Exercise Sheet 2 - Particle Physics - Summer 2016

N. Berger, A. Kozlinskiy

hand in: Mo 2.5. (in the lecture)

2.1 Two-body decay (5 points)

Consider the decay at rest of a particle with mass M in two particles with masses m_{1} and m_{2}. What is the momentum of the final particles.
2.2 Angle between photons in $\pi^{0} \rightarrow \gamma \gamma$ decay (5 points)

The neutral pion π^{0} primarily (98.82%) decays into two photons. What is the minimum angle between two photons produced from decay of a pion with energy $E=1 \mathrm{GeV}$.

2.3 Partial width of $\pi^{0} \rightarrow e^{+} e^{-} \gamma \quad$ (3 points)

Calculate the partial width of the decay $\pi^{0} \rightarrow e^{+} e^{-} \gamma$ given the branching fraction $B\left(\pi^{0} \rightarrow e^{+} e^{-} \gamma\right)=$ 1.17% and the π^{0} life time $\tau=0.085 \mathrm{fs}$.

2.4 Neutrino interaction (4 points)

Calculate the interaction probability of a $E=100 \mathrm{GeV}$ muon neutrino v_{μ} with a 5 cm thick lead ${ }_{82}^{207} \mathrm{~Pb}$ block. The neutrino-nucleon cross section is $\sigma \approx 6.7 \frac{E}{\mathrm{GeV}} \mathrm{fb}$.

