Exercise 3 – Particle Physics – Summer 2016

N. Berger, A. Kozlinskiy, F. Wauters

hand in: Tue 17.5. (Post bin Prof. Niklaus Berger)

3.1 γ matrices (3 points)

Show that $(\gamma^{\mu})^{\dagger} = \gamma^{0} \gamma^{\mu} \gamma^{0}$

3.2 Spinors (5 points)

Writing the four-component spinor u_1 in terms of two two-component vectors,

$$\left(\begin{array}{c} u_A\\ u_B\end{array}\right),$$

show that in the non-relativistic limit the components of u_B are smaller than those of u_A by a factor $\frac{v}{c}$.

3.3 Draw a Feynman diagram (3 points)

Draw the two lowest-order Feynman diagrams for the Compton scattering process $\gamma e^- \rightarrow \gamma e^-$.

3.4 electron-positron scattering (5 points)

Draw the lowest-order t-channel and u-channel Feynman diagrams for $e^+e^- \rightarrow \gamma\gamma$ and use the Feynman rules for QED to write down the corresponding matrix elements.