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Abstract

We develop a model of free-riding in teams when team production is
sequential and there is competition between teams. Our predictions that
free-riding does not vanish under competition and that team members con-
tributing earlier have an incentive to free-ride more are tested on more than
300,000 observations on swimmers’ performance at competitions from all
over the world. We find that swimmers in relays perform weaker as com-
pared to their individual performance, and that earlier swimmers’ perfor-
mance in relays is weaker relative to later swimmers.

Keywords: team production, contest, intergroup competition, sequential con-
tribution, free-riding, swimming
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1 Introduction

In this contribution we look into team production when team members sequen-
tially contribute to the team, and teams compete against each other.

Team production is a fundamental characteristic of modern societies. Many
activities require the joint effort of a multitude of participants and so teamwork
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has become prevalent in many firms. For instance, from 1987 to 1996 the share of
US firms having more than 20% of employees organized in teams rose from 37%
to 66% (Lawler et al., 2001; Lazear and Shaw, 2007).

The specific organization of teams in firms depends on the nature of tasks
that have to be accomplished. Some tasks may require the simultaneous contribu-
tion of team members, other very common situations entail subsequent production
phases that require sequential contributions by team members, where each contri-
bution builds on previous work done by the other team members.

Drafting of documents is one example. A bad draft requires more effort by the
people working on it at later stages in order to achieve a certain level of quality.
Another example relates to the training of students at universities. Colleagues
who do a proper job teaching first year courses select and prepare students well
for courses to be taught by other faculty in the second year. Finally, one may
think of mail delivery. In many countries, parcels or registered letters have to
be delivered personally by the postman. It is a common perception that postmen
sometimes do not even bother to ring the bell and just leave a notice on the door
saying that the mail can be retrieved at some mail delivery center. Thus, they save
on their time while increasing the workload at the center. They free-ride on their
colleagues.

It is widely acknowledged that team production is plagued by disincentive
problems because individuals free-ride on the contributions of other team mem-
bers (Alchian and Demsetz, 1972; Holmstrom, 1982), something the managers
of teams and team members themselves constantly worry about. How to solve
the free-riding problem becomes key, and letting teams compete may alleviate it.
In a laboratory experiment Bornstein et al. (1990) compared the performance of
groups in a social dilemma situation under two conditions: one in which groups
were not facing competition and another in which groups were competing for an
additional reward. They found that between-group competition significantly in-
creased the contributions of the simultaneously acting team members, a finding
that was replicated by Erev et al. (1993) in a different work environment where
subjects picked oranges, as well as by Gunnthorsdottir and Rapoport (2006).

In an experimental study Erev and Rapoport (1990) compared sequential and
simultaneous contributions to public goods and showed that simultaneous choice
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is significantly less effective in solving the dilemma. Contrarily, Varian (1994)
argued that with sequential choice the free-riding problem is exacerbated with
respect to the simultaneous contributions mechanism, and that there exists a first
mover advantage with early contributors contributing less. Experimental evidence
specifically targeting Varian (1994) by Andreoni et al. (2002) confirms the first
mover behavior but also states that the difference between simultaneous and se-
quential play vanishes to the end of the experiment, while more recent experiments
by Gaechter et al. (2009) support the prediction that the overall contribution is
lower in sequential contributions but do not find evidence for the predicted first
mover advantage. None of this work, however, considers the effect of compe-
tition between groups on within-group performance. In summary, surprisingly,
little seems to be known on whether competition between teams eliminates free-
riding as team members contribute sequentially.

The present study tries to shrink this gap in the literature with two contribu-
tions. We first develop a model where members of competing teams contribute
sequentially to win a commonly shared price. Secondly, we provide an empirical
assessment of free-riding within teams when there is competition between teams.

Developing our model we draw on the literature on contests between groups,
following Katz et al. (1990), Ursprung (1990), or Gradstein (1993) among others,
who model competition between groups when group members contribute simulta-
neously.1 Starting from these studies we delineate a model of competition between
groups when team members contribute sequentially to the team. There is a prize
for the winning team awarded to every team member. Higher costly efforts by
any team member increases the probability for the team to win the prize, as team
member efforts enter additively a Tullock contest function.

For testing our predictions we turn to swimming data. [ footnote moved down ]

Typically, it is difficult to measure the performance of workers and their individual
contribution to a team in standard work situations. Moreover, from a researcher’s
perspective it is usually infeasible to construct a convincing counterfactual that
would allow to draw causal inference from the observations in an environment
of an operating firm. In order to overcome these problems economists have in-
creasingly turned to sports data recognizing that these markets provide a number

1Two recent surveys are Corchón (2007) and Konrad (2009).
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of natural experiments which allow for the testing of the effects of incentives on
labour market behavior (Kahn, 2000; Szymanski, 2003). 2 Along these lines, a
well known attempt linking contest theory with data from sports is Ehrenberg and
Bognanno (1990) who examined the size of prize funds on the scores of golfers at
major tournaments.

Our comprehensive data-set covers swimming competitions from all over the
world during the years 1972 to 2009 with a total of more than 300,000 obser-
vations. It seems to be particularly suited for our purposes as it allows us to
construct a counterfactual for each individual’s performance by comparing times
swam in individual races with the same swimmer’s performance in a relay at the
same event typically taking place within a time period smaller than 2 days. The
evidence supports the prediction that competition between teams does not wash
out the free-riding problem that typically arises with team production. Moreover,
the data also confirms that team members moving earlier free-ride more. While
external validity of results using sports data might be questioned, we believe that
our empirical results in the context of teamwork make a particularly strong case.
If free riding can be detected even in such contexts where output is perfectly mea-
surable, its relevance in real life work situations where monitoring is more difficult
is even more likely.

We proceed in the following way. In section 2 we set-up the theoretical model.
In section 3 we present our empirical testing strategy, providing some background
on the rules and main characteristics of swimming competitions and describing
the data we use, while in section 4 we present and discuss our empirical results.
In section 5 we conclude.

2However, existing studies employing swimming data mostly involve experimental work stem-
ming from the area of social psychology with one of the earliest contributions by Sorrentino and
Sheppard (1978), followed by Williams et al. (1989), Everett et al. (1992) or Miles and Greenberg
(1993).
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2 A model of inter-group competition with sequen-
tial intra-group choices

We model competition between groups along the lines of contest theory which
goes back to the seminal contribution by Tullock (1980). Tullock employed a
contest success function (CSF) where the probability of winning the competition
is equal to the ratio of own effort to global effort, the sum of efforts of all con-
tenders.3

There are two teams A and B competing for a prize S. Each team has two
players, denoted with 1 and 2. All players are of homogeneous ability. The prize
S has equal value to each of the team members.

Team members exert effort e at cost c(e). We employ a quadratic cost func-
tion c(e) = e2. As in Gunnthorsdottir and Rapoport (2006) the contributions of
team members to the overall team output enter additively. In order to reflect the
sequential nature of the game, however, first members of teams A and B choose
their effort level first. Second players make their choice on the basis of first play-
ers’ outcome. Thus, members 1 are Stackelberg leaders vis à vis members 2 in
their teams. We denote with eA1 effort spent by the team member moving first in
team A, and eA2 as effort spent by the team member who moves second in team
A. Notation for team B is accordingly.

The fact that effort is not deterministically transformed into performance, and
that there are stochastic elements in the competition is taken into consideration by
CSFs. In our setting, however, uncertainty is partly resolved after the first players
finish their task. Hence, second players face a different informational content.
We model this by introducing an additional random term ε with support [0, 1].
Realization of this random variable takes place before second players choose their
effort, and is thus considered as given for second players, as is first players’ effort.
This amounts to say that second players observe first players’ performance.

3Tullock’s idea was to compare rent seeking activity –group contribution in our setting– to the
purchase of lottery tickets: the higher the number of tickets, the more likely to win the lottery.
Skaperdas (1996) provided an axiomatic foundation for the Tullock CSF, while more recently Jia
(2008) offered a distribution based justification for its ratio form.
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The winning probability of team A is then

pA =

α eA1+eA2

eA1+eA2+eB1+eB2
+ (1− α)ε if eA1 + eA2 + eB1 + eB2 > 0

1
2

otherwise,
(1)

with 0 < α < 1 being a relative weighting factor of the random component
on individual performance. The probability of winning for the other team B is
pB = 1− pA.

Expected payoffs for the second players are

VA2 = pAS − e2A2 (2)

VB2 = pBS − e2B2 (3)

where the realization of ε is known to them. Accordingly expected payoffs for first
players who do not know the realization of ε at the time they make their choice
are

VA1 = pAS − e2A1 (4)

VB1 = pBS − e2B1. (5)

The game is solved by backward induction. Second players take the effort
level of first players as given, know the realization of ε, and choose their own
effort simultaneously. First players make their choices taking into account the
later realization of ε, and the reaction of the second players in teams A and B,
respectively.

Given that ε enters additively the CSF, its value does not affect the choices of
second players. Furthermore, as players are homogeneous, everybody expects that
simultaneous players will put the same effort. Imposing e∗A1 = e∗B1 and e∗A2 = e∗B2,
as we will do in the following, greatly simplifies the derivation of the proofs.4

4The same results can be obtained without imposing symmetry. The proofs are available upon
request.
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For second players, effort choices follow from the first order conditions

H ≡ dVA2

d eA2

= α
eB1 + eB2

D2
S − 2eA2 = 0 (6)

F ≡ dVB2

d eB2

= α
eA1 + eA2

D2
S − 2eB2 = 0 (7)

with D = eA1 + eA2 + eB1 + eB2. Expected marginal gains, equal to the sum
of the marginal increase in the probability of winning as effort is increased times
the valuation of the prize S, have to equal the marginal costs. Solving these first
order conditions for the optimal choices e∗A2 and e∗B2, ruling out the negative effort
choices, yields

e∗A2 = −
eA1

2
+

√
e2A1

4
+ α

S

8
(8)

e∗B2 = −
eB1

2
+

√
e2B1

4
+ α

S

8
. (9)

With second order conditions being fulfilled, e∗A2 and e∗B2 constitute the best choice
of the team members moving second.

Equations (8) and (9) are the reaction functions which the first players in the
team are facing with respect to the effort choices of their teammates who follow.
Both reaction functions are downward sloping. An increase of effort of the first
player leads to a decrease in the teammate’s effort. Thus, effort choices within
teams are substitutes, and it is this property which will essentially drive our result
that second players exert more effort as we compare optimal choices within teams
for first and second players.

First players of teams A and B also decide on their effort simultaneously tak-
ing into account that their particular decision will have an impact on all subse-
quent swimmers, and not knowing the realization of ε. The first order conditions
for these players after taking expectations over ε are

6



dVA1

d eA1

= α
(eB1 + eB2)(1 +

d eA2

d eA1
− d eB2

d eA1
)

D2
S − 2eA1 = 0 (10)

dVB1

d eB1

= α
(eA1 + eA2)(1 +

d eB2

d eB1
− d eA2

d eB1
)

D2
S − 2eB1 = 0 (11)

using e∗A1 + e∗A2 = e∗B1 + e∗B2. Eqs. (10) and (11) determine the effort choices
of first players. Again, expected marginal benefits have to equal the marginal
costs which are a function of the effort of the first players. Compared to the first
order conditions of the second players, the marginal benefits of the first players
take account of the effect of the effort choice of the first player on the teammates
choice coming after, and the second player’s effort choice of the competing team.

Proposition 1 In equilibrium, the optimal effort level provided by first players is

lower than the effort level provided by second players.

Proof See Appendix A.

This result stems from the substitutability of within team members efforts,
−1 < d eA2

d eA1
< 0, and d eB2

d eA1
= 0 which implies that the choices of the first players

do not have an impact on the other team’s second player behavior. While the latter
result is essentially driven by the symmetry of the set-up, the former is due to the
substitutability of efforts within teams, as seen by the downward sloping reaction
functions (8) and (9). The team member moving first knows that an increase in
his effort is leading to a decrease in the effort of the team member moving second.
Thus higher effort on his side is not fully reflected in a larger chance of winning
the competition but he would still have to burden the higher costs of effort.

So far we have highlighted that first players free-ride with respect to second
players, i.e. they exert a lower effort. Now, we show that also the effort of second
players is too low with respect to the one that would be optimal for the team as a
whole.

Proposition 2 In equilibrium, the effort level provided by second players is lower

than the cooperative social optimum for the team.
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Proof See Appendix A.

Intuitively, the cooperative solution takes into consideration that the prize S is
non-rival and that effort exerted by any individual player has a positive externality
on the other team member. As marginal costs are increasing, it is advisable from
a social point of view to share the burden equally among team members. Hence,
e∗A1 = e∗A2 (and e∗B1 = e∗B2) for the cooperative solution.

We can also show that second players choose an effort level which is lower
than what a player chooses for an individual production. Moreover, effort choice
for individual production is equal to the effort choice in a cooperative social opti-
mum.

Proposition 3 In equilibrium, the optimal level of effort for an individual pro-

duction is the same as the cooperative socially optimal level of effort for a team

production.

Proof See Appendix A.

This result stems directly from the assumption that the prize S gives the same
individual utility in both cases.

3 Data and testing strategy

3.1 Swimming competitions

Swimming competitions entail four competitive styles –backstroke, breaststroke,
butterfly and freestyle– at varying distances (e.g. 100 meters, 200 meters, etc.)
typically in 25 or 50 meter pools.5

Relays are a group of swimmers who either all swim freestyle or each swim
one different style in the order of backstroke, breaststroke, butterfly and freestyle
(medley relay). Except for some specific (usually minor) events, relay teams,
according to FINA rules, consist of four swimmers. Unless specified by the Pro-
moter’s conditions the nomination of team members and the relay swimming order

5Rules for these swimming competitions, may they be national or international, are set by the
Federation Internationale de Natation (FINA) (www.fina.org).

8



must be made before the competition. Any relay team member may compete in
a race only once. Teams may be changed between heats and finals provided they
are from a pool of swimmers whose nomination was submitted for that event.
World records are recognized for freestyle relays 4×100 and 4×200 meters, and
the medley relay 4×100 meters for either sex in 25 meter and 50 meter courses.

Swimmers in individual competitions and the first swimmer in a relay compe-
tition start upon hearing the starting signal. In a relay all the following swimmers
start after the previous swimmer touched the wall of the pool. Hence, individual
and relay times are directly comparable only for first swimmers, as there is an ad-
vantage for all following swimmers in a relay in terms of reaction time: they can
see their teammates coming closer and consequently fine tune their start. In fact,
if a first swimmer in a relay competition swims a record time it gets approved.

Various rules guarantee accurate measurement of swimmers’ performances.
Time keeping is under the supervision of appointed officials and is either made
by automatic equipment or manually. If manually registered there are three time-
keepers and watches must be certified by the governing body. If two of three
watches record the same time, the two identical times are the official time. If all
three watches show different times the intermediate time is taken, and if only two
of the three watches work the average time is calculated. In any case times are
recorded to 1/100 of a second.

3.2 Data description

Our data-set was kindly provided by GeoLogix AG, a Suisse company which gets
the data directly from the European Swimming Federation (LEN) and other par-
ticipating federations. In total we have 311,784 observations of performances of
individual swimmers at more than 7,000 events which took place worldwide be-
tween 1972 and 2009. Due to our identification of individual ability by comparing
a swimmer’s performance in a relay with his performance in an individual com-
petition, the data comprises athletes who took part in the same event and for the
same style, both in the individual competition and in the relay.

The events included in our sample are both major events such as the Olympic
Games, World Championships, European Championships, Pan Pacific Games, the
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Commonwealth Games or Universiades, and other events, like national champi-
onships, see table 1.

As for the personal characteristics of the swimmers, we have information on
age, gender, nationality, and FINA points. Age is between 6 and 109 years with
a median of 16. Gender composition of the sample is more or less equally split.
The FINA Point Scoring assigns point values to swimming performances. Points
are assigned at every competition, by comparing a swimmer’s performance with
a base time that is recalculated every year, taking the average of the top ten of the
All Time World Rankings. More points go along with better performance. In the
sample, FINA points are related to the individual competitions and vary between
5 and 1,181 with a median of 504. Michael Phelps had 1,063 in the year of the
Olympic Games in Beijing.

Next we have information on the event (event name, location and beginning
and ending day), the competition (style, distance, date of attendance and round –
heats, preliminary, semifinals, or finals) with the day of the competition allowing
to some extent to control for the sequence of the individual and the relay race,
and finally performances, which include the time in the individual and the relay
competition, the total relay time, as well as the starting order in the relay and the
final placement both for the relay and the individual competition.

3.3 Empirical strategy

Our first target for empirical testing is Proposition 1, which suggests that we
should be able to detect that exerted effort of players increase towards the end
of the competition. In principle, no data on individual competitions are neces-
sary to test this proposition, as it has implications only for the behavior of relay
swimmers. However, swimmers are not allocated to a relay in random order:
rather, better swimmers are generally placed in the final slot. This implies that
later swimmers are on average faster, and attributing this better performance to
lower free-riding would be incorrect. In order to overcome this problem, we use
the information on each relay swimmers’ performance in the individual competi-
tion to control for his/her ability: our dependent variable is therefore the relative
difference in swimming time between the relay and the individual competition.
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If Proposition 1 is of empirical relevance, we should find that this relative
difference decreases towards the end of the relay competition. This result is inde-
pendent of potentially different valuation of prizes between relay and individual
competitions. It does not require the assumption of an equal valuation of the prize
S.

Moreover, if we are willing to assume an equal valuation of the prize S, by
Proposition 3 we can interpret the performance in the individual competition as
the socially optimal level of effort in the relay, and measure the maximum extent
of free-riding by comparing individual and relay swimming times, for the first
players in the relay. This can be done for first players only, as subsequent players
enjoy an advantage in reaction time. By Proposition 2, free-riding for subsequent
players is reduced but not eliminated.

4 Empirical evidence

4.1 Descriptive evidence

Table 2 reports the relative difference in swimming time between the relay and the
individual competition for different starting orders in the relay. First swimmers
are, on average, slower in relays, with respect to their performance in the indi-
vidual competition. In the whole sample (66,561 observations, with an average
swimming time in the individual competition of 56.84 seconds), this difference
amounts to .22%, that is 12/100 of a seconds in absolute terms.

Testing the relative difference for the first swimmers against the null of there
being no difference in performance yields a highly significant p-value. This result
is robust against splitting the sample along gender or age. It is furthermore valid
for swimmers with higher or lower FINA points than the median swimmer. It also
holds over all styles if we focus on the sign of the difference in swimming times
and in 6 out of 7 subgroups for the various styles in terms of significance.

There are no indications that training or the use of illegal substances targeted
to a specific competition (individual or relay) might disturb our results. In 87%
of the observations individual and relay competitions are within 1 day of separa-
tion which implies that training efforts influence individual and relay competitions
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equally. With illegal substances targeting longer term goals such as the building
up of red blood cells basically the same logic applies as with legal training meth-
ods.

One might also be concerned that fatigue decreases performance in later events.
However, the distribution of days of separation between individual and relay com-
petitions is quite symmetric. In any case, we also split the sample along the timing
of competitions to check whether it makes a difference if the individual race took
place before or after the relay at the particular swimming event for which we com-
pare the swimming times. It is still true that relay performances are weaker than
individual performances.

Finally our result is also valid if we look into major events only.
As we have already noted, direct comparison between the relay and the indi-

vidual competition is possibly only for first swimmers, as subsequent swimmers
enjoy an advantage in terms of reaction time, given that they can see the previous
swimmer approaching the end of his/her leg. This explains why the time differ-
ence turns negative for the second to the fourth swimmers in the relay. More
importantly, however, last swimmers in relays seem to be faster than swimmers
starting 2nd or 3rd, and there seems to be a small difference, in the broad averages,
between swimmers starting 3rd and swimmers starting 2nd.

Summarizing these findings, faster swimming times for later swimmers in the
relays provide evidence in support of our Proposition 1. Furthermore, if one is
willing to accept the hypothesis of equally valuable prizes in the individual and the
relay competition, the evidence presented for first swimmers is consistent with the
implications of Propositions 2 and 3 of our theoretical model. In order to further
elaborate on these findings we turn to a multivariate analysis which allows us to
fully exploit our data-set.

4.2 Regression analysis

The dependent variable that we use in the multivariate analysis is the relative dif-
ference between relay and individual swimming times, as already introduced in
table 2. In order to control for the reaction time and to test for our theoretical
prediction we introduce dummy variables for the starting order in the relay com-
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petition. Other controls are gender, age6, style, type of the competition (major vs.
non-major) and schedule (whether the individual competition is on a day before
the relay, on the same day, or on a day after).

We expect the coefficient of the dummy variable for the first swimmer in the
relay to be positive. Furthermore, we expect the coefficients for the dummy vari-
ables for subsequent swimmers to be negative because of the advantage in the re-
action time for every swimmer following the first one. As later swimmers should
on average exert more effort we also expect that the order dummies change in size
with higher orders becoming more negative.

This is what we find (as shown in table 3, Model 1): the estimated parameter
for the dummy for the first swimmer in the relay is .08 (the constant); second,
third and fourth swimmers entail a reduction in the relative time gap of .66, .68
and .95 percentage points, with respect to first swimmers. All dummies are highly
significant with p-values smaller than .001. The Wald tests reject equality of the
coefficients of the order two, three and four dummies at a high level of signifi-
cance. As for the other controls, we find that female swimmers and young and
old age groups perform relatively worse in relays, while the gap in relative perfor-
mance is reduced in major events.

4.3 Robustness analysis

We control for individual ability by relating the relay performance of a swimmer
to the performance of the same swimmer in the individual competition. Thus
we have already dealt with the most important composition issue that more able
swimmers might be placed in a later slot. Additionally, one might be concerned
that some swimmers are more motivated than others in swimming a relay. If this
was the case and team managers put more motivated athletes as last swimmers
in the relay, first swimmers would be less motivated. This could explain slower
performance even after controlling for individual ability.

In order to control for motivational and other (time invariant) unobservable
6We use three age groups rather than a continuous age variable, in order for the coefficients of

the starting order dummy variables to show the effects of the starting order for the reference group
(swimmers aged 15-30), rather than for swimmers of a specific age; the consequential reduction
in explanatory power –as measured by R2– is very small.

13



characteristics of our swimmers we introduce individual fixed effects (Model 2).
Thus, we compare the difference one specific athlete scored between relay and
individual time when starting the relay at a different order (at different events).
For example, a swimmer might have participated at the Olympic Games and the
World Championships for 100 m freestyle and the 4×100 meters freestyle as third
and forth swimmer, respectively. There should be no increase in the relative per-
formance with respect to the individual race when he swam forth, even if results
are driven by unobservable characteristics. If, however, we still observe faster
swimming times for later swimmers after canceling out unobservable individual
characteristics, it would strengthen the finding of free-riding.

Running a fixed effects model yields a coefficient for the first order dummy
(the constant) of .51.7 The coefficients for the other order dummies become -.71,
-.78 and -1.03, respectively. Hence, the fixed effect model confirms our previous
findings (and our theoretical model). Note that the number of observations drops
to 107,808 as all records pertaining to swimmers for which there is no variation
in the independent variables have to be dropped.

That free-riding is still prevalent as we use each swimmer’s time in the indi-
vidual competition as a control for individual ability and as we additionally run
a fixed effect model may also be interpreted as supporting evidence for our mod-
eling choice in the first part of the paper. We assumed that all swimmers have
the same ability when deriving our propositions. If heterogenous ability mattered
then we should have seen that free-riding vanishes as we run fixed effects mod-
els on top of controlling for individual ability with swimming times of individual
competitions. As it did not, we feel quite confident with the (simplifying) mod-
eling choices made. Although heterogeneous ability is certainly given among the
swimmers of the teams, it seems that team managers can not solve the free-riding
problem by allocating swimmers to particular slots.

One could also object that free-riding depends on the competitive pressure, and
that our results are driven by competitions that are either not so close, or of minor
importance. Therefore, we estimate our fixed effect model on finals only, both for

7This value cannot be fully compared with the corresponding value of Model 1, as the age
group variable is not included (in a fixed effect model, it would be estimated only on ages around
the age group thresholds). Running Model 1 without controlling for age group entails a coefficient
for the order_1 dummy (the constant) equal to .18.
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the relay and the individual competition (Model 3), on the assumption that finals
are more competitive. The coefficient for the first order dummy (the constant)
is still positive (.81), while the coefficients for the second, third and fourth order
dummy variables are negative, decreasing and significantly different from each
other: -.75, -.83, -1.23 respectively. Due to the additional restriction, the number
of observations drops to 25,138. The results still go through if we further restrict
to swimmers ending up in the first four positions both in the relay and in the
individual competition (the coefficients for the order dummies are, respectively,
1.26, -.94, -1.08, -1.52).

As a final robustness check, in order to reduce a further cause of unobserved
heterogeneity, we estimate our fixed effect model on freestyle swimmers only. The
results still go through (the coefficients for the order dummies are, respectively,
.86, -.76, -.85, -1.25).

4.4 Size of the effects

For establishing a benchmark against which to evaluate the size for free-riding,
we calculate the average lag in swimming time between individuals belonging to
teams that finished in nth place in relays and individuals belonging to teams that
finished in n− 1th place, for n > 1. On average this lag is .23% for major events
and 1.35% for non-major events among the first 10 positions in the final ranking.
These numbers may now be compared to the size of free-riding as shown in table
2 and 3. In table 2 we calculated for first swimmers at a major event a relative
time difference between relay and individual competition of 0.03%, whereas the
relative time difference for all other events amounts to 0.22%. In table 3 (Model 2)
we get an effect that is even more relevant: athletes in our reference category are
on average .51 percentage points slower in relays than in individual competitions
compared to an average lag to an immediately preceding team of .78 percentage
points for this group (100m male freestyle, non-major events, swimmer aged 15-
30).

Assessing the relevance of the finding that effort decreases as team members
get involved in earlier stages of the production process involves looking at the dif-
ference between the coefficients of second, third and fourth order dummies in ta-

15



ble 3. Comparing the estimated effect of the forth swimmers with the third swim-
mers yields a reduction in free-riding of 1.03-.78=.25 percentage points. This
value must again be compared with an average lag over the preceding team of
.78 percentage points, and accounts for one third of this lag. The detected effect
between third and second swimmers is smaller (.78-.71=.07), but still sizeable.
By comparing the value of the fourth order dummy with that of the second order
dummy we get a reduction in free-riding of .32 percentage points, which should
be regarded as a lower bound in the overall reduction of free-riding (since it is not
possible to assess the reduction between first and second swimmers, due to the
presence of a reaction time advantage for first swimmers).

5 Conclusions

In this paper we developed a simple model of sequential contributions to a team
when teams compete against each other. We show that in such a setting there is
free-riding among team members. even under competition between teams. We
also show that team members contributing earlier to a team’s common task con-
tribute less than the team members contributing later. The mechanism underlying
the result is substitutability of inputs between team members to a Tullock contest.
At the margin a team member contributing earlier refrains to increase costly ef-
forts as he can foresee that the following team members will reduce their input so
that on aggregate a team’s effort for winning the competition would not change. In
a cooperative solution and from a social point of view it would be optimal to share
the burden equally among team members. But this does not happen even under
between-team competition as individuals contribute sequentially to the team.

Drawing on a unique data set of more than 300,000 observation from swim-
ming competitions from all over the world during the last four decades we find
evidence for free-riding and the pattern of efforts over the course of sequential
contributions to a team as suggested by our model.

The basic idea which we employed was to compare for a given event the swim-
ming performance of individual swimmers for single and relay competitions. By
definition no free-riding occurs in a single competition which is why swimmers
should exert full effort at these occasions. Taking their performance in the in-
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dividual race as a control we find that on average these swimmers swim slower
in relays. Moreover, controlling for reaction times and individual effects we find
that free-riding diminishes as we move from the second, to the third and finally
the fourth swimmer in the relays. Results are robust against including various
controls. Furthermore, the estimated time differences occur to be of meaningful
size.

Our attribution of the lower performances in relay with respect to individual
competitions to free-riding depends on the assumption that the prize S is equally
valuable in relays and individual competitions. This assumption might be ques-
tioned: even with equal monetary prize, obtaining it in an individual competition
might be more valuable as the honors do not have to be shared.8 If this was the
case, it could be socially optimal to individually provide less effort in relays, and
our empirical analysis of Propositions 2 and 3 would not allow us to detect any
inefficiency. We do not counteract to this remark (although it could be argued that
for a vast majority of athletes what matters in winning a gold medal in their ca-
reer is that they are gold medalist. The difference in utility from winning it in the
individual competition rather than in the relay are, if any, of minor importance.)
What is more important, however, is that our result that there is free-riding within

teams, and that this free-riding is stronger for early contributors (Proposition 1),
remains unaffected from a potentially different valuation of prizes won in relays
and individual competitions.

Given that team production is often unavoidable, and that, as we have shown,
neither competition nor an almost ideal monitoring system solve the free-riding
problem, our results point to the necessity of devising better incentive mecha-
nisms.
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Appendix A

Proposition 1

Proof The proof is in two parts. In part (I) we show that the f.o.c. define
the optimal effort level for players 1 as the s.o.c. are also satisfied. In part (II)
we show that the optimal effort level for players 1 is lower than the optimal effort
level for players 2.

Part I:

Expected payoffs for the first player of team A (analogously for team B) are:

VA1 = pAS − e2A1 (12)

with the f.o.c. as shown in the main text being

dVA1

d eA1

= α
(eB1 + eB2)(1 +

d eA2

d eA1
− d eB2

d eA1
)

D2
S − 2eA1 = 0. (13)

The solution to this equation is the optimal choice of effort for player 1, given that
the s.o.c. is satisfied. To see that this is indeed the case, consider

d2 VA1

d e2A1

= α
D2(d eB2

d eA1
(1 + d eA2

d eA1
) + (eB1 + eB2)

d2 eA2

d e2A1
)

D4
S (14)

− α
D2((1 + d eA2

d eA1
)d eB2

d eA1
+ (eA1 + eA2)

d2 eB2

d e2A1
)

D4
S

− α
((eB1 + eB2)(1 +

d eA2

d eA1
) + (eA1 + eA2)

d eB2

d eA1
)2D(1 + d eA2

d eA1
+ d eB2

d eA1
)

D4
S − 2

We can find expressions for d2 eA2

d e2A1
, d

2 eB2

d e2A1
and d eA2

d eA1
by taking the total deriva-

tives around the optimal solution for second players given by the f.o.c.:
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∂H

∂eA2

d eA2

d eA1

+
∂H

∂eB2

d eB2

d eA1

+
∂H

∂eA1

= 0 (15)

∂F

∂eA2

d eA2

d eA1

+
∂F

∂eB2

d eB2

d eA1

+
∂F

∂eA1

= 0. (16)

Rewriting in matrix form yields(
∂H
∂eA2

∂H
∂eB2

∂F
∂eA2

∂F
∂eB2

)(
d eA2

d eA1

d eB2

d eA1

)
=

(
− ∂H

∂eA1

− ∂F
∂eA1

)
. (17)

Applying Cramer’s rule we get for the effect of a change in the effort of the
agent moving first in team A on the optimally chosen effort of the second team
member in A

d eA2

d eA1

=
−uv + xw

yv − zx
(18)

and for the effect on the optimal effort of the second player in team B

d eB2

d eA1

=
−yw + zu

yv − zx
. (19)

Furthermore we have

d2 eA2

d e2A1

=
u′(u− v)

v2
(20)

d2 eB2

d e2A1

=
v′(v − u)

v2
(21)
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with

u ≡ ∂H

∂eA1

= α
−(eB1 + eB2)2D

D4
S < 0 (22)

v ≡ ∂F

∂eB2

= α
−(eA1 + eA2)2D

D4
S − 2 < 0 (23)

w ≡ ∂F

∂eA1

= α
D2 − (eA1 + eA2)2D

D4
S = α

1− 2(eA1+eA2)
D

D2
S = 0 (24)

x ≡ ∂H

∂eB2

= α
D2 − (eB1 + eB2)2D

D4
S = α

1− 2(eB1+eB2)
D

D2
S = 0 (25)

y ≡ ∂H

∂eA2

= α
−(eB1 + eB2)2D

D4
S − 2 < 0 (26)

z ≡ ∂F

∂eA2

= α
D2 − (eA1 + eA2)2D

D4
S = α

1− 2(eA1+eA2)
D

D2
S = 0 (27)

u′ ≡ ∂2H

∂e2A1

= α
3S

D3
> 0 (28)

v′ ≡ ∂2F

∂eA1∂eB2

= α
S

D3
> 0 (29)

w′ ≡ ∂2F

∂e2A1

= −α S

D3
< 0 (30)

x′ ≡ ∂2F

∂eA1∂eB1

= α
S

D3
> 0 (31)

y′ ≡ ∂2H

∂eA1∂eA2

= α
3S

D3
> 0 (32)

z′ ≡ ∂2F

∂eA1∂eA2

= −α S

D3
(33)

Note that u′ = y′, v′ = x′ = −w′ = −z′. Because of symmetry we have
eB1 + eB2 = eA1 + eA2 so that in equilibrium by inserting terms into eq. (18) we
get

d eB2

d eA1

= 0. (34)
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Hence the s.o.c. simplifies to

d2 VA1

d e2A1

= α(eB1 + eB2)
D(d

2 eA2

d e2A1
− d2 eB2

d e2A1
)− 2(1 + d eA2

d eA1
)2

D3
S − 2. (35)

Inserting d2 eA2

d e2A1
, d

2 eB2

d e2A1
and d eA2

d eA1
in equation (35) and further rearranging yields

d2 VA1

d e2A1

= α
2S

D2
(α

S

D2
− 6)− 8 (36)

which is negative if

α
S

(2eA1 + 2eA2)2
< 6. (37)

Using equation (8) one can show that the l.h.s. is never larger than 2 which
finally proves that the s.o.c. is fulfilled.

Part II:

Now, in order to have an interior solution and to show that the second player
exerts more effort it must hold that:

−1 < d eA2

d eA1

− d eB2

d eA1

< 0 (38)

which follows from the comparison of the f.o.c. of the first and second players.
We already know that d eB2

d eA1
= 0, see eq. (34), and d eA2

d eA1
= −u

y
= −u

v
. As |u| < |v|

it holds that −1 < d eA2

d eA1
− d eB2

d eA1
< 0 which proves our Proposition.

Proposition 2

Proof Due to symmetry, the choices of competing swimmers of the same
order must be identical. From the f.o.c. of second players given in (6) and (7),
by substituting eB1 = eA1 and eB2 = eA2, we find that the optimal effort level of
second swimmers is implicitly given by:

c′(eA2) = 2eA2 = α
S

4(eA1 + eA2)
(39)
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or, equivalently, by c′(eB2) = 2eB2 = α S
4(eB1+eB2)

.
From a cooperative perspective, given that the prize is non-rival within the

team, the optimal level of effort maximizes:

VA = 2pAS − e2A1 − e2A2. (40)

The f.o.c. with respect to the effort choices eA1and eA2 for team A (analogously
for team B) are:

α
2(eB1 + eB2)

D2
S − 2eA2 = 0 (41)

α
2(eB1 + eB2)

D2
S − 2eA1 = 0. (42)

Symmetry then implies

2eA1 = 2eA2 = α
S

2(eA1 + eA2)
= α

S

4eA2

(43)

which is higher than the effort exerted by the second player in the non-cooperative
solution given by (39).

Proposition 3

Proof From equation (39), absent player 1, player 2’s optimal effort would
be determined by:

c′(eA2) = 2eA2 = α
S

4eA2

(44)

which is the same as the socially optimal effort in team production.
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Table 1: Descriptive statistics

Variable
Number of events 7,081
Overall no. of observations 311,784
(of which at major events): (3,835)

Olympic games 660
World championships 1,531
European championships 766
Pan Pacific games 390
Commonwealth games 184
Universiades 304

Major Non-major
Style

50m Breaststroke - 20,092
50m Fly - 17,619
50m Freestyle 7 103,079
100m Breaststroke 704 28,015
100m Fly 734 24,450
100m Freestyle 1,528 94,506
200m Freestyle 862 20,188

Schedule
individual first(a) 2,629 78,196
relay first(b) 935 82,357
same day 271 147,396

Round (individual competition)
timed finals (default) 21 144,415
finals 902 74,960
semi-finals 517 2,113
preliminaries 2,390 86,206
others(c) 5 255

Round (relay)
timed finals (default) 342 202,042
finals 1,569 93,238
preliminaries 1,924 12,101
others(c) - 568

Order (relay)
1st 659 65,892
2nd 1,172 87,421
3rd 1,086 78,918
4th 918 75,718

...
27



... table 1 continued
Gender

male 2,096 153,245
female 1,739 154,704

Age: median [min-max] 21 [13-52] 16 [6-109]
FINA points: median [min-max] 846 [64-1093] 501 [5-1181]

(a) Day of individual competition before day of relay
(b) Day of individual competition after day of relay
(c) Swim-Off after semi-finals, Swim-Off after preliminaries
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Table 2: Comparing individual and relay swimming times only

Swimming times
Individual Relative difference b/w relay and individual

(secs.) (%)
I R1−I

I
R2−I

I
R3−I

I
R4−I

I

Overall 56.84 .22 *** -.33 -.34 -.75
Gender

male 53.66 .20 *** -.43 -.42 -.82
female 58.01 .23 *** -.25 -.26 -.69

Age (yrs)
< 15 54.91 .36 *** -.03 -.02 -.47
15− 30 58.47 .11 *** -.48 -.51 -.92
> 30 38.78 .30 *** -.58 -.51 -.95

Ability of swimmer(a)

≤ median 52.64 .27 *** -.19 -.17 -.59
> median 59.03 .17 *** -.48 -.53 -.92

Style
50m Breaststroke 39.67 .44 *** -.51 -.12 -.25
50m Fly 33.58 .62 *** -.10 -.48 -.32
50m Freestyle 32.03 .32 *** -.70 -.70 -1.14
100m Breaststroke 78.27 .32 *** -.05 -.05 -.22
100m Fly 67.88 .05 -.53 -.04 -.47
100m Freestyle 63.08 .14 *** -.30 -.31 -.45
200m Freestyle 128.53 .07 *** -.03 -.08 -.04

Event importance
major events(b) 70.99 .03 -.53 -.56 -.90
others 55.66 .22 *** -.33 -.34 -.75

Schedule of competitions
individual first(c) 54.81 .19 *** -.39 -.41 -.98
relay first(d) 59.81 .15 *** -.49 -.49 -.77
same day 54.17 .27 *** -.22 -.21 -.63

I - individual competition swimming time
R1, · · · , R4 - relay swimming time, starting order 1, · · · , 4
(a) As measured by FINA points
(b) Olympic, Pan Pacific and Commonwealth Games, World and European Championships,
Universiades
(c) Day of individual competition before day of relay
(d) Day of individual competition after day of relay
*** p < .01
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Table 3: Regression results

Model 1 Model 2 Model 3
Dependent variable (R− I)/I

constant .08 *** .51 *** .81 ***
order_2 -.66 *** -.71 *** -.75 ***
order_3 -.68 *** -.78 *** -.83 ***
order_4 -.95 *** -1.03 *** -1.23 ***
female .07 ***
age <15 .52 ***
age >30 .26 ***
major -.19 *** -.14 *** -.31 ***
same day .19 *** .10 *** .02
relay first -.02 ** -.04 *** .02
50m Breastroke (5) -.27 *** -.46 *** -.61 ***
50m Fly (6) -.22 *** -.37 *** -.42 ***
50m Freestyle (7) -.48 *** -.72 *** -.61 ***
100m Breastroke (1) .27 *** .32 *** .27 ***
100m Fly (2) .33 *** .39 *** .41 ***
200m Freestyle (4) .21 *** .31 *** .25 ***

Fixed effects No Yes Yes
R-squared 0.09 .50 .56
Wald test (F value)

order_2=order_3 3.93 ** 30.88 *** 5.67 **
order_3=order_4 822.12 *** 522.59 *** 155.93 ***

Obs. 311,784 107,808 25,138
Notes finals only

*** p < .01, ** p < .05

Reference category: 100m Freestyle, age group 15-30, individual competition on a day prior to
the relay, first swimmers
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