Building a Tracking Detector for the P2 Experiment

DPG Frühjahrstagung, Münster 2017

Marco Zimmermann
Institute for Nuclear Physics
March 28, 2017
The P2 Experiment: Overview

The Idea

Precision measurement of the weak mixing angle at low Q^2

Motivation

- Fundamental quantity of the Standard Model
- Sensitive for New Physics

Method

- Measure parity-violating asymmetry in electron-proton scattering
- Mainz Energy-recovery Superconducting Accelerator (MESA)
The P2 Experiment: Overview

The Idea

Precision measurement of the weak mixing angle at low Q^2

Motivation

- Fundamental quantity of the Standard Model
- Sensitive for New Physics

Method

- Measure parity-violating asymmetry in electron-proton scattering
- Mainz Energy-recovery Superconducting Accelerator (MESA)
The P2 Experiment: Overview

The Idea

Precision measurement of the weak mixing angle at low Q^2

Motivation

- Fundamental quantity of the Standard Model
- Sensitive for New Physics

Method

- Measure parity-violating asymmetry in electron-proton scattering
- Mainz Energy-recovery Superconducting Accelerator (MESA)
The Weak Mixing Angle θ_W in the Standard Model (SM)

Definition

$$\tan \theta_W = \frac{g}{g'}$$

with $SU(2)_L \times U(1)_Y$ gauge couplings g, g'

Proton electric charge

$$+1$$

Proton weak charge

$$1 - 4\sin^2 \theta_W$$

M.Zimmermann (Institute for Nuclear Physics) | Tracking Detector for P2 | March 28, 2017
Scale dependence of $\sin^2 \theta_W$

Absorb radiative corrections into effective, scale-dependent ("running") $\sin^2 \theta_W(Q^2)$
Running $\sin^2 \theta_W$ Measurements

\[
\sin^2 \theta_W (Q)
\]

\[
Q_W (p)
\]

\[
Q_W (e)
\]

\[
Q_W (APV)
\]

\[
Q_W (eDIS)
\]

\[
Q_W (Tevatron)
\]

\[
Q_W (SLD)
\]

\[
Q_W (NuTeV)
\]

\[
Q_W (ATLAS)
\]

\[
Q_W (CMS)
\]

\[
Q [\text{GeV}]
\]

\[
\text{hs}
\]
Running $\sin^2 \theta_W$ Measurements

The figure shows a plot of $\sin^2 \theta_W$ as a function of Q for various experiments and data sets.

- **QW (p)**: Proton data from LEP1 and SLD.
- **QW (e)**: Electron data from Tevatron and ATLAS.
- **QW (APV)**: Antiproton data.
- **Moller**: Møller scattering data.
- **P2@MESA**: Data from the P2@MESA experiment.
- **Qweak**: Weak charge data.
- **SOLID**: Solid state and liquid data.
- **NuTeV**: Neutrino TeV data.
- **eDIS**: DIS data.

The plot includes a range of experimental data points and error bars, illustrating the precision and variation of $\sin^2 \theta_W$ measurements across different scales of Q. The data sets are distributed across a wide range of Q values, from approximately 0.0001 to 10000 GeV.
Measure $\sin^2 \theta_W$ via Parity Violating ep-Scattering
Measure $\sin^2 \theta_W$ via Parity Violating ep-Scattering

Parity violating asymmetry

- Photon exchange parity invariant
- Z-boson exchange violates parity!
- $A_{PV} \equiv \frac{N_- - N_+}{N_- + N_+}$
- Flip helicity and count!
Measure A_{PV} in ep-Scattering

$A_{PV} \equiv \frac{N_- - N_+}{N_- + N_+} = \frac{G_F Q^2}{4\sqrt{2}\pi \alpha} \left(1 - 4 \sin^2 \theta_W - F(Q^2) \right)$

- $Q^2 =$ momentum transfer
- $F(Q^2) =$ proton form factor

Need very high statistics and precise control of systematics
- 150 μA beam current, 10 000 h measuring time
- 60 cm liquid hydrogen target for high luminosity
- MESA beam
 - $E = 150$ MeV
 - Highly polarized ($\geq 85\%$), flip helicity at 2 kHz
 - Low helicity-correlated uncertainties
Measure A_{PV} in ep-Scattering

$A_{PV} \equiv \frac{N_- - N_+}{N_- + N_+} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left(1 - 4\sin^2 \theta_W - F(Q^2)\right) \sim 30 \text{ ppb}$

- $Q^2 = \text{momentum transfer}$
- $F(Q^2) = \text{proton form factor}$

Need very high statistics and precise control of systematics

- 150 μA beam current, 10 000 h measuring time
- 60 cm liquid hydrogen target for high luminosity
- MESA beam
 - $E = 150$ MeV
 - Highly polarized ($\geq 85\%$), flip helicity at 2 kHz
 - Low helicity-correlated uncertainties
Measure A_{PV} in ep-Scattering

$A_{PV} \equiv \frac{N_- - N_+}{N_- + N_+} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left(1 - 4\sin^2 \theta_W - F(Q^2) \right) \sim 30 \text{ ppb}$

- $Q^2 = \text{momentum transfer}$
- $F(Q^2) = \text{proton form factor}$

- Need very high statistics and precise control of systematics
 - 150 μA beam current, 10 000 h measuring time
 - 60 cm liquid hydrogen target for high luminosity
 - MESA beam
 - $E = 150\text{ MeV}$
 - Highly polarized ($\geq 85\%$), flip helicity at 2 kHz
 - Low helicity-correlated uncertainties $\leq 0.1 \text{ ppb}$
P2 Detector Layout

Tracking Detector

- 2 × 4 modules of plane pairs
- ~15° φ-coverage per tracking detector module
- Measure average Q^2
- Reconstruct individual electron tracks
- 50 μm thin silicon High Voltage Monolithic Active Pixel Sensors (HV-MAPS)
- ~50 μm thin Kapton layer
- Overlapping strips to minimise inactive area
- Less than 1% of a radiation length per tracker plane
- ~2 × 316 chips with size 2 × 2 cm² per module
- 50 μm thin silicon High Voltage Monolithic Active Pixel Sensors (HV-MAPS)
- ~ 50 μm thin Kapton layer
- Overlapping strips to minimise inactive area
- Less than 1% of a radiation length per tracker plane
- ~ 2 × 316 chips with size 2 × 2 cm² per module
Challenges for the Tracking Detector

- Very high particle rates at full beam intensity
 - $\mathcal{O}(10^{15})$ beam electrons per second
 - Large amount of background, mostly bremsstrahlung photons
Test the Detector Response to Photons

Photon Background

- Continuous bremsstrahlung energy spectrum
- Photoelectric Effect
- Compton Scattering
- Pair Creation

- Radioactive Sources
 - First result: $\eta \sim 29\%$ at 6 keV (Fe55)
- MAMI beamtest for higher photon energies

[Graph showing photon energy versus events per second]
Test the Detector Response to Photons

Photon Background

- Continuous bremsstrahlung energy spectrum
- Photoelectric Effect
- Compton Scattering
- Pair Creation

Radioactive Sources

First result: $\eta \sim 29\% @ 6 \text{ keV}$ (Fe55)

- MAMI beamtest for higher photon energies
Test the Detector Response to Photons

Photon Background

- Continuous bremsstrahlung energy spectrum
- Photoelectric Effect
- Compton Scattering
- Pair Creation

- Radioactive Sources
 First result: $\eta \sim 29\%@ 6$ keV (Fe55)
- MAMI beamtest for higher photon energies

![Graph showing photon background and detector response](image-url)
Summary and Conclusions

- **P2 Experiment**
 - Measure $\sin^2 \theta_W$ at low Q^2 in parity violating ep-scattering
 - Start data taking around 2020
 - A_{PV} measurement with integrating Cherenkov detectors

- **Tracking Detector**
 - Q^2 Measurement and systematic studies
 - Low material budget
 - Very high (background) particle rates
 - Detailed track finding and reconstruction studies ongoing
 - Development of mechanical layout started
Thank you for your attention.
Backup
Hooman Davoudiasl, Hye-Sung Lee, and William J. Marciano
Phys. Rev. D 89, 095006

\[m_{\text{dark } Z} = 100 \text{ MeV} \]
\[m_{\text{dark } Z} = 200 \text{ MeV} \]

\[\sin^2 \Theta_W (Q^2) \] vs \[\log_{10} Q \text{ [GeV]} \]

Anticipated sensitivities
Beam Stability Requirements

<table>
<thead>
<tr>
<th></th>
<th>Achieved at MAMI</th>
<th>A_{PV} uncertainty</th>
<th>requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy fluctuation</td>
<td>0.04 eV</td>
<td>< 0.1 ppb</td>
<td>ok!</td>
</tr>
<tr>
<td>Position fluctuation</td>
<td>3 nm</td>
<td>5 ppb</td>
<td>0.13 nm</td>
</tr>
<tr>
<td>Angle fluctuation</td>
<td>0.5 nrad</td>
<td>3 ppb</td>
<td>0.06 nrad</td>
</tr>
<tr>
<td>Intensity fluctuation</td>
<td>14 ppb</td>
<td>4 ppb</td>
<td>0.36 ppb</td>
</tr>
</tbody>
</table>
Systematic Uncertainties

\[\Delta \sin^2 \theta_w = 3.2 \times 10^{-4} \]

Beam energy: 150 MeV
Beam current: 150 \(\mu \)A
Polarization: 85 \%
\(\Delta P \): 0.425 \%
Target length: 60 cm
Detector acceptance: 20 deg
Total rate (el e-p): 0.1 THz
Measurement time: 10000 h
\(\Delta A_{\text{app}} \): 0.1 ppb
y/Z-box processes uncertainty contribution

\[
y = Z - \text{box processes uncertainty contribution}
\]

\[
E (\text{GeV})
\]

\[
Re \, Re_z (E, t=0) - \text{Avg. (Model I,II)}
\]

\[
Re \, Re_z (E, t=0) \pm \Delta (\chi^2)
\]

\[
Q\text{WEAK} (E = 1.165 \text{ GeV})
\]

\[
P2
\]
Projection of Expected Electron Trajectories

- FUPI real Solenoid, $B_{\max} = 0.01 T$
- $B = 0.96 B_{\max}$
- Target center @ $z = -700$ mm
- $E_{\text{beam}} = 150.0$ MeV
- el. e-p-scattering: $\theta \in [25.00 \text{ deg}, 45.00 \text{ deg}]$
- el. e-p-scattering: $\theta \in [0.00 \text{ deg}, 90.00 \text{ deg}]$
- el. e-e-scattering: $\theta \in [5.00 \text{ deg}, 90.00 \text{ deg}]$
Expected Particle Rates on First Plane

Hit Distribution in Tracking plane 0, z = 1080

- Signal Electrons hitting ICD
- Other hard scattered electrons
- Secondary electrons
- Beam electrons (no hard scattering)
- Photons
- Positrons
- Protons
- Neutrons

Events/(s*mm²)

Events/(pixel*50ns)
Expected Particle Rates on Second Plane

Hit Distribution in Tracking plane 1, $z = 1100$

- Signal Electrons hitting ICD
- Other hard scattered electrons
- Secondary electrons
- Beam electrons (no hard scattering)
- Photons
- Positrons
- Protons
- Neutrons

Events/(s*mm2)

10^{-7}
10^{-6}
10^{-5}
10^{-4}
10^{-3}
10^{-2}

Events/(pixel*50ns)

10^{-9}
10^{-8}
10^{-7}
10^{-6}

R_{cyl}/mm

0.6 0.7 0.8 0.9 1 1.1
Expected Particle Rates on Third Plane

Hit Distribution in Tracking plane 2, $z = 1640$

- Signal Electrons hitting ICD
- Other hard scattered electrons
- Secondary electrons
- Beam electrons (no hard scattering)
- Photons
- Positrons
- Protons
- Neutrons

Events/($s \times mm^2$) vs. R_{cyl}/mm
Expected Particle Rates on Fourth Plane

Hit Distribution in Tracking plane 3, z = 1660
Photon Background

- Continuous bremsstrahlung energy distribution
- Secondary electrons mainly produced by photo-effect
- Low detection rate of higher energetic photons
- Reduced rate of secondary electrons on “covered” plane
- Detailed investigation of detector response to low energy photons needed
Photon Background

- Continuous bremsstrahlung energy distribution
- Secondary electrons mainly produced by photo-effect
- Low detection rate of higher energetic photons
- Reduced rate of secondary electrons on “covered” plane
- Detailed investigation of detector response to low energy photons needed
Photon Production Processes

process encoding: $0 =$ bremsstrahlung in the target, $3 =$ bremsstrahlung in other detector parts, $5 =$ pair annihilation
Photon Vertices

Truth vertex of photons hitting Tracking plane 0, $z = 1080$
MC Detector Response to Photons

Detector Response to Photons

- Detector Response to Photons
- Detector Response to Photons by Photoelectric Effect
- Detector Response to Photons by Compton Scattering
- Detector Response to Photons by Pair Creation

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>10^-1</td>
</tr>
<tr>
<td>0.2</td>
<td>10^-2</td>
</tr>
<tr>
<td>0.3</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10^-1</td>
</tr>
<tr>
<td>2</td>
<td>10^-2</td>
</tr>
<tr>
<td>3</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>

Photon Energy/MeV

<table>
<thead>
<tr>
<th>Photon Energy/MeV</th>
<th>Detector Response to Photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10^-1</td>
</tr>
<tr>
<td>20</td>
<td>10^-2</td>
</tr>
<tr>
<td>30</td>
<td>10^-3</td>
</tr>
</tbody>
</table>
Secondary Electrons Production Processes

Process encoding: 2 = ionisation, 12 = Photoeffect, 13 = Compton Scattering, 14 = Pair creation
Background Electrons Hitting Integrating Cherenkov Detector

Production Vertices

Truth vertex of backgr. electr. hitting Integrating Detector

M. Zimmermann (Institute for Nuclear Physics) | Tracking Detector for P2 | March 28, 2017
Additional Electron Loss due to Segmented Tracker Layers

Particle rates at subsequent tracking planes normalized to the first one

- h_2nd_plane
- h_3rd_plane
- h_4th_plane

Relative particle rate vs. Coverage/deg (φ)

M. Zimmermann (Institute for Nuclear Physics)