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Abstract

We study Equilibria under Ambiguity (EUA) with optimism and pes-
simism as introduced in Eichberger and Kelsey (2014) for the case of
beliefs modelled by belief functions. We show existence of equilibria for
�nite games with an arbitrary number of players and both general and
speci�c ambiguity about the opponents�strategy choice. We illustrate by
examples the potential of this approach to model behavior which cannot
be obtained as a Nash equilibrium..

1 Introduction

From the beginning, the theory of decision making under uncertainty and the
theory of games have been closely related. Luce and Rai¤a (1957) open their
chapter on Individual Decision Making under Uncertainty in their book Games
and Decisions, with the following view of strategic interaction:

"In a game the uncertainty is entirely to the unknown decisions of the
other players, and, in the model, the degree of uncertainty is reduced
through the assumption that each player knows the desires of the other
players and the assumption that they will take whatever actions appear
to gain their ends." (Chapter 13, p.275)

Already in 1921, Frank Knight distinguished situations according to the
underlying type of uncertainty: (i) "a priori probability", (ii) "statistical prob-
ability", and (iii) "estimates", i.e., situations where "there is no valid basis of
any kind for classifying instances". (Knight (1921), pp. 224/5). Frank Knight
viewed uncertainty as the basis of economic institutions such as insurance com-
panies, free enterprise, property, and management and control. When Luce and
Rai¤a (1957) wrote their view of game-theoretic analysis, formal analysis of
decision making over lotteries by Neumann and Morgenstern (1944) and over
acts by Savage (1954) had established the expected utility hypothesis as the
dominant approach to decision making under uncertainty.
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Following Ellsberg (1961)�s critique of the subjective expected utility para-
digm, however, several approaches to decision making under uncertainty with-
out the expected utility hypothesis were developed. Applying these more recent
concepts to games, where uncertainty concerns the opponents�strategic choices,
did raise some fundamental questions:

� How to model ambiguity about the opponents�strategies?

� What are adequate equilibrium notions?

� How to combine active randomization over one�s own strategies (mixed
strategies) with beliefs about the opponents�strategic choices?

� Do we need to optimism?

In the small literature which deals with the �rst two of these questions there
is little discussion of the role of "mixed strategies" and little or no discussion of
attitudes towards ambiguity other than "ambiguity aversion" or "pessimism".
In Eichberger and Kelsey (2014) a concept of Equilibria under Ambiguity

(EUA) was introduced which allowed for players with optimistic as well as
pessimistic attitudes towards ambiguity. Beliefs over the opponents� strategy
choices were modelled by a convex capacity and preferences over payo¤s by the
Choquet integral of a JP-capacity, a special class of capacities studied by Ja¤ray
and Philippe (1997). Since optimistic beliefs induce non-convex preferences over
strategies, no general existence proof could be provided there.
In this paper, we present a general existence proof for �nite games if beliefs

are modelled by a belief function rather than a convex capacity. Belief functions,
i.e., totally monotone capacities, are a special case of convex capacities. They do
not restrict ambiguous beliefs substantially but have a simple Choquet integral
and allow for a natural notion of "ambiguity". Both properties are useful in
economic applications. In addition, belief functions allow us to link beliefs to the
large literature in statistics which, following Dempster (1967) and Shafer (1976),
establishes belief functions as the most consistent extension of probabilities.
For our existence proof, we will rely heavily on the fact that belief functions

are characterized by their Möbius transform which is a probability distribution
over the power set. This property opens up several other natural generalizations
in the context of games. In particular, the well-known Möbius product provides
us with a natural concept of "independence" among beliefs.

1.1 Related Literature

This paper draws on two sources of literature: (i) on the one hand, there is the
literature on decision making under uncertainty, (ii) on the other hand, there is
a limited literature on how to include notions of ambiguity in the game-theoretic
context.
The �rst group deals with axiomatic foundations for various representations

of preferences either over lotteries or over state-contingent outcomes. In this lit-
erature one �nds careful discussions of the problem of how to separate ambiguity
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from ambiguity attitudes. The second group focuses on the degree of consistency
between strategies chosen and beliefs about strategies of the opponents.
In the wake of von Neumann-Morgenstern�s axiomatization, there have been

many axiomatizations of expected utility Subjective Expected Utility (SEU) by
Savage (1954), Anscombe and Aumann (1963), and, following the experimen-
tal critiques by Ellsberg (1961) and Kahneman and Tversky (1979), of other
decision criteria under uncertainty, Choquet Expected Utility (CEU) by Schmei-
dler (1989), Maxmin Expected Utility (MEU) by Gilboa and Schmeidler (1989),
Multiple Prior Model with Optimism and Pessimism (�-MEU) by Ghirardato,
Maccheroni, and Marinacci (2004), Smooth Model by Klibano¤, Marinacci, and
Mukerji (2005), and ....
There have been several attempts to include these new approaches to decision

making under uncertainty in game-theoretic analysis: Dow and Werlang (1994):
CEU, Klibano¤ (1996): MEU, Lo (1996): MEU, Marinacci (2000a): CEU,
Eichberger and Kelsey (2000)Eichberger and Kelsey (2013): CEU and �-MEU,
Bade (2010), Grant, Meneghel & Tourky (2015), Hanany, Klibano¤ & Mukerji
(2015), and ....

2 Games and belief functions

Consider a �nite game � = (I; (Si; ui)i2I) with a player set I = f1; 2; :::; ng
and, for each player i 2 I, a �nite strategy set Si and a payo¤ function ui :
S1 � ::: � Sn ! R. For notational convenience, denote by �i := 2jSij the
power set of Si: Let S�i = �

j 6=i
Sj be the set of all strategy combinations for the

opponents and denote by ��i the power set of S�i:
A probability distribution 
i on ��i; i.e., 
i 2 �(��i); de�nes a belief

function �
i as follows:

�
i (E) :=
P
A�E


i(A) for all E 2 ��i:

The probability distribution 
i is called Möbius transform of the capacity �
i :
Example 2.1 shows some well-known special cases of belief functions.

Example 2.1 (i) No ambiguity: For any probability distribution �i 2 �(S�i);
the Möbius transform


i(E) =

�
�i(s�i) for E = fs�ig
0 otherwise

de�nes the additive capacity (probability distribution)

�
i (E) =
X
s�i2E

�i(s�i)

for all E 2 ��i:
(ii) Complete ambiguity: The Möbius transform


i(E) =

�
1 for E = S�i
0 otherwise
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de�nes the capacity of complete ignorance

�
i (E) =

�
1 for E = S�i
0 otherwise

:

(iii) Constant degree of ambiguity: For any probability distribution �i 2 �(S�i)
and any " 2 [0; 1]; the Möbius transform


i(E) =

8<: 0 for E = ?
"�i(s�i) for ? 6= E 6= S�i
1� " for E = S�i

de�nes the simple capacity (or "-contamination)

�
i (E) =

(
"
P

s�i2E
�i(s�i) for E 6= S�i

1 for E = S�i
:

A belief function is a convex capacity and, hence, has a non-empty core:

core�
i :=
�
p 2 �(Si)j p(E) � �
i (E) for all E 2 ��i

	
:

The core is the set of probability distributions which are consistent with the
constraints imposed by the belief function. This property allows one to interpret
a belief function as de�ning a multiple prior model.
The following diagram illustrates the core for the case of three strategies of

the opponent.

Constant degree of ambiguity " 2 [0; 1] for �i 2 �(S�i)

S�i=
�
s1; s2; s3

	
The area shaded in green represents the core of an "-contamination, i.e., the
set of probability distributions in the simplex �(S�i ) which are compatible
with the "-contamination. For " = 0, the case of complete uncertainty, the core
equals the full simplex. For " = 1 there is no ambiguity and the belief function
coincides with the probability distribution �i:
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2.1 Payo¤s under ambiguity

Ambiguity and ambiguity attitudes can be modelled by the Choquet integral of
a JP-capacity. A JP-capacity1 is the �-convex combination of a convex capacity
� with its dual capacity �,

�JP (�; �) = ��+ (1� �)�;

where the dual capacity � is de�ned as �(E) := 1� �(SnE) for any E � S�i:
Following Schmeidler (1989) there is an extended literature which associates

convex capacities with ambiguity. In this literature, the Choquet integral of
a convex capacity re�ects ambiguity aversion or pessimism, while the Choquet
integral of the dual of a convex capacity represents an optimistic attitude to-
wards the ambiguity re�ected in the convex capacity. This interpretation of �
as measuring ambiguity attitude and � representing ambiguity is re�ected in
the multiple-prior representation of the Choquet integral of a JP-capacity. The
Choquet expected payo¤ of a strategy si 2 Si given beliefs �JPi (�i; �i) over the
opponents�strategies in S�i is2

Vi(si; �i; �i) : =

Z
ui (si; s�i) d�

JP
i (s�ij�i; �i)

= � min
p2core�i

X
s�i2S�i

ui (si; s�i) p(s�i)

+ (1� �) max
p2core�i

X
s�i2S�i

ui (si; s�i) p(s�i):

Hence, one can view the Choquet integral of a JP-capacity as an ��MEU
representation with respect to a set of priors given by core�i:
In this paper, we will suggest to model beliefs by a belief function �
i gener-

ated by the Möbius transform 
i: We will argue in the next section that belief
functions allow one also to model ambiguity in a very intuitive way.
For the JP-capacity �JPi (�i; �



i ) := �i�



i + (1� �)�




i based upon the belief
function �
i and �i 2 [0; 1] as pessimism parameter, one obtains a particularly
intuitive Choquet integral.

Proposition 2.1 Let 
i be the Möbius transform of the belief function �


i ; then

Vi(si; �i; �


i ) : =

Z
ui (si; s�i) d�

JP
i (s�ij�i; �
i )

=
X

E�S�i


i(E)

�
�i min
s�i2E

ui (si; s�i) + (1� �i) max
s�i2E

ui (si; s�i)

�
| {z }

:=V �
i (si;E)

1Ja¤ray and Philippe (1997) have introduced this type of capacity and studied it in great
detail. Hence, we refer to it as J(a¤ ray)P(hilippe)-capacity.

2For a proof see, e.g., Eichberger and Kelsey (2014).
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Proof. The result follows immediately from Proposition 1 in Ja¤ray and
Philippe (1997) (p.175).
Proposition 2.1 shows that the Choquet integral of a belief function �
i

is the weighted sum of the �-max-min payo¤s V �i (si; E) over all events E �
S�i; weighted by the Möbius transform 
i: It follows immediately that

Vi(si; �i; �


i )

= �i

24 X
E�S�i


i(E) min
s�i2E

ui (si; s�i)

35+ (1� �i)
24 X
E�S�i


i(E) max
s�i2E

ui (si; s�i)

35
= � min

p2core�
i

X
s�i2S�i

ui (si; s�i) p(s�i) + (1� �) max
p2core�
i

X
s�i2S�i

ui (si; s�i) p(s�i):

2.2 Ambiguity

The Möbius transform of a belief function is a probability distribution over
all events in S�i: If only singleton events fs�ig obtain positive weights then,
by construction, the belief function is a probability distribution. In general,
however, non-singleton events E in �i may also obtain positive weights. Indeed,
as the capacity of complete ignorance illustrates, all singleton events may get
zero weight and the S�i obtains a weight of one.
With belief functions, ambiguity of a decision maker can be modelled by

positive values of the Möbius transform 
i for non-singleton events. Positive
weights of the Möbius transform 
i for non-singleton events re�ect information
and concerns of the decision maker which cannot be factored in a single proba-
bility distribution. Gilboa and Schmeidler (1994) interpret positive weights for
non-singleton events as "direct evidence" for the likelihood of some event which
cannot be broken down to its subsets: "One of the reasons one gets direct evi-
dence for T but not for any subset thereof may be model misspeci�cations, i.e.,
that the states of the world included in the model do not exhaust the �actual�
ones". (p. 52).
In the context of game theory where players form beliefs about their oppo-

nents�strategy choice it is assumed that players use their knowledge about the
opponents�payo¤s in order to deduce their optimal behavior. This information
is, however, in general not su¢ cient to determine unambiguously the behav-
ior of the opponents. In particular, in games with multiple Nash equilibria a
player cannot predict the opponents� behavior from knowing the opponents�
payo¤ and the assumption that the other players will also maximize their pay-
o¤s. As Luce and Rai¤a (1957) (p. 275) put it "the degree of uncertainty is
reduced through the assumption that each player knows the desires of the other
players and the assumption that they will take whatever actions appear to gain
their ends", but uncertainty can not be resolved in this way. Hence, it appears
sensible to allow for other types of information in order to predict behavior in
strategic interaction. Indeed, many game theorists, like Schelling (1960) in his
famous book "Strategy of Con�ict", appeal to custom and outside knowledge
about a situation in order to obtain better predictions in games.
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The following example is a simpli�ed version of the minimum-e¤ort games
studied by Huyck, Battalio, and Beil (1990) in a series of experiments.

Example 2.2 (Minimum e¤ort game) There are two players, I = f1; 2g;
who have to contribute an e¤ort level ei from the set S = f1; 2; 3g: Their payo¤s
are twice the minimum e¤ort level chosen minus their contribution:

pi(e1; e2) = 2minfe1; e2g � ei:

The following payo¤ matrix illustrates this game.

Player 2

Player 1

1 2 3
1 1; 1 1; 0 1; �1
2 0; 1 2; 2 2; 1
3 �1; 1 1; 2 3; 3

This game has three Nash equilibria f(1; 1); (2; 2); (3; 3)g: Hence, even with com-
plete information about payo¤s, assuming mutual optimality will not su¢ ce to
predict behavior in this game3 . Equilibrium behavior is ambiguous and players
may choose the equilibrium (1; 1) simply because it guarantees a certain payo¤
of 1:
On the other hand, realizing that equilibria can be strictly ranked by the Pareto
principle and that the cost of failing to coordinate is increasing with the e¤ort
level, players may feel more ambiguity about the opponent playing 2 or 3; i.e.,
the event f2; 3g; than about the event f1; 2; 3g: Belief functions allow us to in-
clude such considerations in the ambiguity weights 
i of the respective events,
e.g., by assuming 
i(f2; 3g) > 
i(f1; 2; 3g):

Several concepts of a degree of ambiguity have been suggested in the liter-
ature (e.g., Eichberger and Kelsey (2014), Marinacci (2000b)). Most of these
measures are built on the di¤erence between the capacity and its dual,

�(E)� �(E) = 1� �(S�inE)� �(E);

which measures deviation of the capacity value for an event and its comple-
ment from additivity. For a belief function �
i ; one obtains easily

�



i (E)� �


i (E) =

X
fA:A\E 6=?6=A\S�inEg


i(A):

Hence, the degree of ambiguity with respect to an event E equals the sum of
the weights 
i for events which cannot be attributed either to the event E or to
its complement.

3 In fact, the experimental study of Huyck, Battalio, and Beil (1990) tries to �nd out
whether players either have or can develop conventions which help them to coordinate on one
of these equilibria.
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In order to implement the idea of Luce and Rai¤a (1957) that "the degree
of uncertainty is reduced through the assumption that each player knows the
desires of the other players and the assumption that they will take whatever
actions appear to gain their ends", we will assume that the weights of the Möbius
transform 
i of player i�s belief function �



i which are put on non-singleton events

in ��i will be determined exogenously by outside information while the weights
given to singleton events will be determined endogenously in an equilibrium
under ambiguity.
For any set of events ��i; denote by S(��i) := fE 2 ��ij jEj = 1g the

singleton subsets of ��i and by N(��i) := fE 2 ��ij jEj � 2g the set of non-
singleton events. Ambiguity of a player about the opponents�strategy choice is
re�ected by the weights the Möbius transform 
i puts on non-singleton events
in N(��i): Denote by �i : N (��i) ! [0; 1] the vector of weights re�ecting
the ambiguity which Player i associates with the events in N(��i) and let
�i :=

P
E2N(�i)

�i(E) be the aggregate ambiguity about player i�s strategy choice.

W.l.o.g., we can assume �i � 1:
Special cases are �i = 0, i.e., no ambiguity, and �i = 1; e.g., for �i(S�i) = 1

when the player faces complete ambiguity. In the former case, Vi(si; �i; 
(�i))
would be the expected utility with respect to (
i(fs�ig)s�i2S�i ; in the latter
case, it would be the Hurwicz criterion.

3 Equilibrium under Ambiguity

In order to determine the endogenous part of the belief function we will apply
the notion of an Equilibrium under Ambiguity (EUA) suggested and analyzed
in Eichberger and Kelsey (2014).

3.1 Best replies and Equilibrium under Ambiguity

For an arbitrary capacity �i on S�i representing player i�s beliefs, the best-reply
correspondence of player i given beliefs �i; Ri(�i) = argmaxsi2Si Vi(si; �i; �i)
is well-de�ned. Following Dow and Werlang (1994), Marinacci (2000a) and
Eichberger and Kelsey (2000) we describe an equilibrium in beliefs as a list of
capacities b� = (b�1; :::; b�n) for which the support is a subset of best replies.
De�nition 1 An n-tuple of capacities b� = (b�1; :::; b�n) is an Equilibrium Under
Ambiguity (EUA) if for all players, i 2 I;

? 6= supp b�i � �
j 6=i
Rj(b�j):

For capacities which are additive and beliefs which are independent De�ni-
tion 1 de�nes a Nash equilibrium.
A crucial aspect of this de�nition concerns the adequate de�nition of a sup-

port for a capacity. Several de�nitions for the support of a capacity have been
suggested in the literature. In particular, Dow and Werlang (1994), Marinacci
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(2000a) and Ryan (2002) suggest alternative notions. For convex capacities,
the probabilities in the core of the capacity are a natural set of multiple priors.
Hence, support notions for sets of probability distributions are also relevant in
this context. Eichberger and Kelsey (2014) (Appendix A) provide a detailed
comparison of these support notions and, in the light of these results, suggest
as de�nition of support for a convex capacity � the intersection of the supports
of all probability distributions in the core of �;

supp� :=
\

p2core�
supp p:

In Dominiak and Eichberger (2015) we study the support notions for belief
functions. Of particular relevance is the following result.

Lemma 2 (Dominiak and Eichberger (2015), Proposition 3.2) Let �
i be
a belief function and 
i its Möbius transform, then s�i 2

T
p2core�
i

supp p if and

only if 
i(fs�ig) > 0.

3.2 Two-player games

We will study �rst two-player games where no correlation issues regarding the
beliefs about the opponents�behavior exist. Given ambiguity weights (�1; �2) 2
[0; 1]jN(�2)j�[0; 1]jN(�1)j and probability distributions (�1; �2) 2 �(S2)��(S1);
for each player a belief function �
i can be de�ned by the Möbius transforme
i(�i; �i) 2 �(�j) where

e
i(�i; �i)(E) := � �i(E) for E 2 N(�j)
(1� �i)�i(E) otherwise

:

Writing Vi(si; �i; �i; �i) instead of Vi(si; �i; �
e
(�i;�i)
i ) in order to simplify

notation, one can write the Choquet expected payo¤ of a strategy si 2 Si as

Vi(si; �i; �i; �i) =
X
E�Sj

e
i(�i; �i)(E)V �i (si; E)
= (1� �i)

X
sj2Sj

�i(sj)V
�
i (si; fsjg) +

X
E2N(�j)

�i(E)V
�
i (si; E):

For given (�i; �i); Vi(si; �i; �i; �i) is a continuous function on Si ��(Sj):
We begin with some examples which illustrate the potential of EUA with

belief functions for obtaining results which di¤er from those obtained without
ambiguity.

Example 3.1 (coordination game) Consider the following asymmetric co-
ordination game with strategy sets S1 = fu; dg and S2 = fl; rg:

Player 2

Player 1
l r

u 1; 2 1; 1
d 0; 0 2; 1
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In this game, there is a only one non-singleton event about which there may be
ambiguity, N(�1) = fS1g and N(�2) = fS2g; respectively. Hence, (�1; �2) =
(�1(S2); �2(S1)) = (�1; �2): Let (�1(l); �1(r)) = (q; 1 � q) and (�2(u); �2(d)) =
(p; 1� p): Choquet expected payo¤s are easily computed as

V1(u; �1; q; �1) = 1 and V1(d; �1; q; �1) = 2(1� �1)(1� q) + 2�1(1� �1);
V2(r; �2; p; �2) = 1 and V2(l; �2; p; �2) = 2(1� �2)p+ 2�2(1� �2):

Maximizing the average payo¤ W1(q; p) = pV1(u; �1; q; �1)+(1�p)V1(d; �1; q; �1)
with respect to p yields the correspondence of maximizers B1(p; q) = f1g for q >
q(�1; �1); B1(p; q) = f0g for q < q(�1; �1); and B1(p; q) = [0; 1] otherwise, where
q(�1; �1) :=

1
2

�
1�2�1�1
1��1

�
denotes the critical value of q yielding indi¤erence.

Similarly, W2(q; p) = qV2(l; �2; p; �2) + (1 � q)V2(r; �2; p; �2) and B2(p; q) =
f1g for p > p(�2; �2); B2(p; q) = f0g for p < p(�2; �2); and B2(p; q) = [0; 1]

otherwise, where p(�2; �2) := 1
2

�
1�2(1��2)�2

1��2

�
: The following diagram shows

the correspondences of the maximizers.

For no ambiguity, �1 = �2 = 0, one obtains q(�1; 0) = p(�2; 0) = 1
2 and there are

three EUA f(fug ; flg); (fu; dg ; fl; rg); (fdg ; frg)g which correspond to the three
Nash equilibria f(1; 1); ( 12 ;

1
2 ); (0; 0)g. For little ambiguity, �1; �2 close to 0; the

set of EUA remains the same as illustrated in the left panel of the diagram. The
set of EUA changes if ambiguity increases. If players are su¢ ciently pessimistic,
�1; �2 >

1
2 and ambiguity increases �1; �2 ! 1; then strategies u and r; which

guarantee the payo¤ of 1; will become dominant strategies leaving (fug ; frg) as
the unique EUA. This case is illustrated in the right-hand panel.

Example 3.1 shows that EUA can describe other types of behavior than Nash
equilibria. For su¢ cient pessimism and su¢ cient ambiguity players will choose
their safe strategies u and r; a behavior which appears quite sensible but cannot
be modelled as a Nash equilibrium.
With two strategies as in Example 3.1 there can be only global ambiguity

regarding all strategies of the opponent. The next example will resume the
minimum e¤ort game of Example 2.2 in order to show that EUA with belief
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functions can support behavior which depends on event-speci�c ambiguity.

Player 2

Player 1

1 2 3
1 1; 1 1; 0 1; �1
2 0; 1 2; 2 2; 1
3 �1; 1 1; 2 3; 3

Example 3.2 (Example 2.2 resumed) Assume that players are pure pes-
simists, �1 = �2 = 1; and symmetric in their perceived ambiguity, �1 = �2 =: �.
Given these assumptions and using the fact that �i(f1g) = 1��i(f2g)��i(f3g)
and

P
E2N(�j)

�(E) = �, one obtains the following Choquet expected payo¤s from

choosing e¤ort level ei:

Vi(ei; 1; �i; �) =
X
E2�j


i(E)min
ej2E

ui(ei; ej)

= (1� �) [�i(f1g)ui(ei; 1) + �i(f2g)ui(ei; 2) + �i(f3g)ui(ei; 3)]

+�(f1; 2g) min
ej2f1;2g

ui(ei; ej) + �(f1; 3g) min
ej2f1;3g

ui(ei; ej)

+�(f2; 3g) min
ej2f2;3g

ui(ei; ej) + �(f1; 2; 3g) min
ej2f1;2;3g

ui(ei; ej)

=

8<:
1 for ei = 1

2(1� �) (�i(2) + �i(3)) + �(f2; 3g) for ei = 2

(1� �) (2�i(2) + 4�i(3)� 1) + 2�(f2; 3g)� � for ei = 3
:

It is easily checked that there are three types of EUA:

1. No ambiguity, � = 0 : There are three equilibria corresponding to the Nash
equilibria in pure strategies:

(�1 (f1g) ; �2 (f1g)) = (1; 1);

(�1 (f2g) ; �2 (f2g)) = (1; 1);

(�1 (f3g) ; �2 (f3g)) = (1; 1):

2. If there is su¢ cient general ambiguity, �(f1; 2; 3g) > 1
2 ; and no speci�c

ambiguity for a particular event, i.e., �(f1; 2g) = �(f1; 3g) = �(f2; 3g) = 0;
then

(�1 (f1g) ; �2 (f1g)) = (1; 1)
will be the unique equilibrium under ambiguity.

3. For su¢ cient speci�c ambiguity, �(f23g) > 1
2 and �(f1; 2; 3g) = �(f1; 2g) =

�(f1; 3g) = 0; only

(�1 (f2g) ; �2 (f2g)) = (1; 1)

will be an equilibrium under ambiguity.
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In the experiments on behavior in the minimum-e¤ort game which were
conducted by Huyck, Battalio, and Beil (1990) players initially often chose in-
termediate levels of e¤ort rather than the highest or lowest level. Such behavior
can be modelled by an EUA where players experience more ambiguity about
a particular event, here f2; 3g in the third case, than about other events. As
argued before such speci�c ambiguity may be justi�ed by the relative strength
of the incentives to deviate from a strategy.
We conclude this section with a sketch of the proof of the general existence

theorem provided in the next section.
For each player �x the parameters (�i; �i); i 2 f1; 2g: The weighted averages

of the Choquet expected payo¤s

W1(�1; �2) :=
X
s12S1

�2(s1)V1(s1; �1; �1; �1)

and
W2(�1; �2) :=

X
s22S2

�1(s2)V2(s2; �2; �2; �2)

are linearly a¢ ne and, hence, continuous functions Wi : �(S2) � �(S1) ! R.
De�ne the correspondence of maximizers Bi(�1; �2) as

Bi(�1; �2) = argmax
�j
Wi(�1; �2)

and let B(�1; �2) := B1(�1; �2)�B2(�1; �2) be the Cartesian product of these
correspondences. By the maximum theorem B is a non-empty and uhc cor-
respondence from �(S2) � �(S1) to �(S2) � �(S1); which is convex-valued
since B is linear (�1; �2): Hence, by the Kakutani �xed-point theorem, there is
(b�1; b�2) 2 �(S2)��(S1) such thatb�2 2 argmax

�2
W1(b�1; b�2);b�1 2 argmax

�1
W2(b�1; b�2)

holds. Since Wi(�1; �2) is linear in �j ; b�j 2 argmax
�j
Wi(b�1; b�2) implies si 2

argmax
�j
Wi(b�1; b�2) for all si with b�j(si) > 0; i.e., for all si 2 supp b�j :

Thus we can conclude that supp b�j 6= ? and for all si 2 supp b�j ; Vi(si; �i; b�i; �i) �
Vi(s

0
i; �i; b�i; �i) for all s0i 2 Si: By Lemma 2 we know that e
i(b�i; �i)(fsjg) =

(1� �i)b�i(fsjg) > 0 implies
sj 2

\
p2core�e
(b�i;�i)i

supp p:

Hence, the belief functions (�e
(b�1;�1)1 ; �
e
(b�2;�2)
2 ) are an Equilibrium under Am-

biguity (EUA),
? 6= supp�e
(b�i;�i)i � Rj(�e
(b�j ;�j)j )

for i; j 2 f1; 2g; i 6= j:

12



4 The n-player case

In this section we want to prove existence of an EUA for the case of n players.
Compared to the two-player case, the main additional problem encountered
is the question of independence of beliefs about the opponents�strategies. In
game theory without strategic uncertainty players are assumed to choose mixed

strategies � = (�1; :::; �n) 2
n
�
k=1
�(Sk) independently. Hence, player i believes

that the probability of facing a particular pure strategy combination of the
opponents es�i 2 S�i is Q

k2I; k 6=i
�k(esk); where esk is the strategy of player k in

the strategy combination es�i: Proceeding in this way assumes not only that
players believe that opponents choose their mixed strategies independently but
also that all players agree in their beliefs upon the probabilities with which a
particular player i chooses pure strategies.
These strong assumptions about independence of and mutual agreement on

beliefs of the opponents stand in strong contrast to the assumption of ambiguity
about the opponents�strategy choice. Relaxing these assumptions would make
it impossible to compare EUA with nash equilibrium when ambiguity vanishes.
Equilibrium under Ambiguity with belief functions o¤ers an intermediate way to
deal with this problem: one can maintain independence and mutual agreement
for singleton events, yet allow for ambiguity about this independence for non
singleton events. In this way, one can approximate Nash equilibria for vanishing
ambiguity. It is this intermediate approach we will choose in this section.
For each player i 2 I; let �i : N(��i) ! [0; 1] be player i�s ambiguity

about the play of the opponents and let �i :=
P

E2N(��i)
�i(E) be the aggregate

ambiguity about the opponents�strategy choice. Given � = (�1; :::; �n) and a
common vector of probability distributions over players� pure strategies, � =
(�1; :::; �n) 2 �

i2I
�(Si); de�ne 
i(�; �i) on ��i by


i(�; �i)(E) :=

(
�i(E) for E 2 N(��i)
(1� �i)

Q
k2I; k 6=i

�k(esk) for es�i 2 S�i :

For �i < 1; 
i(�; �i) 2 �(��i); i.e., 
i(�; �i) is the Möbius transform of a
belief function �
i(�;�i)i ; and one can de�ne the Choquet expected payo¤ as in
Proposition 2.1:

Vi(si; �i; �

i(�;�i)
i ) =

X
E�S�i


i(�; �i)(E)V
�
i (si; E):

The Choquet expected payo¤ of a pure strategy can be seen as a continuous
function of �: Hence, we can apply well-known arguments to prove the following
proposition.

13



Proposition 4.1 Suppose �i < 1 for all i 2 I: Then there is b� = (b�1; :::; b�n) 2
�
i2I
�(Si) such that the belief functions (�


1(b�;�1)
1 ; :::; �
n(b�;�n)n ) de�ned by the

Möbius transforms (
1(b�; �1); :::; 
n(b�; �n)) are an EUA.
Proof. See the appendix.
One can show that the endogenously derived beliefs of an EUA about the

singletons b� are a uhc correspondence of the exogenous ambiguity of all players
(�1; ::; �n) :Hence, any sequence b�� induced by a converging sequence (��1 ; ::; ��n)!
(�o1; ::; �

o
n) will converge. Because the endogenous part of the players�belief func-

tions �
i(�;�i)i are based on the common independent beliefs �; one obtains a
Nash equilibrium when �i ! 0 for all players i 2 I:

5 Concluding comments

In this paper, we have studied EUA for �nite games when beliefs are represented
by belief functions �
i : For belief functions, one can prove existence of an EUA
for any degree of optimism and pessimism and arbitrary ambiguity given by
the non-singleton events of the Möbius transform. The generality of the result
allows for a wide range of applications in game theory and economics. We could
also demonstrate by examples that EUA can characterize reasonable behavior
which cannot be derived in a Nash equilibrium. The possibility to di¤erentiate
the ambiguity attached to speci�c sets of the opponents�strategies can also be
used to model observe biases in strategic interaction which cannot be deduced
from global ambiguity. EUA with belief functions, therefore, open the analysis
of behavior under strategic uncertainty to many applications in theoretical and
experimental economics.
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6 Appendix

6.1 Proof of Proposition 4.1

Proposition 4.1: Suppose �i < 1 for all i 2 I: Then there is b� = (b�1; :::; b�n) 2
�
i2I
�(Si) such that the belief functions (�


1(b�;�1)
1 ; :::; �
n(b�;�n)n ) de�ned by the

Möbius transforms (
1(b�; �1); :::; 
n(b�; �n)) are an EUA.
Proof. Fix (�1; :::; �n) and (�1; :::; �n) : For � = (�1; :::; �n) 2 �

i2I
�(Si); de�ne


i(�; �i) on ��i by


i(�; �i)(E) :=

(
�i(E) for E 2 N(��i)
(1� �i)

Q
k2I; k 6=i

�k(esk) for es�i 2 S�i :

By the premise �i < 1 for all i 2 I: Hence,
P

E2��i

i(�; �i)(E) = 1 and

�

i(�;�1)
i is a belief function for all I 2 I: By Proposition 2.1, the Choquet
expected payo¤ of a pure strategy si 2 Si is

Vi(si; �i; �

i(�;�i)
i ) =

X
E2��i


i(�; �i)(E)V
�
i (si; E):

For all i 2 I; de�ne Wi : �
i2I
�(Si)! R as

Wi(�) :=
X
si2Si

�i(si)Vi(si; �i; �

i(�;�i)
i ):

Wi(�) is a continuous function on �
i2I
�(Si) and linear in �i: Let

Bi(�) := arg max
qi2�(Si)

Wi(�)

be the correspondence of maximizers of Wi(�) with respect to �i: By the max-
imum theorem the correspondence Bi : �(S1) � ::: � �(Sn) ! �(Si) is non-
empty, uhc and convex-valued since Wi(�) is a continuous function on the com-
pact set �

i2I
�(Si) and linear in �i. The Cartesian product of these correspon-

dence B(�) := B1(�)� :::�Bn(�) is a correspondence B : �(S1)� :::��(Sn)!
�(S1) � ::: � �(Sn) which inherits the properties of its components. Hence,
all conditions of Kakutani�s �xed point theorem are satis�ed and there existsb� 2 B(b�):
We claim that the belief functions (�
1(b�;�1)1 ; :::; �
n(b�;�n)n ) de�ned by the

Möbius transforms (
1(b�; �1); :::; 
n(b�; �n)) are an EUA.
Firstly, by Lemma 2, for all i 2 I; s�i 2 supp�
i(b�;�i)i i¤
i(b�; �i)(fs�ig) > 0.

Since supp b�k 6= ? for all k 2 I; supp Q
k2I; k 6=i

�k

!
6= ?; i.e., there exists s�i 2
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supp

 Q
k2I; k 6=i

b�k! with
Q

k2I; k 6=i
b�k(s�i) > 0: Hence, there is s�i 2 S�i such

that 
i(b�; �i)(fs�ig) = (1� �i) Q
k2I; k 6=i

b�k(sk) > 0:
Secondly, take s�i such that 
i(b�; �i)(fs�ig) > 0 and consider any compo-

nent sk of the strategy combination s�i: Then b�k(sk) > 0 must be true. Sinceb�k 2 Bk(b�) and Wik(�) is linear in �k; b�k(sk) > 0 implies
Vk(sk; �k; �


k(b�;�k)
k ) � Vk(s0k; �k; �


k(b�;�k)
k )

for all s0k 2 Sk: Hence, sk 2 Rk(�

k(b�;�k)
k ) := argmaxs0k2Sk Vk(s

0
k; �k; �


k(b�;�k)
k )

and
? 6= supp�
i(b�;�i)i � �

k 6=i
Rk(�


k(b�;�k)
k ):
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