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Chapter 1

Introduction

Within the A4 Collaboration an experimental apparatus for performing pre-
cise measurements of spin observables in the scattering of polarized electrons
has been designed, developed and used during several years [1, 2, 3]. The ex-
periment is realised at the MAMI electron accelerator facility. The polarized
MAMI electron beam is scattered on an unpolarized liquid hydrogen target and
the scattered electron are detected with a lead fluoride Cherenkov calorimeter.

So far, the measurements have been used for studying the elastic scattering
of the polarized electrons off unpolarized protons [2, 3]. Nevertheless, the A4
experiment offers also the possibility to study the inelastic electron scattering
off the proton. In fact, inelastically scattered electrons are detected during
the measurements by the lead fluoride calorimeter together with the electrons
scattered elastically. In particular, the A4 detector allows the detection of the
electrons scattered exciting the A(1232) resonance, the lightest excited state
of the proton. Therefore, the measurement of spin observables in the electro-
production of the A(1232) resonance is possible within the A4 experiment.

Scattering longitudinally polarized electrons on protons, the dependence
of the scattering cross section on the helicity state of the electrons becomes
observable and can be measured in terms of the asymmetry in the electron scat-
tering cross section with the two helicity states of the electron, i.e. the parity
violation asymmetry. It has been shown [4, 5, 6] that the parity violation
asymmetry in the cross section for the electroexcitation of the A(1232) reso-
nance can yield an important insight into the proton structure.

The scattering cross section asymmetry is obtained, in the A4 experiment,
counting the number of electrons scattered with each state of helicity. The en-
ergy of the scattered electrons is measured by the lead fluoride calorimeter and
histogrammed, giving an energy spectrum. Analysing this energy spectrum, it
is possible to distinguish between electrons scattered elastically or inelastically,
e.g. exciting the A(1232) resonance. Until now, the energy spectrum has been
studied in detail only in the energy region of the elastic scattering, which was
the subject of the measurements. For the analysis of the data in the energy
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region of the A(1232) resonance excitation, a more detailed study of the en-
ergy spectrum is necessary for having a better knowledge of the background.
In this energy range, a good understanding of the background is particularly
essential because the ratio of the signal to the background is smaller than in
the case of the elastic scattering range. This is because the absolute value of
the signal cross section is smaller and because the background is larger.

The subject of this work is the detailed study of the lead fluoride detector
response to the scattered electrons, in order to achieve a good comprehension
of the electron energy spectrum in the energy region of the excitation of the
A(1232) resonance. This is necessary for the further analysis of the data about
the A(1232) resonance, in the perspective of the extraction of the parity vio-
lation asymmetry in the A(1232) electroproduction cross section.

For completeness, an overview of the physical motivation for measuring
the parity violation in the electroexcitation of the A(1232) will be given in
Chapter 2. Chapter 3 will provide a detailed description of the A4 experi-
ment, concentrating above all on those features which are considered in the
simulation of the detector response presented in Chapter 4. This simulation
is used to compare the experimental energy spectrum with the physical cross
sections for the electron scattering, which have been implemented within this
work in an event generator, as reported in Chapter 5. The results of this com-
parison are exposed in Chapter 6, together with a short outlook on the further
proceeding of the work.



Chapter 2

Parity violation in the excitation
of the A(1232) resonance

Using a longitudinally polarized electron beam for performing electron-proton
scattering experiments gives the possibility to study the helicity dependence
of the electron-proton interaction. If such a dependence is observed, the sym-
metry of parity is violated in the process.

The observable associated with the helicity dependence is given by the
asymmetry Ag/y, in the cross section of the electron scattering:

Or — Oy,

AR/L = (21)

Or+ 0r ’
with o and oy, representing the proton cross section for right-hand and left-
hand polarized electrons, respectively.

The parity in the elastic electron-proton scattering is indeed violated, be-
cause the measurements of Ag,;, return values different form 0. For instance,
within the A4 collaboration the quantity Ag,; for the elastic electron scat-
tering off the proton has been measured for determining the contribution of
the strange see quarks to the electromagnetic form factors of the nucleon [2].
Since the electromagnetic interaction is parity conserving, the observed parity
violation can be understood, in the framework of the gauge theories of inter-
acting quantum fields, considering the unified description of the electroweak
interaction given by the Standard Model. Here, the effects of parity viola-
tion are expected in the processes involving weak neutral currents and arise at
the lowest order from the interference of weak and electromagnetic amplitudes.

In the case of inelastic processes, the scattering of the electron is accom-
panied by the production of hadrons. In addition, one of the excited states

of the proton can be produced. The lightest of such excited states is the

A(1232) resonance, a spin—% P-wave with isospin % The cross section for

the A(1232) electroproduction depends on the p— AT transition amplitude

7
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<AT|J,| p>, where the neutral current J, carries information related to the
structure of the proton.

The excitation of the A(1232) resonance is an interesting process for sev-
eral reasons. From the experimental point of view, the measurements are
facilitated, because the excitation cross section is reasonably large and the
A(1232) -state is energetically well isolated from the other heavier excited
states of the proton. From the theoretical point of view, being p—A™ a pure
isovector transition, all isoscalar terms in J, are ruled out, simplifying the
form of the transition amplitude and of the observables. Moreover, the only
one strong decay channel allowed for the A(1232) is into a nucleon and a pion,
i.e. A—Nm, which enables one treating the unitarity issue quite rigorously.

Within the Standard Model, the current .J, contains an electromagnetic
term J) and a weak term Jf. This last term makes the process of the
A(1232) electroproduction helicity dependent, i.e. parity violating. Therefore,
the observable Aﬁ/L defined for this process like in Equation 2.1 is expected

to be different from 0. Aﬁ/,: can be calculated in terms of .J, and measured,
in order to have an insight into the proton structure.

The first calculation of Aﬁ/L was performed in 1978 by Cahn and Gilman
[7]. They gave predictions for Aﬁ/L within a variety of theoretical scenarios,
namely assuming different gauge groups and assignments of fermion represen-
tations, treating the proton and the A(1232) with a constituent-quark-model.
At that time, the Standard Model by Glashow, Salam and Weinberg was not
yet well established and the main interest was focused on determining the
coupling parameters of the weak gauge bosons to the various fermions of the
theory. The measurement of Aﬁ/L was seen as an opportunity for probing such
aspects, rather than for studying the proton structure.

Few years afterwards, the result of the calculation of Aﬁ/L considering the

full spin-2 structure of the A(1232) as well as the dependence of .J, on elec-
tromagnetic and weak structure functions was published by Nath, Schilcher
and Kretzschmar [4]. It turned out that, at the born term level, Aﬁ/L depends
just on one weak structure function, which is associated with the axial vector
coupling.

Nowadays, the coupling of leptons to the electroweak gauge fields is suffi-
ciently well known, that electrons have become a very good tool for probing
the hadron structure. Additionally, accelerator facilities with 100% duty fac-
tor and high polarized electron beams, e.g. MAMI, are these days operational.

These machines allow the precise measurement of observables like Aﬁ/L.

Experimentally, it is only possible to measure Aﬁ/L as the cross section
asymmetry in the electron-proton inelastic scattering with the appropriate
kinematics (see Appendix A). Contributions to this quantity are given both
by resonant and non-resonant processes, without possibility to distinguish be-



tween them. Defining Aﬁ}fs and Aﬁﬁon'res as the resonant and non-resonant
contributions to Aﬁ/L, respectively, this takes the form:
ARy = AR + AT, (2.2)

According to [6], defining Gy as the Fermi constant, « as the electromagnetic
fine structure constant, Q% as the absolute value of the squared four momentum
transfer and s as the square of the total energy in the centre of mass frame,

A,res : )
AR/L can be written as:

AA,res _ _GF Q_2
R/L V2 Ara

where ¢4 and ¢¢. are the axial vector and the vector electron coupling to the Z°
field, respectively. The isovector hadron-Z° couplings are denoted with £L=1
and €471 for the vector and axial vector current, respectively. These factors
are, at the tree level in the Standard Model and being 6y the weak mixing
angle:

9460 + gv €0 F(Q%5)] (2.3)

ga = 1,
g = —1+4sin’ Oy,
T=1 = 2(1 - 2sin?Oyy),
T=1 __ -9
A i .

The factor F(Q?, s) is the structure function, which brings the interesting
information about the baryon physics. The theoretical importance in the chiral
perturbation framework of the measurement of F'(Q?, s) and the theoretical
difficulties for analysing such a measurement are discussed in [6].

The background non-resonant contribution Aﬁﬁon'res to the asymmetry has
been so far estimated at the Born term level within a phenomenological model
with effective Lagrangians [5]. The model dependence introduces a theoreti-
cal uncertainty for the extraction of the resonant contribution Aﬁ}rLes from the
observable Aﬁ/L. In the same work [5], also a prediction for the resonant part

Aﬁ}fs of the asymmetry is given in the Born approximation, with effective

Lagrangians and phenomenological pA transition currents.

Besides the study of hadron structure, the measurement of Aﬁ/L could be
interesting also for other aspects. Supposing that the proton structure were
“sufficiently” well known, the attention could be set back onto the Standard
Model and the measurement of Aﬁ/L could yield more general information
about the theory of the electroweak interaction beyond the Standard Model.
Such possibility has been investigated, e.g. in [6]. In that work two examples of
how the Standard Model could be impacted are given, namely the modification
of the form of the gauge boson propagators by radiative corrections and the
introduction of the tree-level exchange of new, heavy particles.
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Chapter 3

The A4 experiment

The scope of this chapter is a description of the A4 experiment at the MAMI
facility. It will focus particularly on those aspects which are most relevant for
the further discussion about the detector response simulation.

3.1 Overview

3.1.1 The parity violation asymmetry

The principle of the parity violation experiment of the A4 Collaboration is
shown schematically in Figure 3.1. A longitudinally polarized electron beam
is scattered by an unpolarized liquid hydrogen target. An electromagnetic
calorimeter detects the scattered particles and measures their energies. These
particle energies are digitized and histogrammed giving an energy spectrum like
in Figure 3.2. The peak appearing on the right in the histogram of Figure 3.2
corresponds to the elastically scattered electrons. Moving toward the left side
one encounters the energy region corresponding to the inelastic scattering, i.e.
hadrons are produced in the scattering. About in the middle between the left
end of the picture and the elastic region, the peak corresponding to the exci-

p-Target

Figure 3.1: Principle of the A4 experiment. Polarized electrons scatter with
energy F off unpolarized protons with a scattering angle #. They
are detected by an electromagnetic calorimeter and their final
energy E’ is measured.

11
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tation of the A(1232) resonance is visible. At the very left side, the large low
energy background signal is shown.

For subdividing more precisely the energy spectrum into ranges, according
to the nature of the scattering process in which the electron has been produced,
e.g. elastic scattering, inelastic scattering, excitation of the A(1232), one needs
to know the kinematics of the scattering process. Knowing both the energy
of an electron entering the calorimeter and the polar angle # like shown in
Figure 3.1, it is possible to determine this kinematics (see Appendix A). For
instance, electrons with the initial beam energy E =854 MeV and scattered
at 6 = 35° with final energy E' =734 MeV have scattered elastically, while
electrons with the same initial energy and scattering angle but with final en-
ergy B’ =442 MeV have transferred to proton the exact amount of energy
for exciting the A(1232) resonance with maximal probability. Following this
kind of reasoning, the vertical lines in Figure 3.2 mark the energy values corre-
sponding to the kinematics of elastic scattering, pion production threshold and
maximum of the A(1232) resonance excitation peak. Moreover, these vertical
lines subdivide the spectrum into energy regions corresponding to different
processes by fixing three “cuts”. These, together with the pion production
threshold, determine the intervals of integration for counting the elastically
scattered electrons (in gray in Figure 3.2) and the electrons scattered in the
kinematical region corresponding to the excitation of the A(1232) resonance
(in green in Figure 3.2). These “cuts for the A(1232)resonance” are not univo-
cal, because they have to be fixed in the analysis according to the theoretical
calculation chosen for comparison. In these calculations an integration interval
for the A(1232) resonance has also to be decided.

Integrating the energy spectrum between the two elastic cuts (Figure 3.2),
one obtains the number of elastically scattered electrons N& and N¢ for the
two states of electron polarization R and L, respectively. The difference be-
tween N¢ and N¢' divided by their sum gives the observable A%/L:

Ael _ NI(%_NIC;Z

= —— . 3.1
R/L N}e{l+N16,l ( )

This quantity is the parity violation asymmetry (PV asymmetry) in the cross
section for the elastic scattering of polarized electrons off unpolarized protons.
In the same way it is possible to integrate the electron energy spectrum over
the energy interval corresponding to the excitation of the A(1232), for the two
states of polarization R and L. This gives the number of electrons N& and
N&, respectively, which have excited the proton to the A(1232) state. Using
N2 and Np to build the PV asymmetry Aﬁ/L in the cross section for the
excitation of the A(1232), one can write:

Ni = Np

Any =2 L
MECONR + NP

(3.2)
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Energy spectrum of the A4 experiment
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Figure 3.2: Example of an energy spectrum of 854.3 MeV longitudinally po-
larized electrons scattered off unpolarized protons, as measured
by the A4 lead fluoride Cherenkov calorimeter. The bottom x-
axis shows the digitized value of the measured energy in ADC
channels. The axis on top of the picture shows the correspond-
ing value in MeV of the final energy E’ of a scattered electron.
The third axis in the middle (W) shows the corresponding mass
of the excited hadronic state for electrons scattered at = 35°
(see Appendix A for details). The filled regions are integration
intervals for the A(1232) (in green) and for the elastic events (in
grey). The vertical lines indicate the position of the A(1232)peak
(green), of the 7° threshold and a possible A(1232) region lower
cut (blue), of the elastic peak and the elastic cuts (black).
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The measurement of this observable gives an insight into the proton struc-
ture like described in Chapter 2.

3.1.2 The experimental realization

The details about the concept of the A4 experiment are shown schematically
in Figure 3.3.

The continuous polarized electron beam is produced at the MAMI facility
with a current I of 20 A and a polarization P of about 80%. The electron
source is a strained layer of GaAs. This crystal is used as a photocathode
which is irradiated with light pulses of 100 ps of duration. The pulses are pro-
duced by an optical semiconductor laser system emitting a circularly polarized
light. The helicity of this circularly polarized light determines the helicity of
the beam electrons and is changed by a Pockel cell. The photoelectrons emit-
ted at the GaAs crystal by photoelectric effect are injected into the MAMI
accelerator after being extracted by a high voltage potential of 100 kV. The
MAMI accelerator consists of an injector, a linear accelerator of an energy
of 3.46 MeV, and of three racetrack microtrons (RTM). These accelerate the
electrons up to an energy of respectively 14.35 MeV, 180 MeV and 854.3 MeV,
which is the beam energy used by the A4 experiment. The maximal energy
of the MAMI facility is 882 MeV but the energy used in the A4 experiment
is 854.3 MeV, in order to have the right spin orientation, considering the spin
precession along the beam transport line form the accelerator to the experi-
mental hall.

The beam parameters, namely current, energy, position and angle respect
to the mean direction, present fluctuations, which affect the number of elec-
trons scattered in the target and detected by the lead fluoride calorimeter per
time unit. These fluctuations can be either helicity uncorrelated or helicity
correlated, meaning that they do not depend on the change of the beam po-
larization or that they do depend on it, respectively. The helicity uncorrelated
fluctuations in the beam parameters just increase the noise in the measure-
ment, while the helicity correlated fluctuations arise false asymmetries, which
have to be subtracted from the raw asymmetry. For this reason, it is of major
importance that the beam parameters be strictly under control. Hence several
stabilization systems, for reducing the fluctuations in the beam parameters in
general, and monitoring systems, for having the possibility of subtracting the
false asymmetries due to helicity correlated fluctuations, are employed. Such
systems are located both at the accelerator, along the beam transport line,
and in the A4 experimental hall.

The polarization P of the beam must be known since it gives the ratio be-
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Figure 3.3: Details of the experimental concept.
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tween the physical PV asymmetry Ay, and the measured asymmetry A,,cqs:
Aphys = PAmeas- (33)

To measure P a Mgller polarimeter located before the A4 hall is used for an ab-
solute measurement. Furthermore a backward scattering Compton polarimeter
is being built in the experimental hall just before the target. This will pro-
vide a run time non-destructive absolute measurement of P [8, 9]. Presently,
together with the Mgller polarimeter, a transmission Compton polarimeter
placed before the beam dump [10] is used for relative measurements, which
provide a non-destructive run time monitoring of P.

The most important parts of the experimental setup, concerning this work,
are the target, the scattering chamber, the lead fluoride Cherenkov calorime-
ter and its readout electronics. These are described in much detail in the next
sections of this chapter.

Concluding with the description of the experimental concept, the target
density has to be monitored, because its fluctuations are source of additional
noise. This is done by means of the luminosity monitors, which are placed
behind the target, at the end of the scattering chamber [11].

In Chapter 4 a detailed simulation of the response of the experimental
apparatus to the electrons scattered in the target is presented. The simulation
deals with the passage of the scattered electrons through the materials located
on the path from target to detector and with the detection of these electrons
by the lead fluoride calorimeter. Hence it is here worth reporting the details
of the experimental setup, which are taken into account in the simulation
described in Chapter 4. Section 3.2 presents the geometrical specifications of
target and scattering chamber. In Section 3.3 details about the geometry of the
electromagnetic calorimeter, about the Cherenkov material lead fluoride and
about the photomultiplier tubes are given. Finally Section 3.4 concentrates on
the features of the readout electronics.

3.2 (-H, Target and scattering chamber

The target consists of an aluminium cell containing liquid hydrogen (see Fig-
ure 3.4). It is situated inside a vacuum scattering chamber like shown in
Figure 3.5. The beam electrons scattered off the protons of the liquid hydro-
gen leave the target travelling through the liquid hydrogen itself and through
the aluminium wall of the target cell. For reaching the lead fluoride detector
they have to pass through the vacuum inside the scattering chamber, through
the aluminium wall of the same scattering chamber and through the air layer
between scattering chamber and calorimeter.

All this layers of material lying on the path of the scattered electrons from
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Figure 3.4: Side view of the liquid hydrogen target (dimensions in mm).

target to detector are considered in the simulation described in Chapter 4.
Therefore, in this section, the geometrical details of the liquid hydrogen target
and of the scattering chamber are presented.

(-H, Target. The shape of the target cell is a paraboloid of 100 mm of
length (see Figure 3.4). The aluminium wall thickness is about 250 pum. The
incoming window is an aluminium foil of 50 um of thickness. The total length
of the hydrogen layer is 95 mm. The liquid hydrogen is injected into the target
cell through an aluminium nozzle, having a thickness of 200 ym, a diameter
of 20 mm and a length of 70 mm.

With the configuration shown by Figure 3.4, the electrons that are scattered
with polar angle between 0° and 66° can leave the target passing through at
most about 1.5-1072 radiation lengths of materials. This is important since
the luminosity monitors cover a polar angle between 4.4° and 10°, while the
lead fluoride calorimeter covers the polar angle interval from 30° to 40°.

The hydrogen is kept at a temperature of 14 K by a helium heat exchanger.
The helium temperature is monitored and controlled electronically. This way
the hydrogen temperature is stabilized just above the freezing point and well
distant from the boiling point.

The mean density of the hydrogen inside the target is 7.08-1072 g/cm?

Vacuum scattering chamber. Figure 3.5 shows a schematic side view of
the vacuum scattering chamber and of the lead fluoride calorimeter. The
scattering chamber is an aluminium tube positioned with the symmetry axis
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Figure 3.5: Side view of the vacuum scattering chamber (dimensions in mm).
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photomultiplier P
\

=\ =

crystal aluminium frame

Figure 3.6: Schematic view of one frame supporting 7 crystals with their
photomultipliers. The beam propagation direction is from the
left to the right and the beam line lies below the bottom of the
picture. The symmetry axes of the crystals point to the bottom
left side toward the target.

lying on the beam line. It is flange-mounted to the beam pipe at one extremity
and to the exit beam line at the other (in Figure 3.5 on the left and on the right
side, respectively). The dimensions are 190 ¢cm of length, 85 c¢m of external
diameter and 25 mm of thickness. The thickness is reduced to 5 mm in the
central part of the chamber (75 cm long), which lies right on the path between
target and detector, i.e. the particles coming out of the target and being
detected in the calorimeter must pass through a thinner layer of aluminium.

The pressure inside the chamber amounts to a few nanobar, this assures
that the straggling effect on particles due to the passage through the chamber
is completely negligible.

3.3 Lead fluoride Cherenkov calorimeter

The detector of the A4 experiment is a homogeneous electromagnetic shower
calorimeter using the Cherenkov radiator lead fluoride (PbFj,) as active ma-
terial. Since no scintillation is present in the PbF,; and the duration of the
Cherenkov light pulses is very short, the detection of particles at very high
rate is possible. The detector covers the scattering polar angle  between 30°
and 40° and the whole 27 range of azimuthal angle ¢. The total solid angle
Q covered by the detector amounts to 0.63 sr. The calorimeter contains 1022
PbF, crystals, organized in 7 rings and mounted on 146 frames.
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Figure 3.7: Schematic view of the lead fluoride Cherenkov calorimeter. In

this picture one quarter of the detector has been cut to permit
the view of the crystals and their supporting frames. The red
arrow indicates the beam line and the beam direction.
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At the end of each crystal a photomultiplier tube is mounted to detect
the Cherenkov light produced inside the lead fluoride. The crystals and their
photomultipliers are mounted on aluminium frames like shown in Figure 3.6.
Each frame contains 7 trapezoidal prism shaped crystals. These are positioned
with different orientation and have different dimensions.

The orientation is such that the axis of each prism passes through the cen-
tre of the target, that is the parallel faces of the prisms focus on the target.
This way the electrons scattered into the solid angle covered by the detector
with different polar angle # move always almost perpendicularly to the surface
of one crystal. More details on the dimensions and positions of the crystals
are given in Appendix B.

The detector contains 146 of these frames (1022 crystals) mounted on an
aluminium support like shown in Figure 3.7. It has a ring shape, i.e. it is
cylindrical symmetric (¢-symmetric) and has a central cavity (Figure 3.7). It
is mounted on an aluminium support so that the scattering chamber can be
inserted into the ring-hole and the symmetry axis lies on the beam line (Figure
3.5).

With this configuration, the crystals form 7 rings each covering a different
solid angle §€; = A¢db;sinb; (i =1,...,7), where A¢p = 27 for all rings, while
0; and §6; depend on the ring number i (see Appendix B). Conventionally the
numbering of the rings increases with decreasing polar angle 6. Altogether the
f-interval covered by the whole detector is from 30° to 40°.

The inner, target side of the aluminium frames (lower side in Figure 3.6)
constitutes a layer of material lying on the path of particles getting from the
target into the detector. The thickness of this layer is 10 mm.

3.3.1 PDbF; crystals

Beside the geometrical features of the experimental setup, the physical char-
acteristics of the materials constituting the various parts of the apparatus are
needed for the simulation presented in Chapter 4. In particular, the formation
of electromagnetic cascades and the emission of Cherenkov radiation in lead
fluoride by the electrons scattered in the target and detected by the calorimeter
are treated in the simulation. The characteristic of lead fluoride are at most
relevant for the presented simulation and, thus, listed in the following.

Lead Fluoride (PbF5) is a transparent salt with cubic crystalline structure.
It has a density p of 7.77g/cm?, a radiation length X; of 0.93 ¢cm, a Moliere
radius Rj; of 2.2 ¢cm, a critical energy E. of 9.04 MeV, a refractive index
larger than 1.7 for visible wavelengths (1.8 at 400 nm, see Figure 3.8) and an
optical cutoff at about 280 nm. Its radiation resistance and radiation induced
absorption bands were investigated [13] and optical bleaching of crystals was
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195

Refractive index
-
©
T T T T 1T

=1.85

£, N

S
1.75 \\"\

‘300‘ L ‘400‘ L ‘500‘ L ‘600‘ L ‘700‘ L ‘800‘ .
A (nm)

Fit function: n(\) = aq - exp ( l ) ;

A — a9
ap = 1.7167, a; = 10.87, ay = —209.78.

Figure 3.8: Refractive index n of PbF, as a function of the wavelength A.
The data points and the phenomenological fit function were taken
from Grimm [12].

found to be possible and effective.

Furthermore no scintillation component was found in the light output of
lead fluoride [14]. Being this light pure Cherenkov radiation due to the passage
of particles, the duration of the signal pulse in photomultipliers in response
to an incoming particle is very short (< 20ns). This allows high rate particle
detection, which is a stringent requirement of the A4 experiment.

All these features make lead fluoride a good material for electromagnetic
calorimetry. The energy resolution was measured to be of the order [13]

AFE _ 3.2% (3.4)

E’ VE'|GeV’
which allows precise energy measurements. In Equation 3.4 the measured en-

ergy is denoted with E’ to be consistent with the definitions of the kinematical
quantities given in Appendix A.

In order to obtain a better yield of the light through the crystals into the
photomultipliers, the crystals were wrapped with reflective foils. The chosen
material is Immobilon-P. The thickness of the foils is about 120 pum. The
reflectivity for photon wavelengths greater than 280 nm is almost independent
from the wavelength and has a mean value of about 95%, as one can see from
Figure 2.32 of [15]. This information is also needed by the simulation, as
explained in Chapter 4, because the transmission of the Cherenkov photons
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through the PbF, crystals is also simulated.

3.3.2 Photomultipliers

Like the production of Cherenkov photons and their propagation through the
PbF, crystals, also their detection by the photomultiplier tubes is taken into
account in the simulation presented in this work. The characteristic of the
photomultipliers, which enters into the simulation, is their quantum efficiency.
This section is dedicated to define this quantity and to give the corresponding
value for the photomultiplier tubes (PMT’s) used in the A4 experiment.

The response of photomultipliers to incident light is determined mostly by
the input window material and the photocathode material.

The transmission coefficient T of the input window material determines
the light spectrum which is able to hit the photocathode. It is the ratio of the
transmitted power to the incident power and it depends on the wavelength \.
The function T'(\) is about constant for wavelengths longer than a certain cut-
off wavelength A\, and, for A shorter than )., it drops down to 0 with decreasing
A. The plateau value of T'(\) is typically about 90%. The cut-off wavelength is
defined as that wavelength where the transmission coefficient assumes a value
T(X.) which is 10% less than the plateau value.

The photocathode material is characterized by a sensitivity to the incident
light. This is not defined independently from the transmission through the
input window. It is studied by means of the response of the whole photomul-
tiplier, which is given for instance by the quantum efficiency.

The quantum efficiency QFE is defined as the ratio of the number of pho-
toelectrons emitted by the photocathode to the number of photons incident
on the window, and is usually expressed as a percentage. It depends on the
wavelength of the photons and is generally less than 35%.

Because it is easier to measure the photocathode current produced in re-
sponse to an incident light power than to count photons and electron, the pho-
toemission is frequently described by the cathode radiant sensitivity sk.(\).
This is defined as the current measured at the photocathode over the incident
light power at a given wavelength A and is usually expressed in mA /W,

Cathode radiant sensitivity and quantum efficiency are related to each other
by the empirical expression:

QF ~ (224mm ske-ﬂA)%. (3.5)

A m

The graph of the function sk.()) is called spectral sensitivity characteristic
(Figure 3.9) and represents the spectral response of the photomultiplier. This
is determined at the longer wavelengths by the thickness and the photoemission
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TYPICAL SPECTRAL CHARACTERISTICS
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This graph was taken from [16] and shows the spectral response of
different kind of tubes produced by Photonis. Curve 1 corresponds
to the XP2900. The window material is lime glass for PMT’s 7 and
8, borosilicate for all other tubes. The photocathode material is a
multialkali antimonide (SbNasKCs) for Curve 9, a green-extended
bialkali antimonide (GEBA) for 2 and 7 and the bialkali antimonide
SbKCs for the rest. A summary is given in the following table:

‘ CUTVE MO. ‘ tube type ‘ photocathode material ‘ window material ‘

1 XP2900 | bialkali borosilicate
2 XP2901 | GEBA borosilicate
3 XP2910 | bialkali borosilicate
4 XP2920 | bialkali borosilicate
5 XP2930 | bialkali borosilicate
6 XP2960 | bialkali borosilicate
7 XP2961 | GEBA lime glass

8 XP2962 | bialkali lime glass

9 XP2963 | multialkali borosilicate

Figure 3.9: Spectral sensitivity characteristic of some Photomultipliers.
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threshold of the photocathode. At the shorter wavelengths the input window
transmission becomes the determining factor.

The photomultiplier tubes used in the A4 calorimeter are of the type
XP2900, produced by Photonis [16]. They are 98 mm long and they have an ex-
ternal diameter of 28.5 mm. The diameter of the photocathode is 24 mm. The
input window material is a borosilicate glass. This has a cut-off wavelength of
270 nm. The photocathode material is the bialkali antimonide SbKCs. The
spectral sensitivity characteristic is shown in Figure 3.9.

3.4 Readout electronics of the lead fluoride
calorimeter

One last experimental specification has to be described here, since it is consid-
ered in the simulation (see Chapter 4). It is the functionality of the readout
electronics of the Cherenkov detector.

Given the photomultipliers signal as input, the readout electronics has to
deal with three main tasks.

1. It identifies the signal of a scattered electron and assigns it to a channel
(crystal).

2. Tt measures the energy of the electron, digitizes and histograms that
value.

3. It detects multiple hits events (pile-up) in order to inhibit their registra-
tion.

1. Identification of events. Within the electromagnetic cascade generated
in the PbF, crystals by one high energy electron getting into the detector,
many relativistic charged particles are produced. The passage of these par-
ticles through the crystals generates a Cherenkov light pulse, which induces
some current pulse signals in the photomultiplier tubes. When the signal of
one PMT becomes greater than a certain threshold, a pulse shaper is used to
check if a pulse occurs and consequently to identify one event.

Considering that the Moliere radius Rj; of PbF, is 2.2 cm and considering
the energies of the electrons to be detected, the dimensions of the crystals
(see Appendix B) were decided in such a way that more than 95% of one
electromagnetic cascade is expected, on average, to develop inside a cluster of
9 crystals, that is a 3x3 matrix like shown in Figure 3.10 by channels 0 to
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8. Therefore, when one event is identified, more than one neighbouring PMT
gives a pulse simultaneously and the event must be assigned to one of these
channels. This selected channel corresponds to the crystal where the largest
energy deposition occurred and will be called local mazimum. The event is
assigned to this channel because, on average, the impact position of the de-
tected electron with the lead fluoride lies on the surface of the crystal where
the largest energy deposition occurs. The energy the charged particles of the
cascade deposit in the crystals happens to be proportional to the number of
Cherenkov photons produced and detected. This is discussed in more details
in Section 4.3. Moreover the current signal of the PMT’s has an intensity pro-
portional to the number of photoelectrons emitted by the photocathode per
time unit. The channel assignment is obtained comparing the PMT signals
with those of the neighbouring PMT’s and selecting the stronger one. The
comparison is carried out between two “direct” neighbours. For instance the
signal of channel 0 in Figure 3.10 is compared with those of channels 1, 3,
5 and 7. If it turns out to be stronger than every one of them, channel 0 is
recognized as a local maximum and the event is assigned to it.

2. Energy Measurement. The electrons getting into the detector deposit
almost all of their energy in the crystals by generating electromagnetic show-
ers. Therefore the deposited energy is a measurement of the incoming electron
energy. On the other hand, measuring the deposited energy is equivalent to
counting the number of detected photoelectrons during the Cherenkov light
pulse induced by the cascade, like will be discussed in Section 4.3. Such a
counting is achieved by integrating the current pulse signals of the PMT’s over
time and summing the obtained charge values over the channels of interest.

Two aspects have to be taken into account by performing such integra-
tion and summation. These are the duration of the cascade and its spatial
dimensions. Integrating the current signal over time implies fixing a time in-
tegration window 7. This must be long enough to include the whole shower
development, though not too long in order to avoid temporal pile-up. The
time window which happens to be optimal is 7=20 ns. The electromagnetic
shower is expected to develop for more than 95%, on average, within a cluster
of 9 crystals, that is the 3x3 matrix of crystals centred on the local maximum
channel like shown by channels 0 to 8 in Figure 3.10. Therefore, the summa-
tion of the charge values for having the total charge of an event is done over
these nine channels.

The charge value obtained after integration and summation is compared
with a given threshold. If the value is greater than the threshold, it is dig-
itized and registered in a histogram. The histogram contains 256 bins and
the offset is typically some negative value, that is a charge value equal to 0
corresponds to a bin smaller than 0 (physical 0). Due to small production
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Figure 3.10: Representation of the readout scheme of the detector. Each
square cell represents a channel. The rows correspond to the
7 rings and the columns represent the frames. In the whole
detector these would be 146. Red cells represent local maxima
and yellow cells the neighbouring channels which contribute to
the summation in one event (see text). The blue cells R1 to
R16 contribute to the logical veto for rejecting spatial pile-up
events.

differences in the electronic components the sensitivity is slightly different for
different electronic channels. In the calibration of the lead fluoride detector,
these differences have been measured and are taken into account for calculat-
ing the charge corresponding to the position of the elastic peak (Figure 3.2).
In order to compare the results of the simulation presented in this work with
the experiment, a recalculation of the PMT charge values from the measured
ADC values is necessary.

3. Detection of multiple hits events (pile-up). Two kinds of pile-up
events have to be considered. Temporal pile-up occurs when two different
particles with sufficient energy contribute to the current signal of the same
channel during the integration time 7. To recognize such events a pulse shaper
is activated during the 20 ns of time integration window 7 for finding temporal
maxima in the current signal. In a single hit event, the pulse shape develops
during the first 5 ns of the time window 7. If any further pulse is detected
in the following 15 ns, the event is recognized as temporal pile-up and a veto
digit inhibits its registration. If no further pulses are detected in those 15 ns,
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the event is registered.

Spatial pile-up is given when two particles hit the detector close to each
other during the time window 7. To detect this situation the electronics looks
for local maxima at the end of each integration time. If it finds more than
one local maximum within a 5x5 matrix of crystals the spatial pile-up veto is
enabled and the event is not considered for histogramming. Such a matrix is
represented on the left in Figure 3.10 on the left by crystals 0 to 8 and R1 to
R16. On the right in the same Figure an example of spatial pile up is given.



Chapter 4

Simulation of the detector
response

In this chapter a simulation of the response of the A4 experimental apparatus
to the electrons scattered inside the liquid hydrogen target is presented. First
some terms important to the further discussion must be defined. Then the
general strategy of the simulation will be traced, delineating the main issues
and how they have been addressed in this work.

In the following a simplified description of what happens in the experiment,
that is of what has to be simulated, is drawn in order to define some useful
terms for the discussion in this chapter.

Inside the target several reactions take place because of the incident beam.
In general the final states of these reactions are particles of a certain species,
which are in a certain position and have a certain momentum. One set con-
taining these three pieces of information will be referred to as event and the
particle of one event will be called primary particle or primary. The primary
particles undergo possibly other interaction processes with the material on
their path, so that their momentum is modified and more particles, secondary
particles or secondaries, are created.

A certain number of particles, primaries or secondaries, reaches the de-
tector, where further interactions occur, namely electromagnetic cascades and
Cherenkov radiation, and further secondaries are created. Among these parti-
cles, the Cherenkov optical photons are the ones which are detected by photo-
multipliers, i.e. they let the photomultipliers produce some signal. This signal
is then digitized and histogrammed to give the energy spectrum of the lead
fluoride detector.

The association of a certain energy spectrum to a given set of events will
be called detector response.

Before engaging directly in the discussion about the simulation of the A4

29
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experiment, GEANT4, an instrument used for simulating, has to be presented
shortly. GEANT4 is an object oriented programming toolkit for simulating the
passage of particles through matter. Once the geometry and the processes to
be simulated are defined, the toolkit makes use of Monte Carlo methods for
tracking particles, either primaries or secondaries [18, 19]. How geometry and
processes are defined is specified in Section 4.1. The meaning of tracking will
be briefly summarised here.

Given a particle with its position and momentum in a certain medium and
given a set of processes with their cross sections, it is possible to generate a
step. A step is defined by: initial and final instant, initial and final position,
initial and final momentum, deposited energy along the step, generated sec-
ondaries with respective momenta. The generation of a step is referred to as
stepping and one process is an object class contributing to the stepping. Track-
ing one particle means generating a sequence of steps drawing a trajectory from
the initial position until the particle is either absorbed by the material, or it
decays, or it exits the defined geometry. The Monte Carlo methods and the
cross section formulae used by GEANT4 processes for stepping are reported in
detail in reference [19]. Among the variety of processes provided by GEAT4,
only processes related to the electromagnetic interaction are used within this
work.

At this point it is possible to enter into the discussion of the detector
response simulation. The simulation is based both on GEANT4 and on an
original approach developed independently within the work presented here.

The simulation of the A4 detector response can be divided in two main
issues. One of these is the formation of electromagnetic showers with the con-
sequent deposition of energy in the PbF, crystals. At the energy scale of the
experiment and considering electrons as primary event particles, these show-
ers contain electrons, positrons and photons with energy 21 keV (v’s). The
other issue is the radiation of Cherenkov light and its detection by the pho-
tomultipliers. In this case optical photons, with energies in the eV region, are
involved. These have wavelengths of the order of visible light and are consid-
ered in GEANT4 as different particles than the v’s.

For simplicity the energy deposition in the crystals resulting from the elec-
tromagnetic shower of one primary event particle will be called calorimeter
response to that event. Similarly all aspects related to Cherenkov photons,
namely their creation by particles in an electromagnetic shower, their prop-
agation and their detection will be considered as a whole effect relating the
deposition of energy to the detection of light. This effect will be referred to as
photomultiplier response. The combination of the two phenomena, calorimeter
and photomultiplier response, gives the detector response.

Generating the tracks for a whole electromagnetic shower using GEANT4 is
relative fast in terms of CPU-time. Therefore simulating the value of deposited
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energy in each crystal for every electron entering the calorimeter, i.e. simulat-
ing the calorimeter response, by tracking all particles in the electromagnetic
cascade with GEANT4, is possible and offers a solution for the first issue cited
above.

Yet simulating the Cherenkov shower using GEANT4 is very CPU-time
consuming, because of the huge number of optical photons that have to be
tracked. For this reason, including the full simulation of the Cherenkov effect
in GEANT4 in order to have the detector response, that is calorimeter response
and photomultiplier response together, does not allow to obtain a reasonable
statistics in the simulated spectrum.

For taking into account also the effect of Cherenkov light radiation and
detection a new approach was developed, combining the use of GEANT4 for
simulating the calorimeter response with a parameterization of the photomul-
tiplier response. The idea is that, given the value of deposited energy Fg., in a
certain crystal, it is possible to determine, in a parametrized way, a probability
distribution for the number of optical photons N, detected in the correspond-
ing photomultiplier. Knowing this distribution N,, can be sampled from it
giving the photomultiplier response. For showing that this strategy is indeed
possible and for obtaining such a parameterization, a restricted, though sta-
tistical significant, number of events was simulated with GEANT4 including
the full simulation of the Cherenkov process. The results of this simulation
were treated statistically showing that the parameterization is possible and the
parametrized form for the distribution of N, given a value of the deposited
energy Fg., has been determined.

In conclusion, for having the whole detector response, the simulation of
the calorimeter response with GEANT4 is applied, giving for every event the
energy deposited in each crystal. With these values of the deposited energy,
the number of optical photons detected in each photomultiplier is sampled
from the distribution determined according to the parameterization obtained
previously.

In Section 4.1 the simulation of the energy deposition in the lead fluo-
ride crystals using GEANT4 is described. The additional specification to this
GEANT4 simulation for including the production, propagation and detection
of Cherenkov optical photons are reported in Section 4.2. The derivation of
the parameterization of the photomultiplier response is given in Section 4.3.
Section 4.4 explains how to digitize and histogram the results of the detector
response simulation, in order to make them comparable with the experimental
energy spectrum.
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4.1 Simulation of the deposition of energy in
the PbF, crystals using GEANT4

For implementing a GEANT4 simulation one has to handle two main aspects.
A geometry has to be defined, like explained in Section 4.1.1. The particles
entering into the simulation and the processes to be simulated have to be
declared, like reported in Section 4.1.2.

4.1.1 Geometry definition

Defining the geometry of the simulation means declaring which are the vol-
umes the particles have to be tracked through. A volume is characterised by
shape, dimensions, material, position and orientation with respect to the other
defined volumes. The geometry of the simulation has been defined in order to
reproduce as much as possible the experimental conditions. More specifically,
the declared volumes represent ideally the set of material objects lying on the
path one particle has to travel through getting from target into the detector.

In the following a list of the declared volumes will be given. The list order
will respect the succession of material layers encountered by a particle trav-
elling from the scattering point inside the target toward the PbF, crystals.
Figure 4.1 gives a graphical representation of the simulated geometry.

e Inner target. The liquid hydrogen ({-H;) volume contained in the
target.

Shape: hemisphere.
Dimensions: radius, 94.75 mm.
Material: ¢-Hs.

e Target container. The aluminium (Al) container containing the liquid
hydrogen.

Shape: hemisferical layer.
Dimensions: inner radius, 94.75 mm; thickness 0.25 mm.
Material: Al

e Scattering chamber. Central thinner segment of the scattering cham-
ber (see Section 3.2).

Shape: tube.
Dimensions: inner radius, 420 mm; thickness, 5 mm; length, 800
mim.

Material: Al
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Table 4.1: Materials defined in the simulation. In the part concerning the
constituent elements, Z is the atomic number, A is the molar mass
and w is the fraction mass. X is the radiation length calculated
by the toolkit.

) Density Constituent Elements Xy
Material Symbol g/cm? Symbol | Alg/mole] | Z | w[%] mm
Liquid hydrogen | ¢-H, | 7.080-102 H 1.01 11000 8.923-10°
Aluminium Al 2.700 Al 26.98 13 1 100.0 || 88.930
Air - 1.290-107° N 14.01 71 70.0 | 0.285-10°

O 16.00 81 30.0
Lead fluoride PbF, | 7.770 Pb 207.21 82| 84.5 || 9.369
F 19.00 91 15.5

e Calorimeter region. Ring shaped air volume surrounding the scatter-
ing chamber and containing the detector.

Shape:

Dimensions:

Material:

tube.

inner radius, 425 mm; outer radius, 717 mm (that is
20 mm larger than Ry, like defined in Appendix B);

length, 800 mm.

alr.

e Crystal frames. The inner part of the aluminium frames supporting
the crystals (see Figures 3.7, 3.6 and Section 3.3).

Shape:

Dimensions:

Material:

tube.

inner radius, 567 mm (142 mm from the scattering
chamber); thickness, 10 mm; length, 700 mm.

Al

e Crystals. The lead fluoride crystals.
Shape:

Dimensions:
Material:

trapezoidal prism.

see Appendix B.

PbF,.

The materials of the volumes are defined in the simulation giving den-
sity, temperature, pressure, constituting elements with their respective mass
fraction w [20]. The toolkit uses this information to calculate the parameters
which are needed for simulating the passage of particles through the materials,
e.g. the radiation length X,. A summering of the defined materials with their
parameters is given in Table 4.1.
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Figure 4.1: Geometrical setup of the simulation, GEANT4 graphical output
view. The z-axis lies on the beam line with positive direction
parallel to the momentum of electrons. The origin of the axes is
the middle of the target.

(a) - Tridimensional view.

(b) - Slice view having cut with the yz-plane. Only the upper
part is shown. The complete slice picture would be sym-
metric about the z-axis.
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4.1.2 Particles and physical processes

In order to simulate the passage of particles through matter (that is tracking
particles), one has to declare which particles have to be tracked and which
processes have to be taken into account at tracking. The operations needed
for stepping are then executed automatically by the toolkit.

The simulation of electromagnetic showers for determining the energy de-
position in the crystals involves the following types of particle with relative
processes. For each process, a short description of the stepping implementa-
tion features in GEANT4 is given. This part is based on reference [19], where
many more details can be found.

~v: photon with energy 2 1 keV.

e Compton scattering: scattering of a photon off an atomic electron. For
the total cross section an empirical formula is used,
which reproduces the cross section data. The final
state is sampled from the Klein-Nishina differential
cross section per atom.

e Pair production: conversion of a 7 into an (e*,e™) pair. Here also
the total cross section per atom is parameterized in
order to describe data. The final state is obtained
according to a corrected Bethe-Heitler formula,
for taking into account various effects (screening,
Coulomb correction, presence of electron field).

e Photoelectric effect:  ejection of an electron from a material after a pho-
ton has been absorbed by that material. It is sim-
ulated by using a parameterized photon absorp-
tion cross section to determine the mean free path,
atomic shell data to determine the energy of the
ejected electron, and the K-shell angular distribu-
tion to sample the direction of the electron. The
relaxation of the atom is not simulated, but in-
stead is counted as a local energy deposit.

e”,e": electron and positron.

e Multiple scattering: the multiple scattering of charged particles in mat-
ter. A condensed simulation algorithm is used, in
which the global effects of the collisions are sim-
ulated at the end of a track segment. The global
effects are the net displacement, energy loss and
change of direction of the charged particle.
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e [onisation: provides the continuous and discrete energy losses
of electrons and positrons due to ionization in a
material. Above a given energy threshold for the
ejected electron, the energy loss is simulated by the
explicit production of delta rays by Mgller scatter-
ing (e~ e”), or Bhabha scattering (e*e”). Below
the threshold the soft electrons ejected are simu-
lated as continuous energy loss by the incident e*,
i.e. no secondaries are created.

e Bremsstrahlung: provides the energy loss of electrons and positrons
due to the radiation of photons in the field of a
nucleus. Like in the ionisation case, above a given
photon energy threshold the explicit production of
~’s is simulated. Below the threshold the emission
of soft photons is treated as a continuous energy
loss.

et: only for positron.

e Annihilation: simulates the in-flight annihilation of a positron
with an atomic electron according to the cross sec-
tion formula of Heitler. The atomic electron is
supposed to be free and at rest. Contributions
coming from three, or more, photons production
are neglected.

4.2 Production and detection of Cherenkov light

For including the full simulation of the Cherenkov effect in the GEANT4 sim-
ulation, one has to take into account the production and propagation of the
Cherenkov light. This is achieved declaring further geometry features and pro-
cesses (Section 4.2.1). For taking into account the detection of the Cherenkov
photons by the photomultipliers, the characteristics of the photomultipliers
used in the experiment (their quantum efficiency) have to be embedded into
the simulation, like specified in Section 4.2.2.

4.2.1 Producing and tracking optical photons

The Cherenkov effect occuring in the crystals can be simulated within GEANT4.
The corresponding process class can be applied to all charged particles (in this
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case electrons and positrons). It generates optical photons as secondaries. For
tracking these, one needs to declare further geometrical features and processes.

Two optical properties have to be declared for the materials through which
optical photons are tracked. They are refractive index and absorption length.

Secondly, unlike for the other particles, stepping optical photons becomes
crucial at the border surface between two media with different optical proper-
ties. Therefore the tracking category of the simulation needs to know where
such optical surfaces are and what kind of properties they have.

Finally the Cherenkov process and the processes able to track the optical
phtotons have to be defined.

Material optical properties. The interesting volumes of the geometry for
tracking the optical photons are the calorimeter region and the crystals inside
of it (see Section 4.1.1 for definition of volumes). The materials consituting
these two volumes are air and lead fluoride respectively.

Regarding the air, the absorption length was not defined. This means that
optical photons are just not absorbed in this material. The refractive index
was set to 1 independently from the wavelength.

Concerning lead flouride, the absorption length was estimated for different
wavelengths after three different radiation exposures, like reported in [15]. The
irradiation values were 0, 100 and 200 Gy respectively. In the simulation the
measurments after 100 Gy were used. They are shown in Figure 4.2. This value
of irradiation corresponds to about 1000 hours of beam time without applying
optical bleaching to the crystals, while in the experiment this is done more
frequently. Nevertheless these data has been used in this work, in order to
consider possible permanent shading of the crystals. However, the absorption
length of PbFs, for radiation exposures between 0 Gy and 100 Gy varies only
by some few percent [15].

Optical Surfaces. Similarly to the definition of a volume, it is possible to
define an optical surface. The position and shape are determined by giving
the volumes located at both sides of the surface. The properties one has to
define concern the nature of material contact at the surface, the finish of the
surface itself and the model to be used at tracking optical photons through it.
Defining the nature of the contact means declaring whether the two materials
involved are both dielectrics or one dielectric and one metal. The finish can
be either polished or ground [20].

The optical surface relevant to the scope of this work is the crystals’ surface.
The materials at both sides are PbF5 and air, hence the nature of the contact
is dielectric-dielectric. The finish is defined as “ground painted”. This means
that a reflectivity index can be assigned to the surface, in order to simulate
the effect of the reflective foils wrapped around the crystals (see Section 3.3.1).
For tracking optical photons the so called UNIFIED model [21] was chosen. It



38 CHAPTER 4. SIMULATION OF THE DETECTOR RESPONSE

Absorption length of lead fluoride after irradiation
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Figure 4.2: Absorption length of PbF, depending on the light wavelength.
The data points are taken from [15] and correspond to a mea-
surement after an irradiation of 100 Gy. The curve is a polino-
mial fit of the second order, which was used in the simulation to
interpolate among the points.

provides the Monte Carlo algorithms for simulating the interaction of optical
photons with dielectric surfaces.

Physical processes. Like in Section 4.1.2, the list of process classes used to
produce and track optical photons is given in the following. More details can
be found in references [19, 20].

e Cherenkov effect: produces optical photons as secondaries when
a charged particle moves through a dispersive
medium faster than the group velocity of light in
that medium. The flux, spectrum, polarization
and emission direction follow the well known for-
mulae of the classical electrodynamics.

e Absorption: the process merely kills the particle. The empirical
data for the absorption length are used (Figure
4.2). The absorption length is considered as the
average distance traveled by a photon before being
absorpted by the medium, i.e. it is the mean free
path.
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Figure 4.3: Simulated spectral response of the photomultipliers.  The
simulation was run shooting one electron with an energy
of 734 MeV, i.e. the energy of elastically scattered elec-
trons, onto the centre of one crystal of the fourth ring
(central ring). Cherenkov photons are created and tracked.

(a) - Photon spectrum hitting the photomultiplier window.
The behaviour at short wavelengths is determined by the
transmittance of lead fluoride. At longer wavelengths
the spectrum follows the distribution of the Cherenkov
light.

(b) - Photon spectrum detected by the photomultiplier. The
shape reproduces the spectral sensitivity of the photo-
multipliers shown in the plot of Figure 3.9, as expected.

The ratio between the two heights of the maxima at 380 nm gives
a value of 24% for the quantum effciency at that wavelength.

e Boundary Process: steps optical photons through an optical surface
according to a chosen model. In this work the
UNIFIED model was used. The implementation is
described in detail in reference [21].

4.2.2 Detecting optical photons

The simulation of the Cherenkov light detection by the photomultipliers is
obtained in a straightforward manner. For each crystal, a new volume rep-
resenting the photomultiplier tube is introduced into the geometry definition.
The shape is a full cylinder with a radius of 14 mm (see Section 3.3.2). The
axis of the tube coincides with the axis of the crystal prism. The contact sur-
face between crystal and tube lies on the trapezoidal face of the crystal being
at the external side of the calorimeter. The length of the tube is irrelevant as
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well as its material.

The optical photons which are tracked into the tube are considered de-
tected with a probability given by the quantum efficiency calculated according
to equation 3.5.

Figure 4.3 shows an example of the simulated photon spectrum hitting the
photomultiplier window - (a), and being detected - (b).

4.3 Deposited energy vs number of photoelec-
trons

As already specified at the beginning of this chapter, the photomultiplier
response, that is the effect of the emission, propagation and detection of
Cherenkov photons, must be treated separately from the GEANT4 simulation
of the calorimeter response, i.e. deposition of energy in the crystals, because of
the long duration of the tracking of optical photons within GEANT4. The sim-
ulations of the photomultiplier response should be treated in a parametrized
way. This means that, given the calorimeter response of one event by the
GEANT4 simulation, one should be able to estimate the photomultiplier re-
sponse, hence the detector response, without further simulation (that is with-
out further GEANT4 tracking).

In the work presented here, it has been shown that the parametrized treat-
ment of the photomultiplier response is possible and a practical recipe for this
treatment has been found. Two basic ideas have been used after being moti-
vated, employing the GEANT4 simulation of the full Cherenkov effect. Be N,
the number of photoelectrons emitted by the photocathode of the multiplier
applied to one specific crystal. N, is a random variable with a certain proba-
bility distribution. The first idea is that this distribution depends only on the
value Ejy,, of the deposited energy in that crystal. The second idea is that the
shape of such distribution is gaussian. It has therefore a mean value N,;, and
a standard deviation opy,.

According to the first idea it is possible to determine two functions Ny, (Egep)
and o,y (Egep). Given a value of Ey,, these functions should allow one calcu-
lating the values for N,, and o, respectively. After this, the distribution of
the random variable N, is fixed and the photomultiplier response can be ob-
tained just by sampling from such distribution.

In this paragraph, the two ideas proposed above are motivated and a form
for the functions Ny (Egep) and o, (FEgep) is given.

About 1300 events were simulated with GEANT4 including the CPU-time
consuming full tracking of the Cherenkov photons. The primary electrons
were shot from random positions in the target, uniformly distributed along
the beam line. The initial energy of the electrons was uniformly distributed
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Figure 4.4: Number of photoelectrons in one
phototube as a function of the de- "= 0.997
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ues of the fit parameters are given.

between 150 and 850 MeV. The initial direction was chosen in such a way to
hit uniformly the surface of one crystal of the fourth ring (see Section 4.1.1).
For each event the values of Eg., and of the corresponding NV, were saved in
couples (Egep , Npp) for every crystal. The set of points of the (Eqep , Npp)-plane
obtained is represented in Figure 4.4.

In every event the largest part of the energy is deposited in one central
crystal. That is typically the crystal through which the primary electron en-
ters the calorimeter. The rest of the energy is deposited in the neighbouring
crystals according to some development of the shower profile, which suffers
stochastic fluctuations. In general the total deposited energy is less than the
incoming electron energy since part of the shower could develop outside the
crystals. Only the (Egep, Npn)-point due to the central crystal of one event
can populate the large-FEy,, region of Figure 4.4. The low-FEj, region in the
same graph contains points due either to the central crystal of events with low
primary electron energy or to the neighbouring crystals of whatsoever event.
In other words, every event contributes with several points to the low-Ey,,
region while at most with one point to the large-Ey ., region.
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The value of Eg, in each particular crystal, central or neighbouring, de-
pends on many factors. First of all, the initial energy of the primary electron
contributes in determining the average shower profile and its fluctuations.

Furthermore the position of the entrance point of the electron on the crys-
tal surface influences the portion of the shower that develops in each crystal
and consequently the corresponding value of Ey.,. For instance, the fraction of
the total energy deposited in the central crystal for electron energies of about
700800 MeV can vary between about 40 + 50%, if the crystal is hit very
close to its border, up to 80% or more in the case the electron enters in a
well centered position. For lower electron energies these fractions are usually
larger, because the transversal profile of the shower becomes narrower.

In addition the momentum direction of the incoming electron gives the
avarage development direction of the cascade. The same initial energy and
entrance position but different direction of development result in general in
different Fj4., values. In the GEANT4 simulation this direction is changed in
two ways. Giving a random initial position in the target and being fixed the
entrance position into the crystal, the angle between momentum direction and
normal direction to the crystal surface acquires different values. Simulating
the passage of the electron through the material from target to calorimeter
deviates randomly the electron from the initial direction of motion.

The most important effect, though, is given by the shower fluctuations.
Events having identical values for the previous parameters, i.e. initial electron
momentum and entrance point, can end up in very different values of Ej,.
This happens just because the development of an electromagnetic cascade is a
stochastic process.

As a consequence, the same value of Ey4, in one crystal can be caused in
many different ways. According to the first one of the two basic ideas given
above, the way the energy Fy., has been deposited in a crystal does not affect
the distribution of the number of detected Cherenkov photons N, by the cor-
responding photomultiplier, since this distribution depend only on the value
of Fg4p. In other words, given a certain value of Eg.,. N, has always the
same distribution, independently from how that particular value of Ej,., was
achieved. Figure 4.4 is a justification of such assumption because the points on
the graph show a strong correlation between Ey., and N,,. Quantitatively, the
linear correlation coefficient r is 0.997. This means that the mean value N,
can be considered as a linear function of Eg.,. Hence the form for Ny (Egep)
is just the linear fit given in Figure 4.4.

Justifying rigorously the second assumption is more difficult. To test how
Ny, is distributed for a given value of E,,, one should plot the statistical fre-
quency of the single values of NV, for many events, all having the same value
of Fgep. Since the electromagnetic cascade must be also simulated together
with the photomultiplier response, one obtains unavoidably different random
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Figure 4.5: Statistical frequencies of the number of photoelectrons for differ-

ent values of the deposited energy Fy.,. On top of each histogram
the corresponding (Ege, £ 0 Fy.p)-interval is given. The vertical

error bars are given by the squared root of the bin content. On

the bottom the parameters Np%t and o, of the gaussian fit are
reported. The value x?/ng is the x? of the fit divided by the
number of degrees of freedom n,; (number of data points minus

fit

number of fit parameters). The other parameter is the p-value of
the goodness-of-fit test [22].
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values of Eg., for each event. For having a statistical sample of N, then,
one needs to take the points of Figure 4.4, that are included in some interval
Egep £ 0Eyep, instead of just those which correspond to some exact value Egep.
In order to have a larger sample one should consider a wider interval of Eg,, so
that more points are included. On the other hand, the sample distribution one
obtains with a large d 4, derives from the superposition of the distributions
corresponding to different values of Ey,, which have different values for N,
and op;,. Therefore the smaller 6 Eg, is, the better the obtained sample dis-
tribution would represent the distribution of IV, corresponding to one single
value of Egep.

Mediating between these two issues, it is possible to get a result like in Fig-
ure 4.5. The sample distributions for the given intervals of Ey., are shown. The
value of Ey,, increases with increasing central value Ey.,. Such a choice was
imposed by the poorer statistics in the large- Ege, region of the (Egep , Npp)-plot
(Figure 4.4). This does not constitute a very cumbersome problem because
the sample variances also become larger with larger Eg.,. If the variation of
the mean value and of the standard deviation of N, within the Eg,-intervall
are small with respect to the absolute value of the standard deviation at Ep,
then the superposition of the different distributions in Ege, = 6 Ejgep remains a
good approximation of the single-Eg,, distribution.

Estimating the error on the statistical frequency with its squared root, a
gaussian curve was fitted on each histogram of Figure 4.5 and the p-value of the
goodness-of-fit test [22] was calculated. The statistical samples are not very
large but all p-values are greater than 55% and, except for one case, smaller
than 64%, which is in agreement with the assumption of the gaussian form for
the ditribution of Np,.

In order to find a form for the function o,,(Eq.,), sample values of N, for
different values of Eg., are needed. For each value of Ey,, the sample values
of N, are given by the (Eq,, Nyp)-points of Figure 4.4 having Ey., contained
in some interval Egep, &= 0 Egep.

Out of this sample the estimator s*(Eyep) for 072, (Eqep) was calculated ac-

cording to
n

9 (Bug) = S (Nyni = Ny (1.1

=1

where N,y ; (i=1, ...,n) are the sample values of Ny, and Ny, (Ege,) is calculated
according to the fit given in Figure 4.4. For this reason, s?(Eg) is not the
sample variance and will be considered as an unbiased estimator of o}, (Fgep)
without multiplying it by the usual factor n/(n—1). This is because Ny, (Eqgep)
is not the mean of the sample values Ny, ; (i=1, ..., n) but the estimation of Ny,
obtained by using a large statistical sample. Hence, within the small sample
{Nyn.i}s Npn(Egep) can be considered as the “real value” of Npy,.
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The variance var(s?) of s* is given by

1
var(s* (Fuy) = ~ (11 — 1), (42)
where i, is the k-th central momentum of the N, distribution. Since the

variable [V, is supposed to be Gauss distributed it holds:

2
/"LQ = O-ph ’ 4 3
pa = 30p,. (4.3)

Substituting (4.3) in (4.2) and considering the standard deviation of s? as its
statistical error (85?)gtat, this assumes the form:

(532)stat = \/%327 (4.4)

remembering that s* is the estimator for o2,

The quantity Ny,(Egep) is also known with a statistical error d Ny, (Euep),
inferred by the error on the fit parameters given in Figure 4.4. Such an error
on Ny (Egep) propagates also onto s?(Eye), which is therefore affected by a
further error (§s%) 5. Expanding the expression (4.1), taking the first derivative

with respect to N, and multiplying by d N, gives the estimation of (ds?)y,
(682)]\7 =2 ‘ Nph — < Nph,i > | . 6Nph, (45)

where < N,p,; > is the sample mean of {N,;;}. Altogether the estimation for
the error of s? is given considering (4.4) and (4.5):

(65%)¢0t = \/(532)§tat + (557)2% . (4.6)

Sample values of s?(Fg,) have been obtained from samples of N, corre-
sponding to Ege, intervals Ege, = 0 Egep, as follows. The Eg, range between
0 and 700 MeV has been subdivided into 25 subranges of the same width.
The central Eg., value of each subrange has been taken together with a width
0FE4ep growing linearly with Eg, from 1 MeV to 5 MeV as FEy, ranges from
0 to 700 MeV. Among these 25 intervals Eg., & 0 Egep, only those containing
more than 5 values of Nph were used to calculate SQ(Edep). These sample values
of s*(Egp) with their errors are plotted in Figure 4.6. In all of these samples
(6s%) 5 is less than about 6% of (0s?)gtat, which is a confirmation of what
has been stated above with respect to the estimation of ‘7;2;11 by the estimator
$%(Eugep)- A linear function has been fitted to the data and the value of the fit
parameters are given on the bottom of the graph in Figure 4.6. The reduced
x? and the goodness-of-fit were also estimated. The p-value amounts to 44%,
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thus the linear dependence of s, i.e. azh, on g, is assumed to be a reason-

able hypothesis. This is the needed dependence of o), on the deposited energy
Eqep, that is the function o,,(Egep)-

To summarize, in this section a parameterization for simulating the photo-
multiplier response has been presented. That is, given the value of deposited
energy FEg., in one crystal simulated with GEANT4, the effect of the emis-
sion, propagation and detection of Cherenkov photons onto the overall detec-
tor response is simulated without using the full GEANT4 simulation including
Cherenkov effect but sampling the number of detected photoelectrons N,
from a gaussian distribution. The mean value N,;, and the variance o2, of this
gaussian distribution are linear functions of the deposited energy Eg.,. Within
this work, this approach has been motivated statistically using the results of
a GEANT4 simulation including the Cherenkov process and the parameters of
the linear functions Ny, (FEg,) and af,h(Edep) have been determined.
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4.4 Digitization and histogramming

After simulating an event, one has the value of N, for each crystal as an out-
put. That is the number of photoelectrons emitted by the photocathode of the
corresponding photomultiplier. As discussed in Section 3.4, N, is proportional
to the time integral of the current signal of the photomultiplier over a time
window 7. In the real experiment, this value is summed over a 3x3 matrix
of crystals and digitized. In order to obtain a histogram which is comparable
with the experimental spectrum, a similar procedure must be applied to the
simulated values of N,.

First, every experimental spectrum corresponds to one single channel, i.e.
crystal with corresponding photomultiplier tube. For reproducing a spectrum,
a channel must be chosen and all events that contribute to that channel must
be simulated. An event gives a contribution to a channel if N,, has a local
maximum in that channel like specified in Section 3.4. Therefore after simu-
lating an event, if the selected channel happens to be a local maximum, the
histogram representing the simulated spectrum is updated.

Second, the 9 values of N, corresponding to the 3x3 matrix of crystals
centred on the selected channel are summed giving the total value N;’,f?’. This
value is a real number, because the N,;,’s are sampled from a continuous gaus-
sian distribution. This is an advantage, because binning problems due to
digitization of discretized values are avoided.

The final step is filling one of the 256 bins in the histogram. To do that,
Nj,f3 must be rescaled into a value b corresponding to one ADC-channel of
the experimental histogram. For rescaling, two reference points in N;’hX?’—space
must be matched to two reference points in b-space. The zero of Njﬁ corre-
sponds to the physical zero b°// of the ADC (offset), which is a fixed parameter
of the readout electronics. The other point is given by the position of the elas-
tic peak. An ADC-channel b*, corresponding to the central ADC value of the
elastic scattering peak, is selected by calibrating the detector like explained in
Section 3.4 (typically b =170). The corresponding N;f—value sz,ll has been
obtained by simulating 5000 elastic events and taking the mean value of the
Nj,f3’s. The relation between Ng’,f?’ and b is then simply:

bel o boff

b =01+
Ne

N (4.7)

One event contributes to the simulated histogram only if it gives a value of
b ranging from 0 to 256. In the experimental histogram, one event contributes
if its time integrated current signal is greater than a certain threshold, as
explained in Section 3.4. The b value corresponding to the threshold is always
greater than 0 (typically about 40+50). For having such a b value, the scattered
electron energy must be of the order of (200+-250) MeV.
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Chapter 5

Simulation of physical processes

From here on, any interaction of the beam electrons in the target, which pro-
duces an event, that is a primary electron with given kinematics, will be called
physical process. The theoretical knowledge of the physical processes, i.e. of
their cross sections, allows the simulation of such processes, which in this con-
text means the random sampling of events from their cross sections. The
algorithm in charge of executing such a sampling will be called event genera-
tor and the output of the algorithm theoretical spectrum. Since the theoretical
spectrum is determined by the set of physical processes that are simulated, an
event generator can be considered equivalent to the set of physical processes
it simulates.

The ultimate scope of this work is the study of the contribution of physical
processes to the experimental spectrum, particularly in the low energy region,
in order to extract the parity violation asymmetry in the electroproduction
cross section of the A(1232) resonance. The simulation of the detector re-
sponse described in the previous chapter provides a tool for comparing the
theoretical spectrum given by any event generator with the experimental spec-
trum.

One event generator has been implemented and its theoretical spectrum
compared with the experimental spectrum. A good agreement is found for the
energy range from the A(1232) resonance peak (E'=440 MeV) up to above the
elastic scattering peak (E'>800 MeV). More work has to be done for having
a better agreement between theoretical and experimental spectrum in the low
energy range. In this chapter the features of this event generator are presented.

5.1 Kinematical region

Like stated in Section 4.4, all events contributing to the spectrum of one se-
lected channel must be simulated. The kinematical ranges of the primary
electrons have to be fixed accordingly.

49
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Solid angle

An event gives a contribution to a channel Ch if the number of photons Npc,;h
detected by the photomultiplier of Ch is a local maximum, like specified in
Section 3.4. N{" can be a local maximum if the primary electron enters the
detector through the surface of the corresponding crystal or of the surrounding
ones.

To select the region of entrance of the primary electron into the detector,
the primary momentum direction must be generated with a polar angle # and
an azimuthal angle ¢ contained in an interval (fg—A6/2, 6y+A0/2) and (¢o—
A¢/2, dpetAP/2), respectively. Fixing these two intervals is equivalent to define
a rectangle on the surface of the detector onto which the electrons are shot.
The rectangle has to contain the entrance (directed toward the target) surface
of the crystal corresponding to the selected channel C'h. More specifically the
rectangle has to be wider than the surface of the crystal, i.e. some electrons are
shot outside the surface of the crystal, in order to consider the contributions
to the spectrum coming from electrons hitting the surface of neighbouring
crystals. The criterion for deciding the dimensions of this rectangle is that
primary electrons, hitting the surface of the calorimeter outside the rectangle
can not contribute to the spectrum, or their contribution is quite negligible.

The values 0y and ¢y were fixed according to the direction of the line
going through the centre of the target and the centre of the selected crystal’s
surface. The chosen crystal belongs to the fourth ring, which is the central
one. Therefore, according to table B.1, 6, was set to 34.8°. Since all events to
be simulated are generated by ¢-symmetric processes, ¢q has to correspond to
the centre of an arbitrary frame.

The widths Af and A¢ were chosen equal to 2.4° and 2.6°, respectively.
To fix these values the following procedure was followed. Some thousands
events were simulated shooting primary electrons from a uniformly distributed
random position in the target and with an initial energy of 734.5 MeV, which
is the largest initial energy (elastic energy) of the electrons contributing to
the spectrum at the scattering angle #y. By changing the momentum direction
angles  and ¢, one decides onto which point of the crystal surface the electrons
are shot. The angle 6 (¢) was set equal to 0y (¢). The other angle ¢ (0) was
set equal to ¢g+A¢/2 or ¢pg—Ap/2 (By+A0/2 or Oy —A0/2). A¢p (Af) was
chosen in order to shoot the electrons to the border of the crystal C'h and
then increased to hit other positions outside the crystal, i.e. the surface of
one neighbouring crystal. For each value of ¢ (), 1000 events were simulated
and the number of events, where Nﬁh was local maximum, was counted. This
was repeated until a value for A¢ (Af) was found, such that there were no
more events, within the 1000 simulated, with Nﬁlh as local maximum. The
final values obtained for Af and A¢ were those given above (2.4° and 2.6°,
respectively).
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Sampling the momentum direction of the primary electrons within these
intervals for # and ¢, many electrons hit the detector outside the surface of the
crystal Ch. In fact, only about 30% of the events having a primary momentum
direction within this range contribute to the simulation. This means that the
majority of the simulated events are lost, since they do not contribute to obtain
a better statistics. However generating the events into such a wide solid angle
ensures that all primary kinematical configurations, which possibly contribute
to the spectrum, are included in the simulation.

All physical processes to be simulated are ¢-symmetric, thus A¢ will appear
in the cross section formulae just as a multiplicative factor. On the contrary,
all cross sections depend on # and have to be integrated over the 6 interval. It
is therefore convenient to define:

0, = 0,—A0/2,
0 = 0+ AO)2.

Energy range

The upper limit for the energy of primary electrons is given by the simulated
processes. For instance, for the elastic scattering off the proton, the electrons
with the highest final state energy are those, that have lost no energy by ra-
diation of real photons. Their energy is thus limited by the kinematics of the
elastic scattering (Equation (A.7)).

More attention has to be paid for the lower energy limit of the primary
electrons Ej . This is the lowest final energy value which can be sampled
by the event generator from the cross sections of the various simulated pro-
cesses. In the experiment, the corresponding limit is given by the low energy
acceptance of the detector. This is fixed in turn by an electronic threshold
(see Section 3.4). As already said at the end of Section 4.4, according to the
detector response simulation, this threshold corresponds to primary energies of
about (200+250) MeV. For simulating all events contributing to the spectrum,

Ej,, must be smaller than such values. Depending on the process, the value

for E]  ranges between 100 MeV and 120 MeV.

low

5.2 Bremsstrahlung and straggling function

The simulation of the detector response to a scattered electron of the beam
begins by tracking the electron just after its scattering off a proton at some
point in the target. Although, the electron travels through the target until the
scattering point. The effect of the passage through this layer of material is not
taken into account in the detector response simulation.

The interaction with the liquid hydrogen in the target affects the momen-
tum of the beam electrons. The deflection from the original beam direction is
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not considered in this work. The energy straggling is due almost completely to
bremsstrahlung, because at the beam energy of the experiment (854.3 MeV)
the energy loss per ionisation is negligible with respect to the effect of external
radiation [22].

If the beam energy before hitting the target is Fy, after travelling a dis-
tance ¢ through the target (where ¢ is expressed in units of radiation length),
the energy of the beam electrons will be distributed with a certain probability
density function (p.d.f.) I.(Eo, E,t). The energy F is the same as defined in
Appendix A, then it is the energy of the electron just before it scatters off a
proton. The p.d.f. I.(Ey, E,t) is called straggling function and, considering
only the energy loss due to bremsstrahlung, is given by Mo and Tsai [23]:

2 bt

£,3 <E“_E> <ln&> , (5.1)
E, 4 Ey E

with b=4/3. In other words, for one electron of initial energy E, that passes
through a target layer of thickness ¢, the differential quantity I.(Eq, E,t) dE
represents the probability that the energy of the electron be in the interval
(E, E4+dE).

The function I.(Ey, E, t) is not analytical in F' = E,. To treat this singu-
larity the E-interval of definition (0, Ey) has been divided into two intervals
(0, Eg — AFEy) and (Ey — AE,, Ey), respectively. Within the first interval the
function I.(Ey, E,t) can be integrated numerically and can be used for sam-
pling E. The larger the value of AFE; is, the faster is the numerical integration
and the more precise can be the sampling.

All electrons having an energy inside the interval (Ey— AFEj, Ey) have been
treated as if they had the beam energy FEjy. Using this approximation, the
probability J2E:(Ejy, ) for one electron of still having all the beam energy Ej
after travelling through a layer ¢ of target material is:

Eo—AE,
JAE (B t) =1 — / dE I.(FEy, E,t), (5.2)

0

bt

[e(EU;E;t) - E E
0 —

because of the normalization of I,(Ey, E,t). Such an approximation is valid
only if two requirements are fulfilled.

1. The cross sections of the scattering processes to be simulated (e.g. elastic

and inelastic e-p scattering) must not vary too much in the energy range
(Ey — AFEy, Ey).

2. For the same processes, the variation of F in the interval of width AF,
causes a variation in the final energy E’ of the scattered electron accord-
ing to Equations (A.7) and (A.8). The corresponding interval of £ will
have a width AE! depending on E’ or, equivalently, on E. AE! must be
small in comparison with the energy resolution of the detector AE’ at
E' given by Equation 3.4.
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Considering elastic scattering and inelastic scattering at the A(1232)-peak in
the polar angle interval # € (30°,40°) and choosing AF,=0.1 MeV, the differ-
ence in the cross sections between £ =Fy — AFE, and F= Ej is at most about
0.1%.

In the same polar angle interval and with W ranging from M, up to
1450 MeV (see Appendix A for definitions), one has always AE! <0.1 MeV.
The detector energy resolution in the corresponding FE’ interval, which is
(167 MeV,761 MeV) according to A.7 and A.8, satisfies 13 MeV<AE’ <28 MeV.
In conclusion, with the chosen value of AE;, the cut on the domain of I.(Ey, E, t)
can have no visible influence on the simulated spectrum.

So far the effect of energy straggling in the target input window has been
considered just for the elastic e-p scattering. However it is planned to upgrade
the event generator in order to take care of the energy straggling also for the
cases of inelastic scattering off proton and scattering off aluminium.

5.3 Elastic electron scattering off the proton

5.3.1 Unradiated cross section

The elastic interaction of massless spin 1/2 electrons with point-like spinless
protons of finite mass is described by the Mott cross section [24, 25]. The form
of the Mott cross section in the approximation of one virtual photon exchange

is!:

d? 2 E' 0
il (E,0) = Y T cos? e (5.3)
48 Taron 4E?sin* -

where o = €2 /41 ~ 1/137 is the fine structure constant.

Considering that the proton is also a spin 1/2 particle and that it presents
an extended structure, the Rosenbluth formula must be introduced. Thus the
twofold differential cross section for the elastic electron scattering off protons
is given by:

d’o d’o GL(@Q%) + 176G, (Q%) 2 (2 2 0
d—QIE(E,G)—d—QM(OfE,G) |: 1—|—7’ —I—QTGM(Q)tan 5
(5.4)
In this equation the kinematical factor 7 is
Q2
T = : (5.5)
4M?

IThe Planck constant is considered as h = 1.
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The electromagnetic form factors, which are used in the work presented here,
are calculated according to the dipole fit [24]:

G (@’ .
Gr(Qt) = DL gavon (), (5:5)
. Q2 -2
G = (1 i 0.71G6V2> | -0

5.3.2 Radiative corrections to elastic scattering

The QED radiative corrections to elastic scattering can describe two effects
in the spectrum. On the one hand the peak corresponding to the elastic line
is modified with respect to what would be expected from the cross section
without radiative corrections (5.4). On the other hand the radiation of hard
real photons can result in the loss of a large energy amount w by the electron.
Because of this, a radiative tail at energies lower than the elastic peak appears
in the spectrum.

The radiative tail from the elastic peak can be calculated using the peaking
approximation, as shown by Mo and Tsai [23]. Contributions coming from the
radiation of photons by the incident electron and by the scattered electron can
be treated independently (the interference between the two contributions is
neglected), since the scattering angle is sufficiently large [26]. The Feynman
diagrams corresponding to these two contributions are shown on bottom of
Figure 5.1, on the left and on the right, respectively.

After choosing an energy cutoff AF, for defining the peak of elastically
scattered electrons, the differential cross section of the tail is integrated over w
from 0 to AE, and the vertex correction and the vacuum polarization are added
(vertex correction and vacuum polarization are shown diagrammatically in the
second line of Figure 5.1). The result is the corrected elastic cross section:
d*o

(E,0) = (1+6(AE,, E,0)) —q

d*c

o (E.0). (5.8)

Ros

peak

The form for 6(AE,, E, 0) is given by Tsai [27]. Assuming the peaking approx-
imation and neglecting the radiation from the proton current one has:

af28 13, Q2 E B 0?2
6(AET,E,9) = —; {g—glnw‘k <1nAET +IHAET> <lnﬁg—1

1(, EY
“ (=
+ 5 ( N7 >
where m, is the electron mass and E’ is calculated by means of (A.7).

For w> AF,, the differential cross section describing the scattering of the
electron accompanied by the emission of hard photons can be integrated in the

e

, (5.9)
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Figure 5.1: Feynman diagrams for calculating the radiative corrections on
the elastic electron-proton scattering. Starting from the top on
the right and following the reading order: elastic process, vertex
correction, vacuum polarization, initial state radiation and final
state radiation.

peaking approximation over the photon solid angle. This gives the inclusive
threefold differential cross section for the radiative tail from the elastic peak.
In the notation of [26], this cross section assumes the form:

d*o ty M, + (F — w,)(1 —cos®) d*c
E El 9 . S P S E . . 9
w0ar | (B E 0 = T T —cost) dq | E w0
) o (E,0). (5.10)
Wp dQ Ros .

Here w, and w, are the initial and final photon energies, respectively:

 —Q*+2M,(E - E)
YT oM, — E'(1—cosh)]’
—Q? +2M,(E — E')

Wy = ]

2[M, + E(1 — cos )
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and
o 1—1—3:3 X,
s = — In — — 24| ,
T 2 m?
al+22 X
t = = Pin =2 _
P 7T|: nmg Tr o

where z; and z, are the fractions of energy lost by the incident electron and
by the scattered electron, respectively,

E—w,

rs = E )
El

l'p e E/_'_wp

and

X, = 2(F —ws)E'(1—cosb),
X, = 2EE'(1—cosb).

According to [17], the energy cutoff for the elastic peak has been set in
the implementation of the event generator to AE, =3-1073E/,(E,0), where
E!,(E,0) is given by Equation (A.7).

5.3.3 Sampling function

For the elastic scattering, the energy straggling effect and the radiative cor-
rections were treated together to obtain a sampling function for the variables
t, E' and 6.

At any angle 6, the energy cutoffs AE; and AE, divide the (E, E')-plane
into four regions according to:

region I: Ey>E > Ey— AE,, E'(E.0) > E'> E(E,0) — AE, ;
region IT: E < Ey— AE,, E'(E.0)> E'> E(E,0) — AE, ;
region IIT: Ey> E > Ey — AE,, E' < E\\(E,0) — AE, ;
region IV: E < Ey — AE,, E' < E!,(E,0) — AE,

Considering this subdivision, the distinction between peak events and tail
events must be redefined. Only in the case of region I, the final energy FE’
is fixed once given the beam energy E, and the scattering angle 6. In the cases
of regions II, IIT and IV, E’ is not determined given E, and f and must be
sampled independently. For this reason only events coming from region I are
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considered as peak events, while the rest of the events are referred to as tail
events.
Integrating over the azimuthal angle ¢, the peak events sampling function
for ¢ and # is given by the differential cross section:
k
do?/" d*o

7 (t,0) = Agpsinf - J>7(Ey, t) o (Ey, 0) . (5.11)

peak

The total cross section for the elastic peak events is:

peak
oPeak — / dt/ d" ,0) ~ 0.21nb, (5.12)
04

where the total length of the target is T=1.1- 1072 radiation lengths.
Similarly, for the tail events, ¢, £’ and # are sampled from:

d2 tazl ) dQO' ,
dng/ (t 0 E) A¢Sln9 [ ]e(EOaEat) ' m pe(fel(Eag)’g) +
JAE (B, t) - o (E E'.0) + (5.13)
¢ O aQdE | '
EO_AES d30.
dE 1,(E,, E,t E E'. 0
/E (EL ) (Eo. B0 e ( ) }

where E,(E', 0) is the inverse function of E!,(E,#) and the three terms in
the square parenthesis represent the contributions of regions II, III, and IV,
respectively. The total cross section for the elastic scattering tail events is:

dt d2 tazl
gloi / / / dE’ deE’ (t,6,E") ~ 0.18nb. (5.14)
04 El .

In conclusion, sampling one elastic event implies choosing whether the event
belongs to the peak or to the tail. In the former case, ¢ and 0 are sampled
from the function defined in Eq. (5.11) and E' is calculated consequently. In
the latter case, the function defined in Eq. (5.13) is used to sample ¢, 6 and
E'. The peak events are chosen with a probability p,e.; equal to:

k
gPee

Ppeak = peakel ) (515)
g

tail
el + oél

the tail events with probability ppeqr =1 —Drair.

5.4 Inelastic electron scattering off the proton

The electron-proton scattering is said to be inelastic, when it is accompanied by
hadron production. The centre of mass energy W of the final hadronic state can
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assume any real value above the pion production threshold W;, = 1073 MeV.
This means that, for the inelastic scattering, there is one more independent
kinematical variable as compared to the case of the elastic scattering without
radiative corrections. The final electron energy E’ is considered to be the in-
dependent variable together with the scattering angle 6. The relation between
E' and W is given by Equation (A.8).

The inclusive differential cross section for a given electron kinematics, in-
tegrated over all possible hadronic final states, can be written with the for-
malism of virtual photon absorption [25, 28]. The cross section is separated
into a kinematical factor I, representing the flux of virtual photons exchanged
between electron and proton, and a dynamical part giving the total virtual
photon-absorption cross section o+ of the proton:

Ao

dQdE'

(E',0) =T o, . (5.16)

inel

Defining ¢ as the ratio of longitudinal to transverse polarization of the
virtual photons,

|Cl|2 50 o
£ = 1—|—2@tan 5 s (517)

and k. as the laboratory energy needed by a real photon for exciting a hadronic
system with centre of mass energy W,
2 2
W*— M,

p
the factor ' assumes the form:
a E'k, 1

T EQ?l-¢

(5.19)

In the literature (e.g. [28]), the cross section o, is expressed with explicit
dependence on the kinematical variables W and Q?, rather than E’ and 6.
Additionally, it can be seen as the sum of two cross sections o7 and oy, de-
scribing the absorption of transversely polarized and longitudinally polarized
virtual photons, respectively:

0. (W,Q%) = or(W, Q%) + e o (W, Q%) . (5.20)

The explicit form of o,-, hence of the sampling function for £’ and 6 in
Equation 5.16, depends on the model used to describe the pion production
through the two channels:

e +p—=p+7,
e +p—=n+rt.
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Figure 5.2: Virtual photon-absorption cross section as a function of W, with
fixed @Q*=0.1GeV?2. Data are taken from Brasse et al. [30].

In this work, the unitary isobar model by Drechsel et al. [29] has been
adopted. The implementation of the model, namely the program MAID has
been used to calculate the cross sections o7 and oy, for the two given chan-
nels. Such model can well describe the data for W-values ranging from the
pion threshold up to at least over the A(1232) resonance. This corresponds to
about 1100 MeV< W <1400 MeV with fixed Q> =0.1 GeV?, according to the
data of Brasse et al. [30] shown in Figure 5.2. Looking at A4 experimental
spectrum in Figure 3.2, this is also the interesting W -range for the simulation,
though in that spectrum the value of ) is not the same for different values
of W. However the same W-range in the A4 spectrum corresponds to the
Q*-range (0.08, 0.18) GeV?, which means that the kinematics of the data of
Figure 5.2 and of the A4 spectrum are in first approximation comparable.

The total cross section for the inelastic scattering without considering strag-
gling and radiative corrections is

(E',6) ~ 0.19nb | (5.21)

inel

Oinel = Ao dE'/ df sin

low

deE’
with £, =120 MeV and E;,,=620 MeV, since in the considered f-interval the

maximal E' corresponding to the pion threshold amounts to 616 MeV.

Finally, the position ¢ of the scattering in the target is sampled from the
uniform distribution in the range (0, 7).
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5.5 Scattering off aluminium

Another background contribution to the spectrum, that must be taken into
account, comes from the scattering of the beam electrons off the aluminium in
the target input and output windows. The most relevant interactions between
electrons and Al nuclei at these energies are the quiasielastic scattering off the
bound nucleons and their A-excitation.

For both processes there are two independent kinematical variables, namely
E' and 6. Therefore, the differential cross section of the e-Al scattering has
the form:

Ao B o Ao

E.0) =
dQAE" A(l 0= GoaE

! !/
qiii;lﬁ) + TIE A(E .0). (5.22)
To calculate these cross sections, a code based on a Fermi-gas nuclear model
by Moniz [31] was used. The binding energy of the nucleons are calculated
in a shell model, solving the Schrodinger equation with a Wood-Saxon well as
central potential and a first derivative Wood-Saxon potential for the spin-orbit
interaction®.

The integration of Equation 5.22 gives the total cross section for the
scattering off aluminium:

dE’ 0sing 7| (E.6) ~ 16250 5.23
=20 [ / inf g (FL0)~162m, (529
where Ej =120 MeV. The quasielastic peak spreads up to energies E’ higher

than the elastic energy E, of the e-p scattering, because of the Fermi momenta
of the nucleons. In order to include the whole quasielastic peak, the upper limit
for the integration in E' was set to E,, =850 MeV. The scattering position for
the Al events coming from the input window and from the output window was
set on the geometrical centre of the respective layer of aluminium. Such layers
are situated at the extremities of the target. This implies that events with
scattering angle 6 lying outside the usual interval (33.6°, 36°) could contribute
more frequently, on average, to the selected channel (see Section 5.1). Because
of this, the sampling interval of #, hence the integration interval in equation
(5.23), was extended to §4=233°, 5 =237°, to make sure that all events which
are able to give a contribution to the chosen channel are included.

Like in the case of inelastic scattering off the proton, straggling effect and
radiative corrections were not yet included.

2The calculation of the binding energies was performed by J. Van de Wiele, Institut de
Physique Nucleaire Orsay, and privately communicated. The code for calculating the cross
sections was implemented by M. El Yakoubi and J. Van de Wiele.



Chapter 6

Conclusions and outlook

In summary, the experimental apparatus of the A4 Collaboration has been
described in Chapter 3. This apparatus is able to detect the beam electrons
scattered off the liquid hydrogen target and to measure their energy. The
number of detected electrons is histogrammed according to their energy, giving
an experimental energy spectrum. A simulation of the detector response to
the scattered electrons has been implemented and described in Chapter 4. An
expected theoretical energy spectrum of these scattered electrons has been
obtained implementing an event generator, which includes the most important
scattering processes for the electrons. This event generator has been described
in Chapter 5. In order to compare the theoretical energy spectrum of this
event generator with the experimental energy spectrum, the simulation of the
detector response has been applied to the generated events.

6.1 Result of the simulation, comparison with
the experimental energy spectrum

Using the simulation of the detector response for tracking the primary electrons
of the output events of the event generator, one obtains an energy spectrum,
which can be compared with the experimental spectrum.

The events of the various processes have been simulated separately, so that
the contribution of each process can be distinguished within the simulated
spectrum. After simulating the detector response for all processes, one obtains
one simulated histogram for each process. To have one histogram comparable
with the histogram of the experimental spectrum, the histograms correspond-
ing to all processes have to be rescaled with an appropriate factor and summed
together.

For simplicity, the following general formalism can be applied. Considering
k different processes X; (i=1, ..., k), with their corresponding histograms H;,
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the total simulated histogram Hg is:

k
Hg =Y fiH, (6.1)
i1

where f; are the scaling factors for the respective processes X;. Each one of
these scaling factors is calculated as the ratio f; = E;/S;, where S; is the
number of simulated events generated with kinematical variables within the
selected ranges (see Section 5.1) according to the differential cross section of
the process X;. Fj; is the expected number of electrons scattered within the
same kinematical ranges according to the process X;, during the run time
tr with a beam current I. The different processes have different total cross
sections, in the sense defined in Chapter 5, and are associated with different
“targets”, namely the liquid hydrogen volume, the aluminium input and output
windows. These differ in length, density and mass of the particle responsible
for the electron scattering, that is the proton and the aluminium nucleus,
respectively. With o; the total cross section of the process X;, and [;, p; and
M; the length, the density and the scatterer mass of the corresponding target,
respectively. The expected number of electrons F; for the process X; is then:

After applying this rescaling and summation, the obtained simulated histogram
Hgs can be compared with the experimental energy spectrum like shown in
Figure 6.1. It is important to stress, that the presented simulated energy
spectrum is obtained exclusively from information about the experimental ap-
paratus and about the physics of the electron scattering and of the passage of
particles through the matter. No information from the experimental energy
spectrum itself was used.

Looking at Figure 6.1, one notices a very good agreement between sim-
ulation and experiment in the energy range from the peak corresponding to
the excitation of the A(1232) resonance, that is from the green peak at about
channel 100, upwards. From channel 100 to channel 140, that means from the
pion production threshold up to the maximum of the A(1232) resonance peak
with increasing W (see also Figure 3.2), the agreement between simulated and
experimental spectrum lies on the 13% level. In the low energy part of the
spectrum, i.e. at the left side of the A(1232) resonance peak in Figure 6.1, the
agreement, becomes very bad, since the largest part of the experimental signal
is not reproduced in the simulation.

From this observations, one can draw the following conclusions. The de-
tailed simulation of the detector response described in Chapter 4 provides a
reliable method for comparing the energy spectrum obtained in the experiment
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Simulation of the energy spectrum: comparison with the experiment
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Figure 6.1: Comparison of the result of the simulation with the experimental

energy spectrum. The red line corresponds to the experimental
spectrum, it is the same as in Figure 3.2. The solid histogram
is the result of the simulation presented in this work. Different
colours differentiate the contributions of different processes. The
upper profile of the solid histogram represents the sum of all con-
tributions. The elastic scattering, taking into account straggling
and radiative corrections, is shown in yellow. The elastic peak
appears on the right and the radiative tail spreads to lower en-
ergy on the left side, contributing also to the energy region of
the A(1232) resonance (between about channel 80 and channel
120). The inelastic scattering is shown in green, reproducing
about the channel 100 the structure due to the excitation of the
A(1232) resonance. The contributions of the input and output
aluminium windows produce the thin layer of background shown
in gray at the bottom of the picture.
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with the scattering processes that are theoretically expected to occur in the
target. In other words, since the energy spectrum of the experiment can be
reproduced so well in the higher energy range, only using information coming
from the physics and the experimental specifications, one can persuade oneself
that the detector response is well reproduced in the whole energy range.

If the simulation of the detector response is assumed to be reliable, a sec-
ond conclusion becomes necessary when looking at the left side of Figure 6.1.
The huge discrepancy between the experimental and the simulated histogram
at the lower energy range must be due to some physical process, which was
not taken into account in the event generator. Possibly the signal in the de-
tector can be produced by other particles than electrons, like photons, pions
or protons which are produced in the experiment but not considered in the
simulation. This issue is one of the main subjects of the future work and is
briefly discussed in the next section.

The last conclusion concerns the measurement of the parity violating he-
licity asymmetry in the excitation of the A(1232) resonance. With the present
knowledge of the inelastic part of the energy spectrum, i.e. with the un-
derstanding of the contributions to the spectrum in the W range from the
pion production threshold up to the maximum of the A(1232) resonance peak
evinced by the result of the simulation (Figure 6.1), in principle, the extraction
and the analysis of the helicity asymmetry for that W range can be already
worked out and the result of the analysis compared with the theoretical pre-
dictions.

6.2 Outlook

There are two main guidelines for proceeding with the present work. On the
one hand, it is necessary to start working on the analysis of the helicity asym-
metry in the excitation of the A(1232) resonance. This issue is very similar to
what was already done within the A4 collaboration for the helicity asymmetry
in the elastic electron-proton scattering. Indeed, the value of the asymmetry
for the energy range corresponding to the A(1232) excitation can already be
extracted. The most relevant difficulty would be the theoretical estimation of
the dilution factor due to the background.

On the other hand, it is essential to work further on the simulation of the
experiment, in order to extend the energy range of understanding of the energy
spectrum to include the whole A(1232) resonance peak. About this last issue,
several effects can be investigated. Four of them are cited in the following.

e The radiative tail from the elastic peak has been estimated in the peaking
approximation, where it is assumed, that all hard photons radiated by
internal bremsstrahlung are emitted with a momentum direction parallel
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to the momentum either of the incoming electron or of the scattered
electron. This is not true when the final electron energy is less than
about one half of the energy of elastically scattered electrons with the
same scattering angle [23]. One first consequence is that the radiative
tail cross section for electrons with these final energies could be larger.
The second consequence is that some photons, emitted by the scattering
of electrons with other scattering angles, could hit the detector and have
sufficient energy to contribute to the lower part of the energy spectrum
of Figure 6.1

e The pions produced by electrons scattering inelastically with any scatter-
ing angle can give contributions to the low energy part of the spectrum in
two ways. The 7%s decay still inside the target into two photons, which
can reach the detector. This process was already considered in [17] but
only photons with energy larger than 400 MeV were taken into account.
The 71’s can either reach the detector themselves and contributing to
the spectrum or decay according to 7™ — u*v,, in which case the p*
could hit the detector. For considering these last processes, the detector
response to pions and muons remains still to be investigated.

e Multiple scattering processes, e.g. the double “Mgller-Mott” scattering,
have been already studied but could deserve a more systematic scrutiny.
According to the results of [32], the contributions expected from these
kind of processes should not be relevant.

e The last, minor aspect to be addressed concerns the radiative correc-
tions and the straggling effect in the inelastic scattering off the proton
and in the scattering off aluminium. Some calculations of the radiative
corrections to the electron-proton inelastic scattering have been already
performed, indicating that the effect to be expected from these correc-
tions is not very large.

!The response of the detector to photons with energies comparable with the electron
energies has not been treated in this work. Though, some simulations have been undertaken
and the detector response to the photons was found to be almost the same as the response
to electrons of the same energy. There is, therefore, no possibility to distinguish between
electrons and photons, like already stated in [17, 26].
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Appendix A

Kinematics

The most general kinematics of inclusive electron proton scattering is known
when the three four momenta k, k' and P are given. k and P are the four
momenta in the initial state of electron and proton respectively. &' is the four
momentum of the electron in the final state. The four momentum P’ of the
final hadronic state follows from the energy-momentum conservation law:

PP=P+k—-k=P+q, (A.1)
where the four momentum transfer ¢ has been defined as:
qgq=k—k". (A.2)

This is depicted schematically in Figure A.1. It shows the tree level Feynman
graph corresponding to the electron proton scattering amplitude in the one
photon exchange approximation, that is the four momentum transfer ¢ is car-
ried by a single virtual photon.

The components of the four momenta in the laboratory system be!:

k= (B k),
o= (E.K),
b= EMp,O)), (A.3)
¢ = (w,q),

where M), is the rest mass of the proton.
Considering the case of highly relativistic electrons both in the initial and
final state, i.e. k2 = k"2 = 0, and being 6 the angle between k and k’, one has:

k-k' = FEFE cosf . (A4)

Using (A.4) with (A.3), it is possible to express the positive squared momentum
transfer Q2 as a function of the kinematical variables in the laboratory frame?,

! The speed of light is supposed to be ¢=1.
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Figure A.1: One photon exchange Feynman diagram for the electron proton
scattering amplitude.

0
Q*=—¢* =2EFE'(1 — cosf) = 4EFE'sin 3 (A.5)

Furthermore it is useful to have an expression for the hadronic final state
invariant mass . This can be obtained by squaring (A.1) and applying the
definitions (A.3):

W?=P"? =M —Q*+2M,w . (A.6)

Elastic scattering. Figure A.1 shows the most general final state for the
electron proton scattering process. Considering a proton in the final state
instead of the general hadronic state X, one would have the elastic scattering
case. In such a case, the invariant mass W would be equal to the mass of the
proton M,. Substituting W=M,, in (A.6) and combining this with (A.5), one
obtains an expression for E’ in terms of §, which becomes the only independent
kinematical variable:

E
fo — (A7)
1 + MSin2§
p

Inelastic scattering. In case the final state X were not a proton, it could
include more than one particle, e.g. produced by the decay of an excited state.
Still, it is possible to know the invariant mass W of such a state, which is
the energy in the centre of mass system of initial proton and virtual photon
(Figure A.1). For instance, at the maximum of the A(1232) peak one has
W =1.232GeV. If W is considered as a new independent variable together

2The convention used for the Lorentz metric tensor g"” (u,v=0,1,2,3) is
g"’ = diag(1,-1,—-1,-1).
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with the scattering angle 6 of the electron, the combination of (A.6) with
(A.5) gives:

M? + 2M,E — W?
E = : (A.8)
2M, + 4Esian

Equation (A.8) allows calculating the final energy E’ of an electron scattered
with polar angle € in the laboratory system having excited one hadronic state
with invariant mass W. In other words, referring to Section 3.1.1, the ex-
pression says which part of the electron energy spectrum, at a given angle 6,
corresponds to a given invariant mass W.
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Appendix B

Geometry details

Table B.1: Position and orientation of crystals. See Figure B.1 - (a) for
definitions

| ring no. | a(°) | D; (mm) | Dy (mm) | R; (mm) | Ry (mm) | L (mm) |
1 39.22 737.8 854.0 602.1 697.0 952.3

2 37.69 779.5 902.2 602.1 697.0 984.9
3 36.20 822.6 952.1 602.1 697.0 1019.4
4 34.77 867.2 1003.8 602.1 697.0 1055.8
) 33.39 913.5 1057.4 602.1 697.0 1094.1
6 32.06 961.4 1112.9 602.1 697.0 1134.4
7 30.77 | 1011.2 1170.5 602.1 697.0 1176.9

Table B.2: Dimensions of crystals. See Figure B.1 - (b) for definitions

| ring no. | [ (mm) | X; (mm) [ X (mm) | Y} (mm) | ¥ (mm) | Vi, (mm) | Y, (mm) |

1 150.0 25.9 30.0 25.5 29.5 26.4 30.5
2 155.1 25.9 30.0 25.5 29.5 26.4 30.5
3 160.6 25.9 30.0 25.5 29.5 26.4 30.5
4 166.3 25.9 30.0 25.5 29.5 26.4 30.5
S 172.3 25.9 30.0 25.5 29.5 26.4 30.5
6 178.7 25.9 30.0 254 29.5 26.4 30.5
7 185.4 25.9 30.0 254 294 26.4 30.6
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crystal
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Figure B.1: (a) - Definition of the direction and position parameters of crys-
tals. (b) - Definition of the dimensions of crystals
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