Electron scattering in Mainz

Plans for the next decade

Niklaus Berger
Institut für Kernphysik, Johannes-Gutenberg Universität Mainz
EINN, Paphos, Cyprus
November 2015
Overview

• The Idea:
 Searching for new physics with the weak mixing angle

• The Machine:
 Mainz Energy-Recovery Superconducting Accelerator

• Experiment I:
 Weak mixing angle with P2
Overview

• Experiment II: Dark photons, proton radius etc. with MAGIX

• More experiments: Dark matter, electron electric dipole moment etc.

• Even more: Continuing program at MAMI
The weak mixing angle
(also: Weinberg-angle)
The weak mixing angle

- One of the fundamental parameters of the standard model
- Electroweak symmetry breaking creates photon and Z^0
- Angle shows up both in masses and couplings (charges)

\[
\begin{pmatrix}
\gamma \\
Z^0
\end{pmatrix} =
\begin{pmatrix}
\cos \theta_W & \sin \theta_W \\
-\sin \theta_W & \cos \theta_W
\end{pmatrix}
\begin{pmatrix}
B^0 \\
W^0
\end{pmatrix}
\]

\[
\cos \theta_W = \frac{m_W}{m_Z}
\]

\[
\sin^2 \theta_W = \frac{g'^2}{g^2 + g'^2}
\]
The last slide is true at tree level
But there are quantum corrections...

Two options:

- Use the masses for the definition:
 (at all orders of perturbation theory)
 “On-shell scheme”

- Or use the couplings:
 (which change with energy, and so does the angle)
 “MS-scheme”

- Use second option from here on

\[
\cos \theta_W = \frac{m_W}{m_Z}
\]

\[
\sin^2 \theta_W = \frac{g'^2}{g^2 + g'^2}
\]

\[
\sin^2 \theta_W (q^2)
\]

Which weak mixing angle?
Weak mixing angle and charges

Proton electric charge
+1

Proton weak charge
$1 - 4 \sin^2 \theta_W$
Scale dependence (running) of $\sin^2 \theta_W$
Scale dependence (running) of $\sin^2 \theta_W$

Q [GeV]

$\sin^2 \theta_W (Q)$

$Q_W (p)$

$Q_W (e)$

$Q_W (APV)$

NuTeV

LEP1

eDIS

Tevatron

SLD

ATLAS

CMS
Scale dependence (running) of $\sin^2 \theta_W$
New Physics in the running

\[\sin^2 \theta_W(Q) \]

![Graph showing data points and error bars for different experiments like P2@MESA, NuTeV, SLD, LEP1, Tevatron, eDIS, Moller, SOLID, Qweak, and ATLAS.](image-url)
Marciano et al.

$\sin^2 \Theta_W (Q^2)$ vs. $\log_{10} Q$ [GeV]

- $m_{\text{dark } Z} = 100 \text{ MeV}$
- $m_{\text{dark } Z} = 200 \text{ MeV}$

"Anticipated sensitivities"
Contact Interactions

Contact interactions up to

49 TeV

(comparable to LHC at 300 fb$^{-1}$)
How to measure the weak charge?
Weak mixing angle and charges

Proton electric charge: $+e$

Proton weak charge: $1 - 4 \sin^2 \theta_W$
Weak mixing angle and charges

Proton electric charge
+e

Proton weak charge
1 - 4 sin^2θ_W

Violates parity!
Parity violating electron scattering
Parity violating electron scattering

\[A_{PV} = \frac{N_R - N_L}{N_R + N_L} \]
Parity violating electron scattering

\[A_{PV} = \frac{N_R - N_L}{N_R + N_L} = \frac{G_F Q^2}{4 \sqrt{2} \pi \alpha} \left(Q_W - F(Q^2) \right) \]
Parity violating electron scattering

\[A_{PV} = \frac{N_R - N_L}{N_R + N_L} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2)) \]

- Momentum transfer sets scale
- Weak charge - what we want
- Proton structure - small nuisance if \(Q^2 \) small

Electron beam

Proton Target

Detector
Why is this difficult?

- $\sin^2 \theta_W \approx 0.25$: Weak charge is tiny

- At low Q^2: Asymmetry is tiny (40 parts per billion): need very large statistics

$$A_{PV} = \frac{N_R - N_L}{N_R + N_L} = \frac{G_F Q^2}{4 \sqrt{2} \pi \alpha} (Q_W - F(Q^2))$$

- We are subtracting two huge numbers from each other (not really - switching helicity with a few KHz)
• Large uncertainty due to hadronic uncertainty

• Uncertainty rises with beam energy

[Gorchstein, Horowitz, Ramsey-Musolf 2011]
PVeS Experiment Summary

\[\delta(A_{PV}) \]

\[A_{PV} \]

- PVeS Experiment Summary
- Pioneering
- Strange Form Factor (1998-2009)
- S.M. Study (2003-2005)
- JLab 2010-2012
- Future

- PV(A

\[10^{-10} \] to \[10^{-8} \]

\[10^{-8} \] to \[10^{-7} \]

\[10^{-7} \] to \[10^{-6} \]

\[10^{-6} \] to \[10^{-5} \]

\[10^{-5} \] to \[10^{-4} \]

\[10^{-4} \] to \[10^{-3} \]
How much statistics do we need?

- Want to measure $\sin^2 \theta_W$ to 0.13%
- Need Q_W at 1.5%
- Essentially means 1.5% on A_{PV}
- A_{PV} is 40 parts per billion
- $\delta(A_{PV})$ is 0.6 parts per billion
- N a few 10^{18}
- Measure 10'000 hours (absolute maximum anyone thinks shifts are organisable)
- Need close to 10^{11} electrons/s - 100 GHz
Can we get that rate?

Yes!

- 150 μA of electron beam current
- 60 cm long liquid hydrogen target
- Luminosity 2.4 10^{39} s$^{-1}$cm$^{-2}$
- Integrate 8.6 ab$^{-1}$
MAMI in Mainz

Mainz Microtron

Up to 100 μA
Up to 1.5 GeV
80 % polarisation (80 μA)
MAMI in Mainz

Mainz Microtron

Up to 100 μA
Up to 1.5 GeV
80 % polarisation (80 μA)

A1: Real electron scattering
Four high-precision spectrometers
MAMI in Mainz

Mainz Microtron

Up to 100 μA
Up to 1.5 GeV
80 % polarisation (80 μA)

A2: Tagged photon beam
Crystal ball plus TAPS
MAMI in Mainz

Mainz Microtron

- Up to 100 μA
- Up to 1.5 GeV
- 80% polarisation (80 μA)

A4: Parity violation

Now decommissioned
MAMI in Mainz

Mainz Microtron

- Up to 100 μA
- Up to 1.5 GeV
- 80 % polarisation (80 μA)

A4: Parity violation
Now decommissioned
Space for something new
10‘000 hours is 417 days 24/7 of measurements

Hard to get that amount of time at a shared accelerator facility...
If you cannot rent it, build it:

The MESA accelerator

Mainz Energy-recovery Superconducting Accelerator
Requirements

- Beam current 150 μA
- Polarisation > 85%
- High precision polarimetry
- High runtime (more than 4000 h/year)
- Extremely stable
- Fit into existing halls at MAMI
More space: Centre of Fundamental Physics

Research building recently funded:

- Lab and office building
- Experimental hall for MESA
Mainz Energy Recovering Superconducting Accelerator (MESA)

Existing experimental halls

New experimental hall (Forschungsbau)

SRF Cryo Modules

EPL arc

MAGIX

extracted beam

P2
Superconducting Cryomodules: Ordered

Teichert et al. NIM A 557 (2006) 239
The main worry are beam fluctuations correlated with the helicity:

<table>
<thead>
<tr>
<th>Fluctuation Type</th>
<th>Achieved at MAMI</th>
<th>$\sin^2\theta_W$ Uncertainty</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy fluctuations</td>
<td>0.04 eV</td>
<td>< 0.1 ppb</td>
<td>ok!</td>
</tr>
<tr>
<td>Position fluctuations</td>
<td>3 nm</td>
<td>5 ppb</td>
<td>0.13 nm</td>
</tr>
<tr>
<td>Angle fluctuations</td>
<td>0.5 nrad</td>
<td>3 ppb</td>
<td>0.06 nrad</td>
</tr>
<tr>
<td>Intensity fluctuations</td>
<td>14 ppb</td>
<td>4 ppb</td>
<td>0.36 ppb</td>
</tr>
</tbody>
</table>

Now testing upgraded stabilization at MAMI
Mainz Energy Recovering Superconducting Accelerator

Existing experimental halls

New experimental hall (Forschungsbau)

MESA

ERL arc

SRF Cryo Modules

P2

extracted beam

MAGIX
Polarimetry: Double Mott Polarimeter

Mott Polarimetry:
- Measure left/right asymmetry to obtain spin polarisation
- Analysing power of foils needs to be extrapolated

Double Mott Polarimeter:
- Obtain analysing power from measurement
- Precise measurement of spin polarisation
- Invasive measurement at source

Møller scattering from polarized (7 T field) atomic hydrogen in a trap

- Online capability
- High accuracy (< 0.5%)
- About 2 h to reach 0.5% statistical accuracy

- Cryostat under construction in Mainz
P2:

How to detect 100 GHz of (the right) electrons...
Solenoid Spectrometer

Integrating Cherenkov Detectors

Shielding

H Target
Choice of scattering angle

\[\Delta \sin^2 \theta_w = 3.2 \times 10^{-4} \]

Graph showing the dependence of \(\Delta \sin^2 \theta_w \) on \(\theta \) with different contributions labeled as 'total', 'statistics', 'polarization', 'beam systematics', '\(G_s^E \)', '\(G_p \)', and '\(G_s^M \)'.

Parameters:
- Beam energy: 150 MeV
- Beam current: 150 \(\mu \)A
- Polarization: 85%
- \(\Delta P \): 0.425%
- Target length: 60 cm
- Detector acceptance: 20 deg
- Total rate (el e-p): 0.1 THz
- Measurement time: 10000 h
- \(\Delta A_{\text{app}} \): 0.1 ppb
Solenoid spectrometer
Solenoid spectrometer
Counting detectors

Electron beam

Proton Target

Detector
Integrating detectors

Electron beam

Proton Target

Detector
Quartz-Bars & Photomultipliers

Detect Cherenkov-light created by electrons
Integrate photomultiplier current
Quartz-Bars & Photomultipliers

Detect Cherenkov-light created by electrons

Integrate photomultiplier current
Measuring Q^2:

Tracking a lot of low momentum particles
Tracker requirement

- Low momentum electrons:
 Thin detectors

- Very high rates:
 Fast and granular detectors
Fast, thin, cheap pixel sensors

High Voltage Monolithic Active Pixel Sensors
Fast and thin sensors: HV-MAPS

- High voltage monolithic active pixel sensors - Ivan Perić

- Use a high voltage commercial process (automotive industry)
- Small active region, fast charge collection via drift
- Implement logic directly in N-well in the pixel - smart diode array
- Can be thinned down to < 50 μm
- Logic on chip: Output are zero-suppressed hit addresses and timestamps

(I.Perić, P. Fischer et al., NIM A 582 (2007) 876)
The MUPIX chip prototypes

HV-MAPS chips: AMS 180 nm HV-CMOS

• Developed for Mu3e

• 5 generations of prototypes

• Current generation: MUPIX7
 40 x 32 pixels
 80 x 103 μm pixel size
 9.4 mm² active area

• MUPIX7 has all features of final sensor

• Left to do: Scale to 2 x 2 cm²
Hit efficiency above 99% without tuning
Time resolution

Trigger TimeStamp Difference Distribution for Single Events

Timestamp resolution better than 15 ns
Neutron Skins: Concettina Sfienti on Tuesday

Where are the neutrons in the nucleus?

Balanced Nucleus

Neutron-rich Nucleus

Radius

Density

neutrons

protons

Neutron skin

Neutron
Neutron Skins

Where are the neutrons in the nucleus?

- Gives access to the equation of state of neutron matter
- Tells us how big/small neutron stars are
How to see the neutrons?

- Not charged: Photons not a good probe

- Use parity violating electron scattering: Proton weak charge is almost zero - see mostly neutrons

\[
A_{PV} = \frac{G_F Q^2}{2\pi \alpha \sqrt{2}} \left(1 - 4 \sin^2 \theta_W \right) - \frac{F_n(Q^2)}{F_p(Q^2)} \approx 0
\]
MESA

- Existing experimental halls
- New experimental hall (Forschungsbau)
- ERL arc
- Exited beam
- P2
- MAGIX
- SRF Cryo Modules

Mainz Energy Recovering Superconducting Accelerator

Niklaus Berger – EINN November 2015 – Slide 62
Energy recovery

Can we go to higher beam currents?

- In principle yes...
- But power is expensive
- Why dump electrons?
Energy recovery

- Put energy back into field!
- Can go up to 1 (10) mA beam current
- But not with a thick target
High current, high resolution:

MAGIX

Mesa Gas Internal Target Experiment
MAGIX Spectrometer
Requirements

Energy recovery: We want the beam back

- Energy loss less than 10^{-3}
- As little scattering as possible

No target window

High resolution spectrometer

- No beam interactions in target window
- As little scattering as possible

Thin walls, thin detectors

Extremely intense beam: Do not need very high acceptance
Internal gas target

- Inject gas directly into the beam pipe
- Differential pumping to keep beam vacuum
TARDIS

Twin-arm dipole spectrometer
• Image momentum to position
• 10^{-4} momentum resolution for 50 μm position resolution
• Image angle to position
Focal plane detectors

Gas Electron Multipliers (GEMs)
The proton, dark photons and more:

Physics at MAGIX
How big is a proton?
(electromagnetic charge radius)

- Measure in scattering experiments (Mainz!)
- Measure in spectroscopy (Lamb-shift)
- Lamb shift is tiny - except in muonic hydrogen
- Big surprise!
 4 - 7 \sigma discrepancy - why?

Proton Radius Puzzle

Proton Charge Radius (fm)

\(\mu H \) (A. Antognini et al.)
\(\mu H \) (R. Pohl et al.)
CODATA
JLab (X. Zhan et al.)
MAMI (J. Bernauer et al.)
Scattering, Q^2 and substructure

- Scattering experiments happen at finite momentum transfer Q^2
- They will see some of the proton substructure
- Charge radius is defined at $Q^2 = 0$
- Need to extrapolate: Potentially large error
- Want to measure at as small Q^2 as possible
Before MESA: A1 at MAMI - Miha Mihovilovic

- A1 measurements a pillar of scattering radius measurements
- Limited by extrapolation to $Q^2 = 0$
- How to get lower Q^2?
Strategy:

- Access very low Q^2 region via initial state radiation events
- Measure momentum spectrum of scattered electrons
- Needs very good understanding of radiative corrections and final state radiation
Strategy:

- Access very low Q^2 region via initial state radiation events
- Measure momentum spectrum of scattered electrons
- Needs very good understanding of radiative corrections and final state radiation

Plan:

- Gas jet target (less wall background)
- Go to lower energies
- Extract proton radius
Low Q^2 with MAGIX

- 100 MeV beam
- Down to 14° scattering angle

Graph showing $\mu_p G_E^p / G_M^p$ vs $Q^2 / (\text{GeV}^2/c^2)$ with data points from various experiments:
- Bernauer (MAMI 2010)
- Zhan (JLab 2011)
- Crawford (Bates 2007)
- MacLachlan (JLab 2006)
- Jones (JLab 2006)
- Punjabi (JLab 2005)
- Pospischil (MAMI 2001)
- Dietrich (MAMI 2001)
- Gayou (JLab 2001)
- Jones (JLab 2000)
- MESA projected error
- Belushkin (Disp. Analysis 2007)
Dark photons
There is dark matter out there...

- There could be additional U(1) gauge symmetries with an exchange particle (dark photon, mass $m_{\gamma'}$)
- It could mix with the photon via heavy fermions (mixing parameter ε)
- It would then show up as a narrow bump in the e^+e^- spectrum
- It could explain the muon $g-2$ anomaly
• Measurement via missing mass method
• Requires detection of low energy proton; challenging
Dark photons at A1

- E_{beam} 180-855 MeV
- 100 μA beam current
- Stack of tantalum targets
- 22 kinematic settings
- Coincidence between spectrometers for e^+e^-
- Best limits in the g-2 region at the time of publication

Dark photons at MESA/MAGIX

(mass of dark photons vs. magnetic moment)

- KLOE 2013
- WASA
- HADES
- PHENIX
- MESA
- E774
- E141
- NA48/2
- BESIII
- BABAR 2009
- BABAR 2014

MESA favored

(g-2)_{e} ± 2σ

(g-2)_{µ} ± 2σ
Dark Matter with the Beam Dump

BDX
Search for dark matter

MESA: More than 10^{22} electrons hit beam dump per year

- Some of them could produce dark matter particles
- “Dark matter beam”
- Detect with DM detector (xenon?) behind beam dump
Beam dump dark matter

e−

Dump

shield

DM

12

Xe
Beam dump dark matter

- FLUKA calculations of neutron flux behind dump look promising
- MESA operates below the pion threshold, no neutrinos produced
- Boost gives access to low mass dark matter
And one more:

Electric dipole moment of electrons
Electric Dipole Moments - Yannis Semertzidis

- An EDM of a fundamental particle violates CP and T
- Essentially 0 in the SM (tiny contribution from CKM)
- Potentially large in BSM models
- Some more CP violation needed
Dipole moments and precession

\[
\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E} + \vec{\mu} \times \vec{B}
\]

- Spin precesses in magnetic field due to magnetic dipole moment μ
- Spin precesses in electric field due to electric dipole moment d
- μ is large, d is almost zero
Charged particle EDMs

\[\frac{ds}{dt} = \vec{d} \times \vec{E} + \vec{\mu} \times \vec{B} \]

For neutral particles:
- Put in a “box”
- Apply large E-field
- Watch precession
- E.g.: Neutron EDM

For charged particles:
- E field leads to acceleration
- Put electron into a neutral, polar molecule (ACME, Imperial/Sussex)
- Put electron/proton/deuteron etc. in a storage ring
Precession in a storage ring

\[\frac{d \vec{s}}{dt} = \vec{\Omega} \times \vec{S} \]

- Electric and magnetic fields perpendicular to momentum

\[\vec{\Omega} = \frac{q}{m} \left(a \vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) (\vec{v} \times \vec{E}) + \frac{e}{2} \left(\vec{E} + \vec{v} \times \vec{B} \right) \right) \]

- Magnetic dipole
- Electric dipole

\[a = \frac{g - 2}{2} \quad \vec{\mu} = 2(a + 1) \frac{q}{2m} \vec{S} \quad \vec{d} = \eta \frac{q}{2m} \vec{S} \]

- How to get rid of magnetic part?
Precession in a storage ring

- No magnetic field!

(about 10 MV/m electric field)

\[\vec{\Omega} = \frac{a}{m} \left(a \vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) (\vec{v} \times \vec{E}) + \frac{n}{2} \left(\vec{E} + \vec{v} \times \vec{B} \right) \right) \]

Magnetic dipole \quad Electric dipole
Precession in a storage ring

\[\Omega = \frac{q}{m} \left(a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) (\vec{v} \times \vec{E}) + \frac{n}{2} \left(\vec{E} + \vec{v} \times \vec{B} \right) \right) \]

- No magnetic field!
- Magic momentum!

Magnetic dipole Electric dipole

- 0.7 GeV/c for protons
- 14.5 MeV for electrons
Build an electric-only storage ring

- Magic momentum
- Spin rotates with momentum vector
- EDM leads to out of plane precession
- Counter-rotating bunches help to cancel systematics
Systematics

\[|d_e| < 8.7 \times 10^{-29} \text{e} \cdot \text{cm} \quad (\text{ThO}) \]

ACME collaboration, Science 343, 269 (2014)

- Need very low magnetic field
- Good control of electric field
- Very hard to compete with molecules for limits ...
- ... but only option for a precise measurement ...
- ... and a pathfinder for the proton EDM (Jülich, Korea...)
Summary

Exciting physics program for electron scattering in Mainz in the next decade:

- New accelerator MESA, starting 2018/19
- Weak mixing angle measurement with P2
- Also gives access to neutron skins
- Proton radius, dark photon and much more with MAGIX
- Second generation of experiments: Beam dump dark matter and electron EDM ring (?)