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i

Zusammenfassung

In dieser Arbeit wurde die paritätsverletzende Asymmetrie in der quasielastis-

chen Elektron-Deuteron-Streuung bei Q2 = 0.23 (GeV/c)2 mit einem longitudinal polar-

isierten Elektronstrahl bei einer Energie von 315 MeV bestimmt. Die Messung erfol-

gte unter Rückwärtswinkeln. Der Detektor überdeckte einen polaren Streuwinkelbereich

zwischen 140○ und 150○. Das Target bestand aus flüssigem Deuterium in einer Targetzelle

mit einer Länge von 23.4 cm. Die gemessene paritätsverletzende Asymmetrie beträgt

Ad
PV = (−20.11 ± 0.87stat ± 1.03syst), wobei der erste Fehler den statistischen Fehlereitrag

und der zweite den systematischen Fehlerbeitrag beschreibt. Aus der Kombination dieser

Messung mit Messungen der paritätsverletzenden Asymmetrie in der elastischen Elektron-

Proton-Streuung bei gleichem Q2 sowohl bei Vorwärts- als auch bei Rückwärtsmessungen

können die Vektor-Strange-Formfaktoren sowie der effektive isovektorielle und isoskalare

Vektorstrom des Protons, der die elektroschwachen radiativen Anapolkorrekturen enthält,

bestimmt werden. Diese Arbeit umfasst außerdem die Bestimmung der Asymmetrien bei

einem transversal polarisierten Elektronstrahl sowohl bei einem Proton- als auch einem

Deuterontarget unter Rückwärtswinkeln bei Impulsüberträgen von Q2 = 0.10 (GeV/c)2,

Q2 = 0.23 (GeV/c)2 und Q2 = 0.35 (GeV/c)2. Die im Experiment beobachteten Asym-

metrien werden mit theoretischen Berechnungen verglichen, welche den Imaginärteil der

Zweiphoton-Austauschamplitude beinhalten.
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Abstract

This work presents the determination of the parity violating asymmetry in the

electron deuteron quasielastic scattering at Q2 = 0.23 (GeV/c)2 with a longitudinally po-

larized electron beam of energy 315 MeV and an azimuthally symmetric detector covering

the polar angle range [140○,150○] at backward angles. The target consists of liquid deu-

terium contained in a target cell of 23.4 cm. The parity violating asymmetry has been

measured to be Ad
PV = (−20.11 ± 0.87stat ± 1.03syst), where the first error is the statistical

error and the second one denotes the systematic uncertainties. From the combination

of this measurement and the measurements of the parity violating asymmetry in the

electron proton elastic scattering at the same Q2 at both forward and backward angles

information can be obtained for the strange vector form factors and for the isovector and

isoscalar effective axial vector form factor as seen from the photon probe, including the

electroweak anapole radiative corrections. The work includes also the determination of

the beam normal spin asymmetries with a transversely polarized electron beam and tar-

gets of both liquid hydrogen and deuterium at backward angles at Q2 = 0.10 (GeV/c)2,

Q2 = 0.23 (GeV/c)2 and Q2 = 0.35 (GeV/c)2. The experimentally observed beam normal

spin asymmetries on the proton and those determined for the neutron are compared with

the theoretical calculation of the asymmetries which includes the imaginary part of the

two-photon exchange amplitude.
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Entre el azul de la mar océana el horizonte de la medida ĺımite cruzando la

sombra litúrgica de la ventana teñida del sol del ocaso abierta a un mundo

inexplicable, apenas explorado e ignoto.





Introduction

The theoretical framework of the modern particle physics is the Standard Model

of particles and interactions that consists of renormalizable quantum field theories with

local gauge symmetry: the Electroweak Theory based on the symmetry group SU(2)L ×
U(1)Y and the Quantum Chromodynamics QCD for the color strong interaction, based

on the symmetry group SU(3) of color. The canon of these theories is the Quantum

Electrodynamics QED based on the symmetry group U(1). Two of the essential properties
of the QCD are the asymptotic freedom, which has enabled tests of the theory that can

be solved at high energies by means of perturbative techniques, and the confinement,

for which despite of the existence of hints in the frame of the theory there is not so far

any systematic proof. The confinement implies that only bound systems of quarks can

be observed that are color singlets: the hadrons, which show up as mesons and baryons.

Among the baryons the nucleon is the fundamental state. There are plenty of theories

and models trying to derive the nucleon properties at low and medium energies taking

advantage of symmetries of the hamiltonian, such as the Chiral Perturbation Theory χPT.

The objective of the experiments at this energy scale is the measurement of static and

dynamic properties of the nucleon that allow to test these theories and models and their

selection.

The particles of the Standard Model are classified in the three families of leptons

and quarks, with respect to the fermions, and the intermediate bosons, the massless

photon, the three massive bosons of the weak interaction, two of them charged and one

neutral, and the octet of gluons with color charge of the QCD. The neutrinos are sensitive

only to the weak interaction, the charged leptons present both electromagnetic and weak

charges and the quarks are sensitive to the electroweak and the color fields. The three

light quarks u, d and s are those associated to the approximate flavor symmetry group

SU(3)F .
The contribution of the strange quark to the static properties of the nucleon: the

mass, the electromagnetic properties and the spin, that is, the scalar, vector and axial

1
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vector matrix elements of the strange quark field, has been subject of investigation. Since

the strange quark does not belong to the valence quarks composing the nucleon according

to the Quark Model, their matrix elements constitute a manifestation of the vacuum

polarization induced by the color fields, known as quark sea.

The vector matrix elements of the strange quark are of special interest since they

can be determined directly because of the vector character of the intermediate bosons of

the interaction. In the experiments neutrinos and electrons are employed as electroweak

probes of the nucleon since the electroweak interaction can be solved pertubatively and

the structure of the nucleon, which is parametrized by the most general independent

currents consistent with the first principles: Lorentz invariance, parity conservation and

time reversal invariance, is unknown.

One of the objectives of the A4 experiment is the measurement of the parity vio-

lating asymmetry in the cross section of the elastic scattering of longitudinally polarized

electrons on the unpolarized nucleon. This observable allows the determination of the

vector matrix elements of the neutral weak current, which together with the nucleon

electromagnetic form factors, allow a flavor decomposition and the access to the strange

vector form factors. The parity violating asymmetry is sensitive also to the effective ax-

ial vector current of the nucleon as seen by the photon probe, which includes not only

the neutral weak axial vector current but also parity violating electroweak radiative cor-

rections where the photon field couples to axial vector currents arising from an internal

electroweak dynamic of the nucleon, which have been subject of investigation because of

their unexpected enhancement and the large associated theoretical uncertainties.

Three measurements of the parity violating asymmetry, with hydrogen as target at

forward and backward scattering and with deuterium at backward scattering, are aimed

to resolve the strange vector and the axial vector matrix elements. The employment of the

light bound nuclear state of the deuteron, composed of a proton and a neutron, resolves

the isovector and isoscalar dimensions, with respect to the strong isospin, of the effective

axial vector current, through its interference with the magnetic current.

The experimental setup of the A4 experiment allows also the measurement, with

transversely polarized beam electrons, of the beam normal spin asymmetry. This asym-

metry originates at leading order from the interference of the amplitude of one-photon

exchange and the imaginary part of the absorptive part of the scattering amplitude, which

at leading order is the two-photon exchange amplitude.

The first chapter of this work is devoted to the theoretical framework of both
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the parity violating and the beam normal spin asymmetries. The theory behind the

parity violation in the electron scattering is treated in more detail presenting a simplified

calculation of the helicity dependent differential cross section in the Born approximation.

The electroweak radiative corrections to the parity violating asymmetry are also subject of

this chapter, specially those contributing to the effective axial vector current. An overview

of the nuclear model calculation for the parity violation in the quasielastic scattering on the

deuteron, including the two body current operators and the weak interaction between the

nucleons, is also presented in order to determine to which extent the static approximation

is reliable.

The second chapter presents a brief description of the MAMI accelerator facility

and the setup of the A4 experiment, focusing on those features that are more relevant for

the later analysis.

The third chapter is dedicated to the study of the energy spectra obtained from

the detectors, the physical processes involved, the kinematics, the sources of background

and finally the comparison of the experimentally observed and the theoretical calculated

differential cross section.

The fourth and fifth chapters present the analysis for the determination of the par-

ity violating asymmetry and the beam normal spin asymmetries from the energy spectra.

This chapters include the discussion of the background subtraction method, the hypoth-

esis for the asymmetry of the background, the optimization of the cuts applied for the

interval of integration, the evaluation of the systematic corrections, the statistical and

systematic errors and the systematic tests. The chapter dedicated to the parity violating

asymmetry presents the analysis in more detail while the chapter dedicated to the beam

normal spin asymmetries focuses on those features which are different for the transverse

polarization. This last chapter presents the comparison of the measured beam normal

spin asymmetries on the proton and those extracted from the measurements with proton

and deuteron for the neutron with the theoretically calculated.

The sixth chapter offers the study of the system of equations from the three mea-

surements of the parity violating asymmetries at Q2 = 0.23 (GeV/c)2, with the determi-

nation and implications for the strange vector form factors and the isovector and isoscalar

effective axial vector form factors, from which the electroweak anapole radiative correc-

tions can be extracted.

Finally one appendix is reserved to a deeper geometrical and physical study of

the system of equations, presenting details of the statements of the sixth chapter, and



4 CONTENTS

a last one concentrates on the properties and comparison of the chirality, helicity and

spin projectors used in the calculation of the leptonic tensor for a longitudinally polarized

electron beam.



Chapter 1

Theoretical framework

The experiment relies on the problem of scattering of two bodies, the electron

and the nucleon: the two fundamental stable particles with the quantum of charge. The

objective is to use the electron and the electroweak field, which obey the well known dy-

namics of the Electroweak theory, to probe the electroweak structure of the nucleon. The

process of interest is the elastic scattering where the nucleon remains in its fundamental

state in the final state. The vectorial character of the electroweak bosons permits the

interaction with the vector and axial vector currents of the nucleon. The measurement of

the electromagnetic form factors of the electromagnetic currents of the nucleon, the Dirac

and the Pauli terms, permits, assuming charge symmetry, together with the neutral weak

current the rotation to the flavor space of the three light quarks, which have the mass

scale to contribute to the vacuum polarization of the color field. The determination of the

electric and magnetic properties of the strange quark isosinglet has to be contrasted with

the predictions of the theory, testing already the quantum field character of the renormal-

izable gauge theory of the dynamics. The intensity and nonperturbative character of the

dynamical theory, its non abelian character and the non-linearity determines a complex

dynamics which has to be probed with experimental measurements. The precise measure-

ments reached of the strange sea quark posses the theory in the position analog to that of

the Lamb shift of the Quantum Electrodynamics. The electromagnetic and neutral weak

currents of the nucleon permit a rotation to the flavor space or to the isospin space of the

approximate SU(3)F flavor symmetry.

5



6 1. Theoretical framework

1.1 Electroweak probes

The interaction Lagrangian for this dynamical process in the framework of the

electroweak theory is:

L = ejγµAµ + g

cos θW
(j3µ − sin2 θW j

γ
µ)Zµ (1.1)

The first term represents the coupling of the photon field Aµ to the vector elec-

tromagnetic current jγµ = Qūγµu with the coupling constant e (Q is the charge in units

of the electron charge). The second term is the coupling of the massive Zµ field to the

neutral weak current, with the neutral weak coupling constant gz = g/ cosθW . In the

Glashow-Weinberg-Salam model the neutral weak current jZµ is given by the combination

of the third weak isospin current j3µ, which couples only to left-handed particles (it is pure

V-A), and the electromagnetic one. The relative weight of these two components is given

by the weak mixing angle sin2 θW = 0.23126(5) [1]:

jZµ = j3µ − sin2 θW j
γ
µ (1.2)

= ūγµ1
2
T 3(1 − γ5)u −Q sin2 θW ūγµu

= 1
4
[(2T 3 − 4Q sin2 θW ) ūγµu − 2T 3ūγµγ5u]

The weak neutral current jZµ is thereby composed of a vector component ūγµu , with

the vector coupling gZV = 2T 3 −4Q sin2 θW , and an axial vector component whose coupling

is given by the third component of the weak isospin gA = −2T 3. The corresponding values

for the electron T 3 = −1, Q = −1 are: gZV = −1 + 4 sin2 θW = −0.0750(2) ≃ −1/13 and gA = 1.
Let us express now the weak neutral current in terms of the chiral Dirac spinors

uR/L = PR/Lu, where PR/L = 1/2 (1 ± γ5)1:
1The chiral Dirac spinors uR/L = PR/Lu are suitable to construct theories since they are Lorentz

invariants to the extent that the chirality projectors PR/L = 1/2 (1 ± γ5) commute with the matrix S(Λ)
of the representation of the Lorentz group in the bispinor space. However the chirality is not conserved

because the projectors do not commute with the free Hamiltonian unless the particles are massless or the

ultrarelativistic limit m → 0 is assumed.
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jZµ = − g

cos θW
[−1

2
ēLγµeL − sin2 θW (−ēRγµeR − ēLγµeL)] (1.3)

= − g

2 cos θW
[(−1 + 2 sin2 θW ) ēLγµeL + 2 sin2 θW ēRγµeR]

in order to show that the field Zµ couples slightly stronger to left-handed leptons,

with coupling −1 + 2 sin2 θW = −0.53748, than to the left-handed ones, with coupling

2 sin2 θW = 0.462522.

1.1.1 Nucleon current operators

Nucleon electromagnetic current

The electromagnetic current operator of the nucleon, which is composed of quarks

as Dirac particles with vector couplings to the photon field, can be expressed as:

Jγ
µ = ⟨N ∣ ∑

j=flavors
f̄jqjγµfj ∣N⟩ (1.4)

where qj are the fractionary charges and fj the Dirac field operators of the quarks,

acting on the nucleon quantum state ∣N⟩.
Describing the nucleon by Dirac spinors and assuming Lorentz invariance, parity

conservation and time reversal invariance its electromagnetic current operator is given by

the independent terms:

Jγ
µ = eŪ [F1 (Q2)γµ + iσµνqν

2MN

F2 (Q2)]U (1.5)

The Dirac F1 (Q2) and Pauli F2 (Q2) form factors parametrize the electromag-

netic structure of the nucleon. These factors are real functions of the squared transfer

four-momentum Q2 = −q2, as unique invariant of the elastic scattering in the Born ap-

proximation. The vector current with the Dirac form factor reproduces the structure of

the Dirac equation. The Pauli term was proposed to account for the anomalous magnetic

moment of the nucleon [2]3

2It is remarkable that in the case that the weak mixing angle were such that sin2 θW = 1/4 the

magnitude of both couplings would be equally 1/2
3Actually, with this parametrization the equivalent Dirac equation for the nucleon reads [3]:
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The Dirac and Pauli form form factors are normalized to F p
1 (0) = 1 and F p

2 (0) = κp
for the proton and F n

1 (0) = 0 and F n
2 (0) = κn for the neutron, where κp = 1.792847356(23)

and κp = −1.9130427(5) [1] are the anomalous magnetic moments of the proton and the

neutron, respectively, in units of the nuclear magneton µN = e
2MN

.

Nucleon neutral weak current

The nucleon neutral weak current is likewise parametrized by neutral weak form

factors:

• For the vector current, whose structure is that of the electromagnetic one: F̃1, F̃2

• For the axial vector current: GA.

J
µ
Z =

g

4 cos θW
Ū {[F̃1 (Q2)γµ + iσµνqν

2MN

F̃2 (Q2)] − 1
2
T 3γµγ5GA (Q2)}U (1.7)

where T 3 is the strong isospin third component of the nucleon.

Most general current

The most general form of the current operator without the requirements of parity

conservation and time reversal invariance reads [4]:

⟨N ∣′ Jγ
µ ∣N⟩ = ū[F1 (q2)γµ + iσµνqν

2MN

F2 (q2) (1.8)

+ GF

M2
N

FA (q2) (q2γµ − qνγνqµ)γ5 − FE (q2) σµνqνγ5
2MN

]u (1.9)

The third term violates parity: its form factor FA is known as anapole moment.

The last term violates time reversal invariance: FE is known as electric dipole form factor.

The anapole term can be written equivalently FA(q2)ūγνγ5u (q2gµν − qνqµ), which
with the momentum-space electromagnetic field equation and in the non-relativistic limit,

[(/p − eF1 /A) − e

4M
F2σ

µνFµν −M]Ψ = 0 (1.6)

F2(0) = κ is normalized to the anomalous magnetic moment of the nucleon and Fµν is the electromag-

netic strength tensor.
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using the Dirac representation of the spinors becomes FA(q2)χ†σjχ, which in the coordi-

nate space represents the interaction of the spin of the particle with the current density,

[5]

1.2 Flavor decomposition

Assuming charge symmetry and universality of the quark distribution [6] the matrix

elements of the electromagnetic current operator of the nucleon and those of the neutral

weak vector current operator can be rotated to the flavor space of the three light quarks

of the approximate SU(3)F flavor symmetry.

⟨Jγ,p
µ ⟩ = qu ⋅ ⟨ūγµu⟩ + qd ⋅ ⟨d̄γµd⟩ + qs ⋅ ⟨s̄γµs⟩ (1.10)

⟨Jγ,n
µ ⟩ = qd ⋅ ⟨ūγµu⟩ + qu ⋅ ⟨d̄γµd⟩ + qs ⋅ ⟨s̄γµs⟩ (1.11)

⟨JZ,p
V,µ⟩ = guV ⋅ ⟨ūγµu⟩ + gdV ⋅ ⟨d̄γµd⟩ + gsV ⋅ ⟨s̄γµs⟩ (1.12)

where qu = 2/3 and qd = qs = −1/3 are the fractionary charges of the quarks and

giV = 2T 3
i − 4qi sin

2 θW are their neutral weak vector couplings, with T 3
i the isospin third

component of the quarks T 3
u = 1/2 and T 3

d = T 3
s = −1/2. These equations hold for the two

form factors of the vector matrix elements: The Dirac F1 and Pauli F2 form factors and,

equivalently, for the electric and magnetic Sachs form factors GE and GM .

The matrix elements of the quarks of the strong isospin ⟨ūγµu⟩ and ⟨d̄γµd⟩ are
resolved from the first two equations in terms of the matrix elements of the proton ⟨Jγ,p

µ ⟩
and neutron ⟨Jγ,n

µ ⟩ and the strange quark ⟨s̄γµs⟩:

⟨ūγµu⟩ = 2 ⟨Jγ,p
µ ⟩ + ⟨Jγ,n

µ ⟩ + ⟨s̄γµs⟩ (1.13)

⟨d̄γµd⟩ = ⟨Jγ,p
µ ⟩ + 2 ⟨Jγ,n

µ ⟩ + ⟨s̄γµs⟩ (1.14)

The neutral weak vector matrix elements of the nucleon is then a linear combination

of the vector matrix element of the nucleon and the matrix element of the strange quark.

⟨JZ,p
V,µ
⟩ = ξpV ⟨Jγ,p

µ ⟩ + ξnV ⟨Jγ,n
µ ⟩ + ξ(0)V ⟨s̄γµs⟩ (1.15)

⟨JZ,n
V,µ ⟩ = ξnV ⟨Jγ,p

µ ⟩ + ξpV ⟨Jγ,n
µ ⟩ + ξ(0)V ⟨s̄γµs⟩ (1.16)
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e− e−

γ

P P

e− e−

Z

P P

Figure 1.1: Feynman diagrams at leading order that contribute to the elastic electron-

proton scattering

where ξpV = 2guV + gdV , ξnV = guV + 2gdV and ξ
(0)
V = guV + gdV + gsV .

At tree level ξpV = 1 − 4 sin2 θW and ξnV = ξ(0)V = −1.

1.3 Parity violating asymmetry

The neutral weak current of the nucleon couples to the neutral weak field in the

electron nucleon interaction. Since the weak interaction violates parity the observable to

measure the neutral weak matrix elements of the nucleon is the parity violating asymmetry

in the cross section of the elastic electron nucleon scattering:

APV =
dσ(+)

dΩ
−

dσ(−)

dΩ

dσ(+)

dΩ
+

dσ(−)

dΩ

(1.17)

where the superscripts (+) and (−) stand for the helicity states of right-handed

and left-handed incident electron, respectively.

1.3.1 Differential cross section

The differential cross section of the elastic electron nucleon scattering is calculated

by means of the tensor formalism [7], [8], [9] in the Born approximation. The calculation of
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the tensors is simplified later on in the Breit reference frame, [10]. Higher order processes

are anticipated in order to study the consistency of the approximations.

Beyond the scope of the QED and the known Rosenbluth formula, the elastic

electron-nucleon scattering is described in the electroweak theory at leading order in α by

the coherent exchange of one virtual photon γ and a virtual weak neutral Z boson, see

figure 1.1.

The square of the matrix element amplitude reads:

dσ ∼ ∣Mfi∣2 ∼ ∣Mγ +MZ ∣2 = ∣Mγ ∣2²
1

+2R (MγM
∗
Z)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

10−5

+ ∣MZ ∣2²
10−10

(1.18)

The electromagnetic quadratic term ∣Mγ ∣2 is dominant. The interference 2R (MγM
∗
Z)

is suppressed at low Q2 by the Fermi constant Gµ ∼ 10−5. The neutral weak quadratic

term ∣MZ ∣2 is suppressed by G2
µ so that it is neglected. This approximation is consistent

with the Born approximation, since the amplitudes of higher order processes involving in-

terferences with two boson exchange, γ(γZ), Z(γγ), of order Gµα2 ∼ 10−5 ⋅ (10−2)2 = 10−9,
are a factor 10 larger than ∣MZ ∣2.

In the elastic scattering, the incident electron with four momentum kµ = (Ee, k⃗) and
spin s is scattered into an electron of four momentum k′µ = (E′e, k⃗′) and spin s′ transferring

the four momentum qµ = (ω, q⃗) to the nucleon, whose initial and final momenta will

be pµ, p′µ with spins S and S′, respectively. The four-momentum conservation states

kµ + pµ = k′µ + p′µ, that is, kµ − k′µ = p′µ − pµ = qµ.

Amplitudes

The amplitudes in terms of the electron and nucleon currents and the boson prop-

agators are:

• The electromagnetic amplitude:

Mγ = jγµ igµν

q2
Jγ
ν = ie

2

q2
ū(k′, s′)γµu(k, s) ū(p′, S′)Γµu(p,S)

where u(p, s) represents the Dirac spinor of the electron with four-momentum p and

spin s and so on, Γµ is the nucleon electromagnetic current operator 1.5 and igµν

q2
is

the photon propagator.
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• The neutral weak amplitude:

MZ = jZµ i (gµν − qµqν/M2
Z)

q2 −M2
Z

JZ
ν

≃ −i( g

4MZ cos θW
)2 ū(k′, s′)(gV γµ + gAγµγ5)u(k, s) ū(p′, S′)Γ̃µu(p,S)

where gV and gA are the neutral weak vector and axial vector couplings of the

electron,
i(gµν−qµqν/M2

Z)
q2−M2

Z

is the Z boson propagator approximated to −igµν
M2

Z

in the

energy regime where q2 ≪M2
Z and Γ̃µ is the nucleon neutral weak current operator

1.7.

Squared amplitude: sum, average and spin projector

The square of the amplitude is summed over the final spin states of the electron s′

and the nucleon S′, since they are not observed, and averaged over the initial spin states

of the unpolarized nucleon S. The longitudinally polarized initial state of the electron

introduces the spin projector:

u(p, s)ū(p, s) = 1
2
(1 + γ5 /S) (/p +me) (1.19)

where /S = γµSµ and Sµ is the spin four-vector of the electron. By longitudinal

polarization Sµ is proportional to its initial four-momentum kµ = E(1, u⃗L):
Sµ = hγ(1, u⃗L) = h E

me

(1, u⃗L) = h

me

kµ (1.20)

where h = s⃗ ⋅ k⃗/∣k⃗∣ stands for the helicity and u⃗L = k⃗/∣k⃗∣.
Electromagnetic

The electromagnetic squared amplitude:

∣Mγ ∣2 = e4
q4

Tr{[γµu(k, s)ū(k, s)γνu(k′, s′)ū(k′, s′)] [Γµu(p,S)ū(p,S)Γνu(p′, S′)ū(p′, S′)]}
= e

4

q4
Tr{[γµ1

2
(1 + γ5 /S) (/k +me)γν (/k′ +me)] 1

2
[Γµ (/p +M)Γν (/p′ +M)]} (1.21)
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is the contraction of the leptonic Lµν and the hadronic W µν tensors

∣Mγ ∣2 = e4
q4
LµνW

µν (1.22)

The leptonic tensor

Lµν = 2 (kµk′ν + kνk′µ − gµνk ⋅ k′) + h (2iǫµναβkαk′β) = sµν + haµν (1.23)

is decomposed into a symmetric tensor sµν , helicity independent, and an antisym-

metric tensor aµν , helicity dependent. The term of order O(m2
e) has been neglected,

The hadronic tensor of the initially unpolarized nucleon is totally symmetric Sµν :

Wµν = 1
2
Tr [Γµ (/p +M)Γν (/p′ +M)] = Sµν (1.24)

The contraction of the leptonic and hadronic tensors LµνW µν = (sµν + haµν)Sµν =
sµνSµν is such that only the symmetric leptonic tensor contributes, since the electromag-

netic interaction is parity conserving.

About the spin and other projectors

Instead of the spin projector 1.19, other projectors can be used for the longitudi-

nally polarized initial electron

• the heliciy projector

u(k,λ)ū(k,λ) = 1
2
(1 + λk̂Σ⃗) (/k +me) (1.25)

where λ stands for the helicity state, k̂ is the unit vector in the direction of the

incident electron and Σ⃗ = γ5γ0γ⃗

• and the chirality projector

u(k,λ)ū(k,λ) = 1
2
(1 + λγ5) /k (1.26)

assuming the ultrarelativistic electron can be considered as massless me = 0
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For the spin and helicity projectors the square of the amplitude has to be summed

over the two spin states of the final electron, even if the helicity of an ultrarelativistic

electron is approximately conserved in the electroweak interaction, since it is not exactly

conserved. On the contrary the assumption of massless electrons implies that the helicity,

coincident with the chirality, is exactly conserved and there is no necessity of adding over

the final spin states of the electron.

The approximation of the chirality projector, used for example by authors like

[11], despite of its virtue of clarifying the calculation as long as the electron current is

decomposed in a non-helicity dependent vector current ūγµu and an helicity dependent

axial vector current λūγµγ5u, is not recommendable since the ultrarelativistic limit is

realised even in the lack of necessity of addition of the final spin states, becoming some

kind of conceptual approximation, but the ultrarelativistic electron is not truly massless

and the sum over the final spin states should not be avoided.

Moreover an inconsistency arises between the calculation with the spin projector

and those with the helicity and the chirality projectors, since the former involves the

necessity of the terms linear in the electron mass before applying the ultrarelativistic

limit, while the two later not, even though all three calculations lead curiously to the

same final result with the symmetric and the antisymmetric leptonic tensors. A detailed

study of this facts and an investigation of the properties of the projectors is postponed to

the Appendix.

Electromagnetic-neutral weak interference

The interference of the electromagnetic and neutral weak amplitudes is also the

contraction of a neutral weak leptonic tensor L̃µν and an hadronic one W̃ µν :

2R{MγM
∗
Z} = e2q2 (

√
2g

4MZ cos θW
)2 L̃µνW̃

µν

The leptonic tensor L̃µν is decomposed in four terms:

L̃µν = 1

2
Tr [γµ (1 + γ5 /S) (/k +me) (gV γν + gAγ5γν) (/k′ +me)] (1.27)

= gV (sµν + haµν) + gA (hsµν + aµν) = (gV + hgA)sµν + (hgV + gA)aµν (1.28)

two helicity independent: gV sµν+gAaµν , and two helicity dependent: h (gV aµν + gV sµν)
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The hadronic tensor W̃ µν acquires an antisymmetric component Ãµν from the

neutral weak axial vector current of the nucleon:

W̃µν = 1
2
Tr [Γµ (/p +M) Γ̃ν (/p′ +M)] = S̃µν + Ãµν (1.29)

The contraction of the tensors:

L̃µνW̃
µν = [(gV + hgA) sµν + (hgV + gA)aµν] [S̃µν + Ãµν]
= gV sµν S̃µν

+ gAaµνÃ
µν´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

VV + AA

+h

⎡⎢⎢⎢⎢⎢⎢⎣
gAsµν S̃

µν
+ gV aµνÃ

µν´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
AV + VA

⎤⎥⎥⎥⎥⎥⎥⎦
gives rise to: two terms of the type V V , AA which do not depend on the helicity

and two crossing terms V A and AV which are parity violating.

Helicity dependent differential cross section

The differential cross section reads in terms of the symmetric and antisymmetric

leptonic and hadronic tensors:

dσ(h)

dΩ
= 1(8π)2 (E

′
e

Ee

)2 1

m2

e2

q2
{e2
q2
sµνS

µν

+ ( √
2g

4MZ cos θW
)2 [(gV + hgA)sµν S̃µν

+ (hgV + gA)aµνÃµν] } (1.30)

which is the sum of three terms:

dσ(h)

dΩ
= dσ

γ

dΩ
+
dσ

γZ
V V +AA

dΩ
+ h

dσ
γZ
V A+AV

dΩ

• The differential cross section of the electromagnetic interaction (Rosenbluth for-

mula): dσγ

dΩ

• and two originating from the interference:

– one parity conserving with the VV and AA contributions:
dσ

γZ
V V +AA

dΩ

– and one parity violating with the cross terms VA and AV:
dσ

γZ
V A+AV

dΩ
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Difference and sum

The difference in the differential cross section for both helicity states h = +,− is

parity violating and the sum is parity conserving:

( dσ
dΩ
)PV

= 1
2
(dσ(+)
dΩ
−
dσ(−)

dΩ
) = dσγZ

V A+AV

dΩ
(1.31)

( dσ
dΩ
)PC

= 1
2
(dσ(+)
dΩ
+
dσ(−)

dΩ
) = dσγ

dΩ
+
dσ

γZ
V V +AA

dΩ
≃ dσ

γ

dΩ
(1.32)

In the equation 1.32 the parity conserving interference contribution is neglected

since it is of order ∼ αGF = 10−7. This approximation is consistent with the Born approx-

imation, since the interference of the one-photon and two-photon exchange amplitudes

γ(γγ) of order ∼ α3 = 10−6 is 10 greater than the neglected term.

1.3.2 The Breit reference frame

Since in the elastic scattering the transfer momentum is spacelike q2 < 0, there is

a reference frame, known as Breit or Brick-wall frame, where the energy transfer is zero

ωB = ǫ1B − ǫ2B = E2B − E1B = 0 so that the initial and final energies of the electron ǫ1B,

ǫ2B and those of the nucleon E1B , E2B are equal.

This frame moves in the direction of the transfer three momentum q⃗B such that

the three momentum of the nucleon is −q⃗B/2 before and q⃗B/2 after the interaction. The

kinematical configuration is analogous to that of the elastic classical collision with a wall

of infinite mass, see figure 1.2.

Current operator and Sachs form factors

In the Breit reference frame the vector current operator separates into a charge

density and a magnetic current operator:

J0 = 2MNχ
†
2χ1(F1 − τF2) (1.33)

J⃗ = iχ†
2σ⃗ × q⃗Bχ1(F1 + F2)

where χ is a two-component spinor. The linear combinations GE = F1 − τF2 and
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e−(k⃗B) e−(k⃗′B)

γ(q⃗B)

p(−q⃗B/2)

p(+q⃗B/2)

x

z

θB

Figure 1.2: Elastic scattering in the Breit reference frame. The virtual photon carries only

three momentum q⃗B, the proton reflects against the field having one half of the transferred

three momentum before and after the interaction, θB is the scattering angle in this frame

between the incident and the scattered electron.

GM = F1 + F2 are the electric and magnetic Sachs form factors, which are the Fourier

transforms of the charge and the magnetic current densities of the nucleon in this frame.

The current is compactly expressed with the generalized form factor Fµ, with

components: F0 = 2MGE , Fi = iσ⃗ × q⃗BGM , for i = x, y and Fz = 0.

Jµ = χ†
2Fµχ1

The neutral weak axial vector current in this frame is:

J5 = 2MNGAχ
†
2χ1σ⃗ (1.34)

Hadronic tensor

• The symmetric hadronic tensor 1.24 in the Breit frame is:
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Sµν = (χ†
2Fµχ1)(χ†

2Fνχ1) = Tr{FµF
†
ν } (1.35)

with components S00 = 4M2G2
E and Sii = −q2G2

M for i = x, y. There is not electric

magnetic interference because the magnetic current operator depends on the spin

while the charge density operator does not.

• The antisymmetric hadronic tensor 1.29 is:

Axy = 1

2
Tr [i√−q2GMσy2MGAσy] = i√−q22MGMGA (1.36)

where there is interference only of the neutral weak axial vector current and the

magnetic current because both depend on the spin operator.

Amplitudes

The calculation of the amplitudes from the tensor contractions from in the Labo-

ratory frame yields:

sµνS
µν = 4M2 (−q2) cos2(θe/2)

sin2(θe/2)
1

ǫ(1 + τ) [ǫG2
E + τG

2
M] (1.37)

sµν S̃
µν = 4M2 (−q2) cos2(θe/2)

sin2(θe/2)
1

ǫ(1 + τ) [ǫGEG̃E + τGMG̃M] (1.38)

axyA
xy = 4M2 (−q2) cos2(θe/2)

sin2(θe/2)
1

ǫ(1 + τ)
√
τ(1 + τ)√1 − ǫ2GMGA (1.39)

The term sµνSµν reproduces the structure of the Rosenbluth formula. The term

sµνS̃µν has an equivalent structure and axyAxy exhibits the magnetic and axial vector

interference.

Differential cross section in terms of the form factors

In terms of the Sachs form factors the differential cross section 1.30 reads:
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k⃗ + q⃗
p(n)q⃗

k⃗

(Md,0⃗)
−k⃗

n(p)

Figure 1.3: Quasielastic electron deuteron scattering

ǫ(1 + τ)
σM

dσ(h)

dΩ
= ǫG2

E + τG
2
M +

q2Gµ

4πα
√
2

⎧⎪⎪⎨⎪⎪⎩gV (ǫGEG̃E + τGM G̃M) (1.40)

+ gA
√
τ(1 + τ)√1 − ǫ2GMGA + h

⎡⎢⎢⎢⎢⎣gA (ǫGEG̃E + τGMG̃M) (1.41)

+ gV
√
τ(1 + τ)√1 − ǫ2GMGA

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (1.42)

where σM is the Mott cross section.

1.3.3 Structure of the parity violating asymmetry

The parity violating asymmetry 1.17 is the quotient of the parity violating cross

section 1.31 and the parity conserving cross section 1.32:

APV = dσ
γZ
V A+AV

dσγ
(1.43)

Its structure in terms of the Sachs form factors, using equation 1.40:

APV = − Q
2Gµ

4πα
√
2

gA (ǫGEG̃E + τGMG̃M) + gV√1 − ǫ2√τ(1 + τ)GMG
e
A

ǫ (GE)2 + τ (GM)2 (1.44)

Observations:
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• The parity violating asymmetry is a pseudoscalar and a function of the transfer

momentum and the scattering angle θ, APV = APV (Q2, θ).
• The numerator exhibits the structure AV + V A: The term AV is multiplied by

the neutral weak axial vector coupling of the electron gA = 1 and the term V A is

suppressed by the neutral weak vector coupling of the electron gV = −1 + 4 sin2 θW

• The coefficient A0 = Q2Gµ

4πα
√
2
gives the order of magnitude, which results from the

quotient of the electromagnetic and neutral weak couplings and propagators (with

the factor 2 of the interference term):

A0 = 2e
2/Q2 g2/(4MZ cos θW )2(e2/Q2)2 = ( √

2g

4MZ cos θW
)2 Q2

e2
= Q2Gµ

4πα
√
2
∼ 10−4Q2(GeV/c)2

where e2 = 4πα in the Heaviside-Lorentz system and Gµ =
√
2

8
( g
MZ cos θW

)2 is the

Fermi constant.

The parity violating asymmetry PVA for the proton and neutron are:

• PVA on proton

A
p
PV = −A0

⎡⎢⎢⎢⎢⎣
ǫG

p
EG̃

p
E + τG

p
M G̃

p
M − (1 − 4 sin2 θW )√1 − ǫ2√τ(1 + τ)Gp

MG
e,p
A

ǫ (Gp
E)2 + τ (Gp

M)2
⎤⎥⎥⎥⎥⎦ (1.45)

• PVA on neutron

An
PV = −A0

⎡⎢⎢⎢⎢⎣
ǫGn

EG̃
n
E + τG

n
M G̃

n
M − (1 − 4 sin2 θW )√1 − ǫ2√τ(1 + τ)Gn

MG
e,n
A

ǫ (Gn
E)2 + τ (Gn

M)2
⎤⎥⎥⎥⎥⎦

The Ap
PV and An

PV are symmetric under the replacement of Gp
E,M by Gn

E,M and

viceversa.

1.3.4 Flavor decomposition of the asymmetry

Applying flavor decomposition:
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Ap
PV = −

GFQ2

4πα
√
2

⎛⎝(1 − 4 sin2 θW ) − ǫGp
EG

n
E + τG

p
MG

n
M

ǫ(Gp
E)2 + τ(Gp

M)2 −
ǫG

p
EG

s
E + τG

p
MG

s
M

ǫ(Gp
E)2 + τ(Gp

M)2
−
(1 − 4 sin2 θW )√1 − ǫ2√τ(1 + τ)Gp

MG̃
p
A

ǫ(Gp
E)2 + τ(Gp

M)2
⎞⎠ (1.46)

The PVA is the sum of three terms APV = AV +As +AA:

• AV contains the vector terms without vector strangeness: the neutral weak charge

of the proton gpV = 1−4 sin2 θW and the matrix elements of the vector current of the

nucleon.

• As contains the matrix elements of the vector strange current.

• AA contains the interference of the magnetic current and the axial vector current of

the nucleon.

1.3.5 Limits of the asymmetry

Since the parity violating asymmetry depends on both Q2 and θ let us present the

limits on the scattering angle and small transfer momentum:

Limits on the scattering angle

• Forward limit

lim
θ→0, ǫ→1

A
p
PV = −

GFQ2

4πα
√
2
((1 − 4 sin2 θW ) − Gp

EG
n
E + τG

p
MG

n
M(Gp

E)2 + τ(Gp
M)2 −

G
p
EG

s
E + τG

p
MG

s
M(Gp

E)2 + τ(Gp
M)2 )

• Backward limit

lim
θ→π, ǫ→0

A
p
PV = −

GFQ2

4πα
√
2

⎛⎝(1 − 4 sin2 θW ) − Gn
M

G
p
M

−
Gs

M

G
p
M

+
(1 − 4 sin2 θW )√τ(1 + τ)Gp

MG̃
p
A

τG
p
M

⎞⎠
At very forward angles the degree of linear polarization in the transverse plane of

the virtual photon ǫ = 1: the interaction is electric, the magnetic currents are suppressed
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by τ and the axial vector current does not contribute. At very backward angles the virtual

photon is circularly polarized: there is interaction with the magnetic and the axial vector

current, which depend on the spin of the nucleon. These limits are thereby consequences

of the angular momentum conservation.

Limits at small transfer momentum

• Proton

lim
Q2→0

A
p
PV = −

GFQ2

4πα
√
2
(1 − 4 sin2 θW )

In the limit Q2 = 0 the nucleon structure is suppressed and the parity violating

asymmetry is sensitive to the weak charge of the proton.

• Neutron

In the limit Q2 = 0 the parity violating asymmetry on the neutron turns to be an

indetermination.

lim
Q2→0

An
PV = 0

0

This indetermination can be solved using the general feature of the parametrizations

of the electric form factor of the neutron: Gn
E ∝ τ

lim
Q2→0

An
PV =

GF2M
√
Q2

4πα
√
2

aV
√
1 − ǫ2

G
e,n
A

Gn
M

An
PV is proportional at leading order to the axial vector form factor.

1.4 Radiative corrections

Among the electroweak radiative corrections to the parity violating asymmetry are

considered:

• Radiative corrections to the neutral weak vector current of the nucleon:

– from the neutral weak vector couplings to the quarks gfv

– from the interference with the two boson exchange diagrams γ(γZ), Z(γγ)
and γ(γγ)
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• Radiative corrections to the effective axial vector current of the nucleon:

– to the neutral weak axial vector current of the nucleon

– and electroweak radiative corrections that originate a parity violating coupling

of the photon to axial vector currents of the nucleon.

1.4.1 Neutral weak vector current

Neutral weak vector couplings

The electroweak radiative corrections to the neutral weak vector couplings giV to

the quarks i = u, d, s, see equation 1.12, include vacuum polarization, vertex corrections,

wave function renormalization and inelastic bremsstrahlung. The couplings of the neutral

weak vector current matrix elements in terms of the nucleon and the strange vector current

matrix elements, equations 1.15 and 1.16, become [12]:

ξ
p
V = ρ′eq (1 − 4k̂′eqŝ2Z) − 2 (2λ1u + λ1d)
ξnV = − [ρ′eq + 2 (λ1u + 2λ1d)]
ξ
(0)
V = − [ρ′eq + 2 (λ1u + λ1d + λ1s)]

whose values in the MS renormalization scheme are ρ′eq = 0.9877, k̂′eq = 1.0026,

ŝ2Z = 0.23116(13), λ1u = −0.0000180, λ1d = 0.0000360 and λ1s = 0.0000360
The parity violating asymmetry with these radiative corrections reads:

A
p
PV = −

GFQ2

4πα
√
2

⎛⎝ρ′eq(1 − 4κ̂′eqŝ2Z) − 2 (2λ1u + λ1d) − [ρ′eq + 2 (λ1u + 2λ1d)] ǫG
p
EG

n
E + τG

p
MG

n
M

ǫ(Gp
E)2 + τ(Gp

M)2

− [ρ′eq + 2 (λ1u + λ1dλ1s)] ǫGp
EG

s
E + τG

p
MG

s
M

ǫ(Gp
E)2 + τ(Gp

M)2 −
(1 − 4ŝ2Z)√1 − ǫ2√τ(1 + τ)Gp

MG̃
p
A

ǫ(Gp
E)2 + τ(Gp

M)2
⎞⎠

Two boson exchange

The influence on the parity violating asymmetry of the interference of one bo-

son and two boson exchange diagrams has been investigated because of the smallness of
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the form factors to be determined. The two boson exchange amplitudes are suppressed

with respect to the Born amplitude by the factor α but they present a strong angular

dependence [13] so that their effect is enhanced at backward angles.

∆σTBE = 2R [MγγM
∗
Z + (MγZ +MZγ)M ∗

γ ]
The calculation of these amplitudes is separated, according to the dependence on

sin2 θW , see equation 1.15, in the contributions to the parity violating asymmetry from

the proton Ap
V and neutron An

V leading to modifications of the parameters ρ′eq = ρeq +∆ρ
and κ′eq = κeq +∆κ, [13]:

∆ρ = A
p
V +A

n
V

Ap,tree
V +An,tree

V

−
∆σγ(γγ)

σred

∆κ = Ap
V

A
p,tree
V

−
Ap

V +A
n
V

A
p,tree
V +A

n,tree
V

where Ap,tree
V and A

n,tree
V are the tree level contributions to the parity violating

asymmetry from proton and neutron. The interference of the one photon and two-photon

exchange amplitudes ∆σγ(γγ) contributes to the asymmetry through the normalization.

1.4.2 Effective axial vector current

• SU(2)F : restricting to the strong isospin the nucleon axial vector form factor is

purely isovector GN
A (Q2) = −τ3GT=1

A (Q2) + G(T=0)A , where τ3 = +1(−1) for p(n) and

the isoscalar G
(T=0)
A = 0.

• SU(3)F : under the isospin space of the three light quarks the axial vector current

depends on the probe, [4]:

– Neutrino: there is only contribution of the isosinglet strange quark s. Since the

neutrino participates only in the weak interaction and the radiative corrections

are negligible the axial vector form factor is equal to that at tree level:

G
ν,N
A (Q2) = −τ3G(T=1)A (Q2) +Gs

A(Q2) (1.47)

– Electron: significant electroweak radiative corrections stem from the octet

current, which can be determined from the hyperon decay:
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γ
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e− e−
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Figure 1.4: At the left side the Feynman diagram of the γ − Z mixing tensor with the

loop which can include leptons, quarks and bosons, being the mass of the top quark and

the Higgs boson the source of the theoretical uncertainties in former calculations. At the

right side the box of two boson exchange γ,Z, with excitation of intermediate hadronic

states.

G
e,N
A (Q2) = −τ3G(3)A (Q2) +RT=0

A G
(8)
A (Q2) +Gs

A(Q2) (1.48)

G
(3)
A is isovector while G

(8)
A and Gs

A are isoscalar with respect to the strong

isospin.

1.4.3 Parity violating electroweak axial vector corrections

In the electron scattering there are parity violating electroweak radiative correc-

tions associated to the coupling of the photon to vector axial currents of the nucleon.

These corrections are of two sorts:

• One quark radiative corrections: the vector bosons couple to only one quark

of the nucleon. They play in the hadron physics an analogous role to that of the

impulse approximation in the nuclear physics, where the interaction occurs with one

of the nucleons of the nuclear system. Between those diagrams contributing to this

kind of radiative corrections the most important one is the mixing Z − γ tensor,

which has both a vector and an axial vector component, see figure 1.4.
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• Multi-quark radiative corrections: the photon couples to currents of two or

more quarks among which there are exchanges of weak bosons. These corrections

are referred to as anapole moment and constitute a manifestation of an inter-

nal electroweak dynamic in the nucleon, with which is associated simultaneously a

strong dynamic among the quarks.

Two significant features of these radiative corrections are: an unexpected enhance-

ment and large theoretical uncertainties, which can be so large as the radiative corrections

themselves:

Sources of enhancement

One-loop amplitudes are suppressed in principle by a factor α/4π with respect to

tree level. However they can be enhanced to even an order of 0.1 [14] by these sources:

• The parity violating amplitudes from the coupling of the photon are enhanced rel-

ative to the neutral weak axial vector amplitudes by geA/geA = 1/(1 − 4 sin2 θW ) ≃ 13.
• Logarithm dependence in the one-loop diagrams log

mf

MV
, where mq is the mass of

the fermion in the loop and MV is the mass of the intermediate vector boson.

• Multiquark radiative corrections associated to the anapole moment, which have been

subject of research [15], [16].

Sources of uncertainties

• In one quark radiative corrections:

– Lack of knowledge of the masses of the top quark mt and the Higgs boson

mH participating in the one-loop diagrams. These masses have already been

measured.

– Hadronic uncertainties from the interaction of virtual quarks of the one-loop

diagrams and the hadronic quarks. The mass of the constituent quarks is used

for the valence quarks, [15].

• In the anapole moment corrections:

– Poor knowledge of the parity violating nucleon-pion coupling constant, [14],

[16], [17] and [18].
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N e−

γ

π

π

u(d)

d(u)

u(d)

e−

γ

π

π

Figure 1.5: Examples of diagrams representing the multi-quark electroweak radiative

corrections (anapole moment) with a parity violating coupling of the photon to more

than one quark. At the left side the internal dynamic of the nucleon is given by the

coupling of the nucleon to a pion as in the frame of the calculations based on the Chiral

Perturbation Theory. At the right side an example of one diagram where the pion couples

to the constituent quarks as in the Chiral Quark Model. The circle stands for the parity

conserving coupling of the pion to the nucleon or the constituent quark, and the circle

the parity violating coupling, which is the main source of the theoretical uncertainties.

1.4.4 Anapole moment

The calculations are based on two theoretical frameworks: the Chiral Heavy Baryon

Perturbation Theory χHBPT, with the nucleon as degree of freedom which couples to the

Goldston bosons of the theory, and the Chiral Quark Model χQM, where the constituent

quarks couple to the intermediate mesons.

Chiral Perturbation Theory

One renowned calculation is that of Zhu et al. who resort to a first possible

explanation from the hadronic physics by including in their calculation subleading terms

in the frame of the Heavy Baryon Chiral Perturbation Theory HBχ PT, such as decuplet

and octet intermediate states, magnetic insertions and SU(3) chiral symmetry. It was

found that these refinements of the calculations do not suffice to reproduce such a large

measurements so that they resorted also to theories beyond the Standard Model like the
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model of the Z ′ light neutral gauge boson generated by the E6 symmetry, which however

yields a value for the radiative correction of opposite sign. They tested also tree level

interactions produced by supersymmetric extensions of the Standard Model associated to

R-parity violation, that is, not conservation of the baryon and lepton numbers. In spite

of the right negative sign of these estimations they are not able to account for the large

enhancement.

There is another calculation from Maekawa et al. [17] which is based also on the

Chiral Perturbation Theory at leading order. At this order only the long-range pion cloud

contributes to the expansion of the anapole form factor, determined by the pion properties

and the pion-nucleon couplings. It is found in this approximation that the anapole form

factor turns to be purely isoscalar, being the isoscalar anapole moment of the nucleon

a0 ∝
hπNN

mπ
, where hπNN is the parity violating pion-nucleon coupling, which is the source

of uncertainty since it has been not determined. It is also inversely proportional to the

pion mass, like in the calculation from [14], so that it would explode in the chiral limit,

dominating the V A term of the asymmetry in the case that the meson masses were close to

zero. The importance of this calculation is that an analytical Q2-momentum dependence

of the isoscalar anapole form factor F
(0)
A (Q2) is given which could be experimentally

tested.

This dependence reads:

F
(0)
A (Q2) = 3

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
⎛⎝ 2mπ√

Q2

⎞⎠
2

+

⎛⎜⎝
⎛⎝ 2mπ√

Q2

⎞⎠
2

+ 1
⎞⎟⎠
2mπ√
Q2

arctan

√
Q2

2mπ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1.49)

Expanding arctanx = x − 1

3
x3 + 1

5
x5 + O(x7), where x = √Q2

2mπ
the isoscalar form

factor reduces to F
(0)
A (0) = 1 at Q2 = 0 and for Q2 ≪ mπ it reduces to F

(0)
A (Q2) =

1− 1

5

Q2

(2mπ)2 +O ( Q4

(2mπ)4 ) which is equivalent to the expansion up to order O ( Q4

(2mπ)4 ) of the
dipole form factor 1

(1+(Q/M)2)2 with the mass scaleM = 2√10mπ = 880 MeV. The complete

Q2-dependence of the anapole form factor is though softer than the dipole form.

This approximation, which gives a contribution only to the isoscalar anapole mo-

ment, can not be applied to the A4 kinematical conditions since Q2 = 0.23 (GeV/c)2 and

Q ∼ 500 MeV > 2mπ ≃ 280 MeV. At this Q2 the photon probe resolves not only the pion

cloud but also the vector meson ρ-pole, which dominates the contribution to the isovector

anapole moment. The Q2-dependence, equation 1.49, is therefore of no validity.
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Chiral Quark Model

A model on which a calculation is based and which should be considered of signif-

icant scientific interest is that of Riska [18], known as Chiral Quark Model. The author

defends the capability to offer with the same Hamiltonian a unified approach to both the

nucleon structure and the hadronic spectrum, claiming the success of the Quark Model

in reproducing observables such as the baryon magnetic moments.

In this model pions and vector mesons couple directly to the constituent quarks

instead of to the baryon itself, both with parity conserving and parity violating couplings,

which can be related to the pion-nucleon corresponding couplings. Pion loops have to

include self energy diagrams to satisfy current conservation. Another notable difference

with the HBχPT is that the chiral quark model includes parity violating pion exchange

currents among the constituent quarks as well as parity violating pion exchange induced

polarization currents. These processes are extended likewise to the vector meson sector.

1.5 Effective axial vector form factor and Q2 depen-

dence

The nucleon effective axial vector form factor in the electron scattering with elec-

troweak radiative corrections decomposed in isovector and isoscalar components:

Ge,N
A (0) = −gA [τ3 (1 +R(T=1)A ) +R(T=0)A ] +∆s (1.50)

where gA = 1.2670(35) is the axial vector coupling of the nucleon measured in the

nucleon β decay, τ3 = +1(−1) for p(n) is the third component of the strong isospin and

∆s = Gs
A(0) = −0.1 ± 0.1 is the strange quark isosinglet axial vector form factor

Both the isovector and isoscalar radiative corrections are decomposed in the one-

quark radiative corrections, which are calculated in the framework of the Standard Model,

and the multi-quark (anapole moment) radiative corrections so that the equation 1.50

becomes:

R
(T=i)
A = R(T=i)SMA + 1.44R

(T=i)anap
A , i = 0,1 (1.51)

The factor 1.44 before the anapole radiative corrections stands for the transforma-

tion between the renormalization schemes: the on-shell scheme in which Ranap
A is calculated
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and the MS used in the formulae for the parity violating asymmetry.

The Q2-dependence of the isovector and isoscalar one-quark and anapole radiative

corrections are not known nor the dependence of Gs
A, see [4]. It is assumed that all them

obey the Q2-dependence with MA = 1.032(36).

Ge,N
A (Q2) = Ge,N

A (0)GD
A(Q2), with GD

A(Q2) = ⎛⎜⎝1 +
Q2

M2
A

⎞⎟⎠
−2

(1.52)

1.6 Parity violating asymmetry on the deuteron

The parity violating asymmetry in the electron deuteron quasielastic scattering in

the static approximation, where the nucleons are assumed to have no interaction among

them, is the cross section weighted average of the parity violating asymmetries on the

proton and neutron.

Ad
PV =

σpA
p
PV + σnA

n
PV

σp + σn
(1.53)

The cross section σN ∝ ǫ (GN
E )2 + τ (GN

M)2 cancels the denominators of the asym-

metries so that Ad
PV is the quotient of the sum of the numerators and the sum of the

denominators of Ap
PV and An

PV .

Ad
PV = − GFQ2

4πα
√
2

ǫ(Gp
EG̃

p
E +G

n
EG̃

n
E) + τ(Gp

M G̃
p
M +G

n
MG̃

n
M)

ǫ[ (Gp
E)2 + (Gn

E)2 ] + τ[ (Gp
M)2 + (Gn

M)2 ]
− (1 − 4 sin2 θW )√1 − ǫ2√τ(1 + τ) (Gp

MG
e,p
A +G

n
MG

e,n
A )

ǫ[ (Gp
E)2 + (Gn

E)2 ] + τ[ (Gp
M)2 + (Gn

M)2 ]
The sum of interferences between the magnetic and the effective axial vector

currents for both isospin states of the nucleon:

• at tree level:

Gp
MG

e,p
A +G

n
MG

e,n
A = (Gp

M −G
n
M)G(T=1)A + (Gp

M +G
n
M)Gs

A (1.54)
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• with radiative corrections 1.50:

Gp
MG

e,p
A +G

n
MG

e,n
A = − (Gp

M −G
n
M) gA (1 −RT=1

A )GD
A

+ (Gp
M +G

n
M) (−gART=0

A +∆s)GD
A (1.55)

where RT=0,1
A stand for the isoscalar and isovector components of the electroweak

axial vector radiative corrections, respectively.

• The isovector effective axial form factor has opposite signs for the proton and the

neutron: in the interference with the magnetic current the anomalous magnetic

moments of the proton and neutron κp ≃ −κn are aligned: 1 + κp − κn ≃ 1 + 2κp

• The isoscalar effective axial form factor has the same sign for the proton and the

neutron: in the interference the anomalous magnetic moments of the proton and

neutron cancel out approximately: 1 + κp + κn ≃ 1

This fact yields the relative factor:

G
p
M −G

n
M

Gp
M +G

n
M

= 4.70
0.88

= 5.34 (1.56)

1.6.1 Flavor and isospin decomposition

The parity violating asymmetry with flavor decomposition for the AV term, isospin

decomposition for the V A term and radiative corrections 1.50 results:
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Figure 1.6: Two body current diagrams with exchange of one pion between the nucleons

and the coupling of the photon to one of the nucleons in the first two diagrams from the

left and the coupling to the intermediate pion in the diagram on the right.
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E + τG
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MG

s
M

ǫ[ (Gp
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A −∆s)GD
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E)2 ] + τ[ (Gp
M)2 + (Gn
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⎞⎠

The deuteron provides a target where the neutron becomes stable in the most

weakly nuclear bound system without excited states, with a binding energy of 2.2 MeV.

Despite of these advantages of the deuteron it is though unavoidable quantifying the

nuclear effects on the parity violating asymmetry to pose the question of how the nuclear

medium affects the reliability of the extraction of the single nucleon form factors.
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1.6.2 Nuclear calculations

Hadjimichael et al.

These authors [19] investigated in a range of transferred momenta the influence

on both the kinematics of the quasielastic peak and beyond of several approximations

including models for the final state interactions and relativistic effects, separately, and

models for the nucleon-nucleon potential. Briefly they tested:

• FSI In a non-relativistic calculation with the Schrodinger equation they used for

the final states a partial wave expansion.

• PWBA In the Plane Wave Born Approximation they carried out also nonrelativistic

calculations but substituting the partial waves of the final states by plane waves. In

this approximation they took into account the interference term (of the amplitudes

of scattering on the proton and on the neutron), which has also an influence even

in the inclusive process.

• PWIA This is a relativistic calculation without final state interactions that con-

siders only the incoherent sum of the squares of the amplitudes of the scattering on

the proton and neutron, without the interference or exchange term.

They tested two particular potentials for the nucleon-nucleon interaction, the One

Boson Exchange supersoft core Sprung-de Tourreil model and a semiphenomenological

hard-core Yale model, with the feature that they can be considered as extremes, being

the first of them soft and the other one hard, so that any other realistic nucleon-nucleon

potential is expected to have effects that lie in between.

Their results show that specially for the larger values of momentum transfer and at

the kinematics of the quasielastic peak the nuclear effect on the parity violating asymmetry

is at the level of 1−2% and it is remarkably independent on the selected nuclear potential.

Schiavilla et al.

Let us now describe in more detail the calculation carried out by Schiavilla et al.

[20] for the analysis of the SAMPLE collaboration. This calculation relies in many of the

modern theoretical devices of the since long ago explored deuteron potential. The main

feature of the calculation is the inclusion of the two body current operators and the two
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body charge operator, besides the relativistic corrections for the one body current and

charge operators.

The electromagnetic current four vector components are the charge operator and

the current operator:

j
γ,µ
fi ≡ ⟨f ∣ jγ,µ(0) ∣i⟩ ≡ (ργfi(q), j⃗γfi(q)) (1.57)

which decompose in the Standard Nuclear Model in the sum of the one body and

the two body charge and current operators

ργ(q) =∑
i

ρ
γ,1
i (q) +∑

i<j
ρ
γ,2
ij (q) (1.58)

j⃗γ(q) =∑
i

j⃗
γ,1
i (q) +∑

i<j
j⃗
γ,2
ij (q) (1.59)

For the nucleon-nucleon potential it is employed the Argonne v18 potential, which

includes for the large-range the one pion exchange, and for medium range the multi-pion

or vector meson exchange, incorporating the usual terms with dependencies on the spin

and isospin, the Yukawa and the tensor potential. At short range the Argonne potentials

incorporate terms which present even dependencies on the squared angular momentum

L2 and terms with the squared spin-orbit form (S ⋅ L)2, which can not be derived from

the boson-exchange models.

The two body current operators divide into

• components which are model independent in the sense that they can be derived

from the Hamiltonian of the interaction in the relation with the charge operator

through the continuity equation that they satisfy:

∇ ⋅ J + i[H,ρ] = 0 (1.60)

• and the model dependent operators, for the transverse (solenoidal) current ∇J =
0, which can not be related to the Hamiltonian and are usually modelized by isoscalar

and isovector electromagnetic transition couplings of the type ρπγ and ωπγ, respec-

tively, and by the inclusion of the ∆-isobar excitation of the nucleon 4.

4It is worth quoting this words of Carlson and Schiavilla [21]:
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In the calculation of the parity violating asymmetry the neutral weak current

operator is also incorporated.

j
Z,µ
fi = j0,µfi + j

5,µ
fi ≡ (ρ0fi(q), j⃗0fi(q)) + (ρ5fi(q), j⃗5fi(q)) (1.61)

The neutral weak vector current is directly related to the electromagnetic current

operator through the vector weak neutral charge normalized to the quantum electric

charge, since being both of vector nature they possess common matrix elements.

j0,µ = −2 sin2 θW j
γ,µ
S + (1 − 2 sin2 θW )jγ,µV (1.62)

where jγ,µS is the isoscalar and j
γ,µ
V the isovector electromagnetic currents. The

corresponding isoscalar and isovector neutral weak vector couplings derive from QS
W =

1

2
(Qp

W + Q
n
W ) and QV

W = 1

2
(Qp

W − Q
n
W ), where the neutral weak vector coupling of the

proton and neutron are Qp
W = 1 − 4 sin2 θW and Qn

W = −1
To the contrary for the axial vector current it is considered only the one body

current operator neglecting the two body contribution on the expectation that it gives a

contribution at the ∼ 1% level.

The two body current operator can be obtained from the nonrelativistic reduc-

tions of the Feynman diagrams taking, for example for the pion-nucleon interaction, the

Lagrangian with the pseudovector coupling

LπNN(x) = fπNN

mπ

ψ̄(x)γµγ5τψ(x)∂µπ(x) (1.63)

as well as the interaction Lagrangian with the pseudoscalar coupling

LπNN(x) = gπNN ψ̄(x)γ5τψ(x)π(x) (1.64)

The validity of this greatly simplified description -in which color-carrying quarks and gluons

(the degrees of freedom of quantum chromodynamics, the fundamental theory of the strong in-

teractions) are assembled into colorless clusters (the nucleons), and these clusters are taken as

effective constituents of the nucleus- is based on the success it has achieved in the quantitative

predictions of many nuclear observables. However, it is interesting to consider corrections

to this picture by taking into account the degrees of freedom associated with colorless quark-

gluon clusters other than the nucleons as additional constituents of the nucleus. At least when

treating phenomena that do not explicitly involve meson production, it is reasonable to expect

that the lowest excitation of the nucleon, the ∆ isobar, plays a leading role.
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where ψ(x) is the isospin T = 1/2 nucleon field, π(x) is the pion field, fπNN is

the pseudovector πNN coupling constant f 2
πNN/4π = 0.075 and gπNN is the pseudoscalar

coupling constant. Both Lagrangians lead to the same results with the relation between

the couplings g2πNN/4π = (f 2
πNN/4π)(2mN/mπ)2, where mN is the mass of the nucleon and

mπ the mass of the pion.

In the calculation of Schiavilla et al. the current operators are obtained resorting

to the Chiral Perturbation Theory χPT , considering only the u and d quarks, so that

the QCD Lagrangian exhibits the approximate symmetry SU(2)L×SU(2)R broken spon-

taneously to the diagonal group SU(2)V with the appearance of the three pseudoscalar

Goldston bosons, the pion fields. The most general Lagragian compatible with the sym-

metries of the theory is constructed and an ordering scheme is carried out to select the

relevant interactions from the set of infinite ones allowed by the theory.

To summarize the strong interaction among nucleons as well as the electromag-

netic interaction among them is included in the Argonne v18 potential. It is examined

the relative order between the amplitude M Z , that is, the exchange of one boson Z be-

tween the electron and the deuteron with strong interaction among the nucleons and the

amplitude M γ(Z), that stands for the exchange of one photon γ between the electron and

the deuteron and the exchange of one Z among the nucleons. The order of the amplitude

M γ(Z) is given by:

M
γ(Z) = α

q2
Gµ (1.65)

where the first factor stems from the electron-deuteron electromagnetic interaction,

being q the external transfer momentum, and the second factor Gµ from the weak neutral

interaction among the nucleons. The order of the amplitude M Z is to the contrary:

M
Z = Gµ

q0

f 2
π

(1.66)

where the first factor accounts for the electron-deuteron neutral weak interaction

and the second for the strong interaction among nucleons, where fπ = 93 MeV is the pion

decay constant.

So that the relation among them is of the order M γ(Z)/M Z ∼ αf 2
π/q2, which for

the case q ∼ fπ reduces to ∼ α ≃ 10−2
Another interesting comparison is that of the amplitude M γ(Z) with two body

effects in M Z , which are suppressed with respect to the one body contribution by the
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factor q2/M2
QCD, where MQCD ∼ 1 GeV is the characteristic mass scale of QCD. So that

the relation between the amplitude M γ(Z) and the two body effects on the amplitude

M Z is αf 2
πM

2
QCD/q4 ∼ 1.

In this calculation are excluded therefore the amplitude M γ(Z), the anapole mo-

ment of one nucleon and the two body currents associated to parity violating pion-nucleon

interaction, as well as, as already mentioned, the two body operators for the axial vector

current.

In order to calculate the nuclear response functions they employ the deuteron

wave function for the initial state with mixing of the S and D states, and a partial wave

expansion to account for the final states interactions.

The inclusion of the two body current operators yields corrections to the parity

violating asymmetry at the level (1 − 2)%[20].

Other calculations include the parity mixing in both the deuteron wave function

and in the final scattering states as well as the parity violating two body currents, all of

them associated to the parity violating nucleon-nucleon interaction. These effects have

been found to be negligible [22] and [23].

1.6.3 Quasielastic scattering at forward and backward angles

At backward angles the parity violating asymmetry is dominated by the hadronic

transverse responses Sxx + Syy, S̃xx + S̃yy and Axy, see equations 1.35 and 1.36. These

transverse responses have been proved to be insensitive to the nuclear structure, [20]. On

the other hand the parity violating asymmetry at forward angles depends strongly on

the longitudinal hadronic responses S00 and S̃00 which have been proved to be sensitive

to nuclear effects beyond the impulse approximation, [8]. These are the reasons why

the measurement of the parity violating asymmetry on the electron deuteron quasielastic

scattering is carried out at backward angles and not at forward angles.

1.7 Two photon exchange

Higher order amplitudes in Perturbation Theory in the electron-nucleon elastic

scattering including the exchange of two virtual photons have been subject of investi-

gation to account for the divergence of the ratios of the nucleon electric and magnetic

form factors obtained with two independent methods under the original assumption of
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the validity of the Born approximation: the Rosenbluth separation method and the po-

larization transfer technique. The effects of the leading interference of the one photon

and two photon exchange amplitudes plays also a relevant role in the precise measure-

ments of the parity violating asymmetry: First, because of the necessity of having values

of the nucleon form factors which describe reliably the nucleon structure, and second,

because the correction to the cross section from this interference contributes to the parity

violating asymmetry, not directly, since the two photon exchange is an electromagnetic

parity conserving process, but through the modification of the electromagnetic denomi-

nator that enters in the normalization of the asymmetry, as it has been already explained

in a previous section.

The electron-nucleon elastic scattering e−(k) +N(p) → e−(k′) +N(p′) can be de-

scribed with six independent Lorentz invariant amplitudes, respecting parity and charge

conjugation invariance: three of them associated to the flip of the helicity of the elec-

tron and the other three to the non-helicity-flipping. These amplitudes parametrize the

nucleon structure with six respective complex functions of two invariants: the square

four-momentum transfer Q2 = k − k′ = p′ − p and ν = K ⋅ P , where K = k+k′
2

and P = p+p′
2
,

[24]. These functions are denoted by G̃M(ν,Q2), F̃2(ν,Q2), F̃3(ν,Q2) for the amplitudes

that do not flip the helicity and F̃4(ν,Q2), F̃5(ν,Q2), F̃6(ν,Q2) for the three that do flip

the helicity. The first two functions reduce in the Born approximation to the magnetic

G̃Born
M (ν,Q2) = GM(Q2) and the Pauli F̃Born

2 (ν,Q2) = F2(Q2) form factors.

1.7.1 Differential cross section

The differential cross section, in terms of the complex functions, depends on the

real part of the three functions associated to the non-helicity flipping amplitudes [25].

The leading contribution of the two photon exchange amplitude Mγγ comes from the

interference with the Born amplitude 2Re{M ∗
γ Mγγ}. The calculation of the real part of

this amplitude entails the difficulty of requiring the use of the off-shell form factors of the

intermediate ground state and the amplitudes and the off-shell transition form factors of

all the possible excited intermediate states. Nevertheless a calculation including only the

intermediate proton, as a particle on-shell, is able to reproduce the sign and partially the

magnitude of the discrepancies in the ratio of the form factor measurements [26].

Other observables

• Ratio between the electron- e−p and positron-proton e+p elastic scattering cross
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k

k1

k′

q1 q2

X

p p′

Figure 1.7: Two photon exchange Feynman diagram: X stands for the intermediate state

of the proton, which can be either the proton as ground state itself or excited states

X = p,Nπ,∆

section

• Normal spin asymmetries

– Target normal spin asymmetry

– Beam normal spin asymmetry

1.7.2 Normal spin asymmetry

The unitarity of the scattering matrix SS† = (I − iM ) (I + iM †) = I leads to the

equation

i (M −M
†) =MM

† =∑
Γ

MiΓM
†

Γf (1.67)

which defines the absorptive part of the scattering amplitude AbsM = i (M −M †)
The assumption of time invariance implies for the scattering amplitude

∣Mif ∣2 = ∣Mf̃ ĩ∣2
where ĩ and f̃ stand for the time reversed initial i and final f quantum states.

That assumption leads to a relation between the T-odd observables, defined as those

proportional to the difference of probabilities ∣Mif ∣2 − ∣Mĩf̃ ∣2 and the absorptive part of

the scattering amplitude:
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∣Mif ∣2 − ∣Mĩf̃ ∣2 = 2Im (M ∗
ifAbs Mif) − ∣Abs Mif ∣2 (1.68)

The normal spin asymmetry A⊥ is defined as the asymmetry in the cross section

for opposite states of the spin normal to the scattering plane:

A⊥ =

⎛⎜⎝
dσ

dΩ

⎞⎟⎠
↑

−

⎛⎜⎝
dσ

dΩ

⎞⎟⎠
↓

⎛⎜⎝
dσ

dΩ

⎞⎟⎠
↑

+

⎛⎜⎝
dσ

dΩ

⎞⎟⎠
↓
= ∣M↑(k, k′)∣2 − ∣M↓(k, k′)∣2∣M↑(k, k′)∣2 + ∣M↓(k, k′)∣2

The normal spin asymmetry is a T-odd observable, because under a rotation of π

the amplitude M↓(k, k′) is related to M↓(−k,−k′) up to a phase so that ∣M↑(k, k′)∣2 −∣M↓(k, k′)∣2 = ∣Mif ∣2 − ∣Mĩf̃ ∣2. Therefore, by equation 1.68, A⊥ can be expressed in terms

of the absorptive part of the scattering amplitude:

A⊥ =
∣Mif ∣2 − ∣Mĩf̃ ∣2∣Mif ∣2 + ∣Mĩf̃ ∣2 =

2Im (M ∗
ifAbsMif) − ∣AbsMif ∣2

2 ∣Mif ∣2 − 2Im (M ∗
ifAbsMif) + ∣AbsMif ∣2

If M ∼ α at lowest order T-odd observables cancel ∣Mif ∣2−∣Mĩf̃ ∣2 = 0. At next order,
with the one photon exchange for the scattering amplitude Mif =M1γ, the asymmetry

results:

A⊥ =
Im (M ∗

1γAbsM1γ)∣M1γ ∣2
where AbsM1γ =M2γ the absorptive part of the one photon exchange amplitude

corresponds to the amplitude of two photon exchange. Since in the Born approximation

the amplitude M1γ is real the normal spin asymmetry arises from the interference of

the one photon exchange amplitude and the imaginary part of the two-photon exchange

amplitude A⊥ ∝M1γIm (M2γ)
The diagram of the two-photon exchange is shown in the figure 1.7 where an

incident electron of four-momentum k is scattered to a final electron of four-momentum

k′ by a proton of four-momentum p at the initial state and p′ at the final state with the

exchange of two virtual photons corresponding to the four-momentum transfer q1 and q2,

with an intermediate electron of momentum k1 and with intermediate hadronic states,
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which can be the proton ground state and all the excited states compatible with the

kinematic of the process, including resonances X = p,Nπ,∆, ...
The amplitude of two-photon exchange is constructed with the absorptive part of

the amplitude in the Born approximation

The amplitudes between the initial and the intermediate state MiΓ and the inter-

mediate and the final state MΓf are:

MiΓ = ū(k1)γνu(k) 1

Q2
1

⟨X ∣Jν ∣p⟩

M
†

Γf = T ∗fΓ = (ū(k1)γµu(k′) 1Q2
2

⟨X ∣Jµ ∣p′⟩)∗ = ū(k′)γµu(k1) 1

Q2
2

⟨p′∣Jµ,† ∣X⟩
giving rise the absorptive part to the two-photon exchange amplitude:

Abs Mif = ⨋
X,s1,k1

ū(k′)γµu(k1)ū(k1)γνu(k) 1

Q2
1Q

2
2

⟨p′∣Jµ,† ∣X⟩ ⟨X ∣Jν ∣p⟩

= e4∫ d3k⃗1(2π)32Ek1

ū(k′)γµ ( /k1 −me)γνu(k) 1

Q2
1Q

2
2

W µν(p′, p)
where Q2

1 and Q2
2 are the virtualities of the exchanged photons, ∣X⟩ are the inter-

mediate hadronic states and W µν(p′, p) is the hadronic tensor.

This amplitude enters in the calculation of the beam normal spin asymmetry.

The propagators of the virtual exchanged photons in the integrand of the space phase

integral lead to the enlargement of the asymmetry for those kinematical regions where

their virtualities present near singularities.

One of these situations occurs when the intermediate electron is collinear with

either the initial or the final electron. In that case one of the virtual photons becomes

quasi-real Q2
1 ≃ 0 (for colinearity with the initial electron, for instance) while the other

one carries almost the whole four-momentum transfer of the complete scattering Q2
2 ≃ Q2.

This case is known as quasi-virtual Compton scattering, quasi-VCS.

Another situation, relevant for the experimental conditions of the A4 experiment,

is known as quasi-real Compton scattering, quasi-RCS. In this case the near singularities
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arise when the intermediate electron carries small four-momentum k1 ≃ 0 and consequently

the virtualities of the exchange photons become Q2
1 ≃ k2 =m2

e and Q2
2 ≃ k2 =m2

e.

In the calculation of Pasquini et al. [27] the hadronic tensor is modelized for both

the elastic intermediate state and for the excited or inelastic intermediate states:

• Elastic intermediate state: the on-shell form factors of the protons are used

• Inelastic intermediate states: the hadronic tensor is calculated with the sum over

all the excited intermediate states X = πN , the pion electroproduction current is

parametrized by six invariant amplitudes which are calculated using the MAID

analysis, which includes also pion production in the resonance region.



Chapter 2

Experimental setup

The A4 experiment is aimed to measure parity violating asymmetries with a beam

of longitudinally polarized electrons and normal beam spin asymmetries dominated at

leading order by the two-photon exchange process. The experimental setup is placed in

the MAMI accelerator facility. Of crucial importance for the experiment is the source of

polarized electrons, which are injected into three consecutive Racetrack Microtrons RMT

accelerating the beam up to the desired energy. Taking into account the spin dynamics

in the magnetic fields of the accelerator the spin direction can be adjusted for the desired

energy by means of a Wien Filter. Several feedback systems and monitors are placed along

the accelerator to stabilize and measure the fluctuations of the beam parameters that can

lead to false asymmetries, keeping them under control. The electron beam reaches the A4

experimental halls where it interacts with the liquid hydrogen or deuterium in the target

cell. The detector consists of a fast calorimeter with fast electronics that allow the counting

and the measurement of the energy of the single scattered electrons with a good energy

resolution to separate energetically the physical processes. An extra detector of plastic

scintillators is used to discriminate the charged scattered particles from the background of

photons at backward angles. A set of luminosity monitors at small forward angles register

the fluctuations with the polarization state of a signal proportional to the luminosity. A

high power cooling system works to dissipate the deposited heat by the beam to avoid the

reduction of the luminosity through bubbles from boiling and to suppress the luminosity

fluctuations. Several polarimeters are employed both in the A4 experimental halls and

outside to measure the beam polarization degree to which the experimentally observed

asymmetry has to be normalized, being the main source of systematic uncertainty.

43
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Figure 2.1: The schematic draw shows the floor plan of the facility of the Mainz Microtron:

the polarized beam source, the injector linear accelerator and the stages of the acceleration

in the Racetrack Microtrons. After the acceleration the electron beam is directed to the

experimental halls. In the A4 experimental halls the beam reaches the target and the

calorimeter measures the energy of the scattered electrons. Several polarimeters are places

in the facility: the Møller polarimeter in the A1 experimental hall and the Transmission

Compton and the Compton backscattering polarimeters in the A4 experimental halls.
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2.1 Source of polarized electron beam

In the source a beam of longitudinally polarized electrons is generated by means

of the photoelectric effect with a circularly polarized laser whose helicity can be reversed

to reverse the polarization state of the electron beam. The laser is generated in pulses of

100 ps (that is, 0.1 ns) and a frequency adjusted to the master frequency of the MAMI

accelerator 2.45 GHz (which corresponds to waves of period 0.4 ns). The laser beam,

after passing through a polarizer, emerges linearly polarized. A Pockels cell, acting as

a λ/4-wave plate, polarizes circulary the laser beam. Since the optical properties of the

Pockels cell change under the application of an external voltage the helicity of the laser

can be reversed with a high frequency to avoid drift systematic effects. For the A4

experiment the frequency of the Pockels cell is adjusted to 50 Hz of the electrical network

to avoid the contamination of the signal by electrical noise. The pattern of polarization

states is generated randomly by a Gate generator according to the series + − −+ and

− + +−. The laser beam is then focalized with a telescope, in order to reduce the angular

deviations, onto the surface of a photocathode consisting of an uniaxial crystal of GaAs or

a superlattice. Through the photoelectric effect electrons are emitted with a longitudinal

polarization with the same helicity as that of the incident laser. The polarization degree

of the electron beam can reach values between 70% and 80%. For the A4 experiment the

source provides a beam of 20 µA of current intensity.

The source of the polarized beam is also the origin of helicity correlations in the

beam parameters, like the current intensity, the energy and the position and angle, which

can be amplified during the acceleration. The main cause is the appearance, due to optical

imperfections in the Pockels cell, of components of linear polarization. The direction of

these linear components changes in 90○ by reversing the voltage in the Pockels cells.

The dependence of the quantum efficiency of the photocathode on the direction of the

linear polarization leads to helicity correlated asymmetries in the current intensity of

the beam. There are also spatial inhomogeneities in the Pockels cell which cause the

appearance of helicity correlated differences in the position or the angle of the beam

which are further amplified during the acceleration. As long as these helicity correlations

in the beam parameters have a common source they present strong statistical correlations.

The investigation, suppression and measurement of these helicity correlated parameters

is necessary for the possibility and success of the measurement of the asymmetries in the

experiment.

A rotable λ/2-wave plate is employed to suppress the asymmetry in the current
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intensity. The principle of its operation consists in rotating the direction of the linear

polarized components until their symmetry with respect to the photocathode axis leads

to minimization of the asymmetry in the number of emitted electrons. During the data

taking in the A4 experiment this device is operated every time the experimental conditions

of the source change. The asymmetry in the current intensity is measured with a angle

scan of the rotatable wave in order to operate around the angle where the asymmetry

changes of sign and is thus close to zero.

Another optical device of crucial importance for the experiment is an λ/2-wave
plate called GVZ (General Vorzeichnenwechseler). This device is introduced or extracted

during the data taking for long time periods of about one week. It is introduced before the

Pockels cell, rotating the direction of polarization in 180○ and thereby the helicity of the

laser and that of the emitted electrons. The GVZ is used to verify the expected change of

sign of the physical asymmetry but also to reduce systematic effects like those correlated

to the voltage of the Pockels cell or any difference in the time interval of the polarization

states. These effects are unaware of the effect of the GVZ on the light helicity and therefore

average out when combining the data for which the GVZ is introduced, represented by

IN, and the data without GVZ in the source, OUT. The data taking duration with the

GVZ IN and OUT has to be approximately equal.

2.2 Accelerator and Wien Filter

The emitted electron beam from the photocathode is accelerated with an injector

with a voltage of 100 kV. The beam is then introduced in a linear accelerator Linac where

it reaches the relativistic energy of 3.46 MeV. After that the beam enters in the sequence

of three Racetrack Microtons. A Microtron is an accelerator where the electrons are ac-

celerated by steady microwaves in resonant cavities. It is designed with the concept of

a racetrack, where the electrons are successively accelerated inside the resonant cavities

along a linear accelerator. After having increased their energy a vertical uniform magnetic

field from two semicircular dipoles deflects their trajectory with increasing radius, there

being a beam of parallel tubes through which the electron beam travels to reach the op-

posite dipole. After being deflected back to the linear accelerator the beam is accelerated

again and so on.

In the first Microtron the electron beam comes out with an energy of 14.35 MeV.

From the second stage Microtron it emerges with an energy 180 MeV. In the third Mi-
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Magnetic dipolExtraction

Accelerating section

Figure 2.2: The draw shows schematically a Racetrack Microtron, with an accelerating

section consisting of microwave resonant cavities to accelerate the electron beam and a

series of parallel beam pipes between two semicircular magnetic dipoles, whose vertical

homogeneous magnetic field deflects the electron beam with a radius increasing with

increasing energy. The electron beam recirculates through each of the beam pipes and

reaches the linear accelerator, in red color, where it is accelerated again.

crotron, which is the last utilized in the experiment, the beam increases its energy in 7.5

MeV every turn. There being n = 90 tubes the maximum of energy is 855 MeV. Using 4

turns the energy reaches 210 MeV, with 18 turns 315 MeV and finally with 36 turns 420

MeV. These are the energies of the electron used in the experiment of scattering in the

set of data analysed in this work.

Relevant to this experiment which employees the reversing of the spin to measure

observables exhibiting parity violation or T-odd observables emerging from internal exci-

tations of the nucleon by influence of higher electromagnetic orders, is the spin dynamics

of the electron in the deflecting magnetic fields. The frequency of precession of the spin

is increased with respect to the frequency of precession of the momentum in the magnetic

field by effect of the anomalous magnetic moment of the electron 1. A Wien filter before

the injector can compensate this dynamical effect allowing the selection of the spin di-

rection for all the values of the energy. This filter consists of a region with two mutually

perpendicular electric and magnetic fields. The forces of these fields compensate in the

flying electron with momentum perpendicular to them. The faster precession frequency

1which is a manifestation of the interaction of the electron with its own electromagnetic field and a

triumph of the quantum electrodynamics in its extraordinary precise prediction.
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allows the rotation of the spin which can be rotated up to 90%, increasing the intensity

of the fields.

During the travel through the accelerator the electron beam is deflected and focus

by a sequence of dipoles and quadrupoles. The electron beam parameters: current inten-

sity, energy and position, are monitored and sent back in order to adjust the parameters of

the accelerator and stabilize the beam. These operations are necessary to produce a high

quality beam that makes it possible the precise measurements of such small statistical

observables as the asymmetries.

2.3 Target

The paraboloid aluminium target cell contains the liquid target of hydrogen or

deuterium. The liquid is kept in a turbulent flow in order to facilitate the dissipation of

the heat transversely. The temperature of the target is kept low so that the hydrogen

and the deuterium are fluids in order to increase the luminosity. Another objective of

the turbulent flow and the dissipation of heat is the suppression of the target density

fluctuations. The non-helicity correlated target density fluctuations lead to a smearing

of the asymmetry distribution while the helicity correlated fluctuations adulterate the

value of the asymmetry generating an asymmetry in the rate, through the change of

the luminosity. At backward angles the length of the target is 23.3 cm, a factor 2.33

larger than at forward angles (length 10 cm) in order to compensate the decrease of the

cross section with respect to forward angles with the same Q2: At backward angles at

Q2 = 0.23 (GeV/c)2 the differential cross section is of about 14 nb, a factor ∼ 25 smaller

than at forward angles ∼ 350 nb. The density of the liquid hydrogen l −H2 and the liquid

deuterium l − D2 are 0.0708 g/cm3 and 0.1624 g/cm3, respectively, which correspond

to similar densities of nuclei per unit volume of 4.228 ⋅ 1022 nuclei/cm3 and 4.857 ⋅ 1022

nuclei/cm3, respectively, being that of the deuterium a factor 1.15 greater.

2.4 Luminosity monitors

The luminosity monitors are aimed to measure helicity correlated target density

fluctuations, together with the measurement of the helicity correlated beam current in-

tensity fluctuations. There are eight monitors at small forward angles, covering the range[4.4○,10○]. Because of the high rate at this scattering angle range the signal is integrated
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for each interval of 20 ms. The Møller scattering e⃗− + p→ e− + p of the beam electrons on

the electrons of the hydrogen or deuterium atom is the physical process on which is based

the measurement of the luminosity signal, since at small forward angles the cross section

of the Møller scattering is more than 100 greater than that of the elastic scattered electron

on the nucleon [28]. The Møller scattering cross section possess its own asymmetry:

• A parity violating asymmetry of the order of 10−9, whose smallness relative to the

parity violating asymmetry in the elastic scattering on the nucleon, of order of 10−5,

makes them suitable for the luminosity signal monitoring [28].

• A beam normal spin asymmetry, which is to the contrary of an order comparable to

the beam normal spin asymmetry of the elastic scattered electrons. This asymmetry

has been the subject of investigation of the works [29] and [30]. Since it follows

the cosinusoidal modulation on the azimuthal angle it averages out by adding the

asymmetries of the signal of the eight luminosity monitors.

2.5 PbF2 calorimeter

The main detector is a segmented fully absorbing calorimeter composed of PbF2

crystals, aimed to measure the energy of the scattered electrons with an energy resolution

3.9%/√E(GeV ) good enough to separate the elastically scattered electrons from the in-

elastically scattered ones. The detector, mounted on a rotable platform [31], possess axial

symmetry around the beam line direction, covering the whole azimuthal angle and the

polar angle interval [30○,40○] at forward angles and [140○,150○], respectively. It consists
of 1022 crystals arranged in 146 frames over which 7 crystals are mounted, constitut-

ing 7 rings. The solid angle covered by the detector is 0.64 sr. The PbF2 crystal is a

pure Cherenkov radiator without scintillating components, which makes it fast enough

to enable a counting experiment with high rates up to 100 MHz. The incident particles

deposit their energy through an electromagnetic shower that develops within a cluster of

3 × 3 crystals centered in the crystal of incidence. Technical details of the detector are

described in the works [32] and [33].

2.5.1 Readout electronics

The electronic readout of the detector is suited for the treatment of the high rates

and the fast response of the detector. Each crystal has its own electronic channel, which
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Figure 2.3: The draw shows: the electron beam direction, the target cell, the target

cooling system, the PbF2 calorimeter at forward angles and the luminosity monitor at

small forward angles. The calorimeter has axial symmetry and covers the whole azimuthal

angle with an arrangement of 1022 crystals in 146 support frames and 7 rings covering

the polar angle interval [30○,40○]. The target cooling system keeps in the liquid state

the target of hydrogen or deuterium removing the heat deposited by the incident electron

beam.
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work in parallel. The current pulse from the photomultiplier is integrated during the time

window of 20 ms. The signals from the cluster of 3 × 3 crystals around the crystal where

the maximum is localized are summed up, digitized by a 8-bit Analog-Digital Converter

(ADC) and stored in histograms for each polarization state. Details can be found in the

work [49].

2.6 Plastic scintillators

The set of plastic scintillators is aimed to discriminate the dominating neutral

background from the γs from the π0 decay at backward angles. The set of 72 plastic

scintillators modules, with a high efficiency for the detection of charged particles, are

arranged in two concentric rings before the crystals of the calorimeter, see figure 2.4.

70 of the plastic scintillators cover two frames with their respective seven rings, that is,

14 crystals, while 2 of them cover 3 frames, that is, 21 crystals. A signal in the plastic

scintillators generates an extra bit. According to this bit two histograms are generated for

each polarization state: a histogram that containing those events that have generated a

signal in both the plastic scintillator and the calorimeter detectors, which corresponds to

the energy spectrum of charged particles, and a histogram containing those events which

generate a signal only in the calorimeter, which corresponds to the energy spectrum of

neutral particles. Details can be found in the work [49].

2.7 Polarimeter

The experimentally observed asymmetry is the product of the physical asymme-

try and the electron beam polarization degree. The measurement of the electron beam

polarization degree is therefore of great relevance for the determination of the physical

asymmetry and its systematic uncertainty. The uncertainty in the measurement of the

polarization degree is moreover the dominant contribution to the systematic error of the

measured asymmetries. Two polarimeters operate outside the A4 experimental halls: the

Mott polarimeter, at the first stage of the accelerator, and the Møller polarimeter, in the

A1 experimental hall, in the antiparallel direction to that of the A4 experiment. These po-

larimeters perform the measurements under different experimental conditions from those

of the measurement of the asymmetries in the A4 experimental halls. For that reason

it is added to the intrinsic error of the measurement of the polarimeters ∼ 2% a system-
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Figure 2.4: The picture shows the calorimeter in the backward angles configuration, with

the window of the target cell inside the scattering chamber at right and the beam pipe

through which the electron beam reaches the target from the left. Before the crystals of

the calorimeter there is the arrangement of the plastic scintillators and at small forward

angles the eight luminosity monitors. The blue light is used after the data taking so that

the crystals recover from the radiation damage.
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atic error of 2% to account for the interpolation and the difference in the experimental

conditions. The Møller polarimeter is described in detail in the work [34].

Three polarimeters operate inside the A4 experimental halls: The Compton trans-

mission polarimeter (TCP), the Compton Backscattering Polarimeter and the Spin Asym-

metry Magnet Separator (SAMS). The Compton transmission polarimeter is based on the

measurement of the degree of circular polarization through the double-polarized Compton

scattering with the electrons of a magnet of the γs generated through bremsstrahlung by

the longitudinally polarized electrons of the beam. Details of this polarimeter can be

found in the work [35]. This polarimeter is sensitive to the longitudinal polarization and

does not allow an absolute measurement of the polarization degree. It achieves several

objectives: the “on-line” monitoring of the polarization degree fluctuations, the interpola-

tion between the absolute polarization degree measurements obtained with the Møller and

the Mott polarimeter,and the possibility of the measurement of the spin direction with a

transversely polarized electron beam, since, as long as the asymmetry measured by the

TCP vanishes for transverse polarization, any deviation of the spin from the orthogonal

direction to the electron beam momentum gives a deviation from zero because of the

longitudinal projection of the spin. The Compton Backscattering Polarimeter is based

on the helicity dependence in the cross section of the Compton scattering between the

longitudinally polarized beam electrons and circularly polarized photons of a laser beam.

The asymmetry in the number of detected backscattered photons and the measurement

of the circular polarization of the laser permits the determination of the absolute electron

beam polarization degree. This polarimeter operates simultaneously to the data taking

of the A4 experiment, under the same experimental conditions and without altering the

properties of the beam. Details can be found in the works [36], [37], [38] and [39]. Finally,

the SAMS enables the measurement of the electron beam polarization degree with trans-

verse polarization. This polarimeter takes advantage of the beam normal spin asymmetry

in the Møller scattering, dominated by the two-photon exchange mechanism, which can

be calculated in the framework of the QED. The Møller scattered electrons are separated

from the elastically scattered ones by means of a magnetic field. This polarimeter achieved

a measurement of the transverse polarization degree with a relative error of about 5% [30].
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Chapter 3

Measurements with the PbF2

calorimeter

Parity violating experiments can operate in two different modes: the integrating

technique or counting single events and the separation of the elastically scattered electrons

from the inelastically scattered can be achieved with the use of a magnetic spectrometer

or doing a calorimetric measurement.

The A4 experiment is a counting experiment in which every 300 seconds histograms

are generated that correspond to the energy spectrum of the single scattered particles

whose energy is proportional to the integrated charged of the current pulse generated

by the photomultipliers, from the light output in the crystals of the calorimeter, which

is digitalized by means of an ADC. The histograms are recorded for each crystal of the

segmented calorimeter, giving access to the polar and azimuthal dependence, and two his-

tograms are generated for each polarization state, since the objective is the determination

of the asymmetry. The good energy resolution of the detector allows the separation of the

elastically scattered electrons from the inelastically scattered ones, without the presence

of magnetic fields. The experiment can work at the two kinematical configurations al-

lowed by the rotation of 180○ of the calorimeter, that is, at forward and backward angles.

At backward angles the experiment operates with two targets: one of liquid hydrogen lH2

and another of liquid deuterium lD2, in order to study the elastic scattering of the electron

on the proton and the quasielastic scattering on the deuteron, respectively. At forward

angles the elastic peak is clearly separated with a negligible amount of background, mainly

from the gamma photons of the neutral pion decay [32]. At backward angles there is an

extra detector of plastic scintillators to distinguish between the neutral and the charged

55
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particles since the backscattered electrons have less energy and their cross section is lower

while the photons are quite isotropically produced giving rise to an overlap in the spec-

trum if only the calorimeter is employed. The energy spectrum at backward angles, with

different values of the electron beam energy: 210,315 and 420 MeV and for both types of

targets will be the subject of this work.

After the basic features of the experimental setup, along with the basic assump-

tions relevant to the interpretation of the energy spectrum, are presented, it follows the

enumeration and description of the main physical processes involved in the experiment.

It follows a discussion and comparison of the energy spectra for the beam energies and

the targets of the data treated in the scope of this work. Afterward it is presented a

brief description of the Monte Carlo simulation of the energy spectrum and the detector

response. Once the energy spectrum is understood the procedures to extract the counting

rates are presented and the discussion of the cross section of the processes of interest with

a final comparison between the calculated cross section and the experimentally observed

one.

The beamline is aligned to the center of the calorimeter which exhibits axial sym-

metry. The detector covers a range between 140○ and 150○ of polar angle, in order to have

a large solid angle of 0.64 sr to increase the statistics. At backward angles the length of the

target cell is 23.3 cm, larger than that at forwards, 10 cm, to compensate the decrease of

the cross section at backward angles. At the nuclear scale the turbulent flow of the liquid

target that helps to the dissipation of the deposited energy in the target by the electron

beam has obviously no influence, neither the thermal movement of the molecules nor the

molecular or the atomic bonds of the H2 and D2 but it is of relevance the momentum

distribution of the nucleon in the deuteron for the deuterium target (Fermi motion). The

Møller scattering of the beam electrons from the electrons of the atoms is very forwardly

focused so that this process is strongly suppressed in the calorimeter, being the physical

process which is exploited in the luminosity monitors at small forward angles to measure

the fluctuations of the luminosity signal. The thin layers of the aluminium walls of the

target cell act also as scattering centers which have to be taken into account.

3.1 Physical processes

A common process for all targets is the deposition of the beam energy of the elec-

trons in the materials through ionization and radiation, bremsstrahlung, which translates
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into a decrease of the beam energy and a modification of the invariant transfer momentum

Q2 in the scattering. This physical processes lead to a radiative tail towards the lower

energies of the peak, which at backward angles is hidden by the background pollution.

Let us classify the physical processes according to the different targets:

• Spectrum of charged particles

– Proton

∗ Elastically scattered electrons p(e⃗, e)p and inelastically scattered electrons

p(e⃗, e)X with production of pions either directly X = pπ0, pπ+ or through

the intermediate excitation of the narrowed lifetime resonance ∆(1232).
The energy of the inelastically scattered electrons is lower than that of the

elastically scattered ones and the energy resolution allows their separation

in the spectrum from the elastic peak.

∗ Electrons from the π0 decay: decay modes π0 → γ e+e−, π0 → γ positro-

nium, π0 → e+e−e+e−, π0 → e+e−, with branching ratios (1.174 ± 0.035)%,(1.82 ± 0.29) ⋅ 10−9, (3.34 ± 0.16) ⋅ 10−5, (6.46 ± 0.33) ⋅ 10−8 [1], respectively.

All of them but the first are negligible.

∗ Electrons or positrons produced by materialization of the γs of the π0 de-

cay in the materials before the calorimeter (scattering chamber and plastic

scintillators) through these processes: photoelectric effect, Compton scat-

tering and pair production, being the last one the dominant.

– Deuteron

∗ Elastically scattered electrons on the deuteron as a whole d(e⃗, e)d , quasielas-
tically scattered electrons on a nucleon d(e⃗, e)pn and inelastically scat-

tered electrons, both producing pions coherently and incoherently on the

deuteron. For our energies the elastic scattering on the deuteron is strongly

suppressed. In the quasielastic scattering the energy of the scattered elec-

trons is lower than that of the elastically scattered on a free proton by an

amount equal to the binding energy of the nucleus, 2.2 MeV in the case of

the deuteron. There is also a smearing in the energy of the quasielastically

scattered electrons because of the momentum distribution of the nucleon

in the deuteron (Fermi motion).

• Spectrum of neutral particles
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– Proton

∗ γ photons of the π0 decay: decay modes π0 → 2γ, π0 → γ e+e− and π0 → 4γ

with branching ratios (98.823 ± 0.034)%, (1.174 ± 0.035)% and < 2 ⋅ 10−8
(with C.L=90%), respectively.

∗ Electrons from the chain of decays of the π+: The charged pion with a

mean life (2.6033 ± 0.0005) ⋅ 10−8 s reaches the calorimeter where it losses

its energy and decays into µ+νµ with branching ratio (99.98770±0.00004)%
(let us neglect the other decay modes). The muon, with comparable rest

mass and thus small kinetic energy, decays into e+ν̄eνµ with Br≈ 100%,

delivering a large kinetic energy to the electron, which leaves a signal in

the calorimeter but not in the plastic scintillator so that it is recorded in

the spectrum of neutral particles.

– Deuteron

∗ On the deuteron π− are also produced through the reaction e− + n → e− +

p + π− which have an analogous behaviour to that of the π−.

The excitation of the resonance ∆(1232) which decays into Nπ with branching

ratio ≈ 100% will increase the amount of pions and therefore the background of γ photons

in the spectrum of neutral particles and correspondingly the background pollution in the

spectrum of charged particles.

In the energy spectra there is also presence of scattered electrons in the nuclei of

aluminium of the target walls, either elastically (negligible), quasielastically scattered on

the individual nucleons or inelastically scattered with the corresponding production of

pions, which contribute to the neutral background.

3.2 Energy spectrum

3.2.1 Hydrogen

The experimentally observed energy spectra of charged particles with the hydrogen

target for the energies 210 MeV, 315 MeV and 420 MeV exhibit the presence of the elastic

peak, see figure 3.1.
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Figure 3.1: Energy spectra of charged particles for the hydrogen target for the beam

energies 210,315 and 420 MeV. In vertical dotted lines are shown: the elastic peak, the

upper cut at 3.0 σE to the right of the elastic peak, two lower cuts at 1.0 and 2.0 σE

to the left of the elastic peak and the pion threshold and the 1 − σthr line to the right.

The spectra are represented at the same scale for comparison. It can be clearly observed

that the rate of scattered electrons decreases with the energy, the width of the elastic

peak increases and also the amount of background pollution with increasing energy. The

histograms for both polarization states are shown in blue and red color.
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Elastic scattering

The energy of the elastically scattered electrons E′, without taking into account

the loss of energy in the materials of the target cell through ionization or bremstrahlung,

and neglecting the electron mass in the ultrarelativistic limit me = 0, is:

E′ = E

1 +
2E

M
sin2

θ

2

(3.1)

where E is the electron beam energy, M is the mass of the nucleon and θ is the

scattering angle.

Inelastic scattering

The energy of the inelastically scattered electron by excitation of the nucleon to

states with invariant mass W is:

E′th = 2ME +M2 −W 2

2M + 4E sin2
θ

2

(3.2)

The threshold energy of the incident electron for the production of a state of

invariant mass W is:

Eth = W
2 −M2

2M
(3.3)

For pion production the invariant mass is W = M +mπ = 1073.25 MeV and the

threshold energy Eth,π0 = 144.69 MeV. At the center of the resonance ∆(1232) the invari-
ant mass is W = 1232 MeV and the threshold energy Eth,∆ = 339.71 MeV.

Energy resolution

The relative energy resolution is dominated by the statistical term which is orig-

inated in the Poisson distribution of the number of photons generated by the energy

deposition in the crystal ∆E/E ≃ 3.5%/√E[GeV ], [28].
In the energy spectrum of charged particles the elastic peak is identified and its

right slope, where the amount of background is negligible, is fitted to a Gaussian in order
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to determine the mean of the peak and its width. The mean and the measured pedestal

are used to calibrate the spectrum and the values of the calibration are used to determine

the ADC channel of the pion production threshold. From the width, the mean and the

pedestal the actual energy resolution is calculated.

The table below offers for the different beam energies: the energy of the elastically

scattered electrons on the proton E′, the energy of the inelastically scattered electrons

at the pion production threshold E′th,π and at the center of the ∆(1232) resonance E′th,∆,
if the beam energy is greater than the threshold energy Eth,∆, and the relative energy

resolution at the elastic peak:

E (MeV) E′ (MeV) E′th,π (MeV) E′th,∆ (MeV) ∆E′/E′ (%)

210.2 149.3 46.5 − 13.7

315.1 195.5 105.7 − 10.9

420.2 231.4 151.7 44.1 10.8

Experimentally observed energy spectra and background

Figures 3.2 and 3.3 show the experimentally observed energy spectra of charged

particles for the energies 210 MeV, 315 MeV and 420 MeV and the hydrogen target. The

dotted vertical lines represent the center of the elastic peak, the upper cut at 3σE to the

right of the elastic peak, where σE is the width of the right slope of the elastic peak,

and two lower cuts at 1σE and 2σE to the left of the elastic peak. The dashed-dotted

lines represent the energy of the inelastically scattered electrons at the pion production

threshold: the center and 1σπ to the right, where σπ = ∆E′th,π is the absolute energy

resolution at the energy of the pion production threshold.

The amount of background pollution from the γ → e−e+ increases with the energy,

as can be observed in the energy spectra, since with increasing energy more π0 are pro-

duced. At 420 MeV the energy of the electron beam is larger than the threshold energy

for the ∆(1232) resonance.
Other two sources of the increase of the background with the energy are:

• The decrease with the energy of the relative difference between the energy of the

elastically scattered and the inelastically scattered electrons at the pion production

threshold:

E′ −E′th,π
E′

= W
2 −M2

2ME
= mπ

E
(1 + mπ

2M
) (3.4)
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• The increase with the energy of the absolute energy resolution ∆E ∝
√
E

3.2.2 Deuterium

Figures 3.2 and 3.3, at the right panels, show for the deuterium target and the

beam energies 315 MeV, 210 MeV and 420 MeV the energy spectra of neutral particles

and of charged particles, where the quasielastic peak can be recognized.

Quasielastic scattering

The energy of the quasielastic peak is obtained from the energy conservation when

the whole transferred momentum is transmitted to one nucleon while the other one stays

at rest:

ωQE +Md =M +
√
M2 + ∣q⃗∣2 (3.5)

where ωQE is the transferred energy at the quasielastic peak, q⃗ is the transferred

three momentum, M is the nucleon mass and Md = 2M − ǫB is the mass of the deuteron,

where ǫB = 2.2 MeV is the deuteron binding energy.

The energy of the quasielastically scattered electrons at the quasielastic peak is:

E′QE =
E
⎛⎜⎝1 −

ǫB

M

⎞⎟⎠ +
ǫ2B

2M
− ǫB

1 −
ǫB

M
+

2E

M
sin2

θ

2

≃ E − ǫB

1 +
2E

M
sin2

θ

2

(3.6)

The energy transfer ω when the momentum of the struck nucleon p⃗ forms an angle

φ with the transferred three momentum q⃗ is given by:

ω +Md =
√
M2 + ∣p⃗∣2 +√M2 + ∣q⃗∣2 + ∣p⃗∣2 + 2∣p⃗∣∣q⃗∣ cosφ (3.7)

The spectator nucleon has momentum −p⃗ since in the laboratory frame the deuteron

is at rest. The transferred energy presents a minimum when the momentum of the struck

nucleon is antiparallel to the transferred momentum, that is φ = π and its module is∣p⃗∣ = ∣q⃗∣/2, and the maximum energy of the quasielastically scattered electron is:
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E′QE,max =
E −

ǫ2B

2Md

− ǫB

1 +
2E

Md

sin2
θ

2

≃ E − ǫB

1 +
2E

Md

sin2
θ

2

(3.8)

In this case both nucleons emerge with momentum q⃗/2 in the same direction,

carrying together the total momentum transfer and having zero relative momentum. The

invariant mass of the system in this case is W = 2M =Md + ǫB

Inelastic scattering

The pion production can happen both coherently at the deuteron as a whole and

incoherently on one nucleon. In the latter case the threshold corresponds to the case in

which the three bodies of the final state are at relative rest among them carrying the whole

system the transferred momentum. It corresponds to the invariant mass W = 2M +mπ.

In any other case the invariant mass includes their relative kinetic energies.

Elastic scattering

The energy of the elastically scattered electron on the deuteron as a whole is that

given by the formula 3.1 with the deuteron mass Md instead of the nucleon mass M .

Energy resolution and smearing

The width of the quasielastic peak includes both the energy resolution and the

smearing effect because of the Fermi motion in the deuteron. The width due to the smear-

ing ∆EF can be estimated subtracting quadratically from the width of the quasielastic

peak the width corresponding to the energy resolution at the energy of the scattered elec-

tron E′ = 195.5 MeV, yielding ∆EF = 24 MeV. This smearing in the energy is consistent

with that calculated from the Fermi momentum of the deuteron pF = 55 MeV [19], which

is δω = qpF /√M2 + q2 = 25.6 MeV, where q = 495 MeV is the transferred three momentum

at Q2 = 0.23 (GeV/c)2

The difference between the energy of the elastically scattered electrons and the

maximum energy of the quasielastically scattered electrons, given by ǫB, see equation 3.8

is smaller than the width of the quasielastic peak so that the elastically scattered electrons

are included in the interval of the quasielastic peak.
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The table below gives for the different beam energies: the energy of the elastically

scattered electron on the deuteron E′el, the energy of the quasielastically electrons at the

center of the quasielastic peak E′QE, the energy of the inelastically scattered electrons at

the coherent pion production threshold E′th,π and at the center of the ∆(1232) resonance
E′

∆
and the effective relative energy resolution ∆E′/E′ at the quasielastic peak:

E (MeV) E′el (MeV) E′QE (MeV) E′th,π (MeV) E′
∆
(MeV) ∆E′/E′ (%)

210.2 174.6 147.8 58.5 − 18.1

315.1 241.3 194.2 134.2 − 16.1

420.2 298.6 230.3 199.2 74.2 14.9

Background

For the energy spectrum in deuterium three effects increase the amount of back-

ground in the quasielastic peak with respect to the background pollution in the elastic

peak with hydrogen target:

• The larger amount of neutral background by a factor of approximately 2 while the

increase in the cross section is only about 1.5.

• The shift to the lower energies of the quasielastic peak with respect to the position

of the elastic peak in the energy spectrum for the proton and the higher energy

of the inelastically scattered electrons at the coherent pion production threshold

with respect to the energy at threshold of the inelastically scattered electron on the

proton by a factor:

E
′,d
th

E
′,p
th

≃ 1 +
2E sin2

θ

2

Md + 2E sin2
θ

2

(3.9)

• The smearing effect that increases the effective energy resolution at both the quasielas-

tic peak and at the pion production threshold.

3.3 Neutral background subtraction

The background from the conversion into e−e+ pairs and Compton scattering from

the γ of the π0 decay in the spectrum of charged particles, which is called neutral back-
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ground pollution, has been the subject of a careful study in the frame of the work [41].

Here it is offered a summary of the main features and conclusions of the neutral back-

ground subtraction method employed for the extraction of the differential cross section

in the next section and in the subsequent chapters for the correction of the extracted

asymmetries from the energy spectrum from the adulteration of the own asymmetry of

the background.

The energy dependence of the conversion probability has been calculated, taking

into account the cross section of the pair production and the Compton scattering and

the thickness of the materials where the processes occur. The study includes the investi-

gation of the energy loss of the secondary electrons from the conversion with respect to

the primary electrons of the scattering on the nucleon, the variation of the energy resolu-

tion because of the differences in the electromagnetic shower generated by the secondary

electrons and the fact that not all the secondary electrons trigger a signal in the plastic

scintillators, since those generated close to the end border deposit not enough energy to

be recorded.

These investigations have justified a simplified method for the determination of

the neutral background pollution from the experimentally observed spectrum of neutral

particles, called scaling-shifting method. The feasibility of this method has been confirmed

with the reproduction of the energy spectrum and the study of the detector response with

a simulation based on the Geant4 tool and by the previous analysis of the data atQ2 = 0.23
(GeV/c)2 with a hydrogen target at backward angles with longitudinal beam polarization

[40].

The scaling-shifting method consists on the assumption that the γ conversion pro-

cesses in the integration interval around the elastic peak are in very good approximation

energy independent so that the background pollution is assumed to exhibit the same

distribution as that of the experimentally observed energy spectrum of neutral particles.

The background pollution can then be obtained applying an scaling factor ǫ that accounts

for the conversion probability and a shifting δ in order to account for the approximate

double energy loss of the electrons of the conversion with respect to the electrons of the

scattering on the nucleon. The values of the parameters yielded by the simulation of the

energy spectrum and the detector response are ǫ = 0.1 ± 0.01 and δ = 35 ± 5 MeV. These

values of the scaling factor and the shifting parameters are employed for both the beam

energies 315 MeV and 420 MeV at backward angles, with both hydrogen and deuterium,

since both the conversion probability and the energy deposition vary smoothly with the

energy, see [41].
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3.4 Differential cross section

3.4.1 Proton

The differential cross section of the elastic electron-proton scattering is given in

very good approximation by the Rosenbluth formula:

dσ

dΩ
= σMf ⋅ [(Gp

E)2 + τ (Gp
M)2

1 + τ
+ 2τ (Gp

M)2 tan2 θ2] (3.10)

where σM = α2

4E2 sin4(θ/2) is the Mott differential cross section and f−1 = 1+ 2E
M

sin2 θ/2
is the recoil factor.

In order to compare with the experimentally observed cross section in the detector

the theoretical differential cross section has been averaged over the detector acceptance

and the target cell length:

⟨ dσ
dΩ
⟩ = ∫target dl∫calor. dΩ

dσ

dΩ

∫
target

dl∫
calor.

dΩ
(3.11)

3.4.2 Deuteron

Quasielastic scattering

The differential cross section of the quasielastic electron-deuteron scattering d2σ
dΩdE′

depends on the energy of the quasielastically scattered electron E′, which is not fixed

because of the momentum distribution of the nucleon in the deuteron (Fermi motion).

This cross section has been investigated in the frame of the work [42], assuming the

impulse approximation and excluding off-shell effects of the nucleon [11]. The investigation

includes the study of the flux, the phase space, the matrix element and the wave function

of the ground state of the deuteron in the momentum space. Several nuclear models for

the potential have been tested: a Yukawa potential, an exponential and a Gaussian [43],

and have been compared with a parametrization of the phenomenological ground state

of the deuteron [44]. The physical problem was reduced to a mathematical problem of

numerical calculus and the calculated momentum space distributions show an insensitivity

of the cross section on the particular form of the nuclear potential in the ground state of
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the deuteron.

In the scope of this work the static approximation for the deuteron has been used,

being the differential cross section the sum of the cross sections of the elastic scattering

on the proton and the neutron:

( d2σ

dΩdE′
)QE

d

≃ ( dσ
dΩ
)
p

+ ( dσ
dΩ
)
n

(3.12)

Elastic electron-deuteron scattering

The differential cross section of the elastic electron-deuteron scattering:

dσ

dΩ
= σMf ⋅ [A (Q2) +B (Q2) tan2 θ

2
] (3.13)

where σM is the Mott differential cross section, f the recoil factor for the deuteron

f−1 = 1 + 2E
Md

sin2 θ/2, being Md the deuteron mass, τ = Q2

2Md
. The functions A (Q2) and

B (Q2) depend on the three electromagnetic form factors of the deuteron, since it is a

nucleus of spin 1:

A (Q2) = G2
C (Q2) + 8

9
τ 2G2

Q (Q2) + 2
3
τG2

M (Q2) (3.14)

B (Q2) = 4
3
τ(1 + τ)G2

M (Q2) (3.15)

where GC is the monopole charge form factor, GQ is the quadropole charge form

factor and GM is the dipole magnetic form factor. They are normalized to:

GC(0) = 1
GQ(0) =M2

dQd

GM(0) = Md

M
µd

where Qd = 0.2859(3) fm2 is the deuteron quadrupole moment and µd = 857406(1)
is the deuteron magnetic moment in nuclear magnetons.

The three electromagnetic form factors of the deuteron have been obtained from a

phenomenological parametrization [45]:
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Figure 3.2: For the beam energy 315 MeV at backward angles for hydrogen, left, and

deuterium, right: the spectrum of neutral particles in black color and the spectrum of

charged particles in blue color. Below, the spectrum of charged particles, the neutral

background pollution obtained with the scaling-shifting method in red color and in pink

color the spectrum of charged particles after having subtracted the background pollution.

In vertical dotted lines the upper cut, the elastic or quasielastic peak and the lower cuts

at 1−σ and 2−σ to the right of the peak, where σ is the width of the peak. The vertical

dashed-dotted lines represent: the pion production threshold and the right one the interval

given by the effective absolute energy resolution at the pion production threshold energy.
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Figure 3.3: For the beam energies 210 MeV and 420 MeV for hydrogen and deuterium:

the spectrum of neutral and charged particles, in black and blue color, respectively, the

background pollution in red color and the spectrum of charged particles with the sub-

tracted background pollution in pink color. The elastic or quasielastic peak, the upper

and lower cuts at 1−σ and 2−σ are in vertical dotted lines and in vertical dashed-dotted

lines the pion production threshold and the distance to the right of one effective absolute

energy resolution.
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Gi (Q2) = Nigi (Q2)Fi (Q2) (3.16)

gi (Q2) = (1 + γiQ2)−δi (3.17)

Fi (Q2) = 1 − αi

Q2

m2
ω +Q

2
− βi

Q2

m2
φ +Q

2
(3.18)

Ni = Gi (0) (3.19)

where Gi, i = 1,2,3 correspond to Gc, GQ and GM and the parameters are:

Form factor α β γ (GeV−2) δ

Gc 5.9 ± 0.1 −5.2 ± 0.2 13.9 ± 1.4 0.96 ± 0.07

GQ 3.1 ± 1.1 −2.1 ± 1.2 7.2 ± 2.8 1.6 ± 0.5

GM 3.78 ± 0.04 −2.87 ± 0.04 11.4 ± 0.5 1.07 ± 0.03

Experimentally observed and Rosenbluth differential cross section

The experimentally observed cross section is obtained from the rate R for each

ring averaged over the azimuthal angle and divided by the luminosity L and the element

of solid angle ∆Ω for each ring.

⎛⎜⎝
dσ

dΩ

⎞⎟⎠
exp

= R

L∆Ω
(3.20)

where L = 5.28 ⋅ 1037 cm2s−1 at backward angles with the factor 1.15 to take into

account the difference of the density of the deuterium with respect to the hydrogen. The

element of solid angle is calculated as ∆Ω = 2π(cos(θ1)−cos(θ0)), where θ1 and θ0 are the
upper and lower polar angle of each ring at forward angles. The error of the experimental

cross section is calculated from the Poisson standard deviation of the number of counts√
N , that is ∆R = √R/T , where R = N/T and T = 300s and from the error of the

luminosity of about 1%. The rate has been calculated for the lower cut at k = 0.0, that
is, for the right side of the elastic or quasielastic peak and multiplied by the factor 2.

The theoretically expected differential cross section, averaged over the detector

acceptance and the target cell length, is calculated from the formula 3.11 and for the

deuterium it is assumed the static approximation, equation 3.12. The error is calculated

with a Monte Carlo method from the errors of the nucleon electromagnetic form factors,

obtained from a Monte Carlo fit to the whole world data [46].
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The table below shows the comparison between the experimentally observed and

the averaged Rosenbluth differential cross sections for each of the rings employed in the

analysis, which are plotted in the figure 3.4:

H2 D2

E (MeV) θ̄
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
exp

⎛⎜⎝
nb

sr

⎞⎟⎠
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
Ros

⎛⎜⎝
nb

sr

⎞⎟⎠
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
exp

⎛⎜⎝
nb

sr

⎞⎟⎠
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
Ros

⎛⎜⎝
nb

sr

⎞⎟⎠

210

142.14○ 29.40 ± 0.03 34.20 ± 0.19 37.82 ± 0.04 47.44 ± 0.06

143.57○ 29.17 ± 0.03 33.24 ± 0.18 37.17 ± 0.04 46.32 ± 0.05

145.00○ 27.88 ± 0.03 32.38 ± 0.17 36.03 ± 0.04 45.30 ± 0.05

146.43○ 26.75 ± 0.03 31.60 ± 0.17 35.28 ± 0.04 44.37 ± 0.04

147.86○ 24.93 ± 0.02 30.90 ± 0.16 33.33 ± 0.03 43.54 ± 0.04

315

142.14○ 14.31 ± 0.01 14.72 ± 0.07 20.55 ± 0.01 21.03 ± 0.02

143.57○ 14.09 ± 0.01 14.37 ± 0.07 20.37 ± 0.02 20.57 ± 0.01

145.00○ 13.69 ± 0.01 14.05 ± 0.07 19.75 ± 0.02 20.16 ± 0.01

146.43○ 13.26 ± 0.01 13.76 ± 0.06 19.33 ± 0.02 19.78 ± 0.01

147.86○ 12.56 ± 0.01 13.49 ± 0.06 18.29 ± 0.02 19.44 ± 0.01

420

142.14○ 6.87 ± 0.01 6.77 ± 0.03 4.82 ± 0.01 9.80 ± 0.00

143.57○ 6.81 ± 0.01 6.61 ± 0.03 4.39 ± 0.01 9.59 ± 0.00

145.00○ 6.56 ± 0.01 6.47 ± 0.03 5.55 ± 0.01 9.39 ± 0.00

146.43○ 6.44 ± 0.01 6.34 ± 0.03 5.72 ± 0.01 9.22 ± 0.00

147.86○ 6.10 ± 0.01 6.22 ± 0.03 5.36 ± 0.01 9.06 ± 0.00

For the beam energy 315 MeV with hydrogen and deuterium it is observed an

agreement between the experimentally observed and the calculated differential cross sec-

tion, except for a slight deviation in the slope with increasing scattering angle of about a

5% that could be explained taking into account the QED radiative corrections, which for

the this energy amount up to 7% [41].

For the beam energy 420 MeV with hydrogen there is also agreement between the

experimentally observed and the Rosenbluth differential cross section. For the beam en-

ergy 210 MeV the experimentally observed differential cross section is however smaller

than the calculated one by about 15% for the hydrogen and about 20%. For the beam

energy 420 MeV with deuterium the deviation is even larger, being the experimentally

observed differential cross section approximately one half of the calculated one and ex-

hibiting a modulation in the dependence on the scattering angle. These disagreements
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Figure 3.4: As a function of the polar angle of the detector for the five inner rings em-

ployed in the analysis the experimentally observed differential cross section, in black color,

and the Rosenbluth differential cross section, in blue color, averaged over the detector ac-

ceptance and the target cell length, for the beam energies 315 MeV, 210 MeV and 420

MeV for hydrogen and deuterium targets.
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for the data from which the beam normal spin asymmetries have to been extracted have

not yet been understood and have to be subject of further investigation.

The table below shows the calculated differential cross section for the quasielastic

electron-deuteron scattering with the static approximation using the Rosenbluth formula( dσ
dΩ
)
QE

, the differential cross section of the elastic electron-deuteron scattering ( dσ
dΩ
)
E

calculated with the phenomenological parametrization of the deuteron electromagnetic

form factors from [45], both averaged over the detector acceptance and the target cell

length, and the ratio η of the elastic and the quasielastic differential cross sections:

E(MeV)
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
QE

⎛⎜⎝
nb

sr

⎞⎟⎠
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
E

⎛⎜⎝
nb

sr

⎞⎟⎠ η

210 45.5242 0.7033 0.0154

315 20.2506 0.0534 0.0026

420 9.4343 0.0060 0.0006
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Chapter 4

Data analysis determination of the

parity violating asymmetry

4.1 Introduction

The measurement of the parity violating asymmetry in the cross section of the

electron-deuteron quasielastic scattering is aimed to the the determination of the strange

vector and the axial vector form factors of the nucleon. This determination can be carried

out in principle combining this measurement with those of the parity violating asymme-

tries on the proton at forward and backward angles at the same value of the invariant

Q2 = 0.23 (GeV/c)2.

The objective of this chapter is the determination of the physical asymmetry from

the sample of asymmetries in the number of counts extracted from the experimentally

observed energy spectra.

The chapter starts with the discussion of the statistical nature and the averaging

character of the experimentally observed asymmetry. It continues with the study of

the delimitation of the interval of integration in the energy spectrum and the processes

contributing to the background in that range. A more careful attention is payed to

the dominating neutral background, from whose study the optimal cut is determined

that minimizes the total error. Afterwards it follows the evaluation of other systematic

corrections and their uncertainties. Finally, some systematic tests are expounded which

lead to the presentation of the measurement of the parity violating asymmetry.

75
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4.2 Concept and statistical nature

The asymmetry in the cross section is extracted experimentally from the asym-

metry in the number of counts or rate, since the experimentally observed cross section

σ = R/L is the quotient of the rate R of the scattered particles and the luminosity L,

whose absolute value is at first approximation equal for both polarization states.

The number of counts for each polarization state, NR and NL (for right- and left-

handed electrons, respectively), are extracted from the histograms for each of the crystals

of the calorimeter. The asymmetry is then:

A = NR −NL

NR +NL

(4.1)

Assuming that the number of counts belong to a Poisson parent distribution, whose

limit for large values of the mean is a Gauss distribution, the standard deviation is ∆(N) =√
N . The asymmetry belongs hence also to a Gauss parent distribution whose standard

deviation by error propagation is:

∆(A) =√ 4NRNL(NR +NL)3 =
√

1

N
(1 −A2) ≃ 1√

N
(4.2)

since NR = N/2(1 + A), NL = N/2(1 − A), being N = NR + NL, and the last

approximation is valid because of the smallness of the asymmetry ∼ 10−5.
The asymmetries extracted for each crystal and each run of 300 seconds have to

be collected in order to increase the statistics. The segmentation of the calorimeter in

146 frames and 7 rings allows the representation of the dependence of the asymmetry on

the azimuthal angle and the polar angle (related to the scattering angle except for the

uncertainty in the vertex position because of the target cell length). The single runs allow

the monitoring of the time evolution.

4.3 The measured asymmetry as an average

The parity violating asymmetry is a function of the momentum transfer and the

scattering angle APV (Q2, θ). Through its dependence on Q2 the asymmetry depends on

the beam energy E and the energy of the quasielastically scattered electrons E′, that

is, APV (E,E′, θ). The experimentally extracted asymmetry is therefore a cross section

weighted average:
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Figure 4.1: As a function of the lower cut, represented by the dashed lines and ranging

from k = 0.0 at the center of the quasielastic peak to k = 0.5,1.0,1.5,2.0 are plotted

the extracted asymmetries: in red color the asymmetries extracted from the spectrum of

charged particles without background subtraction Ae and in blue color the raw asymmetry

A0 after the subtraction of the asymmetry of the background Aγ . The dashed-dotted

lines represent the coherent pion production threshold with an interval of 1 − σ to the

right, determined from the effective energy resolution at the energy of the coherent pion

production threshold. The experimentally observed spectrum of charged particles together

with the estimated background pollution and the spectrum resulting from the subtraction

of the background are displayed as references. It can be observed that the raw asymmetry

after the background subtraction becomes constant inside the error bars, being compatible

with the asymmetry at the center of the quasielastic peak, and keeping the constancy even

in the region of the coherent pion production threshold.
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Figure 4.2: In the figure above the parity violating asymmetry on the deuteron, including

the vector strangeness and the axial vector terms, that is APV = AV +AS+AA as calculated

from [40] and [16], is represented as a function of the scattering angle corresponding to the

polar angle of the detector in the blue curve. In the purple line it is shown the averaged

PVA over the detector acceptance and the target cell length. In the figure below in the

red curve it is displayed the variation with the scattering angle of the differential cross

section on the deuteron assuming the static approximation, that is, the differential cross

section is the sum of that on the proton and on the neutron. The PVA on deuteron varies

in this scattering angle range in about 1.4 ppm, that is, about 6.4 % of the asymmetry.
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• over the detector acceptance, which covers a solid angle of 0.64 sr. and the target

cell length of 23.3 cm at backward angles

• over the incident energy E, which varies due to energy losses in the target and the

material of the target cell through ionization and bremsstrahlung

• and over the energy of the scattered electrons, which is not fixed in the quasielastic

scattering, exhibiting a distribution associated to the momentum wave function of

the nucleon in the deuteron (Femi motion).

⟨APV ⟩ =
∫
QE

dE′∫
loss

dE ∫
target

dl∫
calor

dΩ
⎛⎜⎝

dσ

dΩ dE′
⎞⎟⎠
QE

(E,E′, θ) A (Q2, θ)

∫
QE

dE′∫
loss

dE ∫
target

dl∫
calor

dΩ
⎛⎜⎝

dσ

dΩ dE′
⎞⎟⎠
QE

(E,E′, θ)
(4.3)

The effects of the energy loss will be included in the average of the calculated asym-

metry using the approximation ⟨APV (Q2)⟩ = APV (⟨Q2⟩), where ⟨Q2⟩ is the cross section

weighted average of the momentum transfer over the effective scattering angle (detector

acceptance and target cell length) and over the incident electron energy, including the an-

gular straggling and the losses in the target cell because of ionization and bremsstrahlung.

The averaged transfer momentum and its uncertainty calculated at backward angles, for

the energy 315 MeV and a hydrogen target is ⟨Q2⟩ = 0.2293 ± 0.0003 (GeV/c)2 [12]

The dependence on E′ of the cross section in the quasielastic scattering has been

investigated in the frame of the work [42], using the impulse approximation and excluding

off-shell effects of the nucleon. A complete calculation of the cross section with the kine-

matics of the A4 experiment has been requested to Professor R. Schiavilla. In the scope

of this work, consistently with the static approximation employed for the asymmetry, the

cross section of the electron deuteron quasielastic scattering is approximated by the sum

of the cross sections of the elastic scattering on the proton and the neutron.

The cross section weighted average over the effective scattering angle is:

⟨APV ⟩ = ∫target dl∫calor dΩ
dσ

dΩ
A (Q2, θ)

∫
target

dl∫
calor

dΩ
dσ

dΩ

(4.4)
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Finally, let us present the proof that the extracted asymmetry from the counts N i

or rates Ri (where i = 1,0 stand for the polarization state) is a cross section weighted

average:

∫
θ2

θ1

dσ

dΩ
(θ) ⋅A(θ)dΩ

∫
θ2

θ1

dσ

dΩ
(θ)dΩ

=
∫

1

2
[dσ1
dΩ
+
dσ0

dΩ
] [dσ1

dΩ
−
dσ0

dΩ
] / [dσ1

dΩ
+
dσ0

dΩ
]dΩ

∫
1

2
[dσ1
dΩ
+
dσ0

dΩ
]dΩ

= ∫
dσ1

dΩ
dΩ − ∫

dσ0

dΩ
dΩ

∫
dσ1

dΩ
dΩ + ∫

dσ0

dΩ
dΩ

= R1/L −R0/L
R1/L +R0/L = N1 −N0

N1 +N0

where it has been assumed that the luminosity is constant and common for both

polarization states and that the rate is constant during the 300 s of one run.

4.4 Physical process, background and delimitation of

the peak

In the energy spectrum the events from the quasielastic scattering on the deuteron

are those of physical interest to determine the parity violating asymmetry. These events

can be obtained by applying cuts in the energy spectrum of charged particles so that the

quasielastically electrons are included. Background contributions within the cuts range

must be studied carefully.

4.4.1 Background in the quasielastic region

At backward angles the background in the quasielastic peak has the following

sources, ordered according to their magnitude:

• The electrons and positrons originated from the conversion of the γs of the π0 decay,

whose amount has been determined by the simulation of the energy spectrum and

the study of the detector response. They constitute the main source of background.
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• The electrons from the scattering occurring in the nuclei of the aluminium walls,

through elastic, quasielastic or inelastic scattering.

• The random coincident events originated when a charged particle leaves a signal in

the plastic scintillator while a neutral one deposits its energy in the calorimeter.

• The electrons elastically scattered on the deuteron.

4.4.2 Delimitation of the interval of integration

The interval of integration of the quasielastic peak has to be delimited applying

two cuts:

• An upper cut in order to avoid spurious events originating from pileup events not

discarded by the electronic devices, whose integrated charge, being the sum of the

energy of two or more events, is higher than that of the quasielastic ones. The pileup

can present its own asymmetry [28]. The electrons from the elastic scattering on the

deuteron, despite of having a larger energy than that of the quasielastically scattered

ones, are not separated. The reason is that the difference between the energy of

the elastically scattered electrons and the maximum energy of the quasiellastically

scattered ones is given by the binding energy of the deuteron, by far too small to

be resolved by the detector, specially with the addition of the smearing. An upper

cut to exclude them would discard a large amount of quasielastic events, reducing

the statistics, but it is not necessary provided the elastic scattering on the deuteron

is strongly suppressed at the experimental Q2. The upper cut in the analysis has

been selected at 3σE to the right of the quasielastic peak, where σE is the width of

the right side of the peak fitted to a Gaussian.

• A lower cut to separate the quasielastically scattered particles from the inelastically

scattered ones, whose energy is lower. This cut has been subject of a more careful

study because of the influence of the background on the magnitude of the asymmetry

and its error:

– The opposite effects on the total error depending on the lower cut, since a cut

towards lower energies implies more statistics but a larger amount of back-

ground and viceversa.
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– The extracted asymmetry should not change its value with the the lower cut,

since it is assumed that the physical asymmetry is constant, being its energy

dependence due to radiation processes that modify the Q2 negligible.

4.4.3 Background subtraction

The different sorts of background in the spectrum of charged particles can present

their own asymmetry leading to an adulteration of the asymmetry of the physical events.

Let us derive the formula to correct the asymmetries from the background.

The extracted counts from the delimited quasielastic interval in the spectrum of

charge particles Ne contain these sort of events: the physical quasielastically scattered

electrons Np, the electrons of the neutral background pollution Nb, the scattered electrons

on the aluminium walls Na, the random coincident events Nr and the elastically scattered

electrons on deuteron Nd that is:

Ne = Np +Nb +Na +Nr +Nd (4.5)

where each term represents the sum of the counts for each polarization state Ni =
N+i +N

−
i , with i = e, p, b, a, r, d
The same equation holds for the difference ∆N = N+i −N−i

∆Ne =∆Np +∆Nb +∆Na +∆Nr +∆Nd (4.6)

Since the asymmetry for each one is Ai = ∆Ni/Ni

AeNe = ApNp +AγNb +AaNa +ArNr +AdNd (4.7)

hence

Ap = AeNe −AbNb −AaNa −ArNr −AdNd

Ne −Nb −Na −Nr −Nd

(4.8)

And defining the dilution factors f = Nb/Ne, g = Na/Ne, h = Nr/Ne, η = Nd/Ne

Ap = Ae − fAb − gAa − hAr − ηAd

1 − f − g − h − η
(4.9)
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The asymmetries Ae and Ab are determined from the experimentally observed en-

ergy spectra and the amount of neutral background with dilution factor f is the dominant.

On the contrary the background from the aluminium walls, the random coincident events

and the elastic scattering on deuteron introduce small corrections and their asymmetries

are no determined experimentally but on theoretical or hypothetical grounds. For these

reasons the correction of the neutral background is carried out first and the extracted

asymmetry is utilized to define the raw asymmetry, to which the other background cor-

rections have to be applied.

Thus the applied formula to correct for the neutral background and to extract the

raw asymmetry is:

A0 = Ae − fAγ

1 − f
(4.10)

The corrections for the aluminium and the random coincident events will be cor-

rections with respect to this asymmetry, once other systematic effects have been also

corrected, and they will be estimated taking into account the corresponding rescaling,

that is:

Ap = A0(1 − f) − gAa − hAr − ηAd

1 − f − g − h − η

4.5 Neutral background subtraction

As seen in the previous chapter about the energy spectrum the amount of back-

ground pollution in the energy spectrum of charged particles can be estimated by means

of a Monte Carlo simulation and the study of the detector response. This studies lead to

the conclusion that the background pollution can be obtained directly from the experi-

mentally observed spectrum of neutral particles by the scaling-shifting method explained

in the chapter before.

4.5.1 Hypothesis on the asymmetry of the background

In order to extract the raw asymmetry of the physical events an hypothesis has

to be made about the parity violating asymmetry of this background pollution. As long

as the pair production and other processes participating in the generation of the back-



84 4. Data analysis determination of the parity violating asymmetry

ground pollution (like the Compton scattering) are purely electromagnetic it is reasonable

to assume that they do not present any parity violating asymmetry at all in such a way

that any asymmetry exhibited by the generated electrons will equal that of the γs. The

asymmetry of the background pollution is then determined from the experimentally ob-

served energy spectrum of neutral particles, applying to it the same cuts that are used

for the spectrum of charged particles but shifted by the same amount of the shifting used

to estimate the background amount. That is:

Ne =
u

∑
l

N i
e ⇒ Ae = N

+
e −N

−
e

N+e +N−e

where Ne are the extracted counts from the delimited interval of the quasielastic

peak from the spectrum of charged particles, l and u stand for the lower and the upper

cut respectively, N i
e are the counts per ADC channel and Ae is their extracted asymmetry.

And for the neutral background:

Nb = ǫNγ ⇒ Ab = Aγ

Nγ =
u+δ
∑
l+δ
N i

γ ⇒ Aγ = N
+
γ −N

−
γ

N+γ +N−γ

where Nb are the determined counts of the background pollution, calculated from

the counts Nγ in the spectrum of neutral particles, applying the lower and the upper cuts

shifted by δ in the sum of the entries of the ADC channels N i
γ, and scaled by ǫ. Ab is the

asymmetry of the background pollution supposed to be equal to that of the photons Aγ

calculated with the extracted counts Nγ .

Since the asymmetry of the signal is expected to be independent of the selection

of the lower cut, apart from the small dependence due to the variation of the effective

transfer momentum Q2 through the emission of soft photons in the radiative tail, the

constancy of the corrected asymmetry for different lower cuts will be interpreted as a

confirmation of the validity of this hypothesis.

Several lower cuts have been tested, starting from the center of the peak itself

because, to the extent that at the right side of the peak the amount of background

pollution is smaller, it can help as a reference point for the convergence of the value of the

asymmetry. The lower cuts, defined by Elow = Epeak−k ⋅∆Epeak, where Epeak is the nominal

energy at the position of the quasielastic peak and ∆Epeak the width of the quasielastic
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peak, including both the energy resolution from the detector response and the smearing

effect due to the Fermi motion, are k = 0.0, 0.5, 1.0, 1.5, 2.0, see figure 4.1.

The lower cuts at k = 1.5 and k = 2.0 from the quasielastic peak fall though inside

the interval of the coherent pion production threshold (defined by the energy resolution

at that energy). They have been included nevertheless in order to observe any drift of

the extracted asymmetry.

4.6 Procedures for the collection of data

4.6.1 Quality tests

In the extraction of the raw asymmetries from the single modules (crystals) a qual-

ity test has to be developed in order to discard those modules or those runs which present

defects or anomalies that could adulterate the determination of the physical asymmetries.

The falsification of the asymmetry from ill channels or failed runs, since they can produce

extremely large spurious asymmetries, can be enormous.

Given that the principal characteristic of the energy spectrum is the peak, whose

form is a Gaussian the simplest procedure is to observe the consistent statistical behavior

of large samples of the three parameters that describe the curve: the mean, the width and

the amplitude, or equivalently, the integral or number of counts. This procedure offers

a confident way to identify those channels that fail for all the runs or for some intervals

of them and to identify those runs in which all the channels happen to fail. It has to be

followed by a verification in the experimental facts recorded during the data taking in the

logbook.

More challenging is the tracking of those channels which only happen to fail for

some specific runs. The improvement of the quality test demands therefore the conception

of a powerful analytical device that identifies the malformed spectra, either detecting

them directly or more plausibly solving the complementary problem, that is, constructing

a canon or type of the valid spectra, by means of the expected ideal one and samples of

observed valid histograms to exclude those that deviate substantially from the rule.
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4.6.2 Collection of the data samples

By averaging the single raw asymmetries A = A(θ,φ, t) over the rings (polar angle)
they have to be weighted also with the differential cross section as long as it depends on

the θ angle. This average is equivalent to calculate the asymmetry with the sum of the

counts over the 5 rings used in the analysis, that is:

⟨A(φ, t)⟩ = ∫
θ2

θ1

dσ

dΩ
A(θ,φ, t) dΩ

∫
θ2

θ1

dσ

dΩ
dΩ

=

5

∑
i=1

d̄σ

dΩ i
Āi∆Ωi

5

∑
i=1

¯
dσ

dΩi
∆Ωi

(4.11)

=

5

∑
i=1
(N i

1 +N
i
0) N i

1 −N
i
0

N i
1 +N

i
0

5

∑
i=1
(N i

1 +N
i
0)

=

5

∑
i=1
N i

1 −

5

∑
i=1
N i

0

5

∑
i=1
N i

1 +

5

∑
i=1
N i

0

The averaging over the frames is postponed in order to display any possible depen-

dence of the raw asymmetry on the azimuthal angle as a first systematic test. The parity

violating asymmetry is expected not to have any dependence on the azimuthal angle.

For the averaging over the runs the whole set is divided in samples corresponding

to the insertion or not of the λ/2 wave plate (GVZ) introduced in the polarized beam

source during the data taking as a systematic test. The set of runs of these samples will

be called GVZ-samples. Inside each of them the extracted asymmetries for each frame

and averaged over the rings are weighted averaged by the error calculated by propagation

from the formula 4.10:

σ2
i = 1(1 − fi)2 [ 1

Ne,i

+
f 2
i

Nγ,i

] = 1(1 − fi)2 [ 1

Ne,i

+
ǫ2Nγ,i

N2
e,i

] = 1

Ne,i(1 − fi)2 (1 + ǫfi) (4.12)

where the subscript i stands for each run of the GVZ-sample. This error includes

the terms originated in the statistical errors of the asymmetries extracted from the his-

tograms: ∆Ae = 1/√Ne and ∆Aγ = 1/√Nγ . It does not include those terms arising

from the uncertainties in the scaling-shifting parameters ǫ and δ, whose contribution is

evaluated for the whole set of data.

The error weighted average of the asymmetry is:
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∑
i

A0,i

σ2
i

∑
i

1

σ2
i

=
∑
i

Ne,i(1 − fi)2
1 + ǫfi

Ae,i − fiAγ,i

1 − fi

∑
i

Ne,i(1 − fi)2
1 + ǫfi

=
∑
i

1 − fi
1 + ǫfi

(∆Ne,i − ǫ∆Nγ,i)
∑
i

1 − fi
1 + ǫfi

(Ne,i − ǫNγ,i) (4.13)

If the dilution factor fi for each run is constant the averaged asymmetry is just the

quotient of the difference of the total number of counts for each polarization state and

the total sum.

And the means for each GVZ-sample are averaged, changing the signs if the GVZ

is inserted, with a weighting over the resulting errors.

⟨A(φ)⟩ = ∑GV Z

⟨A(φ)⟩GV Z /σ2
GV Z

1/σ2
GV Z

(4.14)

4.7 Corrected asymmetry

The corrected asymmetry from the background pollution for each frame is dis-

played as a function of the azimuthal angle in the figure 4.3. It can be observed that

the asymmetry does not present any observable azimuthal modulation, being the fit to a

horizontal straight line extremely good, with a χ2/ν = 0.89. This plot can be considered

as a first systematic test. The figure 4.1 shows the values of the asymmetry Ae extracted

from the counts obtained integrating the quasielastic interval of the spectrum of charged

particles and the corrected raw asymmetry A0 as a function of the lower cut, after having

been averaged over all the frames. The values of Ae and A0 are also shown in the table

4.1, together with the dilution factor f , the asymmetry of the background Aγ and the

correction A0 −Ae. In all the cases the asymmetries have been normalized to the beam

polarization degree, as it will be explained later.

While the asymmetry Ae exhibits a drift with the lower cut the corrected asym-

metry A0 presents a constancy within the error bars. This fact can be interpreted as a

confirmation of the validity of the hypothesis about the coincidence of the asymmetry of

the background pollution and that of the spectrum of neutral particles. It is to be noticed

that the raw asymmetry keeps the constancy even within the region of pion threshold. An

explanation can be that in the neighbourhood of the pion threshold the amount of inelas-

tically scattered events is still low, being exceeded by the background of neutral particles.
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Figure 4.3: As a function of the azimuthal angle, the neutral background corrected asym-

metry, above in blue color, and below in black color, the extracted asymmetry of the

background from the spectrum of neutral particles, both at the lower cut k = 1.0. Both

asymmetries exhibit the expected independence on the azimuthal angle.
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lower cut dilution % Aγ (ppm) Ae (ppm) A0 (ppm) A0 −Ae (ppm)

0.0 6.0 ± 0.6 −1.83 ± 1.27 −18.62 ± 0.98 −19.71 ± 1.05 −1.09

0.5 9.5 ± 0.9 −1.94 ± 0.90 −16.95 ± 0.87 −18.24 ± 0.97 −1.29

1.0 14.3 ± 1.4 −0.43 ± 0.67 −16.13 ± 0.80 −18.79 ± 0.94 −2.67

1.5 20.3 ± 2.0 0.30 ± 0.53 −15.27 ± 0.75 −19.20 ± 0.95 −3.93

2.0 26.9 ± 2.7 0.56 ± 0.43 −14.06 ± 0.71 −19.18 ± 0.98 −5.12

Table 4.1: The asymmetry from the spectrum of charged particles Ae, the asymmetry of

the background Aγ, the background corrected asymmetry A0, the correction A0 −Ae and

the dilution factor f for different lower cuts.

Moreover, the pion threshold is calculated for the coherent production of pions on the

deuteron as a whole, whose probability is lower that that of the incoherent production.

In the table 4.1 can be also observed that the asymmetry of the background Aγ is small

and compatible with zero, presenting only a slight drift from the negative to the positive

values as the lower cut goes to lower energies. The asymmetry of the background for the

cut k = 1.0 as a function of the frame is represented in the figure 4.3. Assuming that the

asymmetry of the background is zero, the decrease of the magnitude of the asymmetry Ae

with the energy can be understood from the formula Ae = A0(1 − f): the increase of the

dilution factor reduces the magnitude of the asymmetry Ae in the spectrum of charged

particles as long as the physical asymmetry is constant.

4.8 Statistical error

Definition

Instead of having associated to the raw asymmetry the error from the neutral

background subtraction as derived from the formula 4.10 by propagation of errors, which

includes the statistics of the subtraction including the statistical error of the asymmetry

from the spectrum of charged particles Ae and the statistical error from the asymmetry

of the neutral background Aγ, see [29] for details, in this work the statistical error of the

asymmetry is reserved to the standard deviation of the asymmetry as calculated from the

true total number of counts, after having subtracted the background in the spectrum of

charged particles.
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∆statA = 1√
Np

(4.15)

where Np is the number of physical events.

Another possibility would be to associate to the extracted physical asymmetry

as statistical error the actual standard deviation of the sample probability distribution

exhibited by the asymmetry. But it makes sense to discriminate between the proper

statistical error and those systematic errors of statistical nature which are related to

the experimental devices employed in the measurement. Because even if this kind of

fluctuations are unavoidable in any realistic experimental setup they depend ultimately

on the selected procedures to perform the measurement, for instance, on whether the

record of the energy spectrum is utilized to separate energetically the background, like

in the A4 experiment, or magnetic fields. Moreover the argument to consider 4.15 as the

proper statistical error is that it constitutes a limit in the determination of the true value

of the asymmetry independent from any particular experimental artifact but imposed by

the probability nature of the quantum measurement itself.

Determination

For the determination of the statistical error of the asymmetry the total number

of counts of the physical quasielastic events Np in the spectrum of charged particles

have been added for all the valid modules and runs, which have been employed in the

analysis. To obtain them it has been subtracted from the total number of counts of

the quasielastic peak defined by the lower and upper cuts not only the estimated counts

of the background generated by the neutral particles but also the estimated events of

quasiellastically scattered electrons on the aluminium and the random coincident events.

Likewise the experimental asymmetry its standard deviation has to be normalized to the

polarization degree P . Since the GVZ samples are treated as independent measurements,

as long as the runs are taken under different experimental conditions because of the

introduction in the source of the polarized beam of an optical device that reverses the

sign of the physical asymmetry, and since, moreover, the polarization degree is measured

for each GVZ sample, in which the beam exhibits different degrees of polarization, the

statistical error is determined for each GVZ sample, normalized to its Pi, where i will

stand for the GVZ sample,
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lower cut quasielastic counts statistical error relative error

0.0 1.73 ⋅ 1012 1.01 ⋅ 10−6 5.27%

0.5 2.13 ⋅ 1012 0.91 ⋅ 10−6 4.74%

1.0 2.38 ⋅ 1012 0.87 ⋅ 10−6 4.63%

Table 4.2: For different lower cuts the number of quasiellastic events, after the neutral

background subtraction, the absolute statistical error, as defined by equation 4.18, and

the relative error.

σi
stat(APV ) = 1

Pi

√
Ni

(4.16)

and the total statistical error is calculated as the standard deviation corresponding

to a weighted average.

1

σ2
=∑

i

1

σ2
i

=∑
i

P 2
i Ni (4.17)

σstat(APV ) = 1√
∑iP

2
i Ni

(4.18)

The total number of counts used in the analysis and the statistical error for each

of the three lower cuts under the coherent pion production threshold are shown in table

4.2.

with a gain of 22% counts for the cut k = 0.5 and a gain of 36% for the cut k = 1.0,
both with respect to the center of the quasielastic peak at k = 0.0. The total number

of runs effectively employed in the analysis is 9960, corresponding to an effective data

taking of 831 hours, and a rejection of ∼ 13% of the 11435 runs aimed to measure the

parity violating asymmetry, mainly because of the bad conditions of the beam parameters.

The averaged number of modules utilized is 706 (average because the rejection depends

on the run), which corresponds to ∼ 3% of the 730 modules of the 5 inner rings included

in the analysis.

4.9 Systematics from the background subtraction

The contribution to the systematic error from the background subtraction is cal-

culated from the formula 4.10 applying propagation of errors. The systematic error is
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separated in the following terms:

• The systematic error arising from the statistical uncertainties of the asymmetries

extracted from the experimentally observed energy spectra of charged particles and

neutral particles, ∆Ae = 1/√Ne and ∆Aγ = 1/√Nγ, respectively. The statistical

error of the physical asymmetry, see equation 4.18 has been subtracted:

∆2
γ = 1(1 − f)2 1

Ne

+
f 2

(1 − f)2 1

Nγ

−
1

Ne (1 − f) (4.19)

∆γ = 1

1 − f

¿ÁÁÀ f

Ne

+
f 2

Nγ

(4.20)

The errors have been normalized to the beam polarization degree for each GVZ-

sample according to the formula 4.17.

• The contribution to the systematic error associated to the uncertainties in the

scaling-shifting ǫ, δ parameters:

– For the scaling factor ǫ:

∆Aǫ = f ∣A0 −Aγ ∣
1 − f

∆ǫ

ǫ
(4.21)

– For the shifting parameter δ:

∆δ = f

1 − f
∣A0 −Aγ

Nγ

dNγ

dδ
−
dAγ

dδ
∣∆δ (4.22)

Since both Nγ(δ) and Aγ(δ) depend on the applied shift.

It can be observed in the table 4.3 the variation of the terms ∆γ , ∆ǫ and ∆δ with

the lower cut. All the terms increase with the lower cut. The following features can be

observed:

• The three terms of the systematic error increase with the dilution factor f

• The error ∆ǫ is proportional to the factor ∣A0 −Aγ ∣. If the asymmetry of the back-

ground were equal to that of the signal the error from ǫ would be suppressed. Since

the asymmetry of the background Aγ is constant within the error bars, the factor

does not contribute to the dependency on the lower cut.
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lower cut ∆Aγ ∆Aǫ ∆Aδ ∆Aback ∆Astat ∆Astat ⊕∆Aback

0.0 0.27 0.11 0.23 0.37 1.01 1.08

0.5 0.31 0.17 0.39 0.53 0.91 1.06

1.0 0.37 0.31 0.44 0.65 0.87 1.08

1.5 0.44 0.50 0.64 0.93 0.84 1.25

2.0 0.52 0.73 0.80 1.20 0.83 1.46

Table 4.3: For the different lower cuts, the contribution to the systematic error from

the neutral background subtraction of statistical origin ∆Aγ , the contributions from the

uncertainties in the scaling factor ∆Aǫ and the shifting parameter ∆δ and the whole

systematic error ∆Aback = ∆Aγ ⊕∆Aǫ ⊕∆Aδ, the statistical error ∆Astat and the combi-

nation of the statistical error and the systematic error from the background subtraction

∆Astat ⊕∆Aback.

• In the error ∆δ there are two terms that compensate each other: the term that

depends on the variation of Nγ with δ, multiplied by the factor ∣A0 −Aγ ∣, and the

term from the variation of the asymmetry of the background on the shift:
dAγ

dδ
. Since

Aγ is approximately independent the last term is small. The error ∆δ is amplified

by the factor 1/Nγ(dNγ/dδ)∆δ with respect to the error ∆ǫ. This factor amounts

to ∼ 0.15 at k = 1.0. It decreases with the lower cut since the slope of the spectrum

of neutral particles decreases with decreasing energy. The dependence of ∆δ on the

lower cut is though dominated by the increase of the dilution factor f .

The derivatives in the error ∆δ are calculated as the average of the lateral discrete

derivatives, taking as interval the uncertainty of the parameter, that is

1

Nγ

dNγ

dδ
= 1

Nγ(δ)
Nγ(δ +∆δ) −Nγ(δ −∆δ)

2∆δ
(4.23)

dAγ

dδ
= Aγ(δ +∆δ) −Aγ(δ −∆δ)

2∆δ
(4.24)

The extracted asymmetries A0 for different values of the parameters, keeping one of

them at the central value and changing the other one with respect to the central value by

the amount of its uncertainty, are shown in the figure 4.4. The variation of the asymmetry

with the lower cut is in correspondence with the calculated values of the errors ∆ǫ and

∆δ, except for the cut at k = 0.5 which exhibits a deviation.
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Figure 4.4: The figure shows the corrected asymmetries from background subtraction

according to the formula 4.10 for different lower cuts and for different values of the scaling-

shifting parameters. In the panel above the corrected asymmetries are displayed for

different values of the scaling factor ǫ = 0.09,0.10 and 0.11, with the shift parameter

δ = 35, while in the panel below the shift parameter is varied δ = 30,35,40 MeV, keeping

the scaling factor at ǫ = 0.10. Both the variation of the asymmetry with the scaling

factor ǫ and the shifting parameter δ increase, except for deviations, from right to left in

approximate correspondence with the values of ∆ǫ and ∆δ, respectively, shown in table

4.3.
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4.10 Selection of the lower cut

The criterion to select the optimal lower cut relies on the following observations:

• The inspection of the error of the extracted asymmetry. The error associated to

corrected asymmetry from the neutral background, see table 4.1, includes the sta-

tistical error and the systematic error from the background subtraction of statistical

origin, that is ∆Astat⊕∆Aγ . This error decreases with the lower cut from higher to

lower energies, it reaches a minimum at the lower cut k = 1.0 and then it starts to

increase. The difference of the error at the minimum and the error at the center of

the quasielastic peak is of about 10%.

• The total error ∆Astat ⊕ ∆Aback from the background subtraction, including the

terms associated to the uncertainties of the scaling-shifting parameters ∆Aǫ and

∆Aδ, exhibits a minimum at the lower cut k = 0.5, see table 4.3. The difference of

the error is very small with respect to the minimum at k = 1.0 from ∆Astat ⊕∆Aγ .

• The neutral background corrected asymmetry exhibits a slight deviation at the

cut k = 0.5, see figure 4.1. At the cut k = 1.0 the corrected asymmetry recovers the

constancy consistently with the extracted asymmetry at the center of the quasielastic

peak and at the neighbour cuts k = 1.5 and k = 2.0, inside the 1σ interval to the

right of the coherent pion production threshold.

The lower cut is selected at k = 1.0 because the error ∆Astat ⊕∆Aγ is minimum

and it is close to the minimum from ∆Astat ⊕∆Aback. The choice for k = 1.0 is based

on the convergence of the corrected asymmetry with respect to the values of the other

reference lower cuts.

The value of the corrected asymmetry at this lower cut averaging over the whole

set of frames is:

a0 = (−18.79 ± 0.94) ⋅ 10−6
In order to verify the independence of the values of the fit on the particular method

employed it was carried also a fit to a straight line y = a1x + a0, yielding

a0 = (−18.79 ± 0.95) ⋅ 10−6
a1 = (−1.24 ± 1.35) ⋅ 10−6
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The value of the slope is compatible with zero and the value of the off-set is in

perfect agreement with the values from the average and the fit to a constant.

4.11 Sensitivity of the measurement

Since the objective of the measurement of the parity violating asymmetry on deu-

terium is the determination of the strange vector form factors and the axial form factor

together with the measurements of the parity violating asymmetry on proton at both

backward and forward angles the magnitude involved in the equations to be formulated

is the difference ⟨Ad
PV ⟩− ⟨AV ⟩, where the average is over the detector acceptance and the

target length. For the deuterium at backward angles at Q2 = 0.23 (GeV/c)2 ⟨AV ⟩ = −18.63
ppm. Using the theoretical calculation from [16] as input for the axial form factor and the

published determined values of the strange vector form factors consistent with that input

calculation from [32] we can estimate the expectation for those terms involving those form

factors and for the whole asymmetry.

⟨Ad
PV ⟩ = ⟨AV ⟩ + ⟨As⟩ + ⟨AA⟩ = −18.63 − 0.26 − 2.96 = −21.85 ppm (4.25)

where the values are averaged over the detector acceptance and the target cell

length. The difference amounts to ⟨Ad
PV ⟩ − ⟨AV ⟩ = −3.22 ppm. Consequently it can be

expected that a relative error of c % in the total asymmetry is amplified to the amount

∆(A −AV )
A −AV

= ∆(A)
A −AV

= A

A −AV

c = 21.85
3.22

c = 7.28 ⋅ c % (4.26)

That is, for a relative error of 5 %, about 1 ppm, the relative error will be ∼ 35 %.

This fact increases the sensitivity of the form factor determinations to the system-

atic corrections. Therefore in spite of the fact that in any case the error will be bound by

the selected statistical uncertainty in the experimental design of 5% to keep it in the order

of the expected sum of systematic errors, this sensitivity compels the experimentalist to

a careful evaluation of the corrections.
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4.12 Sources of systematics

Let us recapitulate and expound the significant sources of systematic effects that

influence the determination of the physical asymmetry.

4.12.1 Fluctuations of the beam parameters

One source of systematic errors are the fluctuations of the beam parameters which

can be helicity correlated or not. If the fluctuations are not helicity correlated they lead to

a broadening of the sample distribution of the asymmetry, which will be estimated from

the actual standard deviation of the sample distribution subtracting the known statistical

error and other sources of systematic errors of statistical nature. Of special interest are the

helicity correlated fluctuations of the beam since their effect is the appearance of trivial

asymmetries in the rate for each polarization state, which add to the physical asymmetry.

Helicity correlated beam fluctuations

The asymmetry in the current intensity AI manifests directly as an asymmetry

in the count rate R = L(dσ/dΩ) through the luminosity while the helicity correlated

differences in the energy and the positions and angles of the beam generate asymmetries

in the differential cross section, through its dependence on the energy and the scattering

angle or because of the variation of the solid angle. These asymmetries are called false

asymmetries or apparative asymmetries. The notation to represent the beam parameters

differences for each polarization state is Xi = x+i − x−i , where x2 = x, x3 = y, x4 = α, x5 =
β, x6 = E, that is, the position of the beam in the x and y direction, the angle of the

beam in the x and y direction and the energy, respectively. The X1 = AI is reserved for

the asymmetry in the beam current intensity.

Linearity of the false asymmetries

For small values of the helicity correlated beam parameters the induced false asym-

metries are linear in the beam differences and they add to the physical asymmetry.

Let us assume that the energy and the scattering angle are different for each po-

larization state. The variation of the scattering angle originates from its dependence on

the position and the angle of the electron beam θ = θ(x, y,α, β). Hence the measured

asymmetry in the differential cross section can be expressed
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Figure 4.5: In the figures are shown the distributions of the effective helicity correlated

beam parameters for the whole samples employed in the multilinear regression, having

reversed the sign for the GVZ-samples with GVZ=IN. From top to bottom and from left

to right: the asymmetry in the current intensity (in red), the position beam difference

in the x and y direction (in blue), the angle beam difference in the x and y direction (in

purple) and the beam energy difference (in green). All the beam parameters exhibit a

quite symmetric scattering around zero, with a small value of the mean and a relative

large value of the dispersion, given by the root mean square.
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Aexp =
dσ+

dΩ
(x⃗− + X⃗) − dσ−

dΩ
(x⃗−)

dσ+

dΩ
(x⃗− + X⃗) + dσ−

dΩ
(x⃗−)

(4.27)

where the components of the vector x⃗ = (E,x, y,α, β) are the beam parameters:

energy, position in the x-axis and in the y-axis and angles in the x-axis and y-axis,

respectively, and the components of the vectorXi = x+−x− stand for the helicity differences

in the beam parameters.

Expanding the differential cross section in the beam parameters differences up to

first order

Aexp ≃

dσ+

dΩ
(x⃗0) − dσ−

dΩ
(x⃗0) +∑j

∂

∂Xj

⎛⎜⎝
dσ

dΩ

⎞⎟⎠(x⃗0) ⋅Xj

dσ+

dΩ
(x⃗0) + dσ−

dΩ
(x⃗0) +∑j

∂

∂Xj

⎛⎜⎝
dσ

dΩ

⎞⎟⎠(x⃗0) ⋅Xj

(4.28)

Since the difference in the cross section at the same value of the beam parameters

is the physical asymmetry reduced by the polarization degree

dσ+

dΩ
(x⃗0) − dσ−

dΩ
(x⃗0) = PAphys (dσ+

dΩ
(x⃗0) + dσ−

dΩ
(x⃗0)) ≃ 2PAphys

dσ

dΩ
(x⃗0) (4.29)

Aexp ≃ 1

1 −∑j ajXj

(PAphys +∑
j

ajXj) (4.30)

where aj =

∂

∂Xj

⎛⎜⎝
dσ

dΩ

⎞⎟⎠(x⃗0)
2
dσ

dΩ
(x⃗0)

. In the case ∑j ajXj << 1

Aexp = PAphys +∑
j

ajXj (4.31)

Let us notice that in the case the condition of linearity of the false asymmetries

with the beam parameter differences Xj is not satisfied they do not contribute either

additively to the physical asymmetry.
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The parameters aj have the units of an asymmetry per unit of beam parameter

difference Xj. These parameters have been determined by two different procedures:

• Performing a numerical calculation of the cross section with a geometrical model of

the detector and averaging over the detector acceptance and the target cell length.

• and with a multilinear regression based on the valid approximation of the linearity

of the false asymmetries on the beam parameters differences, eq. 3.27, with the

whole sample of extracted asymmetries from the histograms and the measurements

of the beam parameter differences from the beam monitors.

Multilinear regression

The multilinear regression analysis has been subject of a careful study in the frame

of the work [32], including the investigation of the laws relating to the errors of the

parameters aj and the physical asymmetry in the simplified one-dimensional and two-

dimensional cases. Here the main assumptions and formulae are summarized which are

necessary to interpret the data.

The basic assumption is that the sample of single extracted asymmetries for each

run, which will be denoted by the symbol X i
0 in coherence with the notation for the beam

parameter differences Xj , are normally distributed with respect to the mean given by the

sum of the physical asymmetry PAphys and the sum of the false asymmetries, assumed to

be linear in Xj .

X i
0 = PAphys +∑

j

ajX
i
j + ǫi (4.32)

that is, the parameter ǫi is normally distributed with a standard deviation given

by the error of the asymmetry ∆X i
0.

The application of the likelihood method leads to a matrix equation whose un-

knowns are proportional to the parameters, the coefficients are the correlation coefficients

between the variables Xj and the independent terms are the correlations between the

variables Xj and the extracted asymmetry X0

The inversion of this matrix equation yields the value of the parameters aj , that is,

the false asymmetries per unit of Xj, which are used to correct the observed asymmetry

from the false asymmetries induced by the values of the beam parameters fluctuations Xj

observed in the experiment. The physical asymmetry turns to be the offset of the straight
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line resulting of the fit in a multidimensional space, or equivalently, it can be thought as

the interpolation to the case where the helicity-correlated beam fluctuations are zero and

therefore the false asymmetries.

The errors of the parameters ∆aj and the error of the corrected asymmetry ∆(PAphys)
are obtained by means of error propagation

∆aj = ∆X0√
N − 1sjj

√
r−1jj (4.33)

∆(PAphys) =∆X0

¿ÁÁÀ 1

N
+

1

N − 1
∑
j

∑
k

X̄j

sjj

X̄k

skk
r−1jk (4.34)

where ∆X0 is the error of the asymmetry for each run, assumed to be equal for

all of them for the sake of simplicity, N is the number of runs, sjj is the covariance of

the variable Xj , X̄j is the sample mean of the variable Xj and r−1jk is the element jk of

the inverse of the matrix of correlations rjk = s2jk
sjjskk

, being sjk the covariance between the

variables Xj and Xk. See [47] for details.

Let us comment the most significant features of the errors:

• The error of the parameters ∆aj is given by the quotient of the standard deviation of

the complete sample of the asymmetry and the standard deviation of the parameter

Xj (in the one-dimensional case) but it is increased by the correlations between the

beam variables in the multidimensional case.

• The error of the physical asymmetry is the quadratic sum of the statistical error (in

fact it includes the systematic error of the background subtraction) and a contribu-

tion dependent on the beam variables Xj, the second term in the radicand of eq.

4.34, which is defined as the systematic error from the correction of the false asym-

metries. This systematic error depends on the quotient
X̄j

sjj
, so that it is suppressed

against the statistical error whenever the mean of the sample of the beam variable

Xj is smaller than its dispersion sjj = σXj
. The systematic error of the regression is

amplified if the correlation between the beam variables approximates to one.

Before presenting the numerical results a remark has to be made about the im-

portance of the insertion of the GVZ λ/2 wave plate for the success of the multilinear

regression.
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Collection of GVZ-samples and polarization correction

The collection of the GVZ-samples of the asymmetry with the wave plate OUT and

IN has the consequence of improving the goodness of the fit and reducing the systematic

error of the physical asymmetry by decreasing the value of the mean of the beam variables

X̄j and increasing their dispersion σXj
.

For the set of GVZ-samples with the GVZ out eq. 3.27 reads:

Aout
exp

P
= Aphys +∑

j

aj
Xout

j

P
(4.35)

where the extracted asymmetry and the beam variables are normalized to the

polarization degree since every GVZ-sample has associated a different measurement of P .

For the set of samples with GVZ in the physical asymmetry reverses its sign so

that

Ain
exp

P
= −Aphys +∑

j

aj
X in

j

P
(4.36)

or equivalently

−Ain
exp

P
= Aphys +∑

j

aj
(−X in

j )
P

(4.37)

That is, not only the sign of the extracted asymmetry has to be reversed for the

samples with GVZ in but also the sign of the beam variables, becoming their effective

distribution as used in the regression more symmetric with respect to zero.

Results with longitudinal polarization

In the table below there are presented the mean values of the helicity correlated

beam parameters and the standard deviation of the mean together with the calculated

false asymmetries estimated with the numerical calculation. The distribution of the beam

parameters is also represented in the figure 4.5, where it has to be taken into account that

it is not the actual distribution of the parameters of the beam but the effective distribution

employed in the multilinear regression reversing the sign of the beam parameters for those

samples of runs where the GVZ was inserted. The main feature is that the mean values
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are extremely low leading to false asymmetries of the order of ppb (10−9), except for the
asymmetry in the current intensity.

X X̄ aX̄

AI −0.16 ± 0.01 ⋅10−6 (−0.16 ± 0.01) ⋅10−6
∆x 0.007 ± 0.004 µm (0.7 ± 0.4) ⋅10−9

∆y 0.006 ± 0.001 µm (1.4 ± 0.2) ⋅10−9

∆α 1.84 ± 0.41 nrad (1.4 ± 0.2) ⋅10−9

∆β 0.55 ± 0.10 nrad (0.27 ± 0.06) ⋅10−9

∆E 0.56 ± 0.09 eV (2.09 ± 0.03) ⋅10−9

The parameters aj of the beam variables, as output of the multilinear regression

performed for the sector 1, are shown in the table below and compared with the calculated

parameters from the geometrical model. The parameters obtained from the multilinear

regression exhibit large values compatible with the large errors originated from the strong

correlations among the beam variables.

param. a
reg.
j ± ∆aregj acalcj

a1(10−6) 0.83 ± 1.58 1

a2(10−6/µm) 57.76 ± 59.41 0.10

a3(10−6/µm) 262.28 ± 394.91 0.23

a4(10−6/µrad) −296.26 ± 564.44 0.15

a5(10−6/µrad) −2690.52 ± 2849.05 0.36

a6(10−9/eV ) −513.64 ± 352.82 −3.74

The uncertainties of the parameters aj are large because of the strong correlations

in this case between the beam parameters. The matrix of correlation coefficients is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 −0.0609 −0.0583 −0.0637 −0.0569 0.0182

−0.0609 1.0000 0.9301 0.9921 0.8649 −0.0787

−0.0583 0.9301 1.0000 0.9307 0.9864 0.0347

−0.0637 0.9921 0.9307 1.0000 0.8675 −0.1418

−0.0569 0.8649 0.9864 0.8675 1.0000 0.0719

0.0182 −0.0787 0.0347 −0.1418 0.0719 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since the detector has axial symmetry with respect to the beam line and the parity

violating asymmetry is independent on the azimuthal angle when averaging over the whole
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detector the false asymmetries stemming from the helicity correlated differences in the

positions and the angles of the beam, which are modulated by cosφ and sinφ, cancel out

making no contribution to the correction of the asymmetry.

The value of the parameters corresponding to AI and ∆E for the multilinear re-

gression performed with the whole calorimeter are a1 = (1.01 ± 0.57) ⋅ 10−6 and a6 =(−0.04 ± 0.09) ⋅ 10−6, with a correlation coefficient r = 0.0182, and the correction with the

systematic error from these helicity correlated beam parameters δAh = (0.24±0.14) ⋅10−6.
The correction from the asymmetry in the current intensity amounts to 0.21 ppm, the

88% of the total correction.

4.12.2 Corrections and errors from the background

Quasielastic scattering on aluminium

A process that contributes to the background in the spectrum of charged particles

is the scattering of the electrons on the nuclei of aluminium of the target cell walls with a

thickness of 250 µm. The dominant physical process is that of the quasielastic scattering

since the elastic scattering is strongly suppressed by three orders of magnitude for the Q2

of the experiment. The inelastic scattering on the aluminium walls contributes also to

the background pollution in the spectrum of charged particles through the conversion of

the γ photons. But this contribution, apart of being relatively small compared to that of

the inelastic scattering on deuterium and of being suppressed additionally by the scaling

factor 0.1, is already incorporated in the subtraction of the background pollution because

the events associated to the photons from the inelastic scattering on aluminium are diluted

in the spectrum of neutral particles from which both the amount of background pollution

and its parity violating asymmetry is experimentally determined. One remarkable feature

in the correction of the background from the alumium when the target is the deuterium

is that since the nucleus of aluminium consists of Z = 13 protons and N = 14 neutrons,

that is, approximately the same number, the asymmetry in the quasielastic scattering

is expected to be close to that of the signal with deuterium with one proton and one

neutron, so that the correction is expected to be smaller than that for the asymmetry

on the proton. In order to estimate the correction on the asymmetry from this kind of

background it is necessary to determine the amount of background, whose events are

not distinguished during the data taking, and to find an estimate of its parity violating

asymmetry, which is also not determined in the experiment and has been not measured

so far.
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lower cut f = Nγ/Ne g = Na/Ne h = Nco/Ne

0.0 (6.0 ± 0.6)% (2.97 ± 0.12)% (1.1 ± 0.1)%
0.5 (9.5 ± 0.9)% (3.06 ± 0.13)% (1.7 ± 0.2)%
1.0 (14.3 ± 1.4)% (3.21 ± 0.13)% (2.6 ± 0.3)%

Table 4.4: For the different lower cuts the dilution factors in the spectrum of charged

particles from the neutral background f , from the quasielatically scattered electrons in

the aluminium windows g and from the random coincident events h.

• Amount of background

To estimate the amount of background from the aluminium a set of measurements of

the energy spectra in the whole calorimeter were done during the target condensation

with runs of 300 s and a current intensity of i = 0.15µA. After observing the increase

of the count rate as the target of deuterium condensates one run is selected in which

the deuterium is still in the gaseous state. Neglecting the contribution of the gas

and assuming that the target is empty the histogram is integrated for the same set

of lower and upper cuts applied to the determination of the asymmetry from the

signal. The extracted counts for each polarization state n0,1
a are added. The sum of

the counts is then scaled to the current intensity of I = 20 µA of the measurement

with deuterium Na = I
i
(n0

a +n
1
a). The dilution factor for the aluminium background

defined as g = Na/Ne, where Ne is the number of counts extracted from the spectrum

of charged particles with the same set of cuts, is shown in table 4.4. To this factor

it is associated a relative error of 4%, whose main contribution is the uncertainty

in the current intensity. It can be observed in the table that the factor g exhibits a

relative constancy with the cut with a value of approximately 3% and a variation of

only a 4% between the center of the quasielastic peak and the lower cut at 1σ to the

left. It can be interpreted as a clear manifestation of the smearing of the energy of

the quasielastically scattered electrons on the aluminium, whose Fermi momentum

is much larger than that of the deuterium.

• Parity violating asymmetry

To estimate the parity violating asymmetry of the quasielastic scattering on the

aluminium the static approximation is utilized, in the absence of nuclear calculations

incorporating two body currents and other nuclear effects.
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AQE
Al =

13
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
p

Ap + 14
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
n

An

13
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
p

+ 14
⎛⎜⎝
dσ

dΩ

⎞⎟⎠
n

(4.38)

The asymmetry is averaged over the detector acceptance and the target cell length,

weighted by the cross section of the quasielastic scattering, taken consistently with

the static approximation as the sum of the cross sections on the Z protons and N

neutrons.

⟨AQE
Al
⟩ = ∫ dl∫ dΩ

⎛⎜⎝
dσ

dΩ

⎞⎟⎠
QE

Al

A
QE
Al

⎛⎜⎝
dσ

dΩ

⎞⎟⎠
QE

Al

(4.39)

The PV asymmetries taken for the proton Ap and neutron An are the calculated

without vector strangeness AS and without axial vector term AA, that is the AV =
APV −AS −AA. Since the measurement on the deuteron is aimed, together with the

other measurements of the experiment at the same Q2 = 0.23 (GeV/c)2, to determine

not only the strange vector form factors but also the axial vector one it would be

an inconsistency (even if being of negligible repercussion) to use the values already

published [40] of the Gs
E,M together with the input calculation for the Ge

A from [16],

also used to separate those.

With the assumption, which will be used in the correction, based on that made in

[32], that the quotient of the asymmetry without strangeness and axial vector term

and with them are approximately equal for the aluminium and deuteron:

AAl
PV

Ad
PV

≃ A
Al
V

Ad
V

(4.40)

The applied correction for the aluminium δAa is defined such that A = A0 + δAa,

where A is given by:

A = Ae − fAγ − gAa

1 − f − g − h − η
= (1 − f)A0 − gAa

1 − f − g − h − η
(4.41)
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and A0 stands for the raw asymmetry after the neutral background correction. The

correction is then:

δAa = g (A0 −Aa)
1 − f − g − h − η

≃ gA0

1 − f − g − h − η
(1 − AV

a

AV
d

) (4.42)

where in the second step it has been used the assumption of eq. () to avoid the

inclusion in the calculated asymmetry on the aluminium of the terms that are aimed to

be determined.

The error calculated by propagation is:

∆Aa = {(∆f)2 + (∆h)2 + (∆η)2 +A2
p [1 −AV

a /AV
d
]2 (1 − f − h − η)2 (∆g)2(1 − f − g − h − η)4 (4.43)

+
g2 [(∆A0)2 + (∆Aa)2](1 − f − g − h − η)2

⎫⎪⎪⎬⎪⎪⎭
1/2

≃ g

1 − f − g − h − η

√(∆A0)2 + (∆Aa)2 (4.44)

The main contribution comes from the errors of the asymmetries, where it has

been assigned to the value of the asymmetry on aluminium provided by the static ap-

proximation an uncertainty of 5%, the same as the assumed by the SAMPLE collaboration

measurement [48]. Besides the small impact in the error of the uncertainties in the dilution

factors, the dilution of the aluminium is suppressed by the similarity of the asymmetries

on the aluminium and deuterium.

The correction is suppressed by the almost equality of the asymmetries, being

positive because the asymmetry on the aluminium is slightly larger in magnitude to that

on the deuteron, and has a value of 0.01 ppm for all the lower cuts. The uncertainty is

quite independent on the selection of the cut, depending slightly on the other dilution

factors f and h, and being between 0.05 and 0.06 ppm, see table 4.5.

Random coincident events

As a consequence of the employment of the plastic scintillators random coincident

events are also recorded in the spectrum of charged particles. These events are generated

when a photon developes an electromagnetic shower in the calorimeter while accidentally

and simultaneously a charged particle yields a signal in the plastic scintillator covering the

crystal of deposition. A single scintillator module covers 14 crystals of the calorimeter,

there being three types of scintillator modules. This process is of random nature and the
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lower cut (δAa ±∆Aa)(10−6) (δAr ±∆Ar)(10−6)
0.0 0.01 ± 0.05 −0.24 ± 0.03

0.5 0.01 ± 0.05 −0.36 ± 0.05

1.0 0.01 ± 0.06 −0.61 ± 0.08

Table 4.5: For different lower cuts, the corrections and their uncertainties for the quasielas-

tically scattering in the aluminium windows and the random coincident events.

probability of occurrence for each type of scintillator module with a target of deuterium

has been determined experimentally: (2.56 ± 0.77)%, (2.01 ± 0.25)% and (1.55 ± 0.17)%,

[49].

The number of random coincident events Nr in the spectrum of charged particles

is the product of the probability and the number of counts from the spectrum of neutral

particles Nr = prNγ so that the dilution factor of random coincident events in the spectrum

of charged particles is h = prNγ

Ne
, see table 4.4. Its error stems from the uncertainty in the

probability.

The correction δAr and the uncertainty ∆Ar, assuming that the asymmetry of the

random coincident events, in the average, is zero Ar = 0, since it is not associated to any

physical process, are:

δAr = hA0

1 − f − g − h − η
(4.45)

∆Ar = {(∆f)2 + (∆g)2 + (∆η)2 +A2
0 (1 − f − g − η)2 (∆h)2(1 − f − g − h − η)4 +

h2 (∆A0)2(1 − f − g − h − η)2}
1/2

The correction and the uncertainty for different lower cuts are shown in table 4.5.

Contrary to the case of the aluminium this correction is negative, since the asymmetry

is zero and the parity violating asymmetry of the signal is negative, and depends on the

selection of the lower cut, being a 146% larger at the lowest lower cut than at the cut at

the center of the peak.

Elastically scattered electrons

The elastically scattered electrons on deuteron as a whole contribute also to the

background of the quasielatic peak. The elastic scattering is strongly suppressed at this
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Q2. The averaged differential cross sections of the quasielastic and the elastic scattering

over the effective scattering angle are

⟨dσ
dΩ
⟩
QE

= 20.25 nb ⟨dσ
dΩ
⟩
E

= 0.05 nb (4.46)

The differential cross section of the electron deuteron elastic scattering has been

calculated using a phenomenological parametrization of the three elastic electromagnetic

form factors of the deuteron [45].

The dilution factor is the quotient of the averaged cross sections

η =
⟨ dσ
dΩ
⟩
QE

⟨ dσ
dΩ
⟩
E

= 0.0026 (4.47)

The parity violating asymmetry of the electron deuteron elastic scattering has

been calculated in reference [50], including the contribution of the strange quarks to the

deuteron. Excluding the influence of the strange quarks the formula for the asymmetry

reads:

AE
PV = GµQ2

πα
√
2
sin2 θW (4.48)

The cross section weighted average of this asymmetry over the effective scattering

angle is ⟨AE
PV ⟩ = 22.97 ppm. Its magnitude is similar to that of the parity violating

asymmetry in the quasielastic scattering but of opposite sign.

The formulae for the correction δAE and the systematic error ∆AE are:

δAE = η(A0 −AQE)
1 − f − g − h − η

(4.49)

∆AE =
⎧⎪⎪⎨⎪⎪⎩
(∆f)2 + (∆g)2 + (∆h)2 + (A0 −AQE)2 (1 − f − g − h)2 (∆η)2(1 − f − g − h − η)4
+
η2 [(∆A0)2 + (∆AQE)2](1 − f − g − h − η)2

⎫⎪⎪⎬⎪⎪⎭
1/2

(4.50)
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The correction and the error from the elastically scattered electrons on the deuteron

amounts to:

δAE = (−0.14 ± 0.04) ⋅ 10−6 (4.51)

4.13 Spin angle deviation

The mean spin direction of the beam can be deviated with respect to the longitudi-

nal direction, that is, that of the momentum of the electron beam. Assuming a deviation

of δθs in the plane of the accelerator, with an error ∆(δs), the measured asymmetry ac-

quires a component of the normal spin asymmetry due to the orthogonal projection of

the spin with respect to the beam direction. Since the parity violating asymmetry does

not depend on the azimuthal angle and it is thus averaged over the whole symmetrical

detector the normal component averages out. For a determined value of the azimuthal

angle the measured asymmetry is given by:

Aexp = APV cos δθs +A⊥,0 sin δθs cosφ (4.52)

Averaging over the whole azimuthal angle of the detector:

1

2π ∫
2π

0

Aexpdφ = APV cos δθs +A⊥,0 sin δθs
1

2π ∫
2π

0

cosφ dφ (4.53)

So that the correction to be applied to the experimentally obtained asymmetry A0

after having been corrected from the other sources of systematics is:

δAspin = A0

1 − cos δθs
cos δθs

≃ A0

2
(δθs)2 (4.54)

And the systematic error is:

∆Aspin = {(1 − cos δθs
cos δθs

)2 (∆Aexp)2 + (Aexp sin δθs
cos2 δθs

)2 (∆δθs)2}1/2 (4.55)

The spin angle deviation and its uncertainty, determined from the spin dynamics

in the accelerator and the current of the Wien Filter, see section 5.3.2 for more details, is

δθs = (1.4 ± 2.0)○ the correction amounts δAspin = (−0.01 ± 0.03) ⋅ 10−6
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4.14 Systematic tests

Some systematic tests are necessary in order to verify the correct behavior of the

parity violating asymmetry:

• Change of sign of the asymmetry by reversing the state of polarization with the

introduction of the λ/2 wave plate (GVZ) in the polarized beam source

• Dependence of the asymmetry on the scattering angle through its variation with the

polar corresponding to each ring of the detector

• Sample probability distribution of the set of the azimuthally averaged experimen-

tally observed asymmetries for each run and comparison with the hypothesis of a

normal parent probability distribution.

4.14.1 Change of sign through reversing of polarization

The λ/2 wave plate, called GVZ (Generalvorzeichenwechsler), is introduced in the

polarized beam source to reverse the polarity of the laser beam and thus the polarization

of the electron beam without knowledge of the electronic devices. The physical parity

violating asymmetry should reverse the sign but not the magnitude by introducing the

wave plate in the source. The GVZ is alternately introduced every beamtime so that

approximately one half of the data taking occurs under the condition of being the GVZ

out of the source (OUT) and one half being the GVZ inside (IN). The utilization of

this device, apart of its utility in canceling in the collection of the samples the systematic

effects on the asymmetry that do not change of sign and the indirect utility of duplicate the

spread of the beam parameters that leads to an improvement of the multilinear regression,

has mainly the objective of provide a test of the proper change of sign of the physical

asymmetry.

The table below lists the averaged asymmetries over the whole calorimeter and all

the runs for each GVZ sample with the value of the polarization degree and the effective

time of measurement calculated for the valid runs employed in the analysis. The errors

of the asymmetry include both the statistical error and the error from the background

subtraction. In the figure 4.6 the asymmetries are plotted for each sample. Three linear

fits to a horizontal straight line y = A have been performed for the asymmetries under the

GVZ=OUT and the GVZ=IN conditions separately and one fit for all the asymmetries

together, whose parameters are displayed in the figure.
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Sample Runs Eff. time P AGV Z
PV (ppm) GVZ

0 45123 − 46309 84.9 h 76.6% −17.16 ± 2.78 out

1 46310 − 46652 27.2 h 76.2% 5.92 ± 5.09 in

2 47117 − 47962 66.2 h 79.5% 21.94 ± 3.02 in

3 47963 − 49153 93.4 h 80.9% −17.43 ± 2.50 out

4 50001 − 50622 31.1 h 73.9% 20.51 ± 4.81 in

5 50631 − 51200 44.5 h 75.8% −19.72 ± 4.09 out

6 51322 − 52111 51.8 h 74.1% −20.83 ± 3.72 out

7 52113 − 53161 83.3 h 75.9% 16.65 ± 2.97 in

8 53162 − 54053 70.7 h 74.8% −17.06 ± 3.29 out

9 54119 − 54608 37.8 h 70.9% −27.99 ± 4.74 out

10 54609 − 55941 101.7 h 73.6% 19.11 ± 2.78 in

11 56632 − 57512 69.7 h 69.0% 21.22 ± 3.65 in

12 57528 − 58192 45.5 h 68.0% −26.41 ± 4.56 out

13 58196 − 58771 23.1 h 64.0% 16.60 ± 6.79 in

The results of the fit for the GVZ-samples are:

GVZ AGV Z (10−6) χ2/ν ν

OUT −19.44 ± 1.28 1.26 6

IN 18.52 ± 1.37 1.44 6

OUT&IN −19.01 ± 0.94 1.27 13

The results of the fits for the OUT and IN GVZ-samples are compatible within the

error bars, with a better quality of the fit to the OUT samples.

4.14.2 Dependence on the scattering angle

Since the parity violating asymmetry depends on the scattering angle θ directly and

through the dependence on the invariant Q2, it should exhibit a variation with the polar

angle of the calorimeter if the extracted asymmetries are averaged over the azimuthal

angle and plotted against the ring.

The calculated asymmetry, including the axial vector term with the calculation

from [16] exhibits a variation with the scattering angle that in the range of the angle

covered by the calorimeter can be approximated by a simple straight line with a negative

slope.
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Figure 4.6: The extracted raw asymmetries for the several GVZ samples are displayed in

the figure: in black color those with GVZ=OUT, with the expected negative sign, and in

red color the asymmetries for the samples with GVZ=IN, which reverse the sign. Fits to a

horizontal straight line were performed for both sets of samples, OUT and IN, separately

(output of the fits in text) and for the whole set of samples (output shown in text and

in the figure). Besides the expected change of sign of the asymmetries with GVZ=IN all

the samples exhibit compatible values within the errors.

For this reason in the figure 4.7, where the asymmetry per ring is plotted against

the averaged polar angle of each of the rings, a fit to a straight line has been carried out.

The fit to the straight line y = p0 + p1x is good χ2/ν = 1.05 with a negative value for the

slope p1 = −0.22 ± 0.49, whose error is though large because the statistics of the single

rings is not enough to be significant. It can be observed however in the figure that the fit

is close to the variation of AV (Q2).
The averaged polar angle θ̄ , the Q2 and the azimuthally averaged asymmetry

A
Ring
PV for each ring are:
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Figure 4.7: Extracted asymmetry as a function of the polar angle of the calorimeter for

the five inner rings employed in the analysis. The solid black line is the fit to a straight

line of the experimentally observed points and the dashed red line is the AV variation

with the scattering angle.

Ring θ̄ Q2 (GeV/c)2 A
Ring
PV (ppm)

2 142.14○ 0.2202 −19.55 ± 1.88

3 143.57○ 0.2216 −17.27 ± 1.99

4 145.00○ 0.2239 −17.05 ± 2.10

5 146.43○ 0.2241 −21.88 ± 2.24

6 147.86○ 0.2252 −18.79 ± 2.43

4.14.3 Sample probability distribution

Another systematical test is the verification that the sample probability distribu-

tion of the whole set of extracted asymmetries from the energy spectra derives from a

normal parent probability distribution. To that aim the asymmetries have been averaged

over all the modules for each run, that is, they have been averaged over the polar angle

covered by the calorimeter and the whole azimuthal angle. These set of extracted asym-

metries for each single run are then histogrammed, changing the sign for those samples

where the GVZ λ/2 wave plate is inserted, as shown in the figure 4.8, and fitted to a Gaus-
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Figure 4.8: Sample probability distribution of the physical asymmetry with the whole set

of data. In the figure above the sample distribution is fitted to a normal distribution and

in the figure below the logarithm plot is shown.
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sian function. The fit to the Gaussian reveals to be extremely good, with a χ2/ν = 0.93
and a probability for the χ2/ν-distribution of 0.74. It can be observed that the standard

deviation of the sample probability distribution = 0.95 ppm is given very approximately

by the quadratic sum of the statistical error and the systematic error of the background

subtraction, which is of statistical nature, that is
√
0.872 + 0.372 = 0.95 ppm, leaving small

margin for the broadening stemming from the non-helicity correlated beam parameters

fluctuations.

4.15 List of systematic errors and measurement

The table below lists all the corrections applied to the extracted asymmetry from

the energy spectrum and their associated systematic uncertainties.

Scaling factor Error(ppm)

Polarization 0.74 0.75

Correction(ppm) Error(ppm)

Dilution of γ backgr. −3.07 0.37

Scaling ǫ param. 0.31

Shifting δ param. 0.47

Helicity corr. beam diff 0.24 0.16

Al windows 0.01 0.06

Random coinc. events −0.61 0.10

Elastic scattering −0.14 0.04

Target density −0.81 0.06

spin angle deviation −0.01 0.03

Sum syst. errors 1.03

The measured parity violating asymmetry with the statistical error and the total

systematic error is:

Ad
PV = (−20.11 ± 0.87stat ± 1.03sys) ⋅ 10−6 (4.56)
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4.16 Conclusions

• The systematic uncertainty of the determined parity violating asymmetry is domi-

nated by the systematic error of the measurement of the polarization degree and by

the systematics arising from the subtraction of the neutral background.

• The following dominant source of systematics are the false asymmetries from the

helicity correlated beam fluctuations, which have been improved with respect to

previous measurements [40], [53], by improving the experimental conditions of the

polarized beam.

• Other systematic effects of less amount have been evaluated to verify that they

are under control and are included in the complete systematic uncertainty of the

measurement.

• The total systematic error is slightly larger than the statistical error.

• The systematic tests confirm that the determined asymmetry from the analysed

data is a physical parity violating asymmetry:

– The asymmetry changes of sign for those samples for which the λ/2 wave plate

(GVZ) was introduced in the polarized beam source.

– The determined asymmetry exhibits, within the error bars, a dependence on

the polar angle of the detector consistent with the expected dependency on the

scattering angle of the parity violating asymmetry.

– The shape, the mean and the standard deviation of the sample distribution of

the asymmetries for each run confirm the expected normal parent distribution

of the physical asymmetry.
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Chapter 5

Beam normal spin asymmetry

In this chapter it is presented the analysis of the data and the measurements of

the beam normal spin asymmetry BNSA. This asymmetry arises when the electron beam

is transversely polarized, with the spin of the electron orthogonal to its momentum in

the plane of the accelerator, and the spin direction is reversed. This asymmetry is a

T-odd observable which at leading order is given by the interference of the scattering

amplitude in the Born approximation and the imaginary part of the absorptive part of

that amplitude, which is the two-photon exchange amplitude. The basic procedures for

the extraction of the asymmetry from the energy spectra have been already developed

in the previous chapter so that in this one the treatment focus on the differences for the

specific case of the normal asymmetry. The measurements presented are those of the

data taken at backward angles with three different beam energies 210 MeV, 315 MeV and

420 MeV, corresponding to the Q2 = 0.10 (GeV/c)2, Q2 = 0.23 (GeV/c)2 and Q2 = 0.35
(GeV/c)2, respectively. The asymmetry is measured with a target of hydrogen in order

to extract the asymmetry on the proton and with a target of deuterium to extract the

asymmetry on the neutron. Altogether six beam normal spin asymmetries are extracted

from the data, and from them three asymmetries for the neutron.

The order of magnitude of the BNSA is given by the electromagnetic coupling

constant and the relativistic suppression factor of an electron having normal spin with

respect to one having longitudinal spin A⊥ ∼ α/γ ∼ 10−5 − 10−4. So the BNSA is expected

to be of the order of several or hundreds of ppm. Since the asymmetry is maximum if

the spin is normal to the scattering plane and zero when the spin is contained in that

plane, the BNSA presents a modulation with the azimuthal angle given by the projection

A⊥ ∼ cosφ

119
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One significant feature of this kind of asymmetry is that both the background of

γs and the physical process in which is based the measurement of the signal proportional

to the luminosity, the Møller scattering, present large normal spin asymmetries, which in

the case of the background exhibits even a dependency on the energy.

The chapter starts with the analysis of the neutral background subtraction and

the selection of the lower cut for the energies 315 MeV and 420 MeV. It follows the

discussion of the effect of the cosinusoidal modulation of the asymmetry on the averaging

and of those systematic corrections which present differences with respect to the treatment

for the parity violating asymmetry presented in the previous chapter. Afterwards the

list of systematic corrections and uncertainties are give and the measurements of the

asymmetries with hydrogen and deuterium, from which the asymmetry on the neutron

can be calculated. A brief section is reserved to the special case of the asymmetry at the

energy 210 MeV. And finally it is presented the comparison of the measurements with the

theoretical calculation of the asymmetries and the conclusions.

5.1 Neutral background subtraction

The neutral background pollution is the dominant source of background in the

spectrum of charged particles at the energies E = 315 MeV and E = 420 MeV. The amount

of background is larger at the higher energy E = 420 MeV and neglible at the lower energy

E = 210 MeV. In order to correct the asymmetry from the background pollution and to

estimate the systematic error the same procedure and hypothesis is employed as those

described for the parity violating asymmetry in the previous chapter.

In this case of normal polarization of the beam the extracted asymmetries from

the spectrum of charged particles and the asymmetry of the background exhibit these

features, see figures 5.1 and 5.2:

• The extracted BNSA from the spectrum of charged particles Ae for the energy 315

MeV with both hydrogen and deuterium and the energy 420 MeV for deuterium

exhibits a constancy, within the error bars, with the lower cut.

• The extracted BNSA from the spectrum of charged particles for the energy 420 MeV

with hydrogen exhibits to the contrary a slight dependency on the lower cut.

• In all cases the extracted BNSA of the background Aγ exhibits a strong variation

with the lower cut, which reflects a dependency on the energy of the BNSA of
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Figure 5.1: Above, for the energy 420 MeV and the hydrogen target, the extracted beam

normal spin asymmetry Ae from the spectrum of charged particles in red color and the

corrected asymmetry from the background subtraction A0 in blue color. In grey colors

with decreasing intensity the spectrum of charged particles, the background pollution

and the histogram where the background pollution has been subtracted, as reference.

The vertical dotted lines represent the lower cut at 0.0, 0.5, 1.0 and 1.5 and 2.0 σ from

the center of the elastic peak. The left dot-dashed line corresponds to the pion threshold

and the right one corresponds to 1 − σ calculated from the energy resolution at the pion

production energy. Below, together with the Ae and A0, in red and blue color, the

asymmetry of the background Aγ in black color.
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Figure 5.2: The figures show, with the same conventions described in the figure 5.1, the

extracted asymmetry from the spectrum of charged particles Ae in red color, the corrected

asymmetry from the background subtraction A0 in blue color and the asymmetry of the

background Aγ in black color, for the energies 315 MeV and 420 MeV and the hydrogen

and deuterium targets.
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the π0 production. The asymmetry of the background presents a large magnitude,

comparable to the raw asymmetry of the signal. It changes sign over the interval of

lower cuts, from 0 to 2 σ from the center of the elastic or quasielastic peak, and it

crosses the value of the raw asymmetry of the signal.

The constancy with the lower cut of Ae can be understood as a consequence of

the cancellation of the opposite effects of the dilution factor f and the asymmetry of the

background Aγ , see formula 4.10.

The scaling-shifting method for the neutral background subtraction is applied nev-

ertheless on the argument that the raw asymmetry from the spectrum of charged particles

Ae can be shifted with respect to the physical asymmetry. The subtraction method of-

fers also an estimate of the systematic uncertainty associated to the neutral background

pollution.

The corrected asymmetry from the background subtraction exhibits in all the cases

a constancy within the error bars, see figures 5.1 and 5.2.

The table 5.2 shows the extracted asymmetry Ae from the spectrum of charged

particles and the asymmetry of the background Aγ as a function of the lower cut. It shows

also the dilution factor f and the corrected asymmetry A0 from the neutral background

subtraction. The errors ∆Ae and ∆Aγ are the statistical errors from the number of counts

and the error of the corrected asymmetry ∆A0 includes the pure statistical error 4.18 and

the error from the background subtraction of statistical origin 4.20, that is ∆Astat⊕∆Aγ .

The table 5.3 includes the correction δAγ = A0−Ae and the contributions to the systematic

error from the background subtraction originated from the uncertainties in the scaling-

shifting parameters ∆Aǫ and ∆Aδ, see formulae 4.21 and 4.22.

Observations

• The errors of statistical origin ∆Astat ⊕∆Aγ present a minimum at a lower cut k0,

table 5.1.

• The sum of the statistical error and the systematic error from the background sub-

traction ∆Astat ⊕∆Aback with the contributions of the parameters ǫ and δ presents

a minimum at a different lower cut k1, table 5.1.

• The minimum including the uncertainties of the scaling-shifting parameters is closer

to the center of the elastic or quasielastic peak k1 <k0.
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• The extracted asymmetry of the background equals approximately the corrected

asymmetry A0 ≃ Aγ at the lower cut k3, table 5.1.

Q2 (GeV/c)2 Target k0 k1 k2

0.23
H2 2.0 1.0 2.0

D2 1.5 0.5 1.5

0.35
H2 1.5 1.0 1.5

D2 2.0 0.0 0.0

Table 5.1: Lower cut where ∆Astat⊕∆Aγ (k0) and ∆Astat⊕∆Aback (k1) reach a minimum

and the lower cut of the approximate equality A0 ≃ Aγ (k2).

5.1.1 Systematic errors from the scaling-shifting parameters

The contributions to the systematic error from the scaling factor ǫ and the shift δ

vary not only with the dilution factor f but also because of the strong dependency of the

asymmetry of the background on the lower cut.

Scaling factor

The uncertainty from the scaling factor ǫ increases with increasing values of the

dilution factor f but it is suppressed at the lower cut where the asymmetry of the back-

ground coincides with the physical asymmetry.

∆ǫ = f ∣A0 −Aγ ∣
1 − f

∆ǫ

ǫ
(5.1)

The error ∆ǫ reaches the minimum exactly at the same lower cut where A0 ≃ Aγ

Shift parameter

The error from the shift parameter ∆Aδ depends on the dilution factor, the differ-

ence of the extracted asymmetry with that of the background A0 −Aγ, the derivative of

the number of counts from the background Nγ with respect to δ and the derivative of the

asymmetry of the background Aγ with respect to δ.
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Q2 Target k dilution Ae Aγ A0

(GeV/c)2 % (10−6) (10−6) (10−6)

0.23

H2

0.0 1.5 ± 0.2 −91.78 ± 6.97 234.60 ± 17.86 −96.79 ± 7.09

0.5 2.6 ± 0.3 −89.21 ± 6.28 96.82 ± 12.25 −94.25 ± 6.46

1.0 4.3 ± 0.4 −89.03 ± 5.88 −4.94 ± 8.87 −93.04 ± 6.16

1.5 6.8 ± 0.7 −89.66 ± 5.60 −65.98 ± 6.74 −91.31 ± 6.03

2.0 9.8 ± 1.0 −88.98 ± 5.40 −98.10 ± 5.42 −87.96 ± 6.02

D2

0.0 6.1 ± 0.6 −57.22 ± 4.88 2.32 ± 6.29 −60.75 ± 5.21

0.5 9.4 ± 0.9 −55.28 ± 4.31 −37.10 ± 4.47 −57.14 ± 4.77

1.0 13.9 ± 1.4 −52.91 ± 3.96 −58.78 ± 3.36 −52.10 ± 4.63

1.5 19.4 ± 1.9 −54.52 ± 3.70 −73.48 ± 2.66 −50.18 ± 4.62

2.0 25.3 ± 2.5 −55.37 ± 3.48 −76.45 ± 2.20 −48.53 ± 4.70

0.35

H2

0.0 3.5 ± 0.4 −88.42 ± 7.80 18.17 ± 13.20 −92.55 ± 8.09

0.5 6.1 ± 0.6 −90.68 ± 6.93 −26.23 ± 8.93 −95.25 ± 7.40

1.0 10.3 ± 1.0 −89.90 ± 6.38 −73.95 ± 6.31 −92.40 ± 7.14

1.5 16.3 ± 1.6 −93.71 ± 5.95 −94.21 ± 4.68 −94.50 ± 7.14

2.0 23.6 ± 2.4 −96.35 ± 5.55 −110.36 ± 3.62 −92.99 ± 7.32

D2

0.0 19.4 ± 1.9 −49.46 ± 6.67 −43.40 ± 4.75 −50.02 ± 7.25

0.5 32.3 ± 3.2 −51.13 ± 5.84 −58.78 ± 3.23 −50.15 ± 6.72

1.0 51.1 ± 5.1 −49.45 ± 5.26 −63.57 ± 2.32 −46.35 ± 6.64

Table 5.2: Dilution factor f , the extracted asymmetry from the spectrum of charged

particles Ae, the asymmetry of the background Aγ and the corrected asymmetry from the

neutral background subtraction A0 for hydrogen and deuterium at Q2 = 0.23 (GeV/c)2

and Q2 = 0.35 (GeV/c)2 for different values of the lower cut. The bold marked values of

k and the corresponding corrected asymmetry A0 are those selected for the final analysis.
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Q2 Target k δAγ ∆Aγ ∆Aǫ ∆Aδ ∆Aback ∆Astat ∆Astat ⊕∆Aback

(GeV/c)2 (10−6) (10−6) (10−6) (10−6) (10−6) (10−6) (10−6)

0.23

H2

0.0 −5.01 0.91 0.71 1.39 1.81 7.03 7.26

0.5 −5.04 1.09 0.72 0.62 1.44 6.36 6.53

1.0 −4.00 1.34 0.63 0.43 1.54 6.02 6.21

1.5 −1.65 1.62 0.26 1.82 2.45 5.81 6.31

2.0 1.02 1.94 0.16 1.98 2.78 5.69 6.34

D2

0.0 −3.74 1.32 0.58 0.04 1.45 5.04 5.24

0.5 −2.01 1.51 0.31 0.50 1.62 4.53 4.81

1.0 0.71 1.78 0.14 1.46 2.31 4.27 4.85

1.5 4.32 2.09 0.80 1.81 2.86 4.11 5.02

2.0 6.76 2.38 1.33 1.14 2.95 4.04 5.01

0.35

H2

0.0 −4.13 1.57 0.58 1.01 1.95 7.94 8.18

0.5 −4.57 1.89 0.64 0.18 2.00 7.15 7.43

1.0 −2.51 2.36 0.30 0.79 2.52 6.73 7.19

1.5 −0.79 2.97 0.01 1.70 3.42 6.49 7.34

2.0 3.36 3.65 0.76 2.49 4.49 6.34 7.77

D2

0.0 −0.56 2.07 0.23 0.41 2.12 6.95 7.26

0.5 0.98 2.47 0.58 2.90 3.85 6.26 7.35

1.0 3.09 3.05 2.54 4.94 6.34 5.90 8.66

Table 5.3: The table shows for different lower cuts, for hydrogen and deuterium data

at Q2 = 0.23 (GeV/c)2 and Q2 = 0.35 (GeV/c)2, the correction from the background

subtraction δAγ = A0 − Ae, the systematic error from the background subtraction: the

contribution of statistical origin δAγ and the contributions from the uncertainties in the

scaling factor ∆Aǫ and the shifting parameter ∆Aδ, where ∆Aback is the quadratic sum of

these three terms. ∆Astat is the statistical error and the last column ∆Astat⊕∆Aback is the

quadratic sum of the statistical error and the total systematic error from the background

subtraction. The bold marked values of k, which minimize the total error in the last

column, are those employed in the final analysis.
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Figure 5.3: At right the coordinate system of the detector, where k⃗ is the momentum

of the incoming electron pointing out of the paper plane and s⃗ is the normal spin of the

electron in the + state. The origin of the azimuthal angle φ is at the bottom and the

positive direction is clockwise. At left the coordinate system of the beam with the z-axis

pointing in the direction of the beam, the x-axis pointing in the direction of the spin +

state and the y-axis pointing downwards.

∆Aδ = f

1 − f
∣A0 −Aγ

Nγ

dNγ

dδ
−
dAγ

dδ
∣∆δ (5.2)

The increase of Aγ with the energy and thus with the lower cut implies that
dAγ

dδ
> 0

The decrease of Nγ with the energy implies that
dAγ

dδ
< 0

The consequence is that these effects of the uncertainty of δ on the background

pollution and the asymmetry of the background compensate each other if A0 < Aγ, for

low lower cuts, and add if A0 > Aγ, for higher lower cuts, driving the minimum of ∆Aδ to

the neighbourhood of the peak.

5.1.2 Selection of the lower cut

The criterion to select the optimal lower cut is the minimization of the sum of

the statistical error and the dominant systematic error from the background subtraction,

including the contributions from the uncertainties of the scaling-shifting ǫ and δ param-
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eters, k1, see table 5.1. This minimum is shifted towards the center of the peak by the

variation with the lower cut of the contribution from the shifting δ parameter.

It could be expected that the error is minimized where Ae ≃ Aγ because of the

insensitivity of the correction to the dilution factor

A0 = Ae − fAγ

1 − f
≃ A − fA

1 − f
= A (5.3)

However the strong dependency of Aγ on the energy determines a variation of the

uncertainties associated to the ǫ − δ parameters with the lower cut.

5.2 Azimuthal modulation of the BNSA

The extracted beam normal spin asymmetry of the background and the corrected

asymmetry from the background subtraction exhibit a cosinusoidal modulation with the

azimuthal angle. The figures 5.4 and 5.5 show this dependency. The asymmetries repre-

sented in these figures are those corresponding to the selected cuts. The curves are fitted

to the function −A⊥,0 cos(φ+δ)+p, which includes a phase δ and an offset p. The fits, with

χ2/ν between 0.88 and 1.18 for the signal, and between 1.09 and 1.16 for the background,

are remarkably good and yield values for the phase and the offset which are compatible

with zero. The minus sign of the amplitude arises form the coordinate system, see figure

5.3, which determines that A⊥(φ = 0) = −A⊥,0
A⊥ = A⊥,0 s⃗ ⋅ k⃗ × k⃗

′

∣k⃗ × k⃗′∣ = −A⊥,0 cosφ (5.4)

where s⃗ is the normal spin of the polarized electron beam in the positive direction,

k⃗ is the momentum of the incoming electron of the beam and k⃗′ is the momentum of the

scattered electron.

5.2.1 Azimuthal average of the BNSA

Because of the cosinusoidal modulation the extracted asymmetry from one frame

has to be average over the range of the azimuthal angle of one frame, ∆φ = φ1 −φ0 = 2π
146
=

4.3 ⋅ 10−2.
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Figure 5.4: Azimuthal modulation of the corrected BNSA from the background, right, and

of the extracted asymmetry of the background, right, for hydrogen, above, and deuterium,

below, at Q2 = 0.23 (GeV/c)2. The curves are fitted to the function −A⊥,0 cos(φ + δ) + p,
including a phase δ and an offset, which in all cases are compatible with zero. The fit to

the function is extremely good. The asymmetries are represented for the selected lower

cut. The asymmetry of the background for the hydrogen at the selected lower cut is close

to zero. In this case the phase has been constrained to zero since for other lower cuts

this asymmetry exhibits a cosinusoidal modulation which in this case is hidden by the

smallness of the asymmetry.
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Figure 5.5: Azimuthal modulation of the corrected BNSA from the background, right, and

of the extracted asymmetry of the background, right, for hydrogen, above, and deuterium,

below, at Q2 = 0.35 (GeV/c)2. The curves are fitted to the function −A⊥,0 cos(φ + δ) + p,
including a phase δ and an offset, which in all cases are compatible with zero. The fit to

the function is extremely good.
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Ai
⊥ = Ai

⊥,0

∫
φ1

φ0

cosφdφ

∫
φ1

φ0

dφ

= Ai
⊥,0

sinφ1 − sinφ0

φ1 − φ0

= Ai
⊥,0

2

φ1 − φ0

cos
φ1 + φ0

2
sin

φ1 − φ0

2
≃ Ai

⊥,0 cos
φ1 + φ0

2

where sin φ1−φ0

2
∼ φ1−φ0

2
with very good approximation. Consequently the asymme-

try is simply modulated by the cosine of the mean value of the azimuthal angle for each

frame, given by φ1−φ0

2
= 2n−1

2

2π
146

, where n ∈ [1,146] is the frame number.

The beam normal spin asymmetry to be determined is the amplitude of the cosi-

nusoidal function. This cosinusoidal modulation increases the error of the asymmetry for

the azimuthal angle φ by the factor ∣cos−1φ∣ ≥ 1
σ(Ai

⊥,0) = σ(Ai
⊥)

cosφi

= 1√
Ni cosφi

(5.5)

At the right angles φ = π
2
, 3π

2
the uncertainty becomes infinity since the amplitude

at those points 0 = A⊥ ⋅ 0 could be arbitrarily large.

The beam normal spin asymmetry is calculated from the weighted average of the

amplitudes of the asymmetries from the whole set of frames of the calorimeter, where

both the amplitude of the asymmetry and its error contain the cosφ factor:

⟨A⊥,0⟩ =
∑
i

Ai
⊥,0

σ2(Ai
⊥,0)

∑
i

1

σ2(Ai
⊥,0)

= 1

∑iNi cos2 φi
∑
i

Ai
⊥,

cosφi

1

Ni cos2 φi

= 2

N
∑
i

∆Ni cosφi

Since the azimuthal angle range of one frame is small the sum can be substituted

by an integral over the whole azimuthal angle. The inverse of the square of the error of

the asymmetry shows that the effective number of counts contributing to the statistical

error is decreased by a factor of 2.

σ2(A⊥,0) = 1

Neff

= 1

∑iNi cos2 φi

(5.6)

Neff =∑
i

Ni cos
2 φi = N

2π ∫
2π

0

cos2 φdφ = N
2

(5.7)
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Q2 (GeV/c)2 Target (quasi)elastic counts statistical error relative error

0.23
H2 9.33 ⋅ 1010 6.02 ⋅ 10−6 6.3 %

D2 1.63 ⋅ 1011 4.53 ⋅ 10−6 8.0 %

0.35
H2 8.31 ⋅ 1010 6.73 ⋅ 10−6 6.6 %

D2 5.37 ⋅ 1010 6.95 ⋅ 10−6 13.1 %

Table 5.4: Number of elastic and quasielastic counts for the hydrogen and deuterium,

respectively, at Q2 = 0.23 and Q2 = 0.35 (GeV/c)2, statistical absolute and relative error.

And consequently the error of the asymmetry is increased by a factor
√
2 because

of the cosinusoidal modulation.

σ(A⊥,0) = 1√
Neff

=
√

2

N
(5.8)

The calculated errors in the tables 5.2 and 5.3 include already this factor
√
2.

5.3 Systematics corrections and uncertainties

5.3.1 Helicity correlated beam fluctuations

In order to correct the false asymmetries arising from the helicity correlated beam

fluctuations these procedures have been followed:

• A multilinear regression method: the statistics of the data taken for normal polar-

ization of the beam is not enough to determine the parameters ai of the fit.

• To employ the parameters determined with the statistics of the data taken with

longitudinal polarization of the beam: the correlations between the beam properties

determine the errors of the parameters ai and the correction. These correlations are

however different for both set of data.

• The geometrical model described in the previous chapter to determine the parame-

ters ai

The last procedure has been employed to correct the false asymmetries. The cor-

rection has been carried out over the whole calorimeter so that the contribution from the
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Q2 (GeV/c)2 Target Sample Runs Eff. time P AGV Z
⊥ (10−6) GVZ

0.23

H2

0 32275 − 32580 24.8 h 76.6% 89.24 ± 8.83 in

1 32581 − 32908 25.5 h 77.2% −96.72 ± 8.61 out

D2

0 44662 − 44800 10.4 h 71.2% 90.79 ± 12.42 in

1 44802 − 44938 7.3 h 72.2% −41.42 ± 14.48 out

2 49153 − 49413 20.8 h 79.7% −37.28 ± 7.80 out

3 49415 − 49682 21.0 h 78.9% 69.24 ± 7.87 in

0.35

H2

0 58883 − 59473 32.5 h 71.6% 116.50 ± 11.15 in

1 59489 − 60093 49.8 h 74.0% −75.71 ± 9.30 out

D2

0 60432 − 60608 13.4 h 77.4% 77.03 ± 17.12 in

1 60609 − 60810 15.8 h 81.4% −13.03 ± 15.17 out

2 60811 − 60831 01.6 h 82.4% 158.40 ± 47.16 in

3 60832 − 61037 15.8 h 82.4% −74.57 ± 15.07 out

4 61038 − 61256 17.7 h 84.6% −0.29 ± 13.88 in

5 61257 − 61450 15.8 h 84.6% −84.44 ± 14.60 out

Table 5.5: Samples of runs classified by the GVZ state, effective time of the number of runs

employed in the analysis, polarization degree and the azimuthally averaged asymmetry

for all the runs of each GVZ-sample.

beam properties: current intensity asymmetry AI and the beam energy difference ∆E,

which are azimuthally independent, average out. The parameters of the beam differences

in position ∆x, ∆y and angle ∆α, ∆β for both axis x and y, see figure 5.3, which are

azimuthally dependent, have been weighted averaged over the whole detector taking into

account the cosinusoidal modulation of the BNSA.

Let us a(φ) be the azimuthally dependent parameter of the beam position or angle

difference X =∆x,∆y,∆α,∆β

A(φ) = A0 cosφ + a(φ)X̄ (5.9)

The amplitude of the BNSA at the azimuthal angle φ is then:

A0 = A(φ) − a(φ)X̄
cosφ

(5.10)

And the weighted average over the whole azimuthal angle:
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⟨A0⟩ = ⟨A(φ)
cosφ

⟩ − ⟨a(φ)
cosφ

⟩ X̄ (5.11)

The weighted average over the whole azimuthal angle of the parameter a(φ) in-
cludes the factor cos−1 φ:

⟨a(φ)
cosφ

⟩ =
1

n
∑
i

a(φ)/ cosφi[∆a(φ)]2 / cos2 φi

1

n
∑
i

1(∆a(φ)]2 / cos2 φi

(5.12)

where the factor 1

n
introduced in the numerator and denominator comes from

n∆φ = 2π, being n the number of frames in which the detector is azimuthally divided.

The correction to the BNSA from the beam difference X is then:

δAx =
∫

2π

0

a(φ)(∆a)2 cosφ dφ
∫

2π

0

cos2 φ(∆a)2 dφ
X̄ = 1

π
∫

2π

0

a(φ) cosφ dφ (5.13)

The calculated parameters a(φ) for the beam differences in position and angle in

both axis, averaged over the effective scattering angle, are represented as a function of the

azimuthal angle in the figure 5.6. The parameters associated to the position and angle

beam differences in the x-axis, that is, in the plane of accelerator, exhibit a modulation

with sinφ, while those associated to the beam differences in the y-axis, normal to the

plane of the accelerator, are modulated by cosφ. The formula for the correction 5.13

implies that only the false asymmetries from the differences in the y-axis contribute to

the correction after averaging over the whole azimuthal angle, while the false asymmetries

from the beam differences in the plane of the accelerator cancel out.

The tables 5.6, 5.7 and 5.8 show the helicity correlated beam properties averaged

over the whole set of data and the calculated parameters of those contributing to the false

asymmetries in the average over the whole azimuthal angle.

It can be observed that the parameters and the false asymmetries associated to

the position and angle beam differences in the vertical axis have opposite sign. These

false asymmetries arise from a variation of the cross section through the change of the

scattering angle, see figure 5.7. The reason of the opposite sign relies in the different

influence on the solid angle.
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Figure 5.6: Calculated parameters for the beam differences in the position, above, and

in the angle, below, for the x-axis in blue color and for the y-axis in black color. The

parameters associated to the vertical axis exhibit a cosφmodulation while those associated

to the horizontal axis present a sinφ modulation.
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E (MeV) target AI(10−6) ∆x (nm) ∆α (nrad) ∆E (eV)

210
p −0.24 ± 0.09 229 ± 58 14 ± 8 −3.40 ± 0.97

d −0.16 ± 0.04 −21 ± 29 −2.5 ± 3.2 −3.81 ± 0.61

315
p −1.34 ± 0.06 −0.5 ± 1.4 −0.08 ± 0.17 0.08 ± 0.06

d −0.38 ± 0.05 11 ± 8 1.2 ± 0.7 −0.08 ± 0.09

420
p −1.24 ± 0.07 55 ± 11 6.3 ± 0.9 −3.66 ± 0.16

d −0.18 ± 0.13 −131 ± 28 −15 ± 4 0.03 ± 0.68

Table 5.6: Helicity correlated beam properties averaged over the whole set of data with

normal polarization. Their false asymmetries average out over the whole azimuthal angle.

E (MeV) target ay (
10−6

µm
) ⟨ ay

cosφ
⟩ (10−6

µm
) aβ (

10−6

µrad
) ⟨ aβ

cosφ
⟩ ( 10−6

µrad
)

210
p 0.1618 3.7601 0.5101 −11.8551

d 0.2227 5.1745 0.4316 −10.0310

315
p 0.2173 5.0502 0.4384 −10.1882

d 0.2518 5.8523 0.3940 −9.1569

420
p 0.2281 5.3021 0.4319 −10.0310

d 0.2500 5.8105 0.3963 −9.2107

Table 5.7: Calculated parameters of the helicity correlated position and angle beam dif-

ferences in the y-axis, which contribute to the false asymmetry in the average over the

whole azimuthal angle. The table shows the amplitudes ay and aβ of the φ-dependence

and the average employed in the correction, according to the formula 5.12

E (MeV) target ∆y (nm) ay∆y (10−6) ∆β (nrad) aα∆β (10−6)

210
p 90 ± 14 0.34 ± 0.05 7 ± 2 −0.08 ± 0.02

d −4.7 ± 8.6 −0.02 ± 0.04 −0.5 ± 0.9 0.005 ± 0.009

315
p −0.2 ± 0.6 −0.001 ± 0.003 −0.03 ± 0.06 −0.0003 ± 0.0006

d 2.5 ± 1.7 0.02 ± 0.01 0.22 ± 0.17 −0.011 ± 0.007

420
p 21 ± 7 0.11 ± 0.04 2.3 ± 0.8 −0.023 ± 0.008

d −13 ± 6 −0.08 ± 0.04 −3.8 ± 0.7 0.035 ± 0.006

Table 5.8: Helicity correlated position and angle beam differences in the y-axis, which

contribute to the correction in the average over the whole azimuthal angle and their

associated correction.
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Figure 5.7: Variation of the scattering angle θ due to the beam difference in the position

dy, left, and in the angle dβ, right, in the vertical axis. The different variation of the solid

angle leads to false asymmetries with opposite sign.

5.3.2 Spin angle deviation

If the spin of the electron is slightly deviated with respect to the normal direction

by the amount δs there is a longitudinal component of the spin that gives rise to a parity

violating asymmetry. The experimentally observed asymmetry at the azimuthal angle φi

is then the sum:

Aexp,i = A⊥,0,i cosφi cos δs +APV,i sin δs (5.14)

The amplitude of the beam normal spin asymmetry is therefore:

A⊥,0,i = Aexp,i −APV,i sin δs
cosφi cos δs

(5.15)

The weighted average of the amplitude A⊥,0 over the whole azimuthal angle includes

the factor cos−1φ of the error of the amplitude of the asymmetry. The contribution to the

error of the parity violating component is neglected.
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⟨A⊥,0⟩ = ∑
i

A⊥,0,i

σ2
i

∑
i

1

σ2
i

=
∑
i

Aexp,i cosφi cos δ −APV,i sin δ cos δ cosφi

∆2Aexp,i

∑
i

cos2 φi cos2 δ

∆2Aexp,i

(5.16)

= 1

cos δ
⟨A⊥,0,exp⟩ −APV tan δ

∑
i

cosφi

∆2Aexp,i

∑
i

cos2 φi

∆2Aexp,i

(5.17)

The term with the APV averages out, since ∫ 2π

0
cosφdφ = 0. The correction due to

the spin angle deviation reads:

δspinA⊥ = Aexp
⊥ ( 1

cos δs
− 1) ≃ Aexp

⊥ δ2s/2 (5.18)

Determination of the spin angle deviation

The spin angle deviation is determined taking into account the spin dynamics of

the electron beam in the accelerator and the rotation of the spin in the Wien Filter

θs = θWF + θacc +
dθs

dE
∆E (5.19)

where θWF = −cIWF is the spin angle rotated in the Wien Filter under the current

intensity IWF , with c = −14.66○/A, θacc is the spin angle of the accelerated electron for the

nominal energy E0 close to that of the measurement Em and dθs
dE

∆E takes into account

the rotation of the spin in the accelerator for the difference between the measured and the

nominal energy: ∆E = Em −E0. The uncertainty in the determination of δs is of about

2○. The determined angle spin deviation are δs = (2.1 ± 2.0)○ at E = 315 MeV with the

hydrogen target, δs = (0.1 ± 2.0)○ for the deuterium and δs = (0.5 ± 2.0)○ at E = 420 MeV

for both hydrogen and deuterium.
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E (MeV) target Aa (10−6) g (%) δAa (10−6) h (%) δAr (10−6)

210
p

3.59
7.0 ± 0.3 −1.07 ± 0.09 0.34 ± 0.04 −0.04 ± 0.01

d 4.3 ± 0.2 −0.25 ± 0.02 0.67 ± 0.09 −0.01 ± 0.01

315
p

−61.73
5.6 ± 0.2 −1.96 ± 0.51 0.78 ± 0.10 −0.82 ± 0.15

d 3.3 ± 0.1 0.17 ± 0.23 1.7 ± 0.2 −1.12 ± 0.21

420
p

−49.38
5.0 ± 0.2 −2.58 ± 0.47 1.9 ± 0.2 −2.07 ± 0.38

d 4.0 ± 0.2 −0.04 ± 0.28 3.5 ± 0.5 −2.40 ± 0.43

Table 5.9: Beam normal spin asymmetry on the aluminium Aa and dilution factor of the

aluminium g and the random coincident events h in the spectrum of charged particles

with the respective systematic corrections δAa and δAr.

5.3.3 Other systematic corrections

Polarization degree

The beam normal spin asymmetry is normalized to the polarization degree. The

table 5.5 shows the GVZ-samples employed in the analysis of each set of data together

with the associated polarization.

Target density fluctuations

The BNSA is also corrected from the false asymmetries arising from the helicity

correlated target density fluctuations. These false asymmetries are determined through

the measurement of the helicity correlated asymmetry in the signal of the luminosity

monitors. These asymmetries have to be average over the whole azimuthal angle, since

the Møller scattering, which is the physical process dominant in the luminosity monitors

at small scattering angles, presents its own beam normal spin asymmetry, which is of the

same order of magnitude as the BNSA of the scattering on the nucleon and it is thus

cosinusoidally modulated, see [29] and [30]. The luminosity signal has been corrected for

the non-linearities of the photomultipliers.

Aluminium windows

The correction and the determination of the associated systematic uncertainty for

the background from the quasielastic scattering on the aluminium walls is carried out

using the formulae 4.42 and 4.43, without the approximation for the strangeness.
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trans 315 MeV H2 trans 315 MeV D2

Scaling factor Error(10−6) Scaling factor Error(10−6)

Polarization 0.77 3.72 0.77 2.30

Correction(10−6) Error(10−6) Correction(10−6) Error(10−6)

Dilution of γ backgr. −4.00 1.34 −2.01 1.51

Scaling ǫ param. 0.63 0.31

Shifting δ param. 0.43 0.50

Helicity corr. beam diff 0.00 0.00 −0.01 0.01

Al windows −1.96 0.51 0.17 0.23

Random coinc. events −0.82 0.15 −1.12 0.21

Luminosity 1.06 0.20 1.72 0.21

spin angle deviation −0.07 0.13 −0.04 0.08

Sum syst. errors 4.07 2.84

trans 420 MeV H2 trans 420 MeV D2

Scaling factor Error(10−6) Scaling factor Error(10−6)

Polarization 0.73 3.70 0.82 2.00

Correction(10−6) Error(10−6) Correction(10−6) Error(10−6)

Dilution of γ backgr. −2.51 2.36 −0.56 2.07

Scaling ǫ param. 0.30 0.23

Shifting δ param. 0.79 0.41

Helicity corr. beam diff −0.09 0.04 0.04 0.04

Al windows −2.58 0.47 −0.04 0.28

Random coinc. events −2.07 0.38 −2.40 0.43

Luminosity −2.41 0.44 −0.98 0.20

spin angle deviation 0.00 0.03 0.00 0.02

Sum syst. errors 4.63 2.98

Table 5.10: List of systematic corrections and uncertainties for the beam normal spin

asymmetries for the beam energies 315 MeV and 420 MeV and hydrogen and deuterium

targets.
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Q2 (GeV/c)2 Beam normal spin asymmetry total error

0.23
A

p
⊥ = ( −94.83 ± 6.02stat ± 4.07sys) ⋅ 10−6 7.27 ⋅ 10−6

Ad
⊥ = ( −56.42 ± 4.53stat ± 2.84sys) ⋅ 10−6 5.35 ⋅ 10−6

0.35
A

p
⊥ = (−99.55 ± 6.73stat ± 4.63sys) ⋅ 10−6 8.11 ⋅ 10−6

Ad
⊥ = ( −53.40 ± 6.95stat ± 2.98sys) ⋅ 10−6 7.56 ⋅ 10−6

Table 5.11: Beam normal spin asymmetries after applying the systematic corrections with

the statistical, the systematic error and the quadratic sum.

The dilution factor g of the aluminium background in the spectrum of charged

particles is calculated with the same procedure described in the chapter dedicated to

the parity violating asymmetry. Since for the energies 210 and 420 MeV there was not

measurement with empty target, the number of counts for the aluminium background Na

from the measurement at 315 MeV is employed. These counts are scaled by the quotient

of the cross section on the aluminium at the desired energy and the reference energy

Na(E) = Na(Eo) ⋅ σ(E)/σ(E0). The beam normal spin asymmetry in the quasielastic

scattering on the aluminium nucleus is calculated assuming the static approximation and

taking the theoretical calculations of the beam normal spin asymmetry on the proton and

the neutron from Pasquini et al. [27]. The inconsistency with the fact that the corrected

beam normal spin asymmetry on the nucleon is aimed to be compared with the same

theoretical calculation is justified by the smallness of the correction.

The corrections from the aluminium, shown in table 5.9, amount ∼ 2 ppm for the

proton target and are suppressed by more than a factor 10 for the deuterium, because of

the approximately equal number of protons 13 and neutrons 14 in the aluminium nucleus.

Random coincident events

The correction of the background originated in the random coincident events has

followed the same procedure as that described in the chapter of the parity violating

asymmetry, using the formulae 4.45. The dilution factor h of the background of random

coincident events, the correction, the uncertainty and are shown in the table 5.9. This

kind of correction is larger for the deuterium target because of the larger amount of neutral

background with respect to the hydrogen.

The systematic corrections and errors discussed up to this point have been sum-

marized in the table 5.10 for the energies 315 and 420 MeV and the targets of hydrogen

and deuterium. Table 5.11 shows the BNSA after applying the systematic corrections.
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Unknown systematic effects for the deuterium

The beam normal spin asymmetry on the electron deuteron quasielastic scattering

would require these additional corrections:

• The correction from the background of the electron deuteron scattering, which is

included in the interval of integration of the quasielastic peak in the spectrum of

charged particles. The amount of this background, calculated with the quotient of

the elastic to quasielastic scattering averaged cross sections, is known to be small,

decreasing with the energy: 0.06% at 420 MeV, 0.26% at 315 MeV and 1.54% at

210 MeV. This correction can not be perfomed nevertheless because of the lack of

knowledge of the beam normal spin asymmetry in the elastic scattering.

• The nuclear correction, which can not be computed since there is not so far any

nuclear calculation for the two photon exchange mechanism including the two body

current operators. This effect is though expected to be also negligible as far as the

deuteron is a weak bound nucleus.

5.4 Extraction of the BNSA on the neutron

The measurement of the beam normal spin asymmetry on the deuteron is aimed to

determine the BNSA on the neutron. For this determination the static approximation is

assumed. Since the measured asymmetries are cross section averaged over the interval of

effective scattering angle of the detector, the formula for the asymmetry on the deuteron

is written in terms of the averages with the approximation ⟨σNAN
⊥ ⟩ ≃ ⟨σN ⟩ ⟨AN

⊥ ⟩:
⟨Ad
⊥⟩ = ⟨σpAp

⊥⟩ + ⟨σnAn
⊥⟩⟨σp⟩ + ⟨σn⟩ ≃ ⟨σp⟩ ⟨Ap

⊥⟩ + ⟨σn⟩ ⟨An
⊥⟩⟨σp⟩ + ⟨σn⟩ (5.20)

The error associated to the calculated BNSA on the neutron is:

∆An
⊥ =
√
[σp
σn
]2 (∆Ap

⊥)2 + [1 + σp
σn
]2 (∆Ad

⊥)2 (5.21)

This error is amplified because the weighting cross section of the BNSA on the

proton is greater than the weighting cross section on the neutron by a factor of more than

2.
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Q2 (GeV/c)2 Beam normal spin asymmetry on neutron total error relative error

0.23 A⊥ = ( 32.23 ± 20.40stat ± 13.26sys) ⋅ 10−6 24.33 ⋅ 10−6 75.5 %

0.35 A⊥ = ( 55.17 ± 26.86stat ± 14.03sys) ⋅ 10−6 30.30 ⋅ 10−6 54.9 %

σp

σn
= ǫ (Gp

E)2 + τ (Gp
M)2

ǫ (Gn
E)2 + τ (Gn

M)2 ≃
ǫ

τ

1

µ2
n

+
µ2
p

µ2
n

(5.22)

≃ 2.32 (at Q2 = 0.23 (GeV /c)2 and θ = 35○) (5.23)

The cross section on the proton is larger because it is charged and it presents a

magnetic moment which is the sum of the magnetic moment of a Dirac particle and the

anomalous magnetic moment, while the neutron is electrically neutral and it has only

anomalous magnetic moment. The quotient
σp

σn
decreases with the Q2 approximating

asymptotically the quotient of the magnetic moments of the proton and the neutron. The

ratio of the averaged cross sections is
⟨σp⟩
⟨σn⟩ = 2.21 at Q2 = 0.35 (GeV/c)2, 2.30 at Q2 = 0.23

(GeV/c)2 and 2.52 at at Q2 = 0.10 (GeV/c)2, all at backward angles.

5.5 BNSA at Q2 = 0.10 (GeV/c)2

The beam normal spin asymmetry at backward angles for the beam energy 210

MeV with both hydrogen and deuterium is predicted by the theoretical calculation from

Pasquini et al. [27] to be close to zero. For this energy the background pollution in

the spectrum of charged particles is negligible. The data presents a large noise which

is still under investigation and could not be resolved in the scope of this work. The

azimuthal dependence of the extracted asymmetry in the analysis is such that it could be

compatible with zero. It is assumed thus that both asymmetries are zero within an interval

of confidence: Ap
⊥ = (0.0 ± 9.0) ⋅ 10−6 for the hydrogen data and Ap

⊥ = (0.0 ± 10.0) ⋅ 10−6 for

the deuterium, yielding for the neutron Ap
⊥ = (0.0±42.0) ⋅ 10−6. The interval of confidence

has been determined in a preliminary analysis.

5.6 Comparison with the theoretical calculation

The measurements of the beam normal spin asymmetries with hydrogen and the

beam normal spin asymmetries on the neutron, extracted from the measurements of the
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asymmetries with hydrogen and deuterium, are compared with the the theoretical calcu-

lations from Pasquini et al. [27] for the beam normal spin asymmetry on the proton and

the neutron at the scattering angle in the laboratory frame θ = 145○ as a function of the

energy of the incident electron, see figure 5.8.

All the measurements agree with the theoretical prediction within the error bars,

included the extracted BNSA for the neutron, whose means, in spite of having large

uncertainties, exhibit an energy variation consistent with the theoretically predicted.

The theoretical beam normal spin asymmetries are calculated from the imaginary

part of the interference of the one-photon exchange amplitude and the two-photon ex-

change amplitude, which is the absorptive part of the scattering amplitude at leading

order. The calculation distinguish between the elastic contribution, in blue color, in

which the nucleon remains in its ground state in the intermediate state, and the inelas-

tic contribution, in red color, in which the intermediate states are those on-shell excited

states compatible with the kinematics πN , ∆. The black line is the sum of the elastic

and the inelastic contributions.

The agreement with the measurements confirms the reliability of the theoretical

calculation, based in first principles: unitarity and time reversal invariance, and the use

of the phenomenological amplitudes of the pion electroproduction from the MAID model

to calculate the hadronic tensor for the inelastic intermediate states.

At low energy 210 MeV the elastic contribution to the asymmetry is important

and opposite in sign to the inelastic contribution so that the sum is close to zero. At

energies above the pion production threshold the elastic contribution is negligible while

that of the inelastic intermediate states are dominant and large. This enhancement arises

from the near singularities of the virtual photon virtualities in the quasi-real Compton

scattering (quasi-RCS), which corresponds to the kinematics where the momentum of the

intermediate electron vanishes.

The beam normal spin asymmetry on the proton and on the neutron have opposite

signs, being that on the neutron smaller in magnitude, because at backward scattering the

interaction is dominantly magnetic and the anomalous magnetic moments of the proton

and the neutron are of opposite signs.



5.6. Comparison with the theoretical calculation 145

150 200 250 300 350 400 450 500 550

-120

-100

-80

-60

-40

-20

0

elastic

inelastic

total

Proton
B

N
S
A

 (
p

p
m

)

E (MeV)

150 200 250 300 350 400 450 500 550

-40

-20

0

20

40

60

80

100

elastic

inelastic

total

Neutron

B
N

S
A

 (
p

p
m

)

E (MeV)

Figure 5.8: Measurements and theoretical calculation from Pasquini et al. [27] of the

beam normal spin asymmetry on the proton and the neutron at backward angles θ = 145○
as a function of the electron beam energy. The blue line represents the elastic contribution

and the red line the contribution from the inelastic intermediate states to the asymmetry.

The black line is the sum of both.
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Chapter 6

Extraction of the form factors

6.1 Set of measurements at Q2 = 0.23 (GeV/c)2

The A4 experiment has accomplished the measurement of three parity violating

asymmetries at the four momentum transfer Q2 = 0.23 (GeV/c)2:

• The parity violating asymmetry on the proton at forward angles, already published

[53] and [40]

Ap
PV,f
= (−5.80 ± 0.58stat ± 0.28sys) ⋅ 10−6 (6.1)

• The parity violating asymmetry on the proton at backward angles, also published

[40]

A
p
PV = (−17.23 ± 0.82stat ± 0.89sys) ⋅ 10−6 (6.2)

• And the parity violating asymmetry on the deuteron, whose analysis has been sub-

ject of this work.

Ad
PV = (−20.11 ± 0.87stat ± 1.03sys) ⋅ 10−6 (6.3)

Comparison of the errors of the measurements

The relative errors of the asymmetries are shown in table 6.1. The most significant

features are:

147
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target, config ∣∆statA/A∣ ∣∆systA/A∣
p, forward 9.9 % 4.8 %

p, backward 4.8 % 5.2 %

d, backward 4.6 % 5.4 %

Table 6.1: Relative statistical and systematic errors

• The statistical relative error of the measurement with hydrogen at forward angles is

about 10 % while those of the measurements at backward angles with both hydrogen

and deuterium are close to 5 %.

• The main sources of the systematic error of the measurement with hydrogen at

forward angles, slightly smaller than 5 % and approximately one half of the statistical

error, are the measurement of the polarization degree and its interpolation, the

target density fluctuations and the dead time correction [53].

• The measurement of the PVA with hydrogen at backward angles presents approx-

imately equal magnitudes of the statistical and systematic errors, being the main

sources of systematics the polarization degree measurement, the correction of the

false asymmetries caused by helicity correlated fluctuations of the beam parameters

and the background subtraction in the spectrum of charged particles [40].

• And finally the measurement of the PVA with deuterium at backward angles, which

has been the subject of this work, exhibits a systematic error which is slightly larger

than the statistical error. The dominant sources of systematics in this last measure-

ment are: the polarization degree measurement, common to all three measurements,

the background pollution from the γ conversion, larger than that of the measurement

with hydrogen, the false asymmetries from the helicity correlated beam differences

and the random coincident events.

Being the order of relevance of the dominant sources of systematic errors that of

the quotation in the text.

6.2 System of equations

In total the three measurements and the formulae of the parity violating asym-

metries as function of the form factors provide a set of 3 equations with 4 unknowns:
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the strange vector electric and magnetic form factors, Gs
E and Gs

M and the isovector and

isoscalar 1 parts of the effective axial vector nucleon form factor. The isovector part in-

cludes the isovector components of the radiative corrections to the axial vector current

RT=1
A , and the isoscalar part the isoscalar components of the radiative corrections RT=0

A

together with the isosinglet strange axial vector form factor Gs
A. For simplicity all the

isovector components will be denoted GT=1
A and both the isoscalar terms added by the

radiative corrections and the isosinglet will be denoted as isoscalar GT=0
A .

Let us write the system of equations, regardless of the avarage over the detector

acceptance for the sake of simplicity:

A
p
PV,f −A

p
V,f

A0

= ǫfG
p
E

σp,f
Gs

E +
τG

p
M

σp,f
Gs

M +

gvǫ
′
fτ
′Gp

M

σp,f
(Ge,(T=1)

A +G
e,(T=0)
A )

Ap
PV −A

p
V

A0

= ǫG
p
E

σp
Gs

E +
τGp

M

σp
Gs

M +
gvǫ′τ ′G

p
M

σp
(Ge,(T=1)

A +G
e,(T=0)
A )

Ad
PV −A

d
V

A0

= ǫ (Gp
E +G

n
E)

σp + σn
Gs

E +
τ (Gp

M +G
n
M)

σp + σn
Gs

M

+
gvǫ′τ ′ (Gp

M −G
n
M)

σp + σn
G

e,(T=1)
A +

gvǫ′τ ′ (Gp
M +G

n
M)

σp + σn
G

e,(T=0)
A

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where the σp,n in the denominators denote the part of the reduced cross section

depending on the form factors ǫ(Gp,n
E )2 + τ(Gp,n

M )2, gv = 1 − 4 sin2 θW stands for the vector

coupling of the electron and ǫ′ = √1 − ǫ2 and τ ′ = √τ(1 + τ) are the kinematical factors

of the magnetic-axial vector term . In the left side of the equations the difference be-

tween the experimentally observed parity violating asymmetry Ap,d
PV and the theoretically

calculated vector part of the asymmetry without vector strangeness Ap,d
V , normalized to

A0 = GFQ2

4πα
√
2
, gives the independent term of the equations, where the superscript p repre-

sents the measurement on the proton and the d that on the deuteron. The subscript f

in the asymmetries, the reduced cross section and the kinematical parameter ǫ stands for

forward angles while the absence of subscript corresponds to backward angles.

1Actually it is not an isoscalar part, as has been already explained in the chapter dedicated to the

theoretical framework. But since these components behave as isoscalar, in the sense that they do not

change of sign for proton and neutron, they will be called isoscalar for the sake of simplicity.
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This system of equations has solution, since the equations are linearly independent.

The solution is not unique but infinite with one degree of freedom (one parameter), since

the number of unknowns 4 is one unit larger than the number of equations 3. The

geometrical interpretation of this system of three equations with four unknowns is a set

of three hyperplanes in an abstract space of four dimensions, defined by the form factors.

These hyperplanes are equivalent to spaces of three dimensions and they all intersect along

a straight line. Consequently it is impossible in principle to obtain a unique solution for

the four unknowns. The result will be necessarily linear combinations of two of the

set of four unknowns, being impossible to separate them unless one resorts to external

independent measurements.

It is crucial for the interpretation of the measurements and the extraction of the

form factors the fact that the equation corresponding to the PVA on the deuteron splits the

effective axial vector form factor into two unknowns, increasing the number of unknowns

from 3 to 4. The reason is that the isovector and isoscalar parts have opposite behaviour

under a rotation in the isospin space: the isovector changes sign for proton and neutron

while the isoscalar does not, so that they acquire different coefficients in the equation. To

the contrary, restricting to the set of the first two equations (the PVA on proton on both

forward and backward angles) the effective Ge
A would act as only one unknown.

6.2.1 Weighted averaged equations

The experimentally observed asymmetry is necessarily an average over some range

of the scattering angle, determined by the extension of the detector and the length of the

interaction region inside the target cell. In the equations of the asymmetry all the terms

have to be equally averaged, weighting the average by the cross section.

• Averaged PVA on the proton
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⟨Ap
PV ⟩ − ⟨Ap

V ⟩ = GF

4πα
√
2

1

σ
p,r
av

⎧⎪⎪⎨⎪⎪⎩ρ
′
eq ∫ dl∫ dΩ Q2

ǫG
p
E

ǫ(1 + τ) Gs
E

+ ρ′eq ∫ dl∫ dΩ Q2
τG

p
M

ǫ(1 + τ) Gs
M

+ (1 − 4ŝ2Z)∫ dl∫ dΩ Q2

√
1 − ǫ2

√
τ(1 + τ)Gp

M

ǫ(1 + τ) G
e,p
A

⎫⎪⎪⎬⎪⎪⎭
where σp,r

av is given by:

σp,r
av = ∫ dl∫ dΩ

ǫ(Gp
E)2 + τ(Gp

M)2
ǫ(1 + τ) (6.4)

and ⟨Ap
V ⟩ by

⟨Ap
V ⟩ = − GF

4πα
√
2

1

σ
p,r
av

ρ′eq ∫ dl∫ dΩ Q2

⎡⎢⎢⎢⎢⎣(1 − 4k̂
′
eqŝ

2
Z) ǫ(G

p
E)2 + τ(Gp

M)2
ǫ(1 + τ) −

ǫG
p
EG

n
E + τG

p
MG

n
M

ǫ(1 + τ)
⎤⎥⎥⎥⎥⎦

(6.5)

• Averaged PVA on the deuteron

⟨Ad
PV ⟩ − ⟨Ad

V ⟩ = GF

4πα
√
2

1

σ
d,r
av

⎧⎪⎪⎨⎪⎪⎩ρ
′
eq ∫ dl∫ dΩ Q2

ǫ (Gp
E +G

n
E)

ǫ(1 + τ) Gs
E

+ ρ′eq ∫ dl∫ dΩ Q2
τ (Gp

M +G
n
M)

ǫ(1 + τ) Gs
M

+ (1 − 4ŝ2Z)∫ dl∫ dΩ Q2

√
1 − ǫ2

√
τ(1 + τ) (Gp

M −G
n
M)

ǫ(1 + τ) G(T=1)

+ (1 − 4ŝ2Z)∫ dl∫ dΩ Q2

√
1 − ǫ2

√
τ(1 + τ) (Gp

M +G
n
M)

ǫ(1 + τ) G(T=0)
⎫⎪⎪⎬⎪⎪⎭
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where σd,r
av is given by:

σd,r
av = ∫ dl∫ dΩ

ǫ [(Gp
E)2 + (Gn

E)2] + τ [(Gp
M)2 + (Gn

M)2]
ǫ(1 + τ) (6.6)

and ⟨Ad
V ⟩ by

⟨Ad
V ⟩ = GF

4πα
√
2

1

σ
d,r
av

ρ′eq ∫ dl∫ dΩ Q2

⎡⎢⎢⎢⎢⎣
ǫGp

EG
n
E + τG

p
MG

n
M

ǫ(1 + τ) (6.7)

− (1 − 4k̂′eqŝ2Z) ǫ [(G
p
E)2 + (Gn

E)2] + τ [(Gp
M)2 + (Gn

M)2]
ǫ(1 + τ)

⎤⎥⎥⎥⎥⎦
Because of the average the equations of the system are not any more linear. More-

over the Q2-dependence of the strange vector form factors is not known 2. In order to

solve the system of equations restoring its linearity two strategies can be followed:

• to resort to the theorem of the mean value, calculating AV and the coefficients of

the unknown form factors at the scattering angle θ = 145○ or more plausibly at the

scattering angle averaged by the cross section over the detector acceptance and the

target cell length, including the effects of energy loss ⟨θ⟩ = 144.8○, taken from [12].

• to extract the unknowns from the average integral, reserving the average for the

coefficients. This procedure is justified by the smallness of the averaging interval

and by the expectation of a smooth variation of the form factor with the invariant

Q2 within that interval.

The table below shows the three measurements at Q2 = 0.23 (GeV/c)2 with the

total uncertainties calculated as the quadratic sum of the statistical and the systematic

errors. The averages ⟨AV ⟩ and its uncertainties have been calculated with an up-to-date

parametrization of the electromagnetic form factors of the nucleon based in a Monte Carlo

method [46]. The independent terms of the equations ⟨Apv⟩ − ⟨AV ⟩ are quoted together

with their uncertainties, calculated from the uncertainty of the measured asymmetries

and the calculated average ⟨AV ⟩ by error propagation.

2it would make no sense the hypothesis of a simple dipole dependence to the extent that the mass

corresponding to the strange quarks is also not known.
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target θ ⟨Apv⟩ (ppm) ⟨AV ⟩ (ppm) ⟨Apv⟩ − ⟨AV ⟩ (ppm)

p, for. −5.80 ± 0.64 (11.1 %) −6.02 ± 0.09 (1.6 %) 0.22 ± 0.65 (298 %)
p, back. −17.23 ± 1.21 (7.02 %) −13.94 ± 0.11 (1.8 %) −3.29 ± 1.21 (37 %)
d, back. −20.11 ± 1.35 (6.71 %) −18.86 ± 0.07 (1.2 %) −1.25 ± 1.35 (108 %)

The system of equations in matrix form with the averaged values for AV and the

coefficients is:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.22

−3.29

−1.25

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣
23.0644 5.2434 0.9059 0.9059

3.2363 11.3251 3.4882 3.4882

2.4858 2.3591 4.0163 0.6988

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gs
E

Gs
M

G
e,(T=1)
A

G
e,(T=0)
A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.8)

In the first equation, corresponding to the measurement Ap,f
PV , the term of the

strange vector electric form factor Gs
E dominates. In the second equation, corresponding

to Ap
PV , dominates the term of the strange vector magnetic form factor Gs

M , while in the

equation corresponding to the measurement on the deuteron at backward angles Ad
PV the

term of the isovector axial vector form factor is the largest one.

The system of equations where each equation has been normalized to the largest

coefficient reads:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.0095

−0.2903

−0.3118

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣
1.0000 0.2273 0.0393 0.0393

0.2858 1.0000 0.3080 0.3080

0.6189 0.5874 1.0000 0.1740

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gs
E

Gs
M

G
e,(T=1)
A

G
e,(T=0)
A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
6.3 Solution of the system of equations

To solve the system of equations two strategies are followed:

• General solution: since the solution of the system is a straight line in four dimensions

the solution is represented by the projections of this straight line on the six coordi-

nate planes of the four dimensional space, that is, the set of linear combinations of

each pair of form factors, see figure 6.1.

• Formulating hypotheses based on physical grounds about the value of one of the

form factors the dimension can be reduced to 3, equal to the number of equations,
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and the system can be solved with a unique solution, that is, the rest of form factors

can be determined. The hypotheses considered are:

– Gs
E = 0, hypothesis based on previous independent measurements like that

of the HAPPEX collaboration with a spinless target of Helium at Q2 = 0.1

(GeV/c)2 [54], which gives a value of Gs
E consistent with zero.

– R
(T=0)
A is assumed to be small based on the theoretical calculations from Zhu

et al. [16]. Two values are employed:

∗ R
(T=0)
A = 0.08 ± 0.20 (in the MS renormalization scheme), which is the

value given by Zhu et al. and the value used in the reference [48] to

determine the form factors. It would be though inconsistent to employ the

theoretical value of RT=0
A in the determination of the form factors, since the

same theoretical calculations are behind the value of the isovector radiative

corrections RT=1
A which are aimed to be constrained by the experimental

measurements.

∗ R
(T=0)
A = 0, consistent with the theoretical value from Zhu et al.

6.3.1 General solution: projections on the coordinate planes

The projections of the straight line of the general solution in each of the six coor-

dinate planes of the four dimensional space Gs
E ,G

s
M ,G

e,(T=1)
A ,G

e,(T=0)
A are represented in

figure 6.1. Before giving a qualitative description of the set of projections it is proved

that one of the unknowns can be approximately determined. A detailed and complete

study of the system of equations is offered in an appendix, presenting the complete set of

equations, the uncertainties, the sensitivity of the results to the single measurements, the

geometrical interpretation, the limiting cases and the physical content.

Possibility of an approximate determination of one unknown: G
e,(T=1)
A

The most notable and decisive property of the system of equations is the fact that,

in spite of being the set of three measurements insufficient to determine the complete

set of form factors without a fourth independent external measurement, one of them,

the isovector effective axial vector form factor G
e,(T=1)
A , can be approximately determined

because of its smooth variation with other form factors. The proof of this property relies

on two facts:
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Figure 6.1: The figures shows the six coordinate planes and the projections of the straight

line of the solution on each of them with the 1−σ error band. From left to right and from

top to bottom the planes are: GT=1
A ,Gs

M , GT=1
A ,GT=0

A and Gs
M ,G

T=0
A with straight lines in

red color (as those represented in the illustrative figure 6.2 but without being Gs
E = 0).

And with straight lines in blue color the planes GT=1
A ,Gs

E , G
s
M ,G

s
E and Gs

E,G
T=0
A . The

qualitative and the quantitative descriptions can be found in the text.
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GT=1
A

GT=0
A

Gs
M

Figure 6.2: The space Gs
M ,G

T=0
A ,GT=1

A represented in the figure corresponds to the hyper-

plane of the projection Gs
E = 0. The planes in blue and green represent the projections in

3 dimensions of the hyperplanes associated to the equations at backward angles. These

planes are parallel in the coordinate plane of the axis Gs
M ,G

T=0
A so that their intersection

is along a horizontal straight line, which is also shown here in red color (it is horizontal

with respect to the coordinate plane Gs
M ,G

T=0
A ). With red dotted lines are drawn the

projections of the intersection on the three coordinate planes Gs
M ,G

T=0
A , Gs

M ,G
T=1
A and

GT=0
A ,GT=1

A . The projections on the two last coordinate planes show that the value of GT=1
A

is fixed and independent on the values of Gs
M and GT=0

A . The scale of the cut on the axis

are not realistic but have been chosen for the sake of illustration.
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• In the system of equations 6.4, 6.8 it can be recognized that the term associated

to the strange electric form factor is the dominant one in the first equation, while

the terms on Gs
E are suppressed in the two equations from the measurements at

backward angles, because of the smallness of the kinematical factor ǫ associated to

the longitudinal polarization of the virtual photon. Consequently the system can be

split into two: the equation from the forward measurement, which determines mainly

the Gs
E, and the subsystem of the two equations from the backward measurements,

whose dimension can be reduced by the suppression of Gs
E . This reduced subsystem

of two equations with three unknowns corresponds now to the intersection of two

planes in a space of three dimensions.

• The vectorial subspaces associated to the planes of the reduced subsystem of two

equations with three unknowns from the backward measurements exhibit a paral-

lelism in the coefficients of the Gs
M and G

e,(T=0)
A , because the isosinglet s and the

isoscalar components of the axial vector form factor behave equally under isospin

rotations (that is, there is no change of sign for the proton and neutron). This inter-

nal paralellism of the planes in the coordinate plane Gs
M ,G

e,(T=0)
A , which is however

slightly destroyed by the averaging without significant consequences, leads to a fixed

value of the G
e,(T=1)
A in the intersection, as it is illustrated in the figure 6.2.

The inclusion of the first equation in the system and the terms on Gs
E in the

equations from the backward measurements alters the mentioned constancy of G
e,(T=1)
A

slightly enough so that it can be still approximately determined.

Equations of the projections on the coordinate planes

The equations of the projections of the straight line on the six coordinate planes,

represented in the figure 6.1 are:

• Plane G
e,(T=1)
A −Gs

M

G
e,(T=1)
A − (0.0301± 0.0002) ⋅Gs

M = −0.2057± 0.2663stat ± 0.3142syst ± 0.0067FF (6.9)

• Plane G
e,(T=1)
A −G

e,(T=0)
A

G
e,(T=1)
A + 0.0095 ⋅G

e,(T=0)
A = −0.2131 ± 0.2634stat ± 0.3109syst ± 0.0071FF (6.10)
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• Plane Gs
M −G

e,(T=0)
A

Gs
M + 0.3144 ⋅G

e,(T=0)
A = −0.2457 ± 0.1225stat ± 0.1386syst ± 0.0074FF (6.11)

• Plane G
e,(T=1)
A −Gs

E

G
e,(T=1)
A + (0.2908± 0.0036) ⋅Gs

E = −0.1917± 0.2665stat± 0.3147syst ± 0.0081FF (6.12)

• Plane Gs
M −G

s
E

Gs
M + (9.6531 ± 0.0435) ⋅Gs

E = 0.4658 ± 0.2684stat ± 0.1577syst ± 0.0336FF (6.13)

• Plane Gs
E −G

e,(T=0)
A

Gs
E − (0.0326 ± 0.0001) ⋅Ge,(T=0)

A = 0.0737 ± 0.0336stat ± 0.0262syst ± 0.0028FF (6.14)

The equations 6.10, 6.11 and 6.14 in terms of the anapole radiative corrections

read:

R
(T=1),anap
A + 0.0095 ⋅R

(T=0),anap
A = −0.3977 ± 0.2135stat ± 0.2519syst ± 0.0067FF (6.15)

Gs
M − 0.3880 ⋅R

(T=0),anap
A = −0.2056 ± 0.1225stat ± 0.1386syst ± 0.0295FF (6.16)

Gs
E + 0.0402 ⋅R

(T=0),anap
A = 0.0696 ± 0.0336stat ± 0.0262syst ± 0.0006FF (6.17)

Slope and sensitivity to the measurements

The slope of the equations of the straight lines 6.9-6.14 are quotients of the com-

ponents of the directional vector of the straight line of the solution, see A.40. The slope

of the straight line depends on the kinematical factors ǫ and τ and on the nucleon elec-

tromagnetic form factors Gpn
EM .

The unitary vector in the direction of the straight line in terms of the directional

cosines: :
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u⃗ = (−0.0311,0.2998,0.0090,−0.9535)
= (cos(−88.22○), cos(72.56○), cos(89.48○), cos(−17.54○)) (6.18)

The straight line of the solution is then almost perpendicular 89.48○ to the isovector

effective axial vector axis G
e,(T=1)
A and forms a relative small angle 17.54○ with the isoscalar

effective axial vector axis G
e,(T=0)
A .

The offsets of the equations 6.9-6.14 are linear combinations of m0 = ⟨Ap
PV,f⟩ −⟨Ap

V,f⟩, m1 = ⟨Ap
PV ⟩ − ⟨Ap

V ⟩ and m2 = ⟨Ad
PV ⟩ − ⟨Ad

V ⟩ so that the coefficients give the

sensitivity to the measurements of the parity violating asymmetries and their errors:

G
e,(T=1)
A + 0.2908 ⋅Gs

E = 0.3014 m2 − 0.0573 m1 − 0.0118 m0

G
e,(T=1)
A − 0.0301 ⋅Gs

M = 0.3014 m2 − 0.0539 m1 − 0.0249 m0

G
e,(T=1)
A + 0.0095 ⋅G

e,(T=0)
A = 0.2986 m2 − 0.0506 m1 − 0.0251 m0

Gs
M + 9.6531 ⋅G

s
E = − 7.2750 m2 + 28.0130 m1

Gs
M + 0.3144 ⋅G

e,(T=0)
A = − 0.0948 m2 + 0.1105 m1 − 0.0053 m0

Gs
E − 0.0326 ⋅G

e,(T=0)
A = 0.0098 m02 − 0.0231 m1 + 0.0455 m0

(6.19)

The first three equations show that the approximate determination of G
e,(T=1)
A is

more sensitive to the measurements at backward angles and, among them, more sensitive

to the measurement on the deuteron by a factor ∼ 6.

Qualitative description of the set of six projections

The first three coordinate planes (from left to right and top to bottom) from

figure 6.1, with straight lines in red color, correspond to the coordinate planes GT=1
A ,Gs

M ,

GT=1
A ,GT=0

A and Gs
M ,G

T=0
A . It is evident that the isovector axial vector form factor

GT=1
A varies very smoothly with Gs

M and GT=0
A , being the straight lines almost horizontal

lines. This fact enables the approximate determination of GT=1
A with the set of three

measurements. The projection on the plane Gs
M ,G

T=0
A exhibits a negative slope and

results in a negative value of Gs
M for values of GT=0

A close to zero.

The next two planes GT=1
A ,Gs

E and Gs
M ,G

s
E , with lines in blue color, display the

variation of GT=1
A and Gs

M with Gs
E: The G

T=1
A varies slightly more than with respect to the

other form factors but still smoothly enough to allow a the approximate determination.
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The relation between the strange electric and magnetic form factors is that of a

straight line with negative slope, as has been already shown in previous analysis [40].

Finally, the last coordinate plane Gs
E ,G

T=0
A illustrates the relation between the two

unknown form factors on whose values the hypothesis have been formulated for a determi-

nation of the other unknowns. It is relevant the fact that a vanishing value of the strange

electric form factor Gs
E implies a large negative value of the isoscalar components of the

effective axial vector form factor (mainly of electroweak radiative origin) while a value

of this isoscalar term GT=0
A close to zero, in agreement with the theoretical calculations,

implies a positive non zero value of the Gs
E.

The variation of Gs
E is though quite smooth with the effective axial vector form

factor and strong with the strange magnetic form factor, as can be observed in the last

three coordinate planes.

Effective axial vector form factor components and radiative corrections

The projection of the general solution on the plane axial vector isovector, axial

vector isoscalar G
e,(T=1)
A ,G

e,(T=0)
A , giving their linear combination reads:

G
e,(T=1)
A + 0.0095 ⋅G

e,(T=0)
A = −0.2131 ± 0.2635stat ± 0.3109syst ± 0.0071FF

where the first two errors originate in the experimental errors of the measured

parity violating asymmetries, splitting the statistical and the systematic error. The third

one comes from the errors of the measurements of the electromagnetic form factors and

other measured magnitudes employed in the calculation. The calculation of this last

error has been carried out with a Monte Carlo method in order to take into account the

correlations in the electromagnetic form factors. The quadratic combination of the errors

yields G
e,(T=1)
A + 0.0095 ⋅G

e,(T=0)
A = 0.0683 ± 0.4075. The coefficient of G

e,(T=0)
A , that is, the

slope of the straight line G
e,(T=1)
A = 0.0683 ± 0.4075 − 0.0095 ⋅ Ge,(T=0)

A is small ∼ 0.01, so
that the straight line looks like an horizontal one. Under the hypothesis Gs

E = 0 or in the

limit of very backward angles θ → 180○ it reduces to zero (as will be proved).

From the equation 1.52 the linear combination between the isovector and isoscalar

electroweak radiative corrections to the axial vector form factor can be obtained, yielding:

R
(T=1)
A + 0.0095 ⋅R

(T=0)
A = −0.7520 ± 0.4756
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And decomposing the radiative corrections in those from one-quark radiative pro-

cesses, calculated within the framework of the Standard Model, and those from multi-

quark processes (anapole moment):

R
(T=1)SM
A + 1.44 ⋅R

(T=1)anap
A + 0.0095 ⋅ (R(T=0)SMA + 1.44 ⋅R

(T=0)anap
A ) = −0.7520 ± 0.4756

The radiative corrections associated to the anapole moment R
(T )anap
A can be sep-

arated introducing the theoretical values calculated by Zhu et al. [16], see table at the

beginning of section 6.4, of those associated to one-quark processes R
(T )SM
A , which are

calculated in the frame of the Standard Model. The uncertainties of these one-quark

corrections are not quoted, so that it will be assumed that they are less than 10−3.

R
(T=1)anap
A + 0.01 ⋅R

(T=0)anap
A = −0.40 ± 0.33

where the uncertainties and the coefficient of R
(T=0)anap
A have been rounded in

consistency with the uncertainties quoted for the radiative corrections.

6.3.2 Formulation of hypotheses for one of the unknowns

Hypothesis Gs
E = 0

Under this hypothesis the unique solution of the system of three equations with

three unknowns is shown in the table below for the strange magnetic form factor and

the isovector and isoscalar effective axial vector form factors. The errors shown are: the

error associated to the experimental measurement of the asymmetries: the statistical and

the systematic one, the error originated in the uncertainties of the electromagnetic form

factors and other magnitudes involved in the calculation and the quadratic sum of all of

them:

Form factor value stat. err syst. err FF. err. total err.

Gs
M 0.4658 0.2683 0.1577 0.0336 0.3131

G
e,(T=1)
A −0.1917 0.2665 0.3147 0.0081 0.4124

G
e,(T=0)
A −2.2632 1.0324 0.8058 0.0833 1.3122

The strange magnetic form factor acquires a negative value, the isovector effective

axial vector one is very small and compatible with zero while the isoscalar component

assumes a large negative value.
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The table below shows the extraction from the effective axial vector form factor

of the isovector and isoscalar electroweak radiative corrections and particularly of the

anapole radiative corrections.

RA value stat. err syst. err FF. err. total err.

R
(T=1)
A −0.7763 0.3110 0.3672 0.0095 0.4813

R
(T=1),anap
A −0.4141 0.2160 0.2550 0.0052 0.3342

R
(T=0)
A 2.5622 1.2047 0.9403 0.1252 1.5334

R
(T=0),anap
A 1.7307 0.8366 0.6530 0.0870 1.0648

Hypothesis R
(T=0)
A = 0 and R

(T=0)
A from Zhu et al.

Under the hypotheses of a small value for the isoscalar radiative corrections the

unique solution for the vector strange form factors and the isovector effective axial vector

one are shown in the table below (above the values under the hypothesis R
(T=0)
A = 0 and

below those for R
(T=0)
A with the theoretical calculation from Zhu et al.

Hypothesis Form factor value stat. err syst. err FF. err. total err.

R
(T=0)
A = 0

Gs
E 0.0715 0.0336 0.0262 0.0006 0.0413

Gs
M −0.2244 0.1225 0.1386 0.0295 0.1873

G
e,(T=1)
A −0.2125 0.2635 0.3109 0.0080 0.4076

R
(T=0)
A = 0.08

Gs
E 0.0692 0.0336 0.0262 0.0006 0.0413

Gs
M −0.2017 0.1225 0.1386 0.0295 0.1873

G
e,(T=1)
A −0.2118 0.2635 0.3109 0.0080 0.4076

The isovector component of the electroweak radiative corrections and the anapole

part are shown with the same conventions:

Hypothesis RA value stat. err syst. err FF. err. total err.

R
(T=0)
A = 0 R

(T=1)
A −0.7520 0.3074 0.3628 0.0096 0.4756

R
(T=1),anap
A −0.3972 0.2135 0.2519 0.0067 0.3303

R
(T=0)
A = 0.08 R

(T=1)
A −0.7528 0.3074 0.3628 0.0096 0.4756

R
(T=1),anap
A −0.3978 0.2135 0.2519 0.0067 0.3303

It can be observed that under these hypotheses the strange electric form factor

presents a positive value at about 1.3 ⋅ σ from zero while the strange magnetic one has,

as before, a negative mean value, at slightly more than 1 ⋅ σ from zero and the isovector

effective axial form factor is close to zero.
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Comparison of the determinations of G
e,(T=1)
A and R

(T=1),anap
A

The values of G
e,(T=1)
A determined under the two hypotheses on R

(T=0)
A differ about

3%, being the difference ∼ 5 ⋅ 10−3 ⋅ σ and these values differ about 30% from the value

determined under the hypothesis Gs
E = 0, being the difference ∼ 5 ⋅ 10−2 ⋅ σ.

The values of the determined isovector anapole radiative correction under the hy-

potheses (rounded to the second significant figure):

R
(T=1),anap
A = −0.40 ± 0.33 (R(T=0)A ≈ 0) (6.20)

R
(T=1),anap
A = −0.41 ± 0.33 (Gs

E = 0) (6.21)

where difference between the values of R
(T=1),anap
A under the two different assump-

tions for R
(T=0)
A are irrelevant within this degree of precision.

The difference between the determined values of R
(T=1),anap
A is then of about 1.6%

and ∼ 3 ⋅ 10−2 ⋅ σ. Therefore it can be concluded that, within the degree of precision of

the experiment, and within the reasonable interval of physically meaningful and probable

values of [Gs
E = 0,R(T=0),anapA = 0], the anapole isovector electroweak radiative correction

to the effective axial vector current of the nucleon as seen by the photon probe can

be determined without resorting to a fourth independent external measurement of the

investigated currents at the Q2 invariant scale of the experiment, and only this one.

The possibility of this determination permits the comparison with the theoretical

estimates.

6.4 Comparison with theoretical calculations of R
(T=1),anap
A

Calculation from Zhu et al.

The electroweak radiative corrections to the axial vector form factor from [16]:

Source R
(T=1)
A R

(T=0)
A Renorm. sch.

One-quark (Standard Model) −0.18 0.07 MS

Multi-quark (Anapole moment) −0.06 ± 0.24 0.01 ± 0.14 on-shell

RSM
A + 1.44 ⋅Ranap

A −0.27 ± 0.35 0.08 ± 0.20 MS
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Figure 6.3: The figure represents the plane R
(T=1),anap
A ,R

(T=0),anap
A : In blue color the de-

termination from the measurements of the linear combination between the isovector and

isoscalar anapole radiative corrections R
(T=1),anap
A , R

(T=0),anap
A , 6.15. The width of the

band is the total error at 1 − σ. The rectangle in red color reflects the theoretical calcu-

lations and uncertainties from Zhu et al. [16]. In pink color the intersection between the

band obtained from the measurements and the rectangle determined by the theoretical

calculation.
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Figure 6.4: Above the plane R
(T=1),anap
A ,R

(T=0),anap
A : the linear combination from the mea-

surements with 1 − σ band in blue color 6.15 and the theoretical calculation with the

theoretical uncertainties from Zhu et al. [16] in red color. The green vertical band repre-

sents the determined value of the isoscalar anapole radiative correction R
(T=0),anap
A under

the hypothesis of Gs
E = 0. Below the plane Gs

E,R
(T=0),anap
A : the green band represents

the 1−σ band linear combination of Gs
E and R

(T=0),anap
A obtained from the measurements

6.17, the vertical band stands for the theoretical calculation of R
(T=0),anap
A and the black

horizontal line stands for the hypothesis Gs
E = 0. The hypothesis Gs

E = 0 determines a

large negative value of R
(T=0),anap
A at more than 1−σ from the theoretical calculation. The

theoretical calculation of R
(T=0),anap
A determines a positive value of Gs

E at more than 1−σ

from 0.
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Figure 6.5: Above the plane Gs
M ,G

s
E : In pink color the 1−σ band of the linear combination

of Gs
M and Gs

E from the measurements. The vertical green band represents the determined

value of Gs
E under the hypothesis of R

(T=0),anap
A given by the theoretical calculation from

Zhu et al. [16]. The vertical black line stands for the hypothesis Gs
E = 0. Below the plane

Gs
M ,R

(T=0)
A : in pink color the band linear combination of Gs

E and R
(T=0),anap
A from the

measurements, the vertical green band represents the determined value ofR
(T=0),anap
A under

the hypothesis Gs
E = 0 and the vertical red band stands for the theoretical calculation from

Zhu et al. The hypothesis Gs
E = 0 determines a positive value of Gs

M and the hypothesis

R
(T=0),anap
A from the theoretical calculation a negative value of Gs

M , both at more than

1 − σ from zero.
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Figure 6.6: Measurements of the effective isovector axial vector form factor G
e,(T=1)
A , from

SAMPLE in pink color, G0 in blue color and A4 in red color, and comparison with the

theoretical calculation from Zhu et al. [16], assuming a dipole Q2-dependence.
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where R
(T=1)
A stands for the isovector component and R

(T=0)
A for the isoscalar one.

They have contributions from one-quark RSM
A and multi-quark Ranap

A calculations. The

last column shows the renormalization scheme in which they are calculated and the last

row the sum of the one-quark and multi-quark contributions RSM
A +1.44 ⋅Ranap

A , where the

factor 1.44 relates the one-shell to the MS renormalization scheme calculations.

R
(T=1),anap
A,exp = −0.40 ± 0.33

R
(T=1),anap
A,zhu = −0.06 ± 0.24

The experimental determination of R
(T=1),anap
A exhibits a large negative value, like

that of the SAMPLE collaboration that triggered the investigation of internal dynamic

of the nucleon that could be cause of the enhancement of the contribution to the parity

violating asymmetry in the electron scattering of axial vector currents that couple to the

photon field.

The achieved experimental precision is a factor ∼ 1.4 larger than the theoretical

uncertainty quoted for the isovector radiative correction [16].

The values of the isovector and isoscalar anapole radiative correction calculated

with the χQM from Riska [18] are R
(T=1),anap
A = −0.0007 and R

(T=0),anap
A = −0.0001. The

quoted theoretical uncertainty is of 100 %. These values are a factor ∼ 100 smaller than

the predicted by the Zhu et al. calculation [16] in the theoretical framework of χHBPT.

6.5 Combination with other determinations

The effective isovector axial vector form factor G
e,(T=1)
A in the electron scattering

has been determined from the measurements of the parity violating asymmetries at dif-

ferent Q2 by other experiments from the SAMPLE [48], [51] and the G0 Collaboration

[52], introducing the theoretical calculated value for the isoscalar radiative correction

R
(T=0),anap
A from Zhu et al. and assuming the Q2-dipole dependence with the axial mass

MA, see figure 6.6. From these determinations of G
e,(T=1)
A the isovector anapole radiative

correction R
(T=1),anap
A can be calculated:
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Experiment Q2 (GeV/c)2 G
e,(T=1)
A R

(T=1),anap
A

SAMPLE 0.038 −1.90 ± 0.70 0.57 ± 0.42

SAMPLE 0.091 −0.53 ± 0.76 −0.22 ± 0.50

G0 0.221 −0.50 ± 0.38 −0.17 ± 0.30

A4 0.229 −0.21 ± 0.41 −0.40 ± 0.33

G0 0.628 −0.20 ± 0.51 −0.30 ± 0.70

where the values of A4 are those determined under the hypothesis of validity of

the Zhu et al. calculation for the isoscalar radiative corrections for the sake of consistency

with the other determinations.

The experimental uncertainty of the determination of the isovector anapole ra-

diative correction from the G0 parity violating asymmetry measurements at Q2 = 0.221
(GeV/c)2 has a magnitude 0.33 close to that of the A4 determination, while the deter-

minations from the SAMPLE measurements at lower Q2 and from the G0 measurements

at larger Q2 present larger uncertainties, by a factor ∼ 1.5 and ∼ 2.3, respectively. The

determinations of R
(T=1),anap
A exhibit relative large negative values in comparison with the

theoretical calculation from Zhu et al., with which there is though agreement within the

error bars. The exception is the determination from SAMPLE at low Q2 = 0.038 which

is positive but also compatible with the theoretical calculation within the experimental

precision of 1 − σ.

These determinations can be combined with the error weighted average:

• At similar Q2: combining the determinations from G0 and A4 at Q2 = 0.221

(GeV/c)2 and Q2 = 0.229 (GeV/c)2, respectively:

G
e,(T=1)
A (0.225) = −0.36 ± 0.28 R

(T=1),anap
A = −0.27 ± 0.23

The combination of the determinations of R
(T=1),anap
A from the measurements of A4

and G0 at similar Q2 reduces the experimental precision 0.23 to a value close to the

theoretical uncertainty 0.24

• At different Q2: combining all the determinations of R
(T=1),anap
A

G
e,(T=1)
A (0) = −1.11 ± 0.22 R

(T=1),anap
A = −0.12 ± 0.18
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The experimental uncertainty reached by the combination of all the determinations

from the measurements at different Q2 is smaller than the theoretical one by a

factor 0.75 and the mean is closer to the theoretically calculated. The error of the

combined determination of the isovector axial vector form factor at Q2 = 0, 0.22 is a

factor 2 larger than that necessary for the measurement of the neutral weak vector

charge of the proton with the measurement of the parity violating asymmetry at

small values of Q2 planned for the P2 experiment, [55].

It has to be noted that the determinations of the anapole radiative correction

relies on the assumption of a dipole Q2-dependence with the axial mass MA. The Q2-

dependence of the electroweak radiative corrections, both isovector and isoscalar, are

though not known so that the assumptions constitutes a weak point of the determination.

6.6 Summary and conclusions

• The solution of the system of equations from the measurements of the parity violat-

ing asymmetries is a straight line in the four dimensional space of the strange vector

form factors and the isovector and isoscalar effective axial vector form factors.

• The slope of the straight line depends on the degree of linear polarization in the

transverse plane of the virtual photon ǫ (conservation of angular momentum), the

invariant transfer momentum τ and the nucleon electromagnetic form factors.

• The offset of the straight line is determined by the measurements of the parity

violating asymmetries.

• The sensitivities of the offset to each of the measurements depend on ǫ, τ and Gp,n
E,M .

• The internal parallelism in the plane Gs
M ,G

e,(T=0)
A , which allows the possibility of

an approximate determination of the isovector effective axial vector form factor,

relies on the common behaviour under rotations in the isospin space of the isos-

inglet strange quark, the electroweak radiative corrections arising from the octet

and the isoscalar components of the one-quark and many-quark (anapole) radiative

corrections.

• The sensitivity of the approximate determination of G
e,(T=1)
A on the measurement

of the parity violating asymmetry on the deuteron is due to the amplification of

the isovector axial vector current. This amplification arises from the alignment of
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the anomalous magnetic moments of the proton and the neutron in the interference

with the isovector axial vector current.

• The combination of the determination of G
e,(T=1)
A with the extra measurements of

the nucleon axial vector charge gA and the strange contribution to the nucleon spin

∆s, together with the assumption of a dipole Q2-dependence with the axial mass

MA for all of them, permits the determination of the isovector anapole radiative

correction.

• The determined isovector anapole radiative correction exhibits a relative large nega-

tive value consistent with the determinations from other independent measurements

and compatible with the theoretical calculation from Zhu et al. within the experi-

mental precision of 1 − σ.

• The relations between Gs
E , G

s
M and G

e,(T=0)
A , within the experimental precision of

1 − σ, lead to these implications:

– A value of the strange electric form factor compatible with zero implies a large

positive value of the isoscalar anapole radiative corrections and a positive value

of the strange magnetic form factor.

– A value of the isoscalar anapole radiative corrections compatible with the the-

oretical calculations implies a non-zero positive value of the strange electric

form factor and a negative value of the strange magnetic form factor.

As a final conclusion it is worth quoting these words from Musolf [14]:

[...] given the difficulties associated with calculating low- and intermediate-

energy nucleon properties directly from QCD, one should be dubious of any

many-quark estimate which claims to give a precise numerical prediction for

any of the processes [contributing to many-quark radiative corrections]. A more

reasonable goal is to try to get a feel for the scale associated with many-quark

effects, and idea of what physical parameters are important in determining this

scale, and perhaps, some rough idea of how uncertain one’s estimate is.

[...] there are potentially a large number of other many-quark diagrams not

considered thus far. The challenge for theorists is to try to isolate those which

ought to be more important and, hopefully, to place some reasonable bounds

on the uncertainty with which contributions of this type can be estimated. For
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experimentalists, the challenge is to look for experiments or combination of

experiments which might isolate the more uncertain parts of the radiative cor-

rections and, perhaps, to place some constraints on theoretical calculations.



Summary and conclusions

The analysis for the determination of the parity violating asymmetry from the

experimentally observed asymmetries in the sample of recorded histograms corresponding

to the energy spectrum of charged particles leads successfully to the measurement of the

parity violating asymmetry in the electron deuteron quasielastic scattering at Q2 = 0.23
(GeV/c)2.

The main source of background in the interval of integration of the quasielastic

peak is the background pollution from the γ conversion. The method for the correction

of the asymmetry from the background pollution, based on the Monte Carlo studies of

the energy spectrum and the detector response and the hypothesis of the equallity of the

asymmetry of the background pollution and the experimentally observed asymmetry of

the spectrum of neutral particles, recorded and separated by means of the plastic scin-

tillators, has proved to correct the asymmetry of the background successfully, confirming

the hypothesis. This simple linear method of subtraction based on the scaling and shift-

ing parameters allows a careful study of the dependence of the asymmetry and the error

on the lower cut and leads to the selection of an optimal lower cut for the interval of

integration that minimizes the combination of the statistical and the systematic errors.

The systematic corrections and errors from other sources of background like the

quasielastic scattering on the nuclei of the aluminium windows, the random coincident

events generated by the presence of the plastic scintillators and the elastically scattered

electrons in the deuteron, included in the interval of integration of the quasielastic peak,

have been also evaluated. The correction and systematic uncertainty from the false asym-

metries originated by the helicity correlated beam fluctuations have been evaluated with

a multilinear regression method and the extracted asymmetry has been normalized to the

helicity correlated fluctuations of the target density and to the elecron beam polarization

degree.

The systematic tests confirm that the determination of the asymmetry is a mea-
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surement of a parity violating asymmetry. The representation of the extracted asymmetry

for each of the rings of the detector employed in the analysis exhibits a dependency on

the polar angle of the detector consistent with the expected dependency of the theoreti-

cal asymmetry on the scattering angle within the error bars. The extracted asymmetry

changes of sign for those sets of runs for which the λ/2-wave plate (GVZ) was introduced

in the polarized beam source and the mean of the fit of the extracted asymmetries with

and without GVZ agree within the error bars. The sample distribution of the extracted

asymmetries for each single run, averaged over the whole detector, confirm the expecta-

tion of a normal parent probability distribution, with a mean consistent with the average

of the whole sample of extracted asymmetries and a standard deviation consistent with

the combination of the statistical error and the systematic error from the background

subtraction of statistical origin, calculated from the number of counts.

The statistical error is of about 5% while the whole systematic error is slightly

larger. The systematic error is dominated by the uncertainty in the measurement of the

electron beam polarization degree and by the uncertainty from the background pollution

subtraction.

This measurement of the parity violating asymmetry in the electron deuteron

quasielastic scattering permits the combination with the measured parity violating asym-

metries in the A4 experiment at the same Q2 = 0.23 (GeV/c)2 in the electron proton

elastic scattering at forward and backward angles.

The differences of these three measured parity violating asymmetries and the cal-

culated parity violating asymmetries from the interference of the nucleon vector matrix

elements without strangeness lead to the statement of three equations on the unknown

strange vector and effective axial vector form factors, whose coefficients are cross section

weighted averaged and the unknown form factors are extracted from the averaging inter-

val of integration assuming a smooth dependence on the Q2 in order to keep the linearity

of the equations of the system.

The parity violating asymmetry with the deuteron splits the effective axial vector

form factor into its isovector and isoscalar components, through the difference in the

interference with the magnetic current. This fact increases the number of unknowns to

four.

The general solution of these system of three equations with four unknowns is a

straight line in the four dimensional space of the unknown form factors, being in principle

not possible the determinations of them.
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An internal parallelism in the equations of the parity violating asymmetries at

backward scattering, based on the same behaviour under rotations in the isospin space

of the strange isosinglet and the isoscalar component of the effective axial vector form

factor, leads to a near perpendicularity of the straight line with respect to the isovector

axial vector axis, which would be exact in the kinematical limit of very forward and very

backward scattering.

From the isovector and isoscalar effective axial vector form factors, resorting to

extra measurements of the neutral weak axial vector coupling of the nucleon and the

contribution to the spin of the nucleon of the strange quark, together with the measure-

ment of the axial mass, assuming a dipole Q2-dependence for both the neutral weak axial

vector current and for the electroweak radiative corrections, the electroweak radiative

corrections can be determined, in particular the anapole radiative corrections affected of

large theoretical uncertainties, once the one-quark electroweak radiative corrections are

subtracted, which can be calculated in the framework of the Standard Model with much

smaller uncertainties.

Two hypotheses have been formulated on the value of two of the unknown form

factors based on physical grounds in order to determine the other ones: the assumption

that the strange electric form factor is zero in consistency with the measurement of the

Happex experiment at Q2 = 0.1 (GeV/c)2 with a spinless target of Helium, which is

compatible with zero, and the validity of the theoretical calculation for the isoscalar

electroweak radiative corrections to the axial vector form factor. Within the interval

determined by these hypotheses and within the experimental precision of 1−σ it has been

concluded:

• that the isovector effective axial vector form factor and subsequently the isovec-

tor electroweak anapole radiative corrections can be determined, there being an

agreement with the theoretical calculation within the given interval of theoretical

uncertainty, being the experimentally observed value slightly larger and negative.

• that a zero or negative value of the strange electric form factor implies a large pos-

itive value of the isoscalar anapole radiative correction, at more than 1 − σ from

the theoretical calculation with the interval of theoretical uncertainty, while a small

value of the isoscalar anapole radiative correction consistent with the theoretical

calculation implies a positive value of the strange electric form factor at more than

1−σ from zero. In other words, the A4 measurements imply within the experimen-

tal precision of 1 − σ an exclusion between the extrapolation of the measurement
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from Happex and the theoretical calculations for the isoscalar anapole radiative

corrections.

• that the hypothesis of a zero strange electric form factor implies a negative strange

magnetic form factor while the theoretically calculated isoscalar anapole radiative

correction implies a negative strange magnetic form factor, both at more than 1−σ

from zero.

The determination of the isovector axial vector form factor and the isovector

anapole radiative corrections is more sensitive to the measurement of the parity violating

asymmetry in the electron deuteron quasielastic scattering, because of the amplification

of the isovector axial vector currents through the alignment of the anomalous magnetic

moments of the proton and neutron in the interference.

The determination of the isovector axial vector form factor, assuming the validity

of the theoretical calculation for the isoscalar component and the dipole Q2-dependence

with the axial mass, can be combined with the determinations from the measurement

of other experiments, SAMPLE and G0, one from G0 at a close Q2 and the other ones

at different Q2 in order to reduce the error. By these means the isovector axial vector

form factor at Q2 = 0 can be determined with about 0.2 error and the isovector anapole

radiative corrections can be determined with an experimental combined error slightly

smaller than the interval of theoretical uncertainty from Zhu et al.

The beam normal spin asymmetries at Q2 = 0.23 (GeV/c)2 and Q2 = 0.35 (GeV/c)2

at backward angles with both hydrogen and deuterium have been found to be large, be-

tween 50 and 100 ppm. The extracted asymmetries from the spectrum of charged par-

ticles present a fortuitous constancy with the lower cut within the error bars because of

the compensation of the dilution of the background pollution and the strong dependence

on the energy of the beam normal spin asymmetry of the neutral background. The neu-

tral background pollution method has been employed in order to estimate the systematic

uncertainty and in order to determine the optimal lower cut which minimizes the combi-

nation of the statistical and the systematic error. The beam normal spin asymmetries at

Q2 = 0.10 (GeV/c)2 are still under investigation showing a preliminary analysis that they

are consistent with zero. The beam normal spin asymmetry for the neutron has been

extracted using the static approximation from the experimentally observed beam normal

spin asymmetries on the proton and deuteron, exhibiting a large uncertainty because of

the smallness of the cross section of the electron scattering on the neutron with respect

to the cross section of the scattering on the proton. The beam normal spin asymme-
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tries on the proton and neutron agree with the theoretical calculation from Pasquini et

al. based on the first principles and including the imaginarty part of the two-photon

exchange amplitude, proving the reliability of the theoretical calculation.
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Appendix A

Study of the system of equations

The study of the system of three equations with four unknowns is organized as

follows:

• The introduction of a notation and the matrix representation of the system

• The study of the two physically meaningful subsystems of two equations from which

part of the solution can be obtained without resorting to the third one:

– Subsystem of equations from the measurements with hydrogen at both forward

and backward angles: It is a system of two equations with three unknowns

which suffices to extract the linear combination between the strange vector

form factors Gs
E and Gs

M .

– Subsystem of equations from the measurements at backward angles with both

hydrogen and deuterium: It is a system of two equations with four unknowns

with an internal parallelism that allows the possibility of extracting the linear

combination ofGs
E andG

e,(T=1)
A . This subsystem suffices to prove the possibility

of the approximate determination of G
e,(T=1)
A by studying these two cases:

∗ The kinematical limit of very forward θ → 0○ and very backward angles

θ → 180○ measurements.

∗ The projection on the hyperplane Gs
E = 0 (which can also be considered as

a physical hypothesis or a limiting case).

• The general solution of the complete system of equations in this order:

– The vectorial equation of the straight line in the four dimensional space
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– The parametric equations of the straight line

– and the set of equations of the straight lines that are projections on the six

coordinate planes

A.0.1 Notation and matrix representation

The system of linear equations in the matrix representation reads:

m⃗ =A ⋅ G⃗; m⃗ ∈ R3, G⃗ ∈ R4, A ∶ R
4 → R

3 (A.1)

It represents the linear application A from the vector space m⃗ of the difference

between the measured parity violating asymmetries and AV and the vector space G⃗ of

the unknown form factors.

m⃗ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
A

p
PV,f −A

p
V,f

A
p
PV −A

p
V

Ad
PV −A

d
V

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, G⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Gs
E

Gs
M

G
e,(T=1)
A

G
e,(T=0)
A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The elements of the matrix A depend on: the degree of linear polarization in the

transverse plane of the virtual photon ǫ, the dimensionless transfer momentum invariant

τ and the couplings of the electromagnetic currents of the nucleon G
p,n
E,M , whose mean

values are given in tableA.1 .

A = A0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ǫfG
p
E

σp,f

τG
p
M

σp,f

gvǫ
′
fτ
′Gp

M

σp,f

gvǫ
′
fτ
′Gp

M

σp,f

ǫG
p
E

σp

τG
p
M

σp

gvǫ′τ ′G
p
M

σp

gvǫ′τ ′G
p
M

σp

ǫ (Gp
E +G

n
E)

σd

τ (Gp
M +G

n
M)

σd

gvǫ′τ ′ (Gp
M −G

n
M)

σd

gvǫ′τ ′ (Gp
M +G

n
M)

σd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The following notation is introduced with an obvious correspondence:
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θ ǫ ǫ′ τ τ ′ GN
EM p n

35○ 0.8252 0.5648
0.0654 0.2639

E 0.5763 0.0243

145○ 0.0446 0.9990 M 1.6285 −1.1219

Table A.1: Kinematical parameters, left, and electromagnetic form factors, right, calcu-

lated at the mean value of the scattering angle.

⎡⎢⎢⎢⎢⎢⎢⎢⎣
m0

m1

m2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 b0 c0 c0

a1 b1 c1 c1

a2 b2 c2 d2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with the important relations between the coefficients:

b2 = ηb1, d2 = ηc1 (A.2)

where

η = G
p
M +G

n
M

G
p
M

σp

σd
= G

p
M +G

n
M

G
p
M

ǫ (Gp
E)2 + τ (Gp

M)2
ǫ [(Gp

E)2 + (Gn
E)2] + τ [(Gp

M)2 + (Gn
M)2] (A.3)

and

d2

c2
= G

p
M +G

n
M

G
p
M −G

n
M

(A.4)

with the values η = 0.2164 and d2/c2 = 0.1842.

A.0.2 Subsystem of equations of the PVA on proton

In the subsystem of the first two equations (those corresponding to the PVA on the

proton) the coefficients of the two last unknowns z and w are common, so that they can be

collected in only one unknown, the axial vector form factor Ge
A, reducing the dimensions

to 3. This subsystem is thus equivalent to a system of two equations with three unknowns.
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m0 =a0x + b0y + c0z + c0w

m1 =a1x + b1y + c1z + c1w

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
After eliminating the unknown z +w

y +
a0c1 − a1c0

b0c1 − b1c0
x = c1m0 − c0m1

b0c1 − b1c0
(A.5)

And introducing the kinematical parameters:

c1a0 − c0a1

b0c1 − b1c0
= 1

τ

G
p
E

G
p
M

ǫ′ǫf − ǫ′f ǫ

ǫ′ − ǫ′f
≃ 9.97 (A.6)

And for the independent term:

c1m0 − c0m1(c1 − c0) b0 = 1

τG
p
M

σp,fǫ′m0 − σpǫ
′
fm1

ǫ′ − ǫ′f
≃ σp,fm0

τG
p
M

= ǫf(Gp
E)2 + τ(Gp

M)2
τG

p
M

A
p
PV,f −A

p
V,f

A0

(A.7)

Kinematical limit

At the limit of very backward angles, with ǫ ≃ 0 and ǫ′ ≃ 1, and very forward angles,

with ǫf ≃ 1 and ǫ′f ≃ 0, the linear combination becomes:

Gs
M +

1

τ

G
p
E

G
p
M

Gs
E ≃

ǫf(Gp
E)2 + τ(Gp

M)2
τG

p
M

A
p
PV,f −A

p
V,f

A0

(A.8)

This linear combination is more sensitive to the strange electric form factor and

correspondingly to the measurement of the parity violating asymmetry at forward angles.

A.0.3 Subsystem of equations of the PVA at backward angles

The fact that the third equation presents different coefficients for the components z

and w of the axial vector form factor introduces the necessity for a new dimension. The last

two equations form a system of two hyperplanes in four dimensions. Their intersection

would be, in principle, a plane. But the paralellism in the plane y,w, that is, in the

plane strange magnetic, axial vector isoscalar Gs
M , G

T=0
A reduces the intersection
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to a straight line in the plane x − z, that is, the plane strange electric-axial vector

isovector Gs
E, G

T=1
A

m1 =a1x + b1y + c1z + c1w

m2 =a2x + ηb1y + c2z + ηc1w

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Eliminating the terms responsible of the parallelism, y and w with coefficients b1,

c1 and ηb1, ηc1 in both equations, respectively:

z +
ηa1 − a2

ηc1 − c2
x = ηm1 −m2

ηc1 − c2
(A.9)

and with the kinematical parameters:

ηa1 − a2

ηc1 − c2
= ǫ
ǫ′

1

2gvτ ′
(Gp

E

Gp
M

−
Gn

E

Gn
M

) (A.10)

The independent term does not simplify significantly but it is quoted for complete-

ness:

ηm1 −m2

ηc1 − c2
= 1

2gvǫ′τ ′
[m1 ( 1

Gn
M

+
1

G
p
M

) − m2

Gn
M

] (A.11)

So that the linear combination written in terms of the form factors results:

GT=1
A +

ǫ

ǫ′
1

2gvτ ′
(Gp

E

G
p
M

−
Gn

E

Gn
M

)Gs
E = 1

2gvǫ′τ ′
[m1 ( 1

Gn
M

+
1

G
p
M

)σp − m2

Gn
M

σd] (A.12)

A.0.4 Determination of the isovector axial form factor

The unknown z can be exactly determined with the following approximation:

• The coefficient a0 of x (Gs
E) in the first equation is large compared with the others,

since at forward angles the interaction is mainly electric. The coefficients a1 and

a2 of x in the second and third equations (measurements at backward angles) are

suppressed, since at backward angles the interaction is dominated by the magnetic

and the axial processes.
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• The system of three equations can be separated into two:

– The first equation, which determines the electric form factor

– and into the system of the two equations at backward angles, reducing the

unknowns to y, z and w.

This approximation is equivalent to the study of the projection to the hyperplane

defined by x = 0 (Gs
E = 0) or to the limit of very forward and backward angles where the

coefficients c0 = 0, a1 = 0, a2 = 0 cancel.

⎡⎢⎢⎢⎢⎢⎢⎢⎣
m0

m1

m2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣
a0 b0 0 0

0 b1 c1 c1

0 ηb1 c2 ηc1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The system of three equations is then separated into one equation, the first one,

which gives basically the value of the x (Gs
E) variable and a subsystem of two equations,

the second and third ones, with three unknowns.

The subsystem of the two equations at backward angles in three dimensions is:

m1 =b0y + c1z + c1w

m2 =ηb0y + c2z + ηc1w

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The subspaces of the equations are parallel in the plane y,w (Gs

M , G
T=0
A ), so that

they intersect along a horizontal straight line in the planes z,w (GT=1
A , GT=0

A ) and z, y

(GT=1
A , Gs

M), horizontal with respect to the axis w and y, respectively. This fact enables

the determination of the z (GT=1
A ).

Eliminating the terms on y and w, responsible of the parallelism:

ηm1 −m2 = (ηc1 − c2) z (A.13)

So that the solution is:

z = ηm1 −m2

ηc1 − c2
(A.14)

Expressed in terms of the form factors:
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GT=1
A = 1

2gvǫ′τ ′
[m1 ( 1

Gn
M

+
1

G
p
M

)σp − m2

Gn
M

σd] (A.15)

Eliminating the unknown z results the linear combination between y and w:

y +
c1

b1
w = c2m1 − c1m2

b1 (c2 − ηc1) (A.16)

where

c1

b1
= gvǫ

′τ ′

τ
(A.17)

and

c2m1 − c1m2

b1 (c2 − ηc1) = 1

2τ
[m2

Gn
M

σd +m1 ( 1

G
p
M

−
1

Gn
M

)σp] (A.18)

so that

Gs
M +

gvǫ′τ ′

τ
GT=0

A = 1

2τ
[m2

Gn
M

σd +m1 ( 1

G
p
M

−
1

Gn
M

)σp] (A.19)

Deviation in the general case

If the complete system of equations is considered, without the previous approxi-

mation (or projection or kinematical limits), the horizontal line z = z0 is slightly deviated,

appearing a slight dependence on w and y. This deviation is however small because of the

underlying parallelim in the y −w plane and the validity of the previous approximation.

Solving the system for the unknowns z and w, the isovector and isoscalar compo-

nents of the axial vector form factor:

z +
β

α
w = γ

α
(A.20)

with the values for the coefficients:
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α = a0 (ηc1 − c2) + a1 (c2 − ηc0) + a2 (c0 − c1)
β = (c1 − c0) (ηa1 − a2)
γ =m0 (a2 − ηa1) +m1 (ηa0 − a2) +m2 (a1 − a0)

and introducing the kinematical parameters and form factors results:

β

α
= ǫgv (ǫ′ − ǫ′f) τ ′ (Gn

MG
p
E −G

n
EG

p
M)

2ǫfgvǫ
′τ ′Gn

MG
p
E {1 + ǫ

ǫf
[1
2
(ǫ′f
ǫ′
− 1) Gp

M

Gn
M

(1 + Gn
E

G
p
E

) − 1]} (A.21)

(A.22)

≃ 1
2

ǫ

ǫf
(1 − ǫ′f

ǫ′
)(1 − Gn

EG
p
M

G
p
EG

n
M

) ≃ 1

2

ǫ

ǫf
(1 − ǫ′f

ǫ′
) ≃ 0.01

The small deviation from the horizontal straight line depends leadingly on kine-

matical factors. The slope vanishes in the very backward limit ǫ→ 0.

The independent term is:

γ

α
= a0 (ηm1 −m2) + a1 (m2 − ηm0) + a2 (m0 −m1)

a0 (ηc1 − c2) + a1 (c2 − ηc0) + a2 (c0 − c1) (A.23)

It reduces in the limiting case a1 = 0, a2 = 0 to the already given value in the

previous section.

Finally, the cross section weighted average of the coefficients over the effective

scattering angle of the detector introduces another contribution to the slight deviation

from the horizontal line z = z0, because the parallelism in the plane y − w is slightly

destroyed by the average.

A.0.5 General solution and geometrical interpretation

Geometrically the system of three linearly independent equations with four un-

knowns is the set of three hyperplanes in four dimensions (equivalently, three three di-

mensional spaces in a space of four dimensions). The solution of the system is the inter-
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section of the hyperplanes. In this it is a straight line, since the solution of the system is

undetermined with one degree of freedom.

Normal vectors to the hyperplanes

The coefficients of the equations of the hyperplanes are the components of the

normal vector to each hyperplane:

n⃗0 = (a0, b0, c0, c0) (A.24)

n⃗1 = (a1, b1, c1, c1) (A.25)

n⃗2 = (a2, b2, c2, d2) (A.26)

The unitary normal vectors to the hyperplanes u⃗i =
n⃗i∣n⃗i∣ with i = 0,1,2 are:

u⃗0 = (0.9737,0.2214,0.0382,0.0382) (A.27)

u⃗1 = (0.2534,0.8869,0.2732,0.2732) (A.28)

u⃗2 = (0.4668,0.4430,0.7541,0.1312) (A.29)

In terms of the direction cosines:

u⃗0 = (cos(13.17○), cos(77.21○), cos(87.81○), cos(87.81○)) (A.30)

u⃗1 = (cos(63.62○), cos(39.85○), cos(70.94○), cos(70.94○)) (A.31)

u⃗2 = (cos(51.63○), cos(72.31○), cos(44.60○), cos(82.86○)) (A.32)

Vector equation of the straight line

Generalizing the cross product to four dimensions, the cross product of the normal

vectors of the three hyperplanes v⃗ = n⃗0 × n⃗1 × n⃗2 is a vector in the direction of the straight

line of their intersection.
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v⃗ =

RRRRRRRRRRRRRRRRRRRRRRR

i⃗ j⃗ k⃗ l⃗

a0 b0 c0 c0

a1 b1 c1 c1

a2 b2 c2 d2

RRRRRRRRRRRRRRRRRRRRRRR
= (b0c1 − b1c0)(d2 − c2)⃗i + (b0c1 − b1c0)(d2 − c2)j⃗ (A.33)

(A.34)

+ [a0 (b1d2 − c1b2) + a1 (c0b2 − b0d2) + a2 (b0c1 − c0b1)] k⃗ (A.35)

(A.36)

+ [a0 (c1b2 − b1c2) + a1 (b0c2 − c0b2) + a2 (c0b1 − b0c1)] l⃗ (A.37)

The unitary vector in the direction of the straight line:

u⃗ = (−0.0311,0.2998,0.0090,−0.9535) (A.38)

In terms of the directional cosines:

u⃗ = (cos(−88.22○), cos(72.56○), cos(89.48○), cos(−17.54○)) (A.39)

Observations

• The straight line of the intersection approximates the axis w with a relative small

angle 17.54○. The line presents larger angles for the axis y and w, approximating

the perpendicularity in the last case. The line is almost perpendicular to the z axis.

• It makes sense to take the axis w as parameter. The unknown w will present a large

indeterminacy. The unknown x will present a relative small indeterminacy and the

unknown z is almost determined by the approximate perpendicularity.

In order to write the vectorial equation of the straight line r⃗ = r⃗0+λ ⋅ v⃗ a point that

belongs to the straight line r⃗0 is necessary. Physically it makes sense to select that point

by solving the system of equations for any of the physically meaningful hypotheses w = 0
and x = 0 already considered.

Parametric equations

The parametric equations of the straight line are:
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x = x0 + ux ⋅ λ

y = y0 + uy ⋅ λ

z = z0 + uz ⋅ λ

w = w0 + uw ⋅ λ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where u⃗ = v⃗

∣v⃗∣ is the unitary vector in the direction of the straight line.

Projections on the coordinate planes

From the parametric equations one can obtain the equations of six straight lines

corresponding to the projections of the straight line of the solution on each of the six

coordinate planes of a four dimensional space 1:

y −
uy

ux
⋅ x = y0 −

uy

ux
⋅ x0

z −
uz

ux
⋅ x = z0 −

uz

ux
⋅ x0

z −
uz

uw
⋅w = z0 −

uz

uw
⋅w0

y −
uy

uw
⋅w = y0 −

uy

uw
⋅w0

x −
ux

uw
⋅w = x0 −

ux

uw
⋅w0

z −
uz

uy
⋅ y = z0 −

uz

uy
⋅ y0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.40)

Geometrical interpretation

• The system of linear equations represents a set of three independent hyperplanes in

a four dimensional space.

• This set of hyperplanes intersects along a straight line.

• The vectors of coefficients of the hyperplanes are normal to the hyperplanes. The

directional vector of the straight line of the intersection is orthogonal to all of them.

1In a n-dimensional space the number or coordinate planes is
n(n − 1)

2
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• The two first hyperplanes suffice to determine the projection of the intersection line

in the coordinate plane x − y, because of the parallelism in the subspace z −w.

• The two last hyperplanes suffice to determine the projection of the intersection line

in the coordinate plane x − z, because of the parallelism in the subspace y −w.

• The intersection straight line is approximately perpendicular to the axis z because

of the parallelism in the plane y −w.

• The third hyperplane dominates the approximate determination of z.



Appendix B

Study of the chirality, helicity and

spin operators

In the calculation of the scattering amplitude of an ultrarelativistic electron whose

spin is in the direction of the momentum three operators can be used: the chirality, the

helicity and the spin projectors. Here it is offered an study and comparison of their

properties and specially of the validity and consistency of the approximations done in the

calculation of the leptonic tensor.

B.1 Definition and general properties

B.1.1 Chirality projector

The chirality projector for left-handed state is:

PL = 1
2
(1 + γ5) (B.1)

while for a right-handed one it is PR =
1

2
(1 − γ5)

Lorentz invariance and conservation

The chirality states are Lorentz invariants since the chirality projector commutes

with the the representation S of the Lorentz group in the space of bispinors: γ5S = Sγ5.
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The chirality states are not conserved since the chirality projector does not comm-

nute with the free Hamiltonian, except for massless particles:

H = α∇⃗ + βm = γ0γ⃗∇⃗ + γ0m (B.2)

γ5H = (γ0γ⃗∇⃗ − γ0m)γ5 (B.3)

Spin summation in the leptonic tensor of the scattering amplitude

Let us consider the interference of the amplitudes of one γ and one Z exchange

between the electron and the nucleon. For the sake of simplicity let us focus in the leptonic

current, omitting the hadronic current and the boson propagator.

Since the electron is longitudinally polarized and it is being assumed in the ultra-

relativistic limit the electron to be massless the initial state has a defined chirality, that

is, it is an eigenstate of the chirality operator so that there has not to be averaging over

the initial spin states of the electron.

There is no need also to sum over the final spin states since for a massless particle

the helicity, coincident with the chirality [56], is exactly conserved and the scattered

particle is also a definite state of the same initial chirality.

Proof.

MγM
∗
Z =∑

s

ū′γµu [ū′ (aV γν + aAγνγ5)u]∗ (B.4)

= Tr{γµuū (aV γν + aAγνγ5)∑
s′
u′ū′} (B.5)

where the sum extends over the final spin states, assuming initially that they are

both present.

Since the initial massless particle is a definite state of chirality, from the Dirac

equation:

uū = 1
2
(1 + γ5) /p (B.6)

Replacing in the equation B.5:

MγM
∗
Z = Tr{γµ12 (1 + γ5) /p (aV γν + aAγνγ5)∑s u′ū′} (B.7)
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Since the chirality operator is a projector it is idempotent P 2
L = PL

γµPL/p (aV γν + aAγνγ5)∑
s

u′ū′ = γµP 2
L/p (aV γν + aAγνγ5)∑

s

u′ū′ (B.8)

= γµPL/p (aV γν + aAγνγ5)PL /p′ (B.9)

since PL∑s u
′ū′ = PL(PL + PR) /p′ = PL /p′. The property of the projector PLPR = 0

and the idempotence have been used and the property of anticommutation {γ5, γµ} = 0
has been used twice.

B.1.2 Helicity projector

The helicity projector for a left-handed particle is:

1

2
(1 + p̂Σ⃗) , Σ⃗ = γ5γ0γ⃗ (B.10)

with the correspoding minus sign for a right-handed state.

It commutes with the free Hamiltonian since γ⃗ is in the direction of the momentum

p̂, taking the momentum in the direction of the axis i: p̂Σ⃗ = γ5γ0γi so that

γ5γ0γi(γ0γi∂i + γ0m) = (γ0γi∂i + γ0m)γ5γ0γi (B.11)

but it is not a Lorentz invariant since it does not commute with S except in the

relativistic limit of m → 0 or for massless particles when the helicity operator reduces to

the chirality projector.

If we consider the Hamiltonian with the electromagnetic field obtained from the

Dirac equation with interaction

( /∂ − e /A −m)Ψ = 0 (B.12)

(γ0∂t − γ⃗∇⃗ − eγ0φ − eγ⃗A⃗ −m)Ψ = 0 (B.13)

∂t = γ0γ⃗∇⃗ + φ + eγ0γ⃗A⃗ + γ0m (B.14)
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H = γ0γ⃗∇⃗ + γ0m + eφ + eγ0γ⃗A⃗ (B.15)

The helicity operator does not commute with the Hamiltonian with interaction

unless the field A⃗ is in the direction of the momentum. But the field A⃗ points in the

direction of the current and thus in the direction of the incident momentum. But since

∇⃗×A⃗ ≠ 0 the field has transverse components. But for ultrarelativistic particles the longi-

tudinal component in the direction of the momentum is amplified by the relativistic factor

γA⃗∥ with respecto to the transverse components A⃗⊥ so that the helicity is approximately

conserved. Obviously for massless particles it is conserved since it reduces again to the

chirality that commutes with the Hamiltonian with interaction and without mass term

since:

γ5 (γ0γ⃗∇⃗ + eφ + eγ0γ⃗A⃗) = (γ0γ⃗∇⃗ + eφ + eγ0γ⃗A⃗)γ5 (B.16)

On the other hand the helicity projector, which is also idempotent does not affect

the operator from the final states so using the helicity projector one has to sum over the

final states.

B.1.3 Spin operator

The spin operator is:

1

2
(1 + γ5 /S) = 1

2
(1 + γ5γαSα) (B.17)

where Sα is the four vector associated to the spin. In the reference frame where

the particles moves with the velocity β⃗ it is:

Sµ = (γβ⃗S⃗R, S⃗R +
γ2

γ + 1
β⃗(β⃗S⃗R)) (B.18)

being S⃗R the spin of the particle in its rest frame Sµ
R = (0, S⃗R).

For a longitudinally polarized particle the spin four vector reads:

Sµ = (γhβ, γ 1

β2
β⃗hβ) = hγ(β, u⃗L) (B.19)
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where h = β⃗S⃗R/β is the helicity and u⃗L = β⃗/β is the unitary vector in the direction of

the movement. Since for an ultrarelativistic particle the four momentum is pµ = E(1, u⃗L)
the spin four vector of a longitudinally polarized ultrarelativistic particles turns to be

proportional to its four momentum:

Sµ = hγ(1, u⃗L) = 1

me

hE(1, u⃗L) = h

me

pµ (B.20)

B.2 Leptonic tensor

B.2.1 Chirality

The calculation of the leptonic tensor assuming that the initial lepton is a massless

particle:

∑
spin

ū(p′)γµu(p) (ū(p′)γνu(p))† = Tr{γµu(p)ū(p)γνu(p′)ū(p′)}
= Tr{γµ1

2
(1 + γ5) /pγν /p′} = 1

2
Tr {γµγαγνγβpαp′,β} + 1

2
Tr {γµγ5γαγνγβpαp′,β}

= 2 (gµαgνβ − gµνgαβ + gµβgαν)pαp′,β − 2iǫµανβpαp′,β
= 2 (pµp′,ν + pνp′,µ − gµνp ⋅ p′) + 2iǫµναβpαp′,β = sµν + aµν
Since the electron is assumed to be massless and it is longitudinally polarized

the projector u(p)ū(p) = 1

2
(1 + γ5) /p, according to the Dirac equation, with the chiral-

ity projector. The leptonic tensor is decomposed in one symmetric tensor sµν and an

antisymmetric tensor aµν .

B.2.2 Helicity

Assuming that the initial lepton is not massless even in the ultrarelativistic limit the

projector to be used for a initial longitudinally polarizad lepton is the helicity projector,

which is not equivalent to the chirality projector for particle which are not massless.
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Tr{γµu(p)ū(p)γνu(p′)ū(p′)} = Tr{γµ1
2
(1 + p̂Σ⃗) (/p +m)γν(/p′ +m)}

= Tr{γµ1
2
(1 + p̂γ5γ0γ⃗) (/p +m)γν(/p′ +m)}

Using the property that the spin operator is in the direction of the initial mo-

mentum, since p̂ points in the direction of the three vector component of p, the term

dependent on the spin reduces to:

p̂γ0γ⃗/p = γ0γ⃗γαpα = γ0p̂γ⃗ (Eγ0 −Ep̂γ⃗) = (−Ep̂γ⃗ +Eγ0) = /p (B.21)

This fact together with the ultrarelativistic limit lead to the same decomposition

of the leptonic tensor in a symmetric and and an antisymmetric tensor as before:

Tr{γµ1
2
(1 + p̂γ5γ0γ⃗) /pγν /p′} = 1

2
Tr{γµ/pγν /p′} + 1

2
Tr {γµγ5/pγν /p′} = sµν + aµν

B.2.3 Spin operator

The same decomposition for the leptonic tensor is obtained using the spin operator.

The difference is that this time the terms linear in the lepton mass have to be maintained

Tr{γµ1
2
(1 + γ5 /S) (/p +m)γν (/p′ +m)} = Tr{γµ1

2
(1 + γ5γαSα) (/p +m)γν (/p′ +m)}

Developing the terms which do not depend on the spin:

1

2
Tr {γµ/pγν /p′} + 1

2
Tr {γµ/pγνm} + 1

2
Tr{γµmγν /p′} + 1

2
Tr{γµm2γν}

and the terms depending on the spin operator:

1

2
Tr{γµγ5γαSα/pγν /p′} 1

2
Tr {γµγ5γαmSαγν /p′}+1

2
Tr {γµγ5γαSα/pγνm}+1

2
Tr {γµγ5γαSαγνm

2}
The traces with an odd number of Dirac matrices are zero and the terms that

contain the square of the lepton mass are neglected, yielding:
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1

2
Tr{γµ/pγν /p′} + 1

2
Tr {γµγ5γαhpαγν /p′} + 1

2
Tr{γµγ5γαhpα/pγν}

The relation mSα = hpα has been used. It holds for longitudinally polarized parti-

cles:

1

2
Tr {γµ/pγν /p′} + h1

2
Tr {γµγ5γαγνγβ (pαpβ − pαp′,β)}

The symmetric term on pαpβ vanishes

2 (pµp′,ν + pνp′,µ − gµνp ⋅ p′) + 2hiǫµναβpαp′,β = sµν + aµν
and the leptonic tensor is also decomposed in the sum of a symmetric and anti-

symmetric tensor.
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[39] Mora Esṕı, Maŕıa Carmen: Development of a new photon detector for the A4-

Compton Backscattering Polarimeter at MAMI Diplom thesis, Johannes Gutenberg-

Universität, Mainz 2007

[40] Baunack, S. et al.: Measurement of strange quark contributions to the vector form

factors of the proton at Q2 = 0.22 (GeV/c)2 Phys. Rev. Lett. 102, 151803 (2009)

[41] Capozza, L.: Untergrundstudien zur Messung der Strangeness-Vektorformfaktoren

des Protons durch paritätverletzende Eletronenstreuung unter Rückwärtswinkeln PhD
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