SINGLE SPIN ASYMMETRIES FROM THE MAINZ A4 EXPERIMENT

SEBASTIAN BAUNACK COLLABORATION A4, MAMI

JOHANNES-GUTENBERG UNIVERSITÄT MAINZ INSTITUT FÜR KERNPHYSIK

BARYONS04 PALAISEAU, OCTOBER 25, 2004

- Single Spin Asymmetries
- A4 Experimental setup
- Longitudinal spin: PV asymmetry Measurements at $Q^2 = 0.23 (GeV/c)^2$ and $Q^2 = 0.11 (GeV/c)^2$
- Transverse spin 2 γ exchange Measurements at $Q^2 = 0.23 (GeV/c)^2$ and $Q^2 = 0.11 (GeV/c)^2$

Single spin asymmetries in elastic scattering

- Single Spin Asymmetries: e^- spin longitudinal, parity violating, ϕ -symmetric $A_{PV} = 10^{-6}$

- Single-Spin-Asymmetries: e^- spin transverse, Azimuthal dependency: $sin(\phi)$,

 $A_{\perp}^{beam} = 10^{-5}$

Strange quarks in the proton

Simple quarks model

Full QCD

πN scattering <p ss p></p ss p>	contribution to proton mass
DIS <p s៑γ<sub>μγ⁵s p></p s៑γ<sub>	contribution to spin
PV e ⁻ scattering <p s̄γ<sub>μs p></p s̄γ<sub>	contribution to form factors

Electroweak interaction and parity violation

 σ \sim

$$\sigma \sim 1 + 10^{-5} + 10^{-10}$$

PV asymmetry
$$A = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

Extraction of strange quark form factor contribution

Flavour decomposition:

$$G_{E}^{p} = \frac{2}{3}G_{E}^{p,u} - \frac{1}{3}G_{E}^{p,d} - \frac{1}{3}G_{E}^{p,s}$$

$$G_{M}^{p} = \frac{2}{3}G_{M}^{p,u} - \frac{1}{3}G_{M}^{p,d} - \frac{1}{3}G_{M}^{p,s}$$
Strange quark form factors

Goal:

 A_{PV} in terms of G_E^s , G_M^s and the known electromagnetic form factors

- Weak interaction
- Isospin symmetry

Extraction of strange quark form factor contribution

$$A_{PV} = A_V + A_A + A_S = (A_0) + (A_S)$$

Asymmetry without strangeness-

Strange quark contribution to asymmetry-

$$A_{V} = -\frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \left((1 - 4\sin^{2}\hat{\Theta}_{W}) - \frac{\varepsilon G_{E}^{p}G_{E}^{n} + \tau G_{M}^{p}G_{M}^{n}}{\varepsilon (G_{E}^{p})^{2} + \tau (G_{M}^{p})^{2}} \right)$$

$$A_{A} = \frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \frac{(1 - 4\sin^{2}\hat{\Theta}_{W})\sqrt{1 - \varepsilon^{2}}\sqrt{\tau (1 + \tau)}G_{M}^{p}\tilde{G}_{A}^{p}}{\varepsilon (G_{E}^{p})^{2} + \tau (G_{M}^{p})^{2}}$$

$$A_{S} = \frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \frac{\varepsilon G_{E}^{p}G_{E}^{s} + \tau G_{M}^{p}G_{M}^{s}}{\varepsilon (G_{E}^{p})^{2} + \tau (G_{M}^{p})^{2}}$$

with
$$\tau = rac{Q^2}{4M_p^2}$$
 and $\varepsilon = [1 + 2(1 + \tau)tan^2rac{\Theta}{2}]^{-1}$

•Extraction of strange quark form factor contribution

Put in all known quantities... =>

• E=854.3 MeV, Q²=0.23
$$(GeV/c)^2$$
:

 $A_0 = (-6.30 \pm 0.43) \cdot 10^{-6}$

 $A_V = -5.61 \cdot 10^{-6}$, $A_A = -0.69 \cdot 10^{-6}$

• E5=70.4 MeV, Q²=0.11
$$(GeV/c)^2$$
:
 $A_0 = (-2.10 \pm 0.14) \cdot 10^{-6}$
 $A_V = -1.85 \cdot 10^{-6}$, $A_A = -0.25 \cdot 10^{-6}$

Experimental requirements:

- Large statistics: $\frac{\Delta A}{A} \approx \frac{1}{A\sqrt{N}} = 5\% \Rightarrow N \approx 10^{14}$ elastic counts
- Small systematics (beam fluctuations etc.)

A4 Measurement Principle

- Longitudinally or transversely polarised electrons
- Target: unpolarised protons
- Detector: scattering angle $35^{\circ} \pm 5^{\circ}$ or (in preparation) $145^{\circ} \pm 5^{\circ}$

• Counting experiment:
$$A = \frac{N^+ - N^-}{N^+ + N^-}$$

a

.

A4 Experimental setup

Compton backscatter polarimeter

- Magnetic chicane
- Intracavity $e^- \gamma$ scattering
- First asymmetries in june 2004

A4 Calorimeter and Luminosity Monitors

Calorimeter: 1022 PbF_2 crystals 146 frames, 7 rings $\Theta = 30^{\circ}..40^{\circ}, \Phi = 0..2\pi$ Luminosity monitors: 8 water cherenkov monitors $\Theta = 4.4^{\circ}..10^{\circ}, \Phi = 0..2\pi$

Full coverage of azimuthal range

The Calorimeter

 $d\Omega = 0.64 \ sr$, rates: 100 MHz total, 10 MHz elastic (@855 MeV) Count Single events, separation of elastic from inelastic events 2044 energy histograms (+-) every 5 minutes Extract N^+ and N^-

The luminosity monitors

 $d\Omega = 80 \text{ msr}$, rates: 2.6 GHz elastic, 350 GHz Møller Integrating water cherenkov detectors, measurements every 20ms Design optimised for Møller electrons

Dump polarimeter

- Relative Measurement of polarization degree, sensitive to longitudinal spin
- Determination of spin angle
- Control of $\lambda/2$ -plate status

Extracting experimental asymmetry A_{exp}

• Extract elastic counts N_i^+ , N_i^- from channel i = 1..1022

Normalisation to target density (L=luminosity, l=beam current)

$$A_{exp} = \frac{\frac{N^{+}}{\rho^{+}} - \frac{N^{-}}{\rho^{-}}}{\frac{N^{+}}{\rho^{+}} + \frac{N^{-}}{\rho^{-}}}, \quad \rho^{\pm} = \frac{L^{\pm}}{I^{\pm}}$$

Correction for helicity correlated false asymmetries and polarization

 $A_{exp} = P \cdot A_{phys} + \sum_{i=1}^{6} a_i X_i$

P: Beam polarisation

 $X_1: A_I$, Current asymmetry

•Analysis

 X_2 : ΔX , Horizontal position difference

 X_3 : ΔY , Vertical position difference X_4 : $\Delta X'$, Horizontal angle difference

 $X_5: \Delta Y'$, Vertical angle difference

 X_6 : ΔE , Energy difference

Determination of a_i via multiple linear regression

- Correction for dilution from quasielastic scattering off aluminium (target entrance/exit windows)
- Systematic check with $\lambda/2$ -plate flip

Physical asymmetries

$$Q^2 = 0.23 (GeV/c)^2$$

550 hours beam data

$$A_{phys} = (-5.44 \pm 0.54_{stat} \pm 0.26_{syst}) \cdot 10^{-6}$$

$$Q^2 = 0.11 (GeV/c)^2$$

350 hours beam data

$$A_{phys} = (-1.42 \pm 0.29_{stat} \pm 0.12_{syst}) \cdot 10^{-6}$$

Physical asymmetries

Comparison of measured asymmetries with A_0

Strange form factors

- Determination of G_E^s , G_M^s separately: Preparation of measurements under backward angle in preparation
- $Q^2 = 0.11 (GeV/c)^2$: Combination with SAMPLE and HAPPEX results

•Transverse Spin

- Imaginary part of 2γ exchange amplitude
- πN intermediate states
- Azimuthal dependency: $A(\phi) = A_{\perp} \cos(\phi)$

Transverse Asymmetry: Why is it interesting?

1.6

1.4

1.2

J. Arrington

Analysis

Extract elastic counts N_i^+ , $N_i^$ from channel i = 1..1022

Combine the 1022 channels to 8 sectors

$$N_{Sec}^+ = \Sigma N_i^+$$
, $N_{Sec}^- = \Sigma N_i^-$

Normalisation to target density (L=luminosity, I=beam current

$$A_{exp}^{Sec} \equiv A_{exp}(\Phi_i) = rac{rac{N_{Sec}^+}{
ho^-} - rac{N_{Sec}^-}{
ho^-}}{rac{N^+}{
ho^-} + rac{N^-}{
ho^-}}, \ \
ho^{\pm} = rac{L^{\pm}}{I^{\pm}}$$

۲

Normalisation to target density

$$A_{exp} = rac{rac{N^+}{
ho^-} - rac{N^-}{
ho^-}}{rac{N^+}{
ho^-} + rac{N^-}{
ho^-}}, \ \
ho^{\pm} = rac{L^{\pm}}{I^{\pm}}$$

with N = Elastic counts, L = Luminosity, I = Beam current

۲

Normalisation to target density

$$A_{exp} = rac{rac{N^+}{
ho^-} - rac{N^-}{
ho^-}}{rac{N^+}{
ho^-} + rac{N^-}{
ho^-}}, \ \
ho^{\pm} = rac{L^{\pm}}{I^{\pm}}$$

with N = Elastic counts, L = Luminosity, I = Beam current

$$A_{exp} \approx \frac{N^{+} - N^{-}}{N^{+} + N^{-}} - \frac{L^{+} - L^{-}}{L^{+} + L^{-}} + \frac{I^{+} - I^{-}}{I^{+} + I^{-}}$$

Normalisation to target density

$$A_{exp} = rac{rac{N^+}{
ho^-} - rac{N^-}{
ho^-}}{rac{N^+}{
ho^-} + rac{N^-}{
ho^-}}, \ \
ho^{\pm} = rac{L^{\pm}}{I^{\pm}}$$

with N = Elastic counts, L = Luminosity, I = Beam current

$$A_{exp} \approx \frac{N^+ - N^-}{N^+ + N^-} - \frac{L^+ - L^-}{L^+ + L^-} + \frac{I^+ - I^-}{I^+ + I^-}$$

=> Requirement: $A_L \ll A_{phys}$

=> In PV case A_L an order of magnitude smaller than PV asymmetry => But with transverse spin: Two photon exchange... Single Spin Asymmetry in Møller Scattering

Dixon, Schreiber, hep-ph/0402221: Azimuthal Asymmetry in Transversely Polarized Møller Scattering

- (a) Tree diagrams
- (b) Box diagrams
- => Leading term in cross section containing azimuthal asymmetry arises at order α^3 from interference of diagrams in (a) and (b)

Leading Order Single Spin Asymmetry in Møller Scattering

$$\frac{d\sigma^{Born}}{d\Omega} = \frac{\alpha^2}{2s} \left[\frac{t^2 + tu + u^2}{tu}\right]^2$$

$$\frac{d\sigma^{\Phi}}{d\Omega} = -\frac{\alpha^3}{8} \frac{m_e}{\sqrt{s}} \sin\Theta_{CM} \sin\Phi \frac{1}{t^2 u^2} \cdot [3s[t(u-s)\ln(\frac{-t}{s}) - u(t-s)\ln(\frac{-u}{s})] - 2(t-u)tu]$$

with

.

$$s = 2m_e E, t = -\frac{s}{2}(1 - \cos\Theta_{CM}), u = -\frac{s}{2}(1 + \cos\Theta_{CM})$$
$$E' = \frac{E}{2}(1 + \cos\Theta_{CM}), \cos\Theta_{lab} = 1 - \frac{m_e}{E}\frac{1 - \cos\Theta_{CM}}{1 + \cos\Theta_{CM}}$$

Single Spin Asymmetry in Møller Scattering

- Asymmetry seen by a detector is sensitive to the acceptance
- Symmetric acceptance in Θ_{CM} would lead to zero asymmetry
- Luminosity monitors A4: backward angles in CM frame
- Solution Structure Str

Luminosity Monitors

Spin Angle $\phi_s = 108.5^{\circ}$

Luminosity Monitors

Spin Angle $\phi_s = 85.1^{\circ}$

Luminosity Monitors

Spin Angle $\phi_s = 38.2^{\circ}$

Luminosity Monitors

Spin Angle $\phi_s = 26.5^{\circ}$

Luminosity Monitors

Spin Angle $\phi_s = 14.8^{\circ}$

Luminosity Monitors

Spin Angle $\phi_s = -8.6^{\circ}$

.

Luminosity Monitors

Spin Angle $\phi_s = -32.8^{\circ}$

.

Luminosity Monitors

Spin Angle $\phi_s = -55.9^{\circ}$

=> 8 Spin Angles ϕ_s , 8 Amplitudes $A_L(\phi_s)$

Spin angle dependency of A_L

 $A_L(\phi_s)$ seen by luminosity monitors:

Sensitive to transverse spin

Single Spin Asymmetry in Møller Scattering, Results

Energy	A _{Lumi} Experiment (ppm)	A_{Lumi} NLO calculation (ppm)
570 MeV	-26.7 ± 1.3	-29.6
855 MeV	-23.3 ± 4.3	-16.6

- We agree in sign and magnitude with QED calculations
- Asymmetries in LuMos not negligible
- Φ -symmetric summation: cancellation of asymmetry

Determination of A_{\perp}

Geometrical aspects

Azimuthal range of each sector $d\Phi\approx\pi/4$

$$P \cdot A_{Phys}(\Phi) = \frac{\int_{Sec} A_{\perp} \cdot \cos \varphi \, d\varphi}{\int_{Sec} d\varphi} \equiv F^{Sec} \cdot A_{\perp}$$

Sec	Φ_0	Φ_{min}	Φ_{max}	F^{Sec}
1	22.19°	0°	44.38°	0.903
2	66.58°	44.38°	88.77°	0.388
3	112.19°	88.77°	135.62°	-0.367
4	157.81°	135.62°	180°	-0.903
5	202.19°	180°	224.38°	-0.903
6	246.58°	224.38°	268.77°	-0.388
7	292.19°	268.77°	315.62°	0.367
8	337.18°	315.62°	360°	0.903

$$E = 855.2 MeV$$
, $Q^2 = 0.23 (GeV/c)^2$

pprox 50h beam data

Data taking in January 03:

Sectors 1, 2, 5, 6, 8 of PbF_2 calorimeter equipped Total number of elastic counts: $N_{total} = 6.3 \cdot 10^{11}$ $\Phi_S = 99.9^\circ \pm 1^\circ$

$$E = 569.3 MeV$$
, $Q^2 = 0.11 (GeV/c)^2$

pprox 50h beam data

Data taking in September 03:

Calorimeter fully equipped

Total number of elastic counts: $N_{total} = 3.9 \cdot 10^{12}$

 $\Phi_S = 96.8^\circ \pm 0.5^\circ$

Determination of A_{\perp}

_

Beam parameter

Parameter	$0.23 \; (GeV/c)^2$	$0.11 \; (GeV/c)^2$
A_I	$(2.5\pm0.6)ppm$	$(0.4 \pm 1.4) ppm$
Δx	(15.1 ± 3.4) nm	(157.0 ± 150.0) nm
Δy	(-126.7 ± 18.0) nm	(-504.3 ± 43.7) nm
$\Delta x'$	(5.4 ± 0.8) nrad	(20.5 ± 12.9) nrad
$\Delta y'$	(21.5 ± 3.0) nrad	(45.4 ± 3.9) nrad
ΔE	$(0.2 \pm 0.3) eV$	$(41.4 \pm 2.6) eV$

Determination of A_{\perp}

 $E = 855.2 MeV, Q^2 = 0.23 (GeV/c)^2$

$$A_{\perp} = (-8.52 \pm 2.31_{stat} \pm 0.87_{syst}) ppm$$

$$A_{\perp} = (-8.59 \pm 0.93_{stat} \pm 0.75_{syst}) ppm$$

Comparison of A_{\perp} with theory

Intermediate state: proton, πN states (MAID) (B. Pasquini)

Projected future measurements

E_e [MeV]	θ_e [0]	$\delta \! A_{\perp}^p$ [ppm]	hours	$\delta\!A_{\perp}^D$ [ppm]	hours	$\delta\!A^n_\perp$ [ppm]
			proton		deuteron	(extracted)
300	$(35\pm5)\circ$	0.5	20	0.5	20	20
420	$(35\pm5)\circ$	0.5	40	0.5	35	11
570	$(35\pm5)\circ$	0.5	90	0.5	70	7
854	$(35\pm5)\circ$	0.5	300	0.5	220	4
1200	$(35\pm5)\circ$	1	260	1	180	6
1500	$(35\pm5)\circ$	2	180	2	120	11
300	$(145\pm5)\circ$	3	90	2	130	10
420	$(145\pm5)\circ$	3	230	2	320	10
570	$(145\pm5)\circ$	4	370	3	390	13
854	$(145\pm5)\circ$	8	490	7	380	28

- Single spin asymmetries in elastic ep scattering
- Longitudinal spin: Contribution of strange quarks to form factors
- Determination of $G_E^s + x G_M^s$ for two momentum transfers
- Measurements with backward kinematics in preparation
- Transverse spin: Imaginary part of 2γ exchange amplitude
- Substantial contribution of πN intermediate states
- Measurements at various energies at forward and backward angles, proton and deuteron projected

MAMI Accelerator

🚱 · Analysis

Contributions to corrections and systematic error

Quantitity	Correction (ppm)	Systematic Error (ppm)
Current asymmetry A_I	-1.14	0.30
Horizontal pos. diff. Δx	-0.47	0.43
Vertical pos. diff. Δy	0.02	0.14
Horizontal angle diff. $\Delta x'$	-0.09	0.39
Vertical angle diff. $\Delta y'$	0.02	0.18
Energy diff. ΔE	0.09	0.07
Pile-Up correction	-0.11	0.26
LuMo Nonlinearity	0.39	0.01
Target density (current)	0.00	0.12
Target density (LuMo)	0.18	0.03
Spin angle deviation δ	0.46	0.06
Polarisation	1.90	0.30

🚱 · Analysis

Contributions to corrections and systematic error

Quantitity	Correction (ppm)	Systematic Error (ppm)
Current asymmetry A_I	-0.16	0.11
Horizontal pos. diff. Δx	-0.55	0.14
Vertical pos. diff. Δy	0.29	0.17
Horizontal angle diff. $\Delta x'$	-0.52	0.14
Vertical angle diff. $\Delta y'$	0.42	0.17
Energy diff. ΔE	-0.39	0.04
Pile-Up correction	-1.31	0.29
LuMo Nonlinearity	-0.30	0.00
Target density (current)	0.12	0.05
Target density (LuMo)	-0.91	0.03
Spin angle deviation δ	-0.44	0.01
Polarisation	1.49	0.33

Linear Regression

Covariance matrix:

$$\mathbf{S} = \begin{pmatrix} s_{00} & s_{01} & s_{02} & \dots & s_{06} \\ s_{10} & s_{11} & s_{12} & \dots & s_{16} \\ \dots & \dots & \dots & \dots & \dots \\ s_{60} & s_{61} & s_{62} & \dots & s_{66} \end{pmatrix}$$

with

$$s_{jk}^{2} = \frac{\frac{1}{N-1} \sum_{i=1}^{N} \left[\frac{1}{\delta(X_{i}^{0})^{2}} (X_{i}^{j} - \overline{X^{j}}) (X_{i}^{k} - \overline{X^{k}}) \right]}{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\delta(X_{i}^{0})^{2}}}$$

and

•

$$\overline{X^j} = \frac{1}{N} \sum_{i=1}^N X_i^j$$

Linear Regression

Correlation matrix:

$$\mathbf{R} = \begin{pmatrix} r_{00} & r_{01} & r_{02} & \dots & r_{06} \\ r_{10} & r_{11} & r_{12} & \dots & r_{16} \\ \dots & \dots & \dots & \dots \\ r_{60} & r_{61} & r_{62} & \dots & r_{66} \end{pmatrix}$$

with

$$a^{j} = \frac{s_{00}}{s_{jj}} \sum_{k=1}^{6} r_{k0} r_{j0}^{-1}$$

 $r_{jk}^2 = \frac{s_{jk}^2}{s_{jj}s_{kk}}$

Linear Regression

Error estimation:

.

.

$$\delta a^{j} = \sqrt{\frac{\frac{1}{N-1}\frac{1}{s_{jj}^{2}}r_{jj}^{-1}}{\frac{1}{N}\sum_{i=1}^{N}\frac{1}{(\delta X_{i}^{0})^{2}}}}$$

$$\delta A^{phys} = \sqrt{\frac{\frac{1}{N} + \frac{1}{N-1}\sum_{j=1}^{6}\sum_{k=1}^{6}(\overline{X^{j}}\overline{X^{k}}\frac{1}{s_{jj}}\frac{1}{s_{kk}}r_{jk}^{-1})}{\frac{1}{N}\sum_{i=1}^{N}\frac{1}{(\delta X_{i}^{0})^{2}}}}$$