Parity violating electron backscattering

David Balaguer Rios

A4 Collaboration Institut für Kern Physik, Mainz

February 9, 2009

David Balaguer Rios, February 9, 2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Experimental set up

Monte Carlo studies

Data analysis

Results

David Balaguer Rios, February 9, 2009

・ロト ・ 理 ト ・ ヨ ト ・

Outline

Introduction

David Balaguer Rios, February 9, 2009

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

The strange vector form factor

・ロト ・ 同ト ・ ヨト ・ ヨト

- Nucleon: constituent quarks u,d, gluons, sea quarks qq̄ (q = u,d,s)
- s in nucleon: pure sea quark effect
- Contribution of s to the electromagnetic vector form factors of the nucleon?
- Measurement of the strange vector electric and magnetic form factors: G^s_E and G^s_M

Form factors flavor decomposition

Flavor decomposition

$$G_{E,M}^{p} = \frac{2}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{s}$$
$$G_{E,M}^{n} = \frac{2}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{s}$$

Weak form factors to access the strange vector form factor

$$\tilde{G}_{E,M}^{p} = \left(\frac{1}{4} - \frac{2}{3}\sin\theta_{W}\right)G_{E,M}^{u} - \left(\frac{1}{4} - \frac{1}{3}\sin\theta_{W}\right)G_{E,M}^{d} - \left(\frac{1}{4} - \frac{1}{3}\sin\theta_{W}\right)G_{E,M}^{s}$$

David Balaguer Rios, February 9, 2009

э

イロト 不得 トイヨト イヨト

Parity violating elastic electron scattering

- Parity violation: interference between electromagnetic and weak amplitudes

• • • • • • • • • •

To measure: parity violating asymmetry in the cross section

$$A_{PV} = \frac{\sigma^{R} - \sigma^{L}}{\sigma^{R} + \sigma^{L}}$$

David Balaguer Rios, February 9, 2009

э

◆□ > ◆□ > ◆豆 > ◆豆 > -

To measure: parity violating asymmetry in the cross section

$$A_{PV} = \frac{\sigma^{R} - \sigma^{L}}{\sigma^{R} + \sigma^{L}}$$

David Balaguer Rios, February 9, 2009

э

・ロト ・得ト ・ヨト ・ヨト

To measure: parity violating asymmetry in the cross section

$$A_{PV} = \frac{\sigma^{R} - \sigma^{L}}{\sigma^{R} + \sigma^{L}}$$

David Balaguer Rios, February 9, 2009

э

◆□ > ◆□ > ◆豆 > ◆豆 > -

$$A_{PV} = A_0 + A_s$$

► A₀ calculated

► Input parameters: G_E^p , G_M^p , G_E^n , G_M^n , \tilde{G}_A^p , G_μ , α , Q^2 , θ

$$Q^2 = 0.23 \; (\text{GeV/c})^2, \;$$
 A4 backwards kinematics $A_0 = (-15.87 \pm 1.22) \cdot 10^{-6}$

David Balaguer Rios, February 9, 2009

$$A_{s} = -\frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \left\{ -\frac{\epsilon G_{E}^{p}G_{E}^{s} + \tau G_{M}^{p}G_{M}^{s}}{\epsilon(G_{E}^{p})^{2} + \tau(G_{M}^{p})^{2}} \right\}$$
$$\tau = \frac{Q^{2}}{4M^{2}}$$
$$\epsilon = \frac{1}{1 + 2(1 + \tau)\tan^{2}\frac{\theta}{2}}$$
$$A_{c} = A_{\mathrm{PV}} - A_{0}$$

Single measurement of A_s : linear combination of G_E^s and G_M^s .

• Two different measurements of A_s : separation of G_E^s and G_M^s .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Experimental set up

David Balaguer Rios, February 9, 2009

ヘロト 人間 とくほとくほとう

MAMI floor plan

Polarized electron beam source

Target, calorimeter and luminosity monitors

- Cooling system: avoid boiling and ρ_t fluctuations
- Calorimeter energy resolution $3.9\%/\sqrt{E}$
- Calorimeter and electronics: 20 ns dead time
- LuMos: measurement of luminosity fluctuations

Detector at forward angles

Rotated detector at backward angles

PbF₂ energy spectrum

Elastic peak clearly separated

• Background of $\pi^0 \rightarrow 2\gamma$ energetically separated.

Elastic peak not separated

 Background of γs and elastic peak: same energy range

イロン 不得 とくほ とくほとう

э

PbF₂ energy spectrum

- Elastic peak clearly separated
- Background of $\pi^0 \rightarrow 2\gamma$ energetically separated.

- Elastic peak not separated
- Background of γs and elastic peak: same energy range

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Plastic scintillators

 Plastic scintillators detect charged particles. Neutral particles not detected.

 72 plastic scintillators: two rings of 36 with overlap.

・ロト ・得ト ・ヨト ・ヨト

Plastic scintillators location

- Plastic scintillators located in front of calorimeter.
- One scintillator covers two frames: 14 modules.

・ロト ・ 同ト ・ ヨト ・ ヨト

Generated histograms

Pola-bit signal: two histograms: two polarization states

- Plastic scintillators add an Address-bit: two histograms: one of neutral particles and one of charged particles
- Every 5 min four histograms are generated

・ロト ・ 理 ト ・ ヨ ト ・

Neutral and charged particles spectra

- Separation of the elastic peak in the charged particles spectrum
- The scintillators do their job!
- Still some γ background mixed with elastic peak

David Balaguer Rios, February 9, 2009

- ∢ ⊒ →

Neutral and charged particles spectra

Separation of the elastic peak in the charged particles spectrum

The scintillators do their job!

Still some γ background mixed with elastic peak

David Balaguer Rios, February 9, 2009

イロト イポト イヨト イヨト

Neutral and charged particles spectra

- Separation of the elastic peak in the charged particles spectrum
- The scintillators do their job!
- Still some γ background mixed with elastic peak

・ロト ・ 同ト ・ ヨト ・ ヨト

Background in the charged particles spectrum

▶ $\pi^0 \rightarrow 2\gamma$ and $\gamma \rightarrow e^+ + e^-$ in materials before calorimeter

> γ background in the spectrum of charged particles

David Balaguer Rios, February 9, 2009

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Monte Carlo studies

David Balaguer Rios, February 9, 2009

・ロト ・聞と ・ヨト ・ヨトー

Understanding the energy spectrum

- Monte Carlo Geant4 simulation: e⁻ processes and γs
- Background from AI walls: measurement with empty target
- Agreement above 125 MeV

・ロト ・得ト ・ヨト ・ヨト

Background obtained from neutral spectrum

- γ background PVA?
- From experimental spectrum of neutral particles
- Model to obtain γ background
- Parameters
 - shift δ
 - scaling factor e

-

3.5

Background obtained from neutral spectrum

- Scaling shifting model agrees with simulated background:
- above 125 MeV
- energy range of our interest

Outline

Data analysis

David Balaguer Rios, February 9, 2009

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○

イロン 不得 とくほ とくほとう

イロト 不得 トイヨト イヨト

・ロン ・聞と ・ヨン ・ヨン

・ロン ・聞と ・ヨン ・ヨン

・ロト ・得ト ・ヨト ・ヨト

・ロト ・得ト ・ヨト ・ヨト

- Asymmetry is extracted for every module and every run.
- Statistical treatment of the complete set of asymmetries.
- Correction of systematics and evaluation of systematic errors.
- ► Normalization to the electron beam polarization $A_{phys} = \frac{A_{exp}}{P_e}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Statistical error

- 5 inner rings of the calorimeter: 730 crystals
- 1100 hours of data taking
- Altogether 3 · 10¹² elastic events

► Statistical error:
$$\sigma(A) = \frac{1}{P_e \sqrt{N_{el}}} \Rightarrow \sigma(A) = 0.82 \text{ ppm}$$

ヘロト 人間 とくほとく ほとう

Systematic errors

	Correction(ppm)	Error(ppm)
Polarization	-5.58	0.69
Helicity corr. beam diff.	0.14	0.39
Dilution of γ backgr.	-1.49	0.28
Al windows	0.29	0.04
Random coinc. events	-0.19	0.02
Sum syst. errors		0.89

• Effective $P_e = 68.3\%$, error $\Delta(P_e) = 4\%$

GVZ checking

- Half of measurement with GVZ in. The rest with GVZ out
- GVZ in: physics asymmetry should flip sign. Same magnitude.

イロト イポト イヨト イヨト

Outline

Results

David Balaguer Rios, February 9, 2009

≣ ৩৫.৫ 32/37

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Physics asymmetry

Physics asymmetry at Q² = 0.23 (GeV/c)² and A4 backwards kinematics

$$A_{PV} = (-17.23 \pm 0.82_{stat} \pm 0.89_{syst}) \cdot 10^{-6}$$

Expectation A₀

$$\mathsf{A}_0 = (-15.87 \pm 1.2) \cdot 10^{-6}$$

► Origin of ∆A₀

$$\begin{split} \tilde{G}_{A}^{p} &= -0.78 \pm 0.28 \\ G_{E}^{p} &= +0.5746 \pm 0.0095 \ (1.7\%) \qquad G_{M}^{p} = +1.621 \pm 0.030 \ (1.9\%) \\ G_{E}^{n} &= +0.0525 \pm 0.0057 \ (11\%) \qquad G_{M}^{n} = -1.092 \pm 0.024 \ (2.2\%) \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

David Balaguer Rios, February 9, 2009

34/37

э

< ≣⇒

э

<ロ> (日) (日) (日) (日) (日)

David Balaguer Rios, February 9, 2009

34/37

イロト イポト イヨト イヨト

э

イロト 不得 トイヨト イヨト

ъ

イロト 不得 トイヨト イヨト

Disentangling the linear combinations:

 $G_E^s = 0.050 \pm 0.038 \pm 0.019$

$$G_M^s = -0.14 \pm 0.11 \pm 0.11$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Summary

- ► The A4 experimental objective: measurement of G_E^s and G_M^s at $Q^2 = 0.23$ (GeV/c)² with different kinematics
- Demanding experimental set up to measure $A_{PV} \sim 10^{-5}$
- Rotation of calorimeter to measure at backwards angles
- Detector of plastic scintillators to separate neutral background
- Understading the energy spectrum and mixed γ background
- Successful extraction of PVA from single spectra
- ► Combination of whole data. Systematic errors. *P_e* correction.
- Separation of G_E^s and G_M^s from different measurements

Outlook

- A measurement of parity violating asymmetry with deuterium as target is done.
- Analysis in progress.
- This measurement allows the separation of the G_M^s and the \tilde{G}_A^p .

► Detector rotated back to forward angles to measure the parity violating asymmetry at 1.5 GeV, $Q^2 = 0.62$ (GeV/c)²

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●