Die Erforschung der Quark-Gluonstruktur der Hadronen mit der elektromagnetischen Sonde Neue Ansätze und ihre experimentelle Realisierbarkeit

Dietrich Harrach Institut für Kernphysik der Universität Mainz Plenarvortrag auf der DPG - Tagung in Erlangen

am 22.März 2001

Inhaltsübersicht

- QCD und die Struktur der Hadronen
- Aktuelle Fragestellungen in der Hadronstrukturphysik
- Experimente heute und Anforderungen für zukünftige Experimente
- Prioritäten und Schlussfolgerungen

• QCD und die Struktur der Hadronen

- Starke QCD
- Sonden: Leptonstreuung vs. Hadronspektroskopie

• Aktuelle Fragestellungen in der Hadronstrukturphysik

- Der Spin des Nukleons Gluonen und Bahndrehimpuls
- Harte, exklusive Prozesse und verallgemeinerte Partonverteilungen
- Transversale Quarkimpulse und transversaler Spin in Fragmentation
- Skalenverhalten in der Nähe des QCD-Skalenparameters Λ_{QCD}
- Natur des Baryon Spektrums
- Existenz und Struktur von Mesonen mit gluonischen Anregungen
- Hohe Partondichten in kalter Kernmaterie: nichtlineare Evolution und Jet-Attenuation

• Experimente heute und Anforderungen für zukünftige Experimente

- Experimentelle Basis heute:
 MAMI, ELSA, CEBAF, HERMES, SLAC, COMPASS, RHIC, HERA
- Tief virtuelle exklusive Streuung (DVES): ELFE
- "GPD und QCD Exotics": CEBAF @ 12_GeV
- Spin-Flavour separierte Partonverteilungen, Transversalität: TESLA-N
- EIC

• Prioritäten und Schlussfolgerungen

Starke QCD

- QCD ist **nicht** perturbative QCD
- QCD bei starker Kopplung (Q< Λ_{QCD}) ist ein ungelöstes Problem
- Hadronen
 - wechselwirkende Vielteilchensysteme von Quarks und Gluonen
 - Realisierung einer nicht-abelschen Feldtheorie
 - topologische Feldfluktuationen und QCD Vakuumkondensate
 - Chirale Symmetriebrechung Masse der Hadronen, GS-Bosonen
 - Confinement
- Theoretischer Rahmen
 - Gittereichtheorie
 - * chiraler Limes
 - * Seebeiträge ('quenched'), Zerfälle
 - * Gitterartefakte
 - Modelle: Nc $\rightarrow \infty$, CBM, "fluxtube", CQM etc.
 - exakte Limites (χPT , PQCD)
- Experimente sind notwendig um
 - unterschiedliche Aspekte der hadronischen Wellenfunktion herauszuprojizieren
 - effektive Freiheitsgrade ('Pionwolke', 'Konstituentenquark', 'diquarks') als
 Objekte der Dynamik hadronischer Prozesse zu identifizieren

Streuung und Spektroskopie

Historisch:

• Hadronspektroskopie

- Quarkmodell erklärt die Symmetrien der Hadronspektren
- "Konstituentenquarkmodell" beschreibt erfolgreich elektroschwache Momente und Übergänge
- Wenn die Vorhersagen nicht stimmen ist das eine "Krise"

• Streuexperimente mit Leptonstrahlen

- Skalenverhalten und Quark-Parton Phänomenologie
- Skalenverletzung und Kopplungskonstante der QCD
- Summenregeln erlauben Verbindung mit spektroskopischen Daten

Heutige Situation:

- Hadronspektroskopie
 - Rein hadronische Formations- und Zerfallsprozesse sind derzeit nur parametrisierbar (χPT) bzw. modellierbar (z.B. ${}^{3}P_{0}$)
 - Mischungsszenarien und Kopplung von Zerfallskanälen sind nicht entscheidbar
 - Diskussionen um die Glueball- und Hybridkandidaten bleiben offen:

Die Sonde und das Objekt sind gleich komplex.

- Streuexperimente
 - Die Streuung von Leptonen bei hohen Impulsüberträgen bestimmt Erwartungswerte von wohldefinierten Operatoren, die hierarchisch in Potenzen der Auflösungsskala 1/Q organisiert werden können
 - Spin und Flavour der Partonen können entweder durch die Sonde $(\gamma^*\,,Z^0\,,W^\pm)$ oder die Beobachtung des hadronischen Endzustands selektiert werden
 - QCD selbst wird im "schwach" koppelnden Bereich zur Sonde.
 Erfordert Faktorisierung und Beherrschung der PQCD "Technologie" in NN...LO

Der Spin des Nukleons Gluonen und Bahndrehimpuls

Die polarisierte Gluonstrukturfunktion $\Delta G(x)$

- Die unpolarisierte Gluonstrukturfunktion ist aus direkten und indirekten Messungen gut bekannt
- Gluonen tragen bei Skalen von 0.1 fm (2 GeV/c) ca. 50% des Impulses des Protons Vermutlich tragen sie bei gleichen Skalen auch ca. 50% des Gesamtdrehimpulses J=L+S
- Drehimpulserhaltung fordert $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_G$ $\Delta\Sigma$ wurde in (doppelt)polarisierter Lepton-Nukleon Streuung gemessen
- ΔG könnte von der Größenordnung 1 und darüber sein

- Das COMPASS Experiment wird $\Delta G(x)$ im Bereich $0.05 < x_g < 0.2$ messen.
- RHIC hat ein Programm zur Messung von $\Delta G(x)$ in \overrightarrow{p} \overrightarrow{p} Stößen
- HERMES (A. Airapetian et al, PRL. 84 (2000) 2584) hat erste Messergebnisse als Evidenz für ein großes ΔG interpretiert

Spinstruktur anderer Hadronen

- Spinstruktur des $\Delta^{++} \; [\uparrow\uparrow\uparrow]$ und anderer N^*
- Hybride haben eine interessante Spinstruktur:

nichtexotische Hybride $0^{-+}[\downarrow\downarrow\uparrow\uparrow]$ und $1^{--}[\downarrow\uparrow\uparrow\uparrow]$ sollten mischen mit $\pi \ 0^{-+}[\uparrow\downarrow]$ $\rho \ \omega \ 1^{--}[\uparrow\uparrow]$

 Suche nach einem experimentellen Zugang zur Spinstruktur von instabilen Baryonen?
 Spinstruktur von Mesonen (Hybriden und Gluebällen)?
 Spinstruktur von Spin-0 Objekten?

Harte exklusive Prozesse

• Tief virtuelle Comptonstreuung (DVCS) und der verwandte Prozess, die

tief virtuelle Mesonproduktion (DVES)

• Bei hoher Virtualtät des Photons Q^2 und kleinen t: Theoretische Beschreibung durch verallgemeinerte Partonverteilungen (SPD's) $H(x,\xi,t), E(x,\xi t)$ und $\tilde{H}(x,\xi t), \tilde{E}(x,\xi t)$ $(H(x,\xi,t) \leftrightarrow F_1(Q^2)\&F_2(x,Q^2), E(x,\xi,t) \leftrightarrow F_2(Q^2)$

SPD's und Drehimpuls

- $\Rightarrow X$. Ji: $J_q = \frac{1}{2} \int_{-1}^{+1} dx \, x \{ H(x, \xi \, t = 0) + E(x, \xi, t = 0) \}$ Gesamtdrehimpuls der Quarks im Nukleon
- Modellierung von $E(x, \xi, t)$, $H(x, \xi t)$ im chiralen Soliton Modell (Petrov et. al '98)

 \bullet SPD's sind im Bereich $|x|>|\xi|$ verallgemeinerte Partonverteilungen $\to u(x), \ \bar{u}(x)$

 \bullet Der Bereich $|x| < |\xi|$ ist neuartig und beschreibt $q\bar{q}$ Korrelationen

Erste Evidenzen für DVCS

• Interferenz mit Bethe-Heitler: Azimuthale Spin Asymmetrie

• H1 & Zeus sehen DVCS Beiträge

Evidenzen für DVES

• HERMES Daten für 'exklusive' ho Produktion

Kinematische Auflösung und "Neue Spektroskopie"

• HERMES Daten zeigen Evidenz für exclusive π^+ -Produktion

- Inelastische Pion Produktion nicht getrennt : $\sigma_{miss-mass}\approx 200\,MeV$
- Kunstgriff durch $\sigma(\pi^+) \sigma(\pi^-)$ am Proton
- Bei einer Auflösung $\sigma_{m-m} \approx m_{\pi}/3 \approx 50 \text{ MeV}$ könnte man die inelastischen Kanäle z.B. $\gamma^* + p \rightarrow N^* + \pi$ trennen.

 Theoretisch vorhergesagte Wirkungsquerschnitte für Oktet und Dekuplet Baryonen sind groß L.Frankfurt et al. PRL 84(2000)2589

- Bei geeigneter **Auflösung** wird neue Strukturinformation zugänglich:
- Instabile Baryonen; z.B. Spinstruktur des Δ oder auch Struktur von N*1440,1520,1535(1/2⁻) Y*1405(1/2⁻),1520
- Die Struktur der beteiligten Mesonen geht durch ihre Lichtkegel Verteilungsamplituden ein -> Mesonspektroskopie

Achtung:

- Alle diese neuen Konzepte $L_q, x < \xi, 'neue Spektroskopie'$ sind derzeit in schneller Entwicklung begriffen
- An den Korrekturen (QCD Evolution, höhere Twistbeiträge) wird intensiv gearbeitet
- Die wenigen verfügbaren Daten stützen viele Annahmen, aber Probleme wie bei der Behandlung von Formfaktoren bei hohen Q^2 können noch nicht ausgeschlossen werden

Transversaler Spin

• Es gibt neben $f_1(x, Q^2)$ (Impulsverteilung) und g_1 (Helizitätsverteilung) eine weitere (T-2) Strukturfunktion: $h_1(x, Q^2)$ (Transversalität)

- Nicht identisch mit g₁
 Gluonen können nicht in höherer Ordnung beitragen
- Neue Summenregel für die **Tensorladung** $\delta\Sigma$
- Die Struktur ist chiral-ungerade.
 Wegen Helizitätserhaltung nicht in inklusiver DIS beobachtbar
- Vorschläge für Messungen:
 - Drell-Yan Prozess in transversal polarisierten Protonen (RHIC)
 - Azimuthale Asymmetrien in semi-inklusiver DIS (SIDIS) am transversal polarisierten Proton (HERMES, COMPASS)

- Erste Ergebnisse von SMC(trans. Pol.)) und HERMES (long. Pol.) zeigen gute Analysierstärke H_1/D_1
- $H_1^{\perp(1)}(z,k_{\perp})$ Fragmentationsfunktion von transversal polarisierten Quarks
- Weitere Fragmentationsfunktionen die vom transversalen Quarkimpuls abhängen (tranversaler Impuls <-> nichtperturbative transversale Skalen)
- Die vereinfachende Annahme einer Faktorisierung von SIDIS $\frac{d^2\sigma}{dx\,dz} \propto f(x)\cdot D(z)$ ist bei höheren Energien besser realisiert

ELFE

- Exklusive Photon- und Meson- Wirkungsquerschnitte fallen mit hohen Potenzen von $(1/Q)^{4\dots 6}$ ab

$$\gamma^* + p \rightarrow M + p : (M = \rho_L^0, \pi^0, \gamma)$$

- \bullet Kinematische Auflösung von $\sigma_{m-m} < m_{\pi}$ ist notwendig um exklusive Kanäle zu isolieren
- \bullet Instantane Luminositäten bis etwa $10^{36}cm^{-2}s^{-1}$ können (und müssen) genutzt werden

- Eine 30 GeV Elektronmaschine (s=60 GeV²)
 - − mit Tastverhältnis ≈1
 - Energieschärfe $\sigma_E/E \approx 1/2 \times 10^{-3} \ (\sigma_E = 30 \ MeV)$
 - hochauflösendes Detektorsystem $\sigma_p/p \thickapprox 10^{-3}$
 - DVES bei $Q^2 \ge 5 \, GeV^2$ bis hinab zu x=0.1

-> ideale Voraussetzungen zum Studium von DVCS und DVES

- Eine viel höhere Strahlenergie
 - würde das Studium bei kleineren x erlauben
 - jedoch keine Erweiterung des Q^2 -Bereichs mit sich bringen wg. Luminositätsgrenzen des Beschleunigers bzw, des Detektors
 - kinematische Auflösung $\sigma_{m-m} < m_{\pi}$ nicht erreichbar ->Exklusivität durch Antikoinzidenz im hermetischen Detektor

CEBAF @ 12 GeV

Working Documents for White Paper Committee Special PAC 18 Review of the Science Driving the 12 GeV Upgrade

- Generalized Parton Distributions
- Photoproduction of QCD Exotics
- A_1^n for Valence Quarks
- Super High Momentum Spectrometer (SHMS)
- Quark-Hadron Duality: The Resonance-Scaling Transition
- Hadrons in Nuclear Medium
- Charm at Threshold
- Precision Measurements of the Electromagnetic Properties of Pseudoscalar Mesons at 11 GeV via the Primakoff Effect
- Nucleon Elastic and Transition Form Factors with the CEBAF at 12 GeV Upgrade
- Measurement of Fn2/Fp2 and d/u in Deep Inelastic Electron scattering off 3H and 3He
- High-Q2 Few-Body Form Factors

TESLA

500 - 800 GeV e+e⁻ Linear Collider with an X-Ray Free Electron Laser Laboratory

Colloquium Scientific Perspectives and Technical Realisation of

TESLA

23 / 24 March, 2001

International Adv. Committee

M. Danilov (ITEP, Moscow) E. Iarocci (INFN) E. Tarocci (INFN) G. Marganitondo (EPF Lausanne) D. Miller (UC London) D. Moncton (ANL/APS and ORNL) F. Richard (LAL Orsay) M. Tigner (Cornell Univ.) E. Umbach (Univ. Würzburg) A. Wagner (DESY)

e-mail: tesla.colloquium@desy.de

Local Organisation

K. Flöttmann R. Heuer G. Materlik G. Moortgat-Pick **T.Tschentscher**

http://www.desy.de/tesla_colloquium

Erlangen 22.3.2001

TESLA

2 * 15 km SC-Linacs a 250 GeV mit SASE FEL λ =0.05-5 nm

3 km Sektion (20-50 GeV) im e⁻(Süd)Arm wir für FEL verwendet

ELFE @ DESY

TESLA injiziert bei 25 GeV in den HERA Elektron Ring, der als **Stretcher** verwendet wird.

ELFE@DESY	Stretcher-Version
Energiebereich	15-25 GeV
Max. Strom	30 μ A
Tastverhältnis	88 %
Bunch Abstand	2.3 ns
Emittanz (hor.)	4 mm μ rad bei 15 GeV
	12 mm μ rad bei 25 GeV
Energieschärfe	$1.2 imes 10^{-3}$ FWHM @ 15 GeV
	$2.2 imes 10^{-3}$ FWHM@ 25 GeV

Aktualisierte Kostenschätzung für die Stretcherversion:

Kostenschätzung 16.3.01	
Baukosten: Verbindung TESLA->HERA	20 MDM
Baukosten: HERA->Strahlfänger + Strahlfänger	50 MDM
433 MHZ HF System	60 MDM
Strahlführung	30 MDM
Umkehrschleife	33 MDM
Modifikation der HERA Geradeaus-Sektionen	12 MDM
Polarisierte Quelle, Injektion, Extraktion, Regelsystem	15 MDM
Σ	220 MDM

- Kosten für Detektoren nicht berücksichtigt
- Energievariationen begrenzt möglich
- Longitudinale Elektronpolarisation an (externen) Target erfordert Aufwand

Vergleich mit ELFE@CERN

• Wiederverwendung der LEP Kavitäten in einem "CEBAF" Design

(CERN 99-10. ed. H. Burckhardt) Kosten 366.1 MSFR=440 MDM

Vorschlag für einen ELFE Detektor

- ullet Vorwärts Dipol-Spektrometer $\int {f B}\, dl = 5\,{
 m Tm}\,$ mit instrumentierten Innenseiten
- Vakuumkammer Fiber Detektoren $\delta x \approx 50 \ \mu m$ 0.5% X₀ Dicke;
- Rückwärts Solenoid Spektrometer PbWo₄ Kristallkalorimeter
- $RICH(C_4F_{10}+Aerogel)$

Detektorauflösung

"Missing Mass" Auflösung des HERMES Detektors (ca 1%)
für exklusive Mesonproduktion

 \bullet Simuliertes Massenspektrum für $\gamma^* + p \rightarrow K^+ + \Lambda^{(*)}, \, \Sigma^{(*)}$

TESLA-N

- Semiinklusive DIS mit polarisierten Elektronen und Targets
- Nord (e^+) Arm von TESLA bei 250-400 GeV (s=500-800 GeV²)

TESLA-N Study Group hep-ph/0011299, DESY 00-160, TPR 00-20 31.November 2000

• Luminosität (10 Hz) $1.5 \cdot 10^{35} cm^{-2} s^{-1}$ (300×COMPASS) DF= 1%

Dreistufiges Detektorkonzept

EPIC + ERHIC=EIC

The Electron Ion Collider, Whitepaper submitted to NSAC March 2001

• Polarisierte p & e ; s =1000-10 000 GeV² (vergl. HERA s=100 000 GeV²)

Gold Energie/Nukleon	100 GeV/u
Max. Proton Energie	250 GeV
Electron Energie	10 GeV
Electron-Gold cm Energie/Nukleon	63_GeV/u
Elektron-Proton cm Energie	100 GeV
Umfang	3.8 km
Umlauffrequenz	78.3 kHz
Radius in Dipolen	243 m
Luminosität pro Nukleon	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$
x_{min} @10 ${ m GeV}^2$ e-Au	$1.6\cdot 10^{-4}$
x_{min} @10 GeV^2 e-p	$1.0\cdot 10^{-4}$

Physikprogramm des EIC "White Paper"

- Polarisierte \overrightarrow{e} \overrightarrow{p} Streuung bei kleinem $s pprox 500 1000 \, {
 m GeV}^2$
 - transversale Partonimpulse in der Fagmentation
 - Spinabhängige Fragmentationsfunktionen
 - Targetfragmentation "fracture functions"
 - "tagged " Strukturfunktionen des Deuterons, d/u
 - Transversity $h_1(x)$ in SIDIS
 - DVCS und DVES
 - "neue Spektroskopie"
- Polarisierte $\overrightarrow{e} \overrightarrow{p}$ Streuung bei großem $s pprox 5000 10000 \, {
 m GeV}^2$
 - Inclusive Spinstrukturfunktion bei kleinen $x \ge 10^{-4}$
 - Bjorken Summenregel auf 1%
 - ΔG aus der Skalenbrechung von $g_1(x,Q^2)$
 - $\Delta G(x)$ aus 2+1 Jet Ereignissen
 - Polarisierte Strukturfunktion de Photons
 - W^{\pm} Produktion, Bestimmung der PV Strukturfunktion g_5^{\pm}
 - Hochenergetische Limes der DHG Spinsummenregel.
- e·A Kollisionen
 - Strukturfunktionen und Skalenverhalten bei hohen Partondichten
 - harte diffraktive Prozesse "rapidity gap"
 - Messung der Gluonstrukturfunktion
 - Suche nach "Colored Glass Condensate".

Dies ist: ENC \bigotimes HERA- \overrightarrow{e} \overrightarrow{p} \bigotimes HERA-eA

Bei Subprozessen mit $\hat{s} = 10 \ GeV^2$ in h-h Kollisionen sind Partonen mit $x_1 \cdot x_2 = \hat{s}/s$ also $x \approx \sqrt{\hat{s}/s}$ beteiligt. RHIC(Au+Au)100+100: $x_{\hat{s}=10 \ GeV^2} = 1.6 \cdot 10^{-2}$ LHC (Pb+Pb) 2700+2700: $x_{\hat{s}=10 \ GeV^2} = 5.7 \cdot 10^{-4}$

Prioritäten und Schlussfolgerungen

- Kernphysik heute ist "starke" QCD
- Exklusive Elektronenstreuung eröffnet neue Zugänge zu Hadronstruktur:
 - 1. Bahndrehimpulse von Quarks und "magnetische" Eigenschaften der Nukleonen
 - 2. Mesonische Struktur der Baryonen im neuen Bereich $|x| < |\xi|$
 - 3. "Neue Spektroskopie" durch Übergänge zu N* und Mesonen
- Die Hadronstrukturphysik in Europa braucht dafür einen Elektronenbeschleuniger mit hohem Tastverhältnis und einer Energie $E \ge 25 \, {
 m GeV}$
- Wenn TESLA begonnen wird dann bestehen bei DESY hierfür die besten Voraussetzungen:
 - Das FEL Projekt hat ähnliche Anforderungen an die Strahlenergie.
 Zur Anpassung der Pulsstruktur kann man:
 - * Den HERA Ring als Stretcher verwenden oder
 - * Die Kryo-Anlage für einen Abschnitt aufstocken um ca. 10% Tastverhältnis zu erzielen
- Konzeption eines Detektors, der als
 - S-HERMES eingesetzt werden kann
 - als ELFE Detektor verwendet wird wenn der TESLA-FEL läuft
 - und auch als 1. Stufe eines TESLA-N Detektors dienen kann