Momentum transfer reconstruction for the P2 Experiment

Alexey Tyukin

Mainz Institute for Nuclear Physics
DPG Tagung 2017 Muenster

29.03.2017
Motivation for measuring θ_W at low Q^2

- The Weinberg (Weak Mixing) angle $\theta_W \approx 28.75^\circ$ is a fundamental parameter of GWS theory of electroweak unification.

\[
\begin{pmatrix} \gamma \\ Z^0 \end{pmatrix} = \begin{pmatrix} \cos(\theta_W) & \sin(\theta_W) \\ -\sin(\theta_W) & \cos(\theta_W) \end{pmatrix} \cdot \begin{pmatrix} B^0 \\ W^0 \end{pmatrix}
\]

\[
\sin^2(\theta_W) = \frac{g_e^2}{g_w^2} \approx 0.2314
\]

- θ_W is a free parameter of SM which is related to many other quantities.
- Precise determination of $\sin^2(\theta_W)$ would verify SM or provide new physics.
- Inconsistent results of previous measurements must be resolved.
Measurements of $\sin^2(\theta_W)$

- Running of $\sin^2(\theta_W)$ due to radiative corrections
- From Z^0 pole at 91 GeV to low energies a 3% shift is expected
- P2 Experiment: at $Q = 0.07$ GeV with 0.13% precision

- Atomic Parity Violation
- Moeller scattering
- Neutrino scattering
- pp collisions
- $e^+ e^-$ collisions
- Deep inelastic e^- scattering
- Parity violating e^- scattering
Parity violating electron scattering

- Scattering of longitudinally polarized electrons on a proton target.
- EM-cross section dominates: $\sigma_\gamma \gg \sigma_Z$.
- Z^0 cross section depends on helicity of electron: $\sigma_Z^R \neq \sigma_Z^L$.
- Parity-violating asymmetry can be calculated from scattering rates:

$$A^{PV} = \frac{\sigma^L - \sigma^R}{\sigma^L + \sigma^R} = \frac{G_f Q^2}{4\pi\alpha \sqrt{2}} \cdot \left(1 - 4\sin^2\theta_W + F(Q^2)\right)$$
Kinematics

Choice of energy and scattering angle to minimize $\Delta \sin^2(\theta_W)$:
At lower Q^2 cross section gets higher, but asymmetry smaller

Beam : $E_{\text{beam}} = 155\text{ MeV}$, $I_{\text{beam}} = 150\text{ }\mu\text{A} = 10^{15} \text{ e}^-/\text{s}$,
Target : 60 cm liquid hydrogen , $L = 2.4 \cdot 10^{39} \text{s}^{-1}\text{cm}^{-2}$
Experiment : $\theta_{\text{scattering}} = 35^\circ$, observing 10^{11} electrons per second
Asymmetry : $A_{PV} = 33\text{ ppb}$, $\Delta A_{PV} = 1.5\% = 0.44\text{ ppb}$
Weinberg angle : $\Delta \sin^2(\theta_W) = 0.13\%$ after 10000 h
A new electron accelerator is being built in Mainz which will allow a next generation parity violation experiment.

- High Intensity, 85% polarisation
- 155 MeV energy
- High stability of position, energy and intensity
- 60 cm IH_2 target, magnetic field, 2 detector systems
Tracking Planes

- Four tracking planes in 2 pairs inside the magnet
- Track the electrons before they reach the counting detector
- Tracking planes partially not shielded from photons
- No full azimuthal coverage necessary, very high electron rates
Tracking Planes

- MuPix chips
 (HV-MAPS, designed for Mu3e Experiment)
- Pixel size $80 \times 80 \, \mu m$, chip size $2 \times 2 \, cm^2$
- Only $50 \, \mu m$ thickness, fast response

- 8 modules covering large area (15° each)
- Double layers of >300 MuPix chips
- Operation in high background environment
- Cooling required
- Track finding (next talk) and track fitting problem
- Reconstruct track from one hit in each detection plane
- Approximate momentum transfer in target
- Inhomogeneous magnetic field and helium gas between planes
- Energy loss and scattering in planes
Track reconstruction - fitting

- Approximate seed momentum on the first plane
- Propagate seed momentum (Runge-Kutta-Nystroem)
- Calculate Jacobian matrix for the propagation (Bugge-Myrheim)
- Fit by minimizing the χ^2 (General Broken Lines, GBL)
- Refit until fit converges and extract the resulting fitted momentum
Track reconstruction - performance

Reconstruction of momentum magnitude from Geant4 simulation:

\[P_{\text{reco}} \text{ and } P_{\text{true}} : \]

\[\frac{P_{\text{reco}} - P_{\text{true}}}{P_{\text{true}}} : \]

- The fit can never be perfect due to pixelsize, scattering, energy losses
Momentum transfer requires the kinematics of the event

\[Q^2 = 4 \cdot P \cdot P' \cdot \sin^2(\theta/2) \]

- Need to estimate \(P, P', \theta \)
- Propagate fit result back to the target
- Estimate vertex as point of closest approach to target center
- Energy loss in target before and after scattering
Momentum transfer Q^2 reconstruction

Reconstructed Q^2

Gbl RKN Fit with 2PT Seed: reconstructed Q^2

Reconstructed Q^2 Residual

Gbl RKN Fit with 2PT Seed: reconstructed Q^2 residuals

- Get reconstruction quality by comparing with Monte-Carlo simulation value
- Residual width of 0.00028 GeV2/c2 is an average resolution of 4.2%.
The P2 Experiment is planning a measurement of $\sin^2(\theta_W)$ with 0.13% precision.

A new accelerator will be built to make it possible.

The P2 Spectrometer will measure A_{PV} of 100 GHz elastically scattered electrons on liquid hydrogen.

Silicon pixel tracking planes will measure average Q^2.
Backup: Future measurements
$m_{\text{dark Z}} = 100$ MeV
$m_{\text{dark Z}} = 200$ MeV
Backup: $\Delta \sin^2(\theta_W)$ optimization

<table>
<thead>
<tr>
<th>Beam energy:</th>
<th>150 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam current</td>
<td>150 μA</td>
</tr>
<tr>
<td>Polarization:</td>
<td>85 %</td>
</tr>
<tr>
<td>ΔP:</td>
<td>0.425 %</td>
</tr>
<tr>
<td>Target length:</td>
<td>60 cm</td>
</tr>
<tr>
<td>Detector acceptance:</td>
<td>20 deg</td>
</tr>
<tr>
<td>Total rate (el e-p):</td>
<td>0.1 THz</td>
</tr>
<tr>
<td>Measurement time:</td>
<td>100000 h</td>
</tr>
<tr>
<td>ΔA^{app}:</td>
<td>0.1 ppb</td>
</tr>
</tbody>
</table>

\[\Delta \sin^2 \theta_W = 3.2 \cdot 10^{-4} \]
MESA lattice in new hall at Institut für Kernphysik, Uni-Mainz

- Beam dump building used
- BDX ideal
- More space for MESA!
- Hall-4 available for future experiments...

= hall number

NEW (u-CFP) OLD
Backup: Angle reconstruction

reconstructed theta

- θ reco
- θ true

4Pglfit_fHThetaReco
- Entries: 92572
- Mean: 32.74
- RMS: 5.156
- Underflow: 4
- Overflow: 0
Backup: Momentum reconstruction

reconstructed absolute momentum

<table>
<thead>
<tr>
<th>fitted tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>1100</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Graph:
- Red line: \(|p| \text{ reco} \)
- Gray line: \(|p| \text{ true} \)

Statistics:
- Entries: 92572
- Mean: 140.6
- RMS: 7.612
- Underflow: 116
- Overflow: 23

Legend:
- \(|p|\text{fit}_fHMomentumAbsReco\)