Status report on parity violation in the $\Delta(1232)$ resonance

Luigi Capozza

A4 Collaboration Institut für Kernphysik Johannes Gutenberg Universität Mainz

Institutsseminar - 6.2.2006

Luigi Capozza, Institutsseminar - 6.2.2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Outline

Theory

Measurement principle

Physical processes

Detector response

Some results

Luigi Capozza, Institutsseminar - 6.2.2006

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Outline

Theory

Measurement principle

Physical processes

Detector response

Some results

Luigi Capozza, Institutsseminar - 6.2.2006

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Parity violation asymmetry in $ep \rightarrow eN\pi$:

$$A_{RL} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \frac{W^{PV}}{W^{EM}}$$

At Tree level:

- ► W^{EM}: unpolarised electromagnetic
- W^{PV}: helicity dependent interference of EM and NC transition amplitudes

Flavor-SU(3) and isospin:

$$\begin{split} J^{EM}_{\mu} &= J^{EM}_{\mu}(T=1) + J^{EM}_{\mu}(T=0) \\ J^{NC}_{\mu} &= \xi^{T=1}_V J^{EM}_{\mu}(T=1) + \xi^{T=0}_V J^{EM}_{\mu}(T=0) + \xi^{(0)}_V V^{(s)}_{\mu} \\ J^{NC}_{5\mu} &= \xi^{T=1}_A A^{(3)}_{\mu} + \xi^{T=0}_A A^{(8)}_{\mu} + \xi^{(0)}_A A^{(s)}_{\mu} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

 $N \rightarrow \Delta$ transition: only isovector

$$A_{RL} = A_{RL}^{\text{res}} + A_{RL}^{\text{non-res}}$$

Non resonant asymmetry $A_{RL}^{\text{non-res}}$: model dependent

phenomenological effective interaction lagrangians:

イロト 不得 とくほ とくほ とうほ

$$J_{\mu}^{EM} = J_{\mu}^{EM}(T=1) + J_{\mu}^{EM}(T=0)$$

$$J_{\mu}^{NC} = \xi_{V}^{T=1}J_{\mu}^{EM}(T=1) + \xi_{V}^{T=0}J_{\mu}^{EM}(T=0) + \xi_{V}^{(0)}V_{\mu}^{(s)}$$

$$J_{5\mu}^{NC} = \xi_{A}^{T=1}A_{\mu}^{(3)} + \xi_{A}^{T=0}A_{\mu}^{(8)} + \xi_{A}^{(0)}A_{\mu}^{(s)}$$

Resonant asymmetry:

$$A_{RL}^{
m res} = -rac{G_F \, Q^2}{4\sqrt{2}\pilpha} \left[g_A^e \xi_V^{T=1} + g_V^e \xi_A^{T=1} F(Q^2,s)
ight]$$

Luigi Capozza, Institutsseminar - 6.2.2006

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ · の < ⊙

Resonant amplitudes:

$$\begin{split} \left\langle \Delta(p') \left| J_{\mu}^{EM} \right| N(p) \right\rangle &= \bar{u}^{\lambda}(p') \left[\left(\frac{C_{3}^{\gamma}}{M} \gamma^{\nu} + \frac{C_{4}^{\gamma}}{M^{2}} p'^{\nu} + \frac{C_{5}^{\gamma}}{M^{2}} p^{\nu} \right) (g_{\lambda\mu}g_{\rho\nu} - g_{\lambda\rho}g_{\mu\nu}) q^{\rho} \gamma_{5} \right] u(p) \\ \left\langle \Delta(p') \left| J_{\mu}^{NC} + J_{5\mu}^{NC} \right| N(p) \right\rangle &= \\ \bar{u}^{\lambda}(p') \left[\left(\frac{C_{3V}^{Z}}{M} \gamma^{\nu} + \frac{C_{4V}^{Z}}{M^{2}} p'^{\nu} + \frac{C_{5V}^{Z}}{M^{2}} p^{\nu} \right) (g_{\lambda\mu}g_{\rho\nu} - g_{\lambda\rho}g_{\mu\nu}) q^{\rho} \gamma_{5} + C_{6V}^{Z}g_{\lambda\mu} \gamma_{5} \\ \left(\frac{C_{3A}^{Z}}{M} \gamma^{\nu} + \frac{C_{4A}^{Z}}{M^{2}} p'^{\nu} \right) (g_{\lambda\mu}g_{\rho\nu} - g_{\lambda\rho}g_{\mu\nu}) q^{\rho} + C_{5A}^{Z}g_{\lambda\mu} + C_{6A}^{Z}p_{\lambda}q_{\mu} \right] u(p) \end{split}$$

Considering:

- isospin symmetry
- conservation of vector current
- spin and parity of the $\Delta(1232)$ ($J^{\pi} = 3/2^+$)
- dominance of magnetic dipole amplitude

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Resonant asymmetry:

$$A_{RL}^{
m res} = -rac{G_F \, Q^2}{4\sqrt{2}\pilpha} \left[g_A^e \xi_V^{T=1} + g_V^e \xi_A^{T=1} F(Q^2,s)
ight]$$

Axial response function of $p \rightarrow \Delta$ transition:

$$F(Q^{2},s) = \mathcal{P}\frac{C_{5}^{A}}{C_{3}^{V}} \left[1 + \frac{W^{2} - Q^{2} - M^{2}}{2M^{2}} \frac{C_{4}^{A}}{C_{5}^{A}}\right]$$

Luigi Capozza, Institutsseminar - 6.2.2006

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Outline

Theory

Measurement principle

The A4 experiment Energy spectrum Problem: Handling the background

Physical processes

Detector response

Some results

<ロ> (四) (四) (三) (三) (三)

The A4 experiment

- longitudinally polarised electron beam
- unpolarised *l*-H₂ target
- counting of scattered particles
- measurement of scattered particle energy

・ロト ・ 理 ト ・ ヨ ト ・

A4 experimental setup

A4 experimental setup

Lead fluoride Cherenkov calorimeter:

- 1022 crystals
- 7 rings
- 146 frames
- ▶ $\theta \in (30^\circ, 40^\circ)$, $\varphi \in (0, 2\pi)$

Readout electronics:

 sum of 9 neighbouring crystals

イロト 不得 トイヨト イヨト

-

Energy spectrum

3

イロン イロン イヨン イヨン

Extraction of the physical asymmetry

$$A_{exp} = \frac{\frac{N^{+}}{\rho^{+}} - \frac{N^{-}}{\rho^{-}}}{\frac{N^{+}}{\rho^{+}} + \frac{N^{-}}{\rho^{-}}} = P \cdot A_{phys} + A_{inst}$$

- normalisation on target density
- correction of helicity correlated instrumental effects

・ロ と く 厚 と く ヨ と く ヨ と

Problem: Handling the background

First step:

- Identification of the contributing physical processes
- Estimation of their contribution to the spectrum

Second step:

- Estimation of their asymmetry
- Calculation of a dilution factor

-

・ロト ・ 理 ト ・ ヨ ト ・

Knowledge of the background

Monte Carlo simulations

Luigi Capozza, Institutsseminar - 6.2.2006

3

<ロト < 回 > < 回 > < 回 > 、

Knowledge of the background

Luigi Capozza, Institutsseminar - 6.2.2006

3

イロト イポト イヨト

Outline

Theory

Measurement principle

Physical processes Elastic e-p scattering Energy straggling in the target Inelastic e-p scattering

Detector response

Some results

・ロン ・ 四 と ・ ヨ と ・ ヨ と …

Event generator

Variables to be generated:

- x: position of the scattering
- θ : polar scattering angle
- E': final electron energy

Needed:

- ranges: $(x_{min}, x_{max}), \Delta\Omega, (E'_{min}, E'_{max})$
- differential cross sections: $d\sigma(x, \theta, E')$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Elastic e-p scattering

Rosenbluth cross section:

$$\frac{d^2\sigma}{d\Omega}\Big|_{Ros}(E,\theta) \qquad \text{(dipole fit for } G_E \text{ and } G_M \text{)}$$

Radiative corrections to the elastic scattering:

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Two kinematical regions:

• radiative tail from the elastic peak ($E' < E'_{el} - \Delta E_r$)

$$\frac{d^3\sigma}{d\Omega dE'} \bigg|_{tail} (E, E', \theta)$$

• elastic peak (
$$E' > E'_{el} - \Delta E_r$$
)

$$\frac{d^2\sigma}{d\Omega}\Big|_{peak}(E,\theta) = (1 + \delta(\Delta E_r, E, \theta)) \frac{d^2\sigma}{d\Omega}\Big|_{Ros}(E,\theta)$$

► Peaking approximation \Rightarrow Mo and Tsai's formulae for δ and $\frac{d^3\sigma}{d\Omega dE'}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Energy straggling in the target

Energy losses given by:

- Radiation
- Collisions

Large energy losses mainly due to Bremsstrahlung

Straggling function

Formula of Mo and Tsai:

$$I_e(E_0, E, t) = \frac{bt}{E_0 - E} \left[\frac{E}{E_0} + \frac{3}{4} \left(\frac{E_0 - E}{E_0} \right)^2 \right] \left(\ln \frac{E_0}{E} \right)^{bt}$$

- for Bremsstrahlung
- using peaking approximation
- valid up to a cut $E < E_0 \Delta E_s$
- for $E > E_0 \Delta E_s$

$$J_{e}^{\Delta E_{s}}(E_{0},t) = 1 - \int_{0}^{E_{0}-\Delta E_{s}} dE \cdot I_{e}(E_{0},E,t)$$

Luigi Capozza, Institutsseminar - 6.2.2006

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Generation of $ep \rightarrow ep(\gamma)$ events

Generation of $ep \rightarrow ep(\gamma)$ events

Inelastic e-p scattering

Outline

Theory

Measurement principle

Physical processes

Detector response

Simulation of the A4 detector Particle tracking with GEANT4 Production and detection of Cherenkov light Parameterisation of the photoelectron emission

Some results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The A4 detector

PbF₂ Cherenkov calorimeter

 ℓ -H₂ target

1022 crystals ordered in 7 rings

The response of the A4 detector

What happens between scattering and the energy spectrum?

- Passage through material layers
- Physics of the detector

{ Electromagnetic shower Cherenkov effect

Luigi Capozza, Institutsseminar - 6.2.2006

Simulation of the A4 detector

Definition of the detector geometry:

- Volumes (shape, dimentions, position)
- Materials (composition, ρ, Z, A)

Simulation of the A4 detector

Definition of particles and processes

- ► *γ*:
 - Compton scattering
 - pair production
 - photoelectric effect
- ▶ e^- and e^+ :
 - ionisation
 - Bremsstrahlung
 - multiple scattering
- only for e^+ :
 - annihilation

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 三 - のへの

Particle tracking with GEANT4

Production and detection of Cherenkov light

- More geometry and material properties:
 - refractive indexes
 - absorption lengths
 - optical surfaces
- More particles and processes:
 - optical photons
 - Cherenkov effect
 - absorption
 - boundary process

 \Rightarrow tracking of optical photons

Luigi Capozza, Institutsseminar - 6.2.2006

Production and detection of Cherenkov light

Spectral sensitivity characteristic:

- input window
- photocathode sensitivity

・ロト ・ 同ト ・ ヨト ・ ヨト

Quantum efficiency:

$$QE(\lambda) \simeq \left(\frac{124 \text{ nm}}{\lambda} \cdot sk_e(\lambda) \frac{W}{\text{mA}}\right) \%$$

Luigi Capozza, Institutsseminar - 6.2.2006

Parameterisation of the photoelectron emission

- Simulating the whole electromagnetic shower is possible
- Tracking all Cherenkov photons takes too long

Parameterisation needed:

Parameterisation of the photoelectron emission

Ansatz: gaussian fluctuations of N_{pe}

Luigi Capozza, Institutsseminar - 6.2.2006

- strong linear correlation r = 0.997
- mean N_{pe} linear
 dependent on E_d

•
$$\sigma_{N_{pe}}^2$$
 also linear in E_d

ъ

Outline

Theory

Measurement principle

Physical processes

Detector response

Some results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Comparison with the experimental spectrum

- 1. "Calibration": $N_{pe} \rightarrow \text{ADC channel}$
 - knowledge of offset and peak position
 - linearity

2. Scaling factor ξ

 \mathcal{L} : luminosity ($\rho I \ell$)

$$\sigma$$
: total cross section

- Δt : run duration
- N_{evt}: simulated events

$$\xi = \frac{\mathcal{L} \ \sigma \cdot \Delta t}{N_{evt}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Result for electrons

Result for backward scattering

background is dominant

Luigi Capozza, Institutsseminar - 6.2.2006

≣⇒

Result for backward scattering

- background is dominant
- it is neutral particles $\Rightarrow \gamma$'s

• • • • • • • • •

Result for backward scattering

- background is dominant
- it is neutral particles $\Rightarrow \gamma$'s
- coincidence spectrum reproduced by simulation

ъ

Work in progress

Contribution of γ 's? (at backward angle important!)

Processes

$$e+p \rightarrow e+p+\pi^0 \rightarrow (e+p)+\gamma+\gamma$$

 $e+p \rightarrow (e+p)+\gamma$

▶ Detector response very similar to *e*[−]

- conversion (dominant)
- Compton

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Summary

- ► Parity violation in the ∆(1232) interesting for hadron structure
- Possibility of measuring the PV asymmetry within the A4 experiment
- Large background: understanding of energy spectrum needed
- Study of
 - scattering processes
 - detector response
- Detector response under control
- Electron contribution well understood
- Working on contribution of γ's

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆