Exercise Sheet 5 - Particle Physics - Summer 2016

N. Berger, A. Kozlinskiy
hand in: Mo 20.06. (in the lecture)

5.1 Mesons masses (4 points)

Using the meson mass formula

$$
\begin{equation*}
m\left(q_{1} q_{2}\right)=m_{1}+m_{2}+\frac{A}{m_{1} m_{2}}\left\langle S_{1} S_{2}\right\rangle \tag{1}
\end{equation*}
$$

calculate the masses of pseudoscalar (π, K, η) and vector $\left(\rho, K^{*}, \omega, \phi\right)$ mesons.
Use following values for the parameters: $m_{d}=m_{u}=0.307 \mathrm{GeV}, m_{s}=0.490 \mathrm{GeV}$ and $A=0.06 \mathrm{GeV}^{3}$.
Compare to the measured masses.

5.2 Gluon exchange (4 points)

Write down the matrix element for gluon exchange between two quarks shown in the figure.

$5.3 R_{\mu}$ ratio (4 points)

Calculate the R_{μ} ratio at low, middle and high energy corresponding to production of the 3,4 and 5 lightest quarks.

$$
\begin{equation*}
\left.R_{\mu}=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right.}\right) \tag{2}
\end{equation*}
$$

At which energies (energy ranges) these ratios are valid?

