Development of A4 Compton Polarimeter Chicane

Jeong Han Lee

A4 collaboration, Institut für Kernphysik Johannes Gutenberg-Universität Mainz

May 21, 2007

Development of, A4 Compton Polarimeter Chicane

Two main goals

- does not disturb the A4 main parity-violating experiment
- does handle the electron beam well to measure the electron polarization

Outline

- A4 experiment and Compton polarimeter
- chicane optimization with the simulations and wire scanners
- two Synchrotron radiation effects
- summary and outlook

A4 Parity-Violating Experiment

- the strangeness contribution to the proton ($F_{1,2}^s$ or $G_{E,M}^s$).
- the parity-violating asymmetry for elastic electron scattering off an unpolarized proton.

$$A_{\text{measured}} = rac{N^+ - N^-}{N^+ + N^-} = \mathbf{P} \cdot A_{\text{phys}}.$$

A4 Parity-Violating Experiment

- the strangeness contribution to the proton ($F_{1,2}^s$ or $G_{E,M}^s$).
- the parity-violating asymmetry for elastic electron scattering off an unpolarized proton.

$$A_{\text{measured}} = rac{N^+ - N^-}{N^+ + N^-} = \mathbf{P} \cdot A_{\text{phys}}.$$

Compton Polarimeter

Back

- to minimize the changing electron beam properties (size, angle, and dispersion)
- to make a good overlap between the electron beam and the laser

- to minimize the changing electron beam properties (size, angle, and dispersion)
 → TRANSPORT simulation
- to make a good overlap between the electron beam and the laser

- to minimize the changing electron beam properties (size, angle, and dispersion)
 → TRANSPORT simulation
- ► to make a good overlap between the electron beam and the laser → Wire scanner analysis

- to minimize the changing electron beam properties (size, angle, and dispersion)
 → TRANSPORT simulation
- ► to make a good overlap between the electron beam and the laser → Wire scanner analysis
- ► Wire scanner analysis ↔ TRANSPORT simulation

Simulation

- TRANSPORT is based on a matrix formalism in order to design a static-magnetic beam transport systems. its web directory is ftp://ftp.fnal.gov/pub/transport
- How close to the real chicane is the simulation chicane?

Simulation

- TRANSPORT is based on a matrix formalism in order to design a static-magnetic beam transport systems. its web directory is ftp://ftp.fnal.gov/pub/transport
- How close to the real chicane is the simulation chicane? → As possible as we can!

dipole magnet - input

- effective length $I_{\rm eff}$ is used from the MIT collaborator
- TRANSPORT can handle the fringing field
 - measure the pole gap g
 - measure the entrance and exit pole-face rotation angle
 - assume that the dipole to be a square-edged non-saturating magnet
- measure the magnetic field strengths as a function of the applied current

dipole magnet - input

- effective length $I_{\rm eff}$ is used from the MIT collaborator
- TRANSPORT can handle the fringing field
- measure the magnetic field strengths as a function of the applied current

Dipole 20 Field Measurement

dipole magnet - input

- effective length $I_{\rm eff}$ is used from the MIT collaborator
- TRANSPORT can handle the fringing field
 - measure the pole gap g
 - measure the entrance and exit pole-face rotation angle
 - assume that the dipole to be a square-edged non-saturating magnet
- measure the magnetic field strengths as a function of the applied current
- consider the current instabilities (below 3ppm)
 → magnetic field uncertainty per each dipole magnet
- shunt per each dipole is used to change magnetic field slightly

quadrupole magnet - input

 measure the magnetic field strengths as a function of the applied current (by J.Müller)

quadrupole magnet - input

 measure the magnetic field strengths as a function of the applied current (by J.Müller)

Quadrupole 21 Field Measurement

quadrupole magnet - input

- measure the magnetic field strengths as a function of the applied current (by J.Müller)
- measure the aperture radius a
- measure the mechanical length I_m
- effective length l_{eff}

$$I_{\rm eff} = I_m + c \cdot a$$

, where c is a constant varying between 0.8 and 1.1. we use the average value 0.95.

initial beam properties(difficulties) - input

- no device to measure the beam position, direction, and size at the beginning of the chicane.
- one solution about the initial beam position and direction
- one assumption about beam size

initial beam properties(difficulties) - input

- no device to measure the beam position, direction, and size at the beginning of the chicane.
- ► one solution about the initial beam position and direction → with wire scanner measurement and simulation
- one assumption about beam size

initial beam properties(difficulties) - input

- no device to measure the beam position, direction, and size at the beginning of the chicane.
- ► one solution about the initial beam position and direction → after wire scanner analysis
- one assumption about beam size
 → the chicane has a periodic structure (best condition)

periodic structure

- a region in phase space from the beginning to the end of the chicane with no first-order change in properties
- the same initial and final Twiss parameters (β, α)
- a waist condition in the middle of the chicane

periodic structure

- a region in phase space from the beginning to the end of the chicane with no first-order change in properties
- the same initial and final Twiss parameters (β, α)
 → the initial Twiss parameters
- a waist condition in the middle of the chicane

periodic structure

- a region in phase space from the beginning to the end of the chicane with no first-order change in properties
- the same initial and final Twiss parameters (β, α)
 → the initial Twiss parameters
- ► a waist condition in the middle of the chicane → Rayleigh length of the electron beam

initial Twiss parameters - periodic structure The transfer matrix of the chicane by

$$\begin{split} M_{\text{chicane}} &= M_{\text{dipole}_{23}} \cdot M_{d_4} \cdot M_{\text{dipole}_{22}} \cdot M_{d_3} \cdot M_{\text{quad}_{22}} \\ & \cdot M_{d_2} \cdot M_{\text{quad}_{21}} \cdot M_{d_1} \cdot M_{\text{dipole}_{21}} \cdot M_{d_0} \cdot M_{\text{dipole}_{20}} \end{split}$$

initial Twiss parameters - periodic structure The transfer matrix of the chicane by

$$M_{\rm chicane} = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}_{\rm components}$$

initial Twiss parameters - periodic structure

The transfer matrix of the chicane by

$$M_{\text{chicane}} = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}_{\text{components}}$$
$$\equiv \begin{pmatrix} \cos \mu + \alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu - \alpha \sin \mu \end{pmatrix}_{\text{periodic}}$$

initial Twiss parameters - periodic structure

The transfer matrix of the chicane by

$$M_{\text{chicane}} = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}_{\text{components}}$$
$$\equiv \begin{pmatrix} \cos \mu + \alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu - \alpha \sin \mu \end{pmatrix}_{\text{periodic}}$$

Thus

$$\mu = \cos^{-1}\left(\frac{R_{11} + R_{22}}{2}\right), \quad \alpha = \frac{R_{11} - R_{22}}{2\sin\mu}, \quad \beta = \frac{R_{12}}{\sin\mu}, \quad \text{and} \quad \gamma = -\frac{R_{21}}{\sin\mu}$$

With α and β , TRANSPORT calculates the beam size and the divergence along the chicane.

Rayleigh length - periodic structure

$$\begin{split} x(s_R) &= \sqrt{2}x_w, \text{ where } x = \sqrt{\epsilon\beta} \qquad \beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2 \\ \beta_R &= 2\beta_w \qquad \qquad \beta_R = \beta_w + \frac{s_R^2}{\beta_w} \end{split}$$

$$S_R = \pm \beta_w$$

•

One result at 854.3 MeV

Ideal reference trajectory on the horizontal plane 💷

Simulation with TRANSPORT

Twiss parameters - periodic structure

dispersion D and D'

Since the chicane has four dipole magnets, the position dispersion and the angular dispersion will be introduced.

$$\begin{pmatrix} x_f \\ x'_f \\ \delta \end{pmatrix}_{\text{end}} = \begin{pmatrix} R_{11} & R_{12} & \mathbf{D} \\ R_{21} & R_{22} & \mathbf{D}' \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \\ \delta \end{pmatrix}_{\text{begin}}$$

 $x_f = R_{11}x_0 + R_{12}x'_0 + \mathbf{D}\delta, \qquad x'_f = R_{21}x_0 + R_{22}x'_0 + \mathbf{D}'\delta$

- We should minimize D and D' by two quadrupoles
- Quadrupole field strengths are one of simulation results

position and angular dispersion without quadrupoles

Wire Scanner Analysis

- to make good overlap
- electron and laser position measurement at the same time

MAMI wire scanner

- Made in Germany by MAMI
- old analysis based on the geometry

loop equation

From $\vec{r}_2 + \vec{r}_3 = \vec{r}_1 + \vec{r}_4$, we found $\theta_2(\theta_4)$ function Back

$$x = R \cos \alpha$$
$$y = R \sin \alpha$$
$$R = \frac{r_5(r_6) \sin \delta}{\sin(\delta - \beta)}$$
$$\alpha = \frac{\theta_5^r + \theta_5^b}{2}$$
$$\beta = \frac{|\theta_5^r - \theta_5^b|}{2}$$
$$\theta_5 = \theta_2 + \pi$$

Beam Position

$$x = -R\cos\gamma \qquad y = -R\sin\gamma$$
$$\gamma = (\theta_2^r + \theta_2^b)/2 \qquad \beta = \left|\theta_2^r - \theta_2^b\right|/2$$

Measured spectrum

How to know the θ_4

wire	1	2	3	4
ta	t ₁	t ₂	t ₃	t4
t _b	t ₈	t7	t ₆	t ₅

A wire goes into the beam twice with the same θ_2 and the different θ_4

$$\begin{aligned} \theta_4^{\text{raw}}[t_i] &= \theta_4[t_i] + \theta_{\text{offset}} \\ \theta_4[t_b] &= \theta_4[t_a] + \theta_4^{\text{raw}}[t_b] - \theta_4^{\text{raw}}[t_a] \\ \theta_2\left(\theta_4[t_a]\right) &= \theta_2\left(\theta_4[t_a] + \theta_4^{\text{raw}}[t_b] - \theta_4^{\text{raw}}[t_a]\right) \end{aligned}$$

Measured spectrum

How to know the θ_4

wire	1	2	3	4
ta	t ₁	t ₂	t ₃	t4
t _b	t ₈	t7	t ₆	t ₅

A wire goes into the beam twice with the same θ_2 and the different θ_4

$$\begin{aligned} \theta_4^{\text{raw}}[t_i] &= \theta_4[t_i] + \theta_{\text{offset}} \\ \theta_4[t_b] &= \theta_4[t_a] + \theta_4^{\text{raw}}[t_b] - \theta_4^{\text{raw}}[t_a] \\ \theta_2\left(\theta_4[t_a]\right) &= \theta_2\left(\theta_4[t_a] + \theta_4^{\text{raw}}[t_b] - \theta_4^{\text{raw}}[t_a]\right) \end{aligned}$$

full motion of the wire scanner

initial position and angle

 $x_0, x'_0, y_0, \text{ and } y'_0 = ?$

Using matrix formalism with wire scanner measurement,

$$\begin{pmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{B}' \end{pmatrix} = M_{\mathrm{BA}} \cdot \begin{pmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{A}' \end{pmatrix} \\ \begin{pmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{A}' \end{pmatrix} = M_{\mathrm{A0}} \cdot \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{x}_{0}' \end{pmatrix}$$

initial position and angle

 $x_0, x'_0, y_0, \text{ and } y'_0 = ?$

Using matrix formalism with wire scanner measurement,

$$\begin{pmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{B}' \end{pmatrix} = M_{\mathrm{BA}} \cdot \begin{pmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{A}' \end{pmatrix}$$
$$\begin{pmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{A}' \end{pmatrix} = M_{\mathrm{A0}} \cdot \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{x}_{0}' \end{pmatrix}$$

 $x_0, x'_0, y_0, and y'_0$ are the input parameters in the simulation

shunt	20	21	22	23
percent	50	50	50	50

shunt	20	21	22	23
percent	60	70	30	40
\heartsuit	$+\alpha$	$+2\alpha$	-2α	-α

shunt	20	21	22	23
percent	50	50	50	50
U	$-\alpha$	-2α	$+2\alpha$	$+\alpha$

shunt	20	21	22	23
percent	40	30	70	60
U	$-\alpha$	-2α	$+2\alpha$	$+\alpha$

shunt	20	21	22	23
percent	50	50	50	50
\mathcal{O}	$+\alpha$	$+2\alpha$	-2 α	$-\alpha$

shunt	20	21	22	23
percent	50	50	50	50

shunt	20	21	22	23
percent	60	60	60	60
↑	$+\alpha$	$+\alpha$	$+\alpha$	$+\alpha$

shunt	20	21	22	23
percent	50	50	50	50
\downarrow	$-\alpha$	$-\alpha$	$-\alpha$	$-\alpha$

shunt	20	21	22	23
percent	40	40	40	40
\downarrow	$-\alpha$	$-\alpha$	$-\alpha$	$-\alpha$

shunt	20	21	22	23
percent	50	50	50	50
↑	$+\alpha$	$+\alpha$	$+\alpha$	$+\alpha$

- decide the good overlap or not
- TRANSPORT simulation (input: Imain, Ishunt, scA, scB)
- shunt and current optimization → ask MAMI operator

- decide the good overlap or not
- TRANSPORT simulation (input: I_{main}, I_{shunt}, scA, scB)
- shunt and current optimization → ask MAMI operator

- decide the good overlap or not
- TRANSPORT simulation (input: I_{main}, I_{shunt}, scA, scB)
- shunt and current optimization → ask MAMI operator

- the good overlap
- TRANSPORT simulation (input: I^{opt}_{main}, I^{opt}_{shunt}, scA, scB)
- ► two quadrupole field strengths → ask MAMI operator

- motivation, aim, and assumptions
- overview of SR
- energy loss inside the chicane
- SR on the photon detector

Motivation

- One bending magnet is the most simply radiation source. And four bending magnets define the geometry of the electron chicane.
- A viewpoint of electron: How much will electron energy loss be inside the chicane? Is there some effect of the energy loss on PV experiment?
- A viewpoint of radiation: We estimated Synchrotron Radiation(SR) effect could be ignored or be too small. It would be better to know SR effect on the photon detector exactly.

Aim and Assumption

- To calculate the electron energy loss inside the Compton polarimeter chicane
- To determine that the effect on the photon detector will be crucial or not.
- no quadrupole effect, perfect vacuum condition, and midplane symmetry inside four dipole magnets.

Overview of SR

Power radiated of an electron P_0

$$P_0 = \frac{2}{3} r_e mc^3 \frac{\gamma^4 \beta^4}{\rho^2}$$

Spatial Distribution $\frac{dP}{d\Omega}$

$$\mathbf{x} = \gamma \sin heta_{\gamma} \cos \phi$$

$$y = \gamma \sin \theta_{\gamma} \sin \phi$$

Critical Photon Energy ε_c

•
$$\varepsilon_c = \hbar \omega_c = \hbar \frac{3c\gamma^3}{2\rho}$$

the upper bound for the synchrotron radiation spectrum

Photon or Quantum Distribution Function $\dot{n}(\varepsilon)$

Number of quanta emitted per unit time at energy ε.

•
$$\dot{n}(\varepsilon) = \frac{P_0}{\varepsilon_c^2} F(\varepsilon/\varepsilon_c) = \frac{P_0}{\varepsilon\varepsilon_c} S(\varepsilon/\varepsilon_c).$$

• $S(\xi) = \frac{9\sqrt{3}}{8\pi} \xi \int_{\xi}^{\infty} K_{5/3}(s) ds$, where $K_{5/3}(s)$ is a modified Bessel function of the second kind.

energy loss of an electron per a magnet

$$U_0 = \int P_0 \mathrm{d}t pprox rac{C_0 E^4}{2 \pi
ho^2} L_{\mathrm{eff}}$$

,where $L_{\rm eff}$ is the effective length of the dipole magnet and C_0 Sand's radiation constant.

energy loss of a chicane

energy lose due to SR is below 2 keV

Electron	Energy loss of a	Energy loss of four	After chicane
energy (MeV)	dipole magnet (keV)	dipole magnets (keV)	electron energy (MeV)
854.30(16)	0.42129(39)	1.6852(13)	854.29958(16000)
570.30(16)	0.083667(94)	0.33467(38)	570.29992(16000)
315.13(16)	0.007800(16)	0.0312000(63)	315.12999(16000)

energy loss of an electron per a magnet

$$U_0 = \int P_0 \mathrm{d}t pprox rac{C_0 E^4}{2 \pi
ho^2} L_{\mathrm{eff}}$$

,where $L_{\rm eff}$ is the effective length of the dipole magnet and C_0 Sand's radiation constant.

energy loss of a chicane

energy lose due to SR is below 2 keV

Electron	Energy loss of a	Energy loss of four	After chicane
energy (MeV)	dipole magnet (keV)	dipole magnets (keV)	electron energy (MeV)
854.30(16)	0.42129(39)	1.6852(13)	854.30(16)
570.30(16)	0.083667(94)	0.33467(38)	570.30(16)
315.13(16)	0.007800(16)	0.0312000(63)	315.13(16)

four-momentum transfer Q^2

$$Q^2 = 4EE'\sin^2\frac{\theta}{2}, \quad \delta Q^2 = Q^2\sqrt{\left(\frac{\delta E}{E}\right)^2 + \left(\frac{\delta E'}{E'}\right)^2}, \quad \text{and} \quad \delta E' = \frac{E'^2}{E^2}\delta E$$

four-momentum transfer Q^2

$$Q^2 = 4EE'\sin^2\frac{\theta}{2}, \quad \delta Q^2 = Q^2\sqrt{\left(\frac{\delta E}{E}\right)^2 + \left(\frac{\delta E'}{E'}\right)^2}, \quad \text{and} \quad \delta E' = \frac{E'^2}{E^2}\delta E$$

► However, after averaging Q^2 with two significant figures → the same Q^2 and the same δQ^2

four-momentum transfer Q^2

$$Q^2 = 4EE'\sin^2\frac{\theta}{2}, \quad \delta Q^2 = Q^2\sqrt{\left(\frac{\delta E}{E}\right)^2 + \left(\frac{\delta E'}{E'}\right)^2}, \quad \text{and} \quad \delta E' = \frac{E'^2}{E^2}\delta E$$

- ► However, after averaging Q^2 with two significant figures → the same Q^2 and the same δQ^2
- We can ignore the SR effect from the viewpoint of PV experiment.

SR on the photon detector

angle coverage $\Delta \varphi$

SR on the photon detector

angle coverage $\Delta \varphi$

SR on the photon detector

angle coverage $\Delta \varphi$

SR on the photon detector

$$\mathsf{R} = \frac{\mathcal{A}}{|x_+ - x_-|}$$

,where

$$\mathcal{A} = \begin{cases} |x_{+} - x_{-}| & 0 \leq \Delta \varphi < \Delta \varphi_{+}^{max} \\ |x_{0} - x_{-}| & \Delta \varphi_{+}^{max} \leq \Delta \varphi < \Delta \varphi_{-}^{max} \\ 0 & \Delta \varphi_{-}^{max} \leq \Delta \varphi \end{cases}$$

SR on the photon detector

$$\mathsf{R} = \frac{\mathcal{A}}{|x_+ - x_-|}$$

,where

$$\mathcal{A} = \begin{cases} |x_{+} - x_{-}| & 0 \leq \Delta \varphi < \Delta \varphi_{+}^{max} \\ |x_{0} - x_{-}| & \Delta \varphi_{+}^{max} \leq \Delta \varphi < \Delta \varphi_{-}^{max} \\ 0 & \Delta \varphi_{-}^{max} \leq \Delta \varphi \end{cases}$$

SR on the photon detector

$$\mathsf{R} = \frac{\mathcal{A}}{|x_+ - x_-|}$$

,where

$$\mathcal{A} = \begin{cases} |x_{+} - x_{-}| & 0 \leq \Delta \varphi < \Delta \varphi_{+}^{max} \\ |x_{0} - x_{-}| & \Delta \varphi_{+}^{max} \leq \Delta \varphi < \Delta \varphi_{-}^{max} \\ 0 & \Delta \varphi_{-}^{max} \leq \Delta \varphi \end{cases}$$

total emitted photon number

After integration over all SR photon energy,

$$\dot{N}_{\varphi}^{e} = \int_{0}^{\infty} \dot{n}_{\varphi}^{e}(\varepsilon) \mathrm{d}\varepsilon = \frac{15\sqrt{3}}{16\pi} \frac{P_{0}}{\varepsilon_{c}} \frac{I}{e} \Delta \varphi^{max}$$

Beam [MeV]	$\varepsilon_{c} (eV)$	N_{φ}^{e} (rad/s)
854.30	382.74763	2.84211×10 ²⁰
570.30	113.86530	1.89729×10 ²⁰
315.13	19.21102	1.04838×10 ²⁰

SR on the photon detector

transmitted photon number with a certain energy ϵ

Development of, A4 Compton Polarimeter Chicane

SR on the photon detector

transmitted photon number with a certain energy ϵ

Development of, A4 Compton Polarimeter Chicane

SR on the photon detector

transmitted photon number with a certain energy ϵ

Development of, A4 Compton Polarimeter Chicane

SR on the photon detector

Al Thickness (mm)	0	1	2	3	4	10
n_{φ}^{e} (maximum)	~ 10°	$\sim 10^{\circ}$	~ 10 ⁻²	~ 10 ⁻⁴	~ 10 ⁻⁵	$\sim 10^{-10}$
Pb Thickness (mm)	0.5	1	1.5	2	2.5	10
\dot{n}_{φ}^{e} (maximum)	~ 10 ⁻¹⁵	~ 10 ⁻³¹	$\sim 10^{-39}$	$\sim 10^{-43}$	$\sim 10^{-47}$	$\sim 10^{-76}$

SR on the photon detector

Al Thickness (mm)	0	1	2	3	4	10
n_{φ}^{e} (maximum)	$\sim 10^3$	$\sim 10^{0}$	~ 10 ⁻²	$\sim 10^{-4}$	$\sim 10^{-5}$	$\sim 10^{-10}$
Pb Thickness (mm)	0.5	1	1.5	2	2.5	10
\dot{n}_{arphi}^{e} (maximum)	~ 10 ⁻¹⁵	~ 10 ⁻³¹	$\sim 10^{-39}$	$\sim 10^{-43}$	$\sim 10^{-47}$	$\sim 10^{-76}$

We can ignore the SR effect on the photon detector.

KPH Mainz

Summary

- more physically realistic beam line simulation
- wire scanner analysis to overlap two beams
- synchrotron radiation effects on the beam line and the detector

Outlook

- ► improvement realistic beam line simulation with TRANSPORT → more fancy way to tilt and shift the electron beam
- Using the results of TRANSPORT
 - \rightarrow beam line and detector simulation with GEANT4

Outlook

- ► improvement realistic beam line simulation with TRANSPORT → more fancy way to tilt and shift the electron beam
- Using the results of TRANSPORT
 - \rightarrow beam line and detector simulation with Geant4

Additional Slides Energy loss

Electron	Energy loss of a	Energy loss of four	After chicane
energy (MeV)	dipole magnet (keV)	dipole magnets (keV)	electron energy (MeV)
1500.00(16)	4.0041(17)	16.0165(68)	1499.99600(16000)
854.30(16)	0.42129(39)	1.6852(13)	854.29958(16000)
570.30(16)	0.083667(94)	0.33467(38)	570.29992(16000)
315.13(16)	0.007800(16)	0.0312000(63)	315.12999(16000)

E (GeV)	0.85430(16)	0.85430(16)	0.57030(16)	0.57030(16)	0.31313(16)	0.31513(16)	
Energy Loss	NO	YES	NO	YES	NO	YES	
θ _M (Ring 1)	39.22°		39.	22°	140.78°		
E' (GeV)	0.70890(11)	0.70889(11)	0.50162(12)	0.50162(12)	0.197442(63)	0.197442(63)	
$Q^2 (GeV/c)^2$	0.272859(66)	0.272858(66)	0.128890(48)	0.128890(48)	0.22085(13)	0.22085(13)	
θ _M (Ring 2)	37.	69°	37.69°		142.31°		
E ^V (GeV)	0.71790(11)	0.71790(11)	0.50611(12)	0.50611(12)	0.196755(62)	0.196755(62)	
$Q^2 (GeV/c)^2$	0.255956(62)	0.255956(62)	0.120458(45)	0.120458(45)	0.22214(13)	0.22214(13)	
θ _M (Ring 3)	36.	20°	36.	20°	143	.80°	
E ^V (GeV)	0.72659(12)	0.72659(12)	0.51041(13)	0.51041(13)	0.196111(62)	0.196111(62)	
Q ² (GeV/c) ²	0.239650(59)	0.239650(59)	0.112383(42)	0.112383(42)	0.22334(13)	0.22334(13)	
θ _M (Ring 4)	34.77°		34.77°		145.23°		
E ^V (GeV)	0.73483(12)	0.73483(12)	0.51446(13)	0.51446(13)	0.195520(62)	0.195520(62)	
Q ² (GeV/c) ²	0.224179(55)	0.224176(55)	0.104774(40)	0.104774(40)	0.22445(13)	0.22445(13)	
θ _M (Ring 5)	33.	39°	33.39°		146	146.61°	
E ^V (GeV)	0.74269(12)	0.74269(12)	0.51830(13)	0.51830(13)	0.194971(61)	0.194971(61)	
Q ² (GeV/c) ²	0.209448(52)	0.209448(52)	0.097577(37)	0.097577(37)	0.22548(13)	0.22548(13)	
θ _M (Ring 6)	θ _M (Ring 6) 32.06°		32.	06° 147.94°		.94°	
E ^V (GeV)	0.75014(12)	0.75014(12)	0.52192(13)	0.52192(13)	0.194464(61)	0.194464(61)	
$Q^2 (GeV/c)^2$	0.195466(49)	0.195466(49)	0.090788(35)	0.090788(35)	0.22643(14)	0.22643(14)	
θ _M (Ring 7)	30.	77°	30.77°		149.23°		
E' (GeV)	0.75724(13)	0.75724(13)	0.52535(14)	0.52535(14)	0.193993(61)	0.193993(61)	
Q ² (GeV/c) ²	0.182134(46)	0.182134(46)	0.084352(32)	0.084352(32)	0.22732(14)	0.22732(14)	

Additional Slides 854.3 MeV

1.5 GeV

Development of, A4 Compton Polarimeter Chicane

KPH Mainz

Current Stability Test from the manufacturer

$$I_{\rm dipole} = I_0 \pm \frac{I_0 \delta I_{\rm FWHM}}{2 \sqrt{2 \ln 2}} = I_0 \pm \delta I_0.$$

	design value	3 mins	30 mins	8 hours
$\delta I_{ m FWHM}$ (ppm)	3	0.5	1	2

Beam ditribution and phase space with GEANT4

