asymmetry in the luminosity monitors when GVZ samples are combined
and corrected from the false asymmetries is given by:

ALuMo
⊥ = (−20.81 ± 0.12stat ± 0.05syst)ppm

We now present the result of the calculation of the two photon exchange asym-
metry in the Møller scattering for the energy 315.1 MeV. The value calculated is
the average over the angle range 4◦ − 10◦. The details of the calculation can be
found in [3]. The calculated value of the asymmetry is:

AMøller
⊥ = −56.89ppm

We observe a discrepancy between the measured and the calculated values of
the Møller asymmetry that is about a factor of 2.7. The most probable cause of
this discrepancy is the nonlinearity of the luminosity signal which has not been
corrected yet. The factor 2.7 of difference between the calculated and the measured
values of the Møller asymmetry is consistent with the factor 2 of discrepancy we
have found between the expected value of the beam current false asymmetry ∼ −1
and the value obtained in the regression ∼ −0.5.
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Figure 7.1. The figure taken from [22] shows the plot of the luminosity signal versus the
Medusa rate as both detectors see the same luminosity and the calorimeter is assumed to
be linear. The nonlinearity in the luminosity signal can be corrected through a hyperbolic
tangent.
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Fit function: A(φ) = A⊥ cos(φ+ δ) + b

(7.5)
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Figure 7.2. The upper figure shows the asymmetry in the luminosity corrected from
the false asymmetries and the lower figure shows the raw data. This data corresponds
to the samples with the GVZ half-wave plate OUT. The sign of the asymmetries is the
correct one. We observe the following features: the asymmetry in the luminosity is very
sensitive to the helicity correlated changes of the beam parameters. It is remarkable
that the fit to the raw data presents a very large phase. The phase of the corrected data
is smaller but not compatible with zero.
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Fit function: A(φ) = A⊥ cos(φ+ δ) + b

(7.6)
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Figure 7.3. The upper figure shows the asymmetry in the luminosity normalized to
the beam current and corrected from the false asymmetries. The lower figure shows the
raw data. These data correspond to the samples with the GVZ half-wave plate IN. The
data presents the correct sign, the opposite to the OUT samples. The most remarkable
is that the fit to the raw data presents a large phase that is of similar magnitude to that
exhibited by the OUT data but with opposite sign.
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Chapter 8

Conclusion and outlook

We have seen throughout this work that one of the most important challenges
of the analysis at backward angles is how to cope with the neutral background
present in the coincidence spectrum. This difficulty is especially acute for the
deuterium data because the amount of background is larger. The Monte Carlo
simulations of the experimentally observed energy spectra is the tool used by the
A4 collaboration to separate the true quasielastic events from the background. The
objective of this work has been testing a simple model based in the simulation of
the response of the detectors to the neutral background, since the simulation for
the deuterium at backward angles is not yet available. This simple model allows
an understanding of the source of the systematic errors of the asymmetry. We have
learnt from the model that the statistical error of the asymmetry is not any more
given by 1/

√
Ntrue, where Ntrue is the number of true events, because to calculate

the asymmetry in the quasielastic scattering we must do a subtraction of the
number of counts of two different histograms and the errors are additive. Another
dominant source of the systematic error is the dependence of the noncoincidence
asymmetry on the lower cut in energy. Of the two parameters of the model, the
scaling factor ǫ and the shift in energy δ, the error in the asymmetry is much more
sensitive to uncertainties in the δ.

We have tested two procedures for the application of the model: (1) The ap-
plying cut method and (2) the weighted procedure. With the second method we
have obtained a slightly smaller statistical error for the mean asymmetry. The
first method has taught us that there is an optimum lower cut that leads to a
relative minimum in the asymmetry error. Nevertheless we have faced also the
insufficiency of the model because there is a systematic drifting of the asymmetry
depending on the lower cut that is larger than the error bars.

We have applied the multilinear regression method to correct the false asymme-
tries due to the beam parameters. It is evident that the corrections from the false
asymmetries are rather small. The quality of the beam has substantially improved
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with respect to past beamtimes so that the false asymmetries are smaller than
before but at the same time the knowledge of the false asymmetries is worse. The
multilinear regression method is, though, still useful to estimate the systematic
error due to the false asymmetries.

On the other hand, the analysis of the asymmetry in the noncoincidence spec-
trums has led to the discovery of unexplained azimuthal modulations of the asym-
metry in the background that arise when GVZ samples are analysed separately
and cancel out if the GVZ samples are combined. A function of the azimuthal
angle that includes not only the ever expected cosφ but also a sin 2φ fits quite
well to the data. Nevertheless the analysis of the fit of this function to the asym-
metry in function of the lower cut reveals even more unknowns. The unexpected
modulations are present only in the asymmetry of the background, not in the
asymmetry of the signal and these modulations are not exclusive of the deuterium
data or the transverse spin data but they belong as well to the hydrogen data and
to the longitudinal asymmetries. Efforts to find an explanation of the unexpected
modulations is nowadays a priority of the A4 collaboration.

We have presented also the analysis of the transverse spin asymmetry in the
luminosity monitors. The asymmetry exhibits the expected cosine azimuthal mod-
ulation. There is no evidence of the modulations that we observe at the asymmetry
in the noncoincidence spectrum in the calorimeter. We have observed, though, a
non-zero phase in the fit of the cosine that we interpret as a deviation of the spin
orientation of the beam electrons from the plane of the accelerator. In addition,
the discrepancy between the measured value of the asymmetry in the Møller scat-
tering and the theoretically calculated with the two photon exchange is probably
due to the lack of correction for the nonlinearity in the luminosity signal. The
lack of correction of the nonlinearity has, though, a no important effect on the
asymmetry measurement at the calorimeter.

An open question for the deuterium data is how to combine the information
extracted with the deuterium and that extracted with the hydrogen to isolate the
relevant information for the neutron. A model calculation [10] provides theoret-
ical predictions of the two photon exchange contribution to the transverse spin
asymmetry for both the proton and the neutron. However there is no yet a model
calculation that takes into account the nuclear models for the deuteron. If we
use the static approximation and combine the predictions for the free proton and
neutron we arrive to a clear contradiction between the asymmetry predicted by
the model and the measured asymmetry. As both the neutron and proton asym-
metries given by the model are of similar magnitude but opposite sign we expect,
according to the static approximation, a cancellation in the deuterium. Neverthe-
less the asymmetry measured is in the order of 40− 50 ppm while the asymmetry
measured with the hydrogen for the free proton is of about 100 ppm.
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In the future the task of the theory should be to unravel the information for the
neutron from the deuterium transverse spin asymmetry with a careful inspection
on the nuclear model dependencies. The A4 collaboration continues with the pro-
gram of measurements of the transverse spin asymmetry with both deuterium and
hydrogen since the experimental information concerning the two photon exchange
amplitudes is still scarce [1]. Data taking for the measurement of the transverse
spin asymmetry with hydrogen target at backward angles has been already carried
out at the energy of 420 MeV. A beamtime for the transverse spin at the same
configuration and energy and with deuterium is programmed for June. In the fu-
ture it is programmed to rearrange the detector to perform forward measurements
again. The measurement of the transverse spin asymmetry with both hydrogen
and deuterium at higher energies is included in the program.
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Appendix A

Multilinear regression method

The relation 5.52 holds actually for the true values of the asymmetries. The
measured asymmetries in each single run present fluctuations with respect to some
mean value. The single asymmetry measurements follow a Gauss distribution
whose mean belongs to the straight line defined by 5.52. Therefore the particular
measurements of the asymmetry can be expressed as the sum of the corresponding
mean and some deviation that is gaussian distributed, that is:

Xj
0 = P · A0 +

6
∑

i=1

aiX
j
i + ǫj (A.1)

where Xj
0 is a single measurement of the raw asymmetry for the run j, the first

two terms of the right side represent the mean and the ǫj is the deviation of the
raw measurement Xj

0 with respect to the mean located in the straight line.
As the beam parameter differences Xi in each single run are spread out over

some wide range the multilinear regression analysis is applied to obtain an esti-
mation of the straight line coefficients ai that give the false asymmetry per unit
Xi. Then we can extrapolate the value of the measured asymmetry to the origin
of coordinates where the beam parameter differences would be zero. This point
corresponds to zero false asymmetries and therefore gives the physical asymmetry
(times the degree of polarization).

Let us rewrite A.1 in a more convenient way. If the mean of the raw asymme-
tries corresponding to different beam conditions is taken and also the mean of the
beam parameters the mean of the deviations ǫ should be zero, as the deviations ǫj

are assumed to be symmetrically distributed around the straight line.

X0 = P ·A0 +
N

∑

i=1

aiXi + ǫ (A.2)

where ǫ = 0. Subtracting the equation A.2 from A.1 it is obtained
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Xj
0 −X0 =

i=N
∑

i=1

ai(X
j
i −X i) + ǫj (A.3)

Least squares method According to the maximum likelihood method the best
estimates of the straight line coefficients ai for a particular sample of measurements
are those that maximize the probability of obtaining that set of measurements.

The probability of obtaining a particular value of the asymmetry Xj
0 in one

measurement is given by the Gauss probability distribution function

P (X i
0) =

1√
2πσ

exp

{

−
ǫ2i

2σ2
i

}

(A.4)

As the measurements are independent the probability to obtain a particular
set of measurements equals the product of the individual probabilities.

P (X1
0 , X

2
0 , . . . , X

N
0 ) =

N
∏

i=1

1√
2πσi

exp

{

−
ǫ2i

2σ2
i

}

(A.5)

The maximization of the probability is equivalent to the minimization of the
exponent.

χ2 =

N
∑

i=1

1

σ2
i

[

(X i
0 −X0) −

6
∑

j=1

aj(X
i
j −Xj)

]2

(A.6)

The particular values of the fit parameters a0
i that minimize the χ2 are those

such that the partial derivatives of χ2 with respect to the fit parameters ai are
zero:

∂χ2

∂ai

∣

∣

∣

∣

∣

a0
i

= 0 i = 1, . . . , 6 (A.7)

System of linear equations This methods leads finally to a system of 6 linear
equations with 6 unknowns (the fit parameters) and whose coefficients are the
correlations between the beam parameters.

s2
j0 =

6
∑

k=1

aks2
jk (A.8)

where
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s2
jk =

1

N − 1

N
∑

i=1

[

(Xj
i −X

j
)(Xk

i −X
k
)
]

(A.9)

With the definitions

rjk =
s2

jk

sjjskk
(A.10)

bj = aj
sjj

s00
(A.11)

where rjk are the covariances between the beam parameters defined in terms
of the correlations,

the system of equations A.9 can be written in terms of the covariances rjk

rj0 =

6
∑

k=1

bkrjk (A.12)

Physical asymmetry The fit parameters can be obtained solving the equation
A.12 by inverting the covariances matrix

bk =
6

∑

k=1

r−1
jk rj0 (A.13)

aj = bj
s00

sjj
(A.14)

The fit parameters are used to subtract the false asymmetries from the mea-
sured asymmetry.

P ·Aph =
1

N

N
∑

i=1

(

X0
i −

6
∑

j=1

ajX
j
i

)

(A.15)
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