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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become the workhorse in mod-

ern macroeconomics, successfully capturing aggregate dynamics over the business cycle.

Compared to the importance and relevance of this research area, surprisingly little work

has been published reconciling business cycle facts with asset market implications (previous

results can be found in Grinols and Turnovsky, 1993; Jermann, 1998; Tallarini, 2000; Lettau

and Uhlig, 2000; Boldrin, Christiano, and Fisher, 2001; Lettau, 2003, and more recent work

includes Rudebusch and Swanson, 2008; Campanale, Castro, and Clementi, 2010). These

papers mainly use calibration methods rather than structural estimation for their results.

Moreover, the lack of financial variables in DSGE models became one of the most obvious

shortcomings of macroeconomic theory (and the theory-based estimation of those systems)

during the recent financial crisis, and led to fundamental critique.1

No clear answer has been given so far to the questions of how macro and financial data

should be linked consistently within dynamic stochastic general equilibrium models, and

how they can be used efficiently to shed light on macro-finance links. Financial market data

are typically available at higher frequency and better quality than aggregate macroeconomic

data. Hence, financial markets provide an additional source of evidence on the state of

the economy, beyond macro series. Nevertheless, researchers so far have made little use of

this in DSGE models. A related question is how to estimate macro-finance models with-

out computationally costly state-space representations. In recent work, van Binsbergen,

Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012) do in fact solve and estimate a

DSGE model using both macro data and bond yields. The authors illustrate the usefulness

of incorporating financial market data into the estimation, but their analysis is purely in

discrete time. As this usually requires numerical integration to compute expectations, it

makes their methods computationally heavy.

In this paper, we make the link between macro and financial markets explicit by showing

how financial market data facilitate the estimation of structural parameters characterizing

preferences and technology. We cast our DSGE model in continuous time, solve for the

general equilibrium of the real economy and financial markets, and subsequently develop

the relevant estimation procedures. We consider both regression-based methods combined

with a minimum-distance approach, and an alternative and asymptotically efficient martin-

gale estimating function (MEF) technique. Our continuous-time formulation serves to (i)

put structure on the residuals encountered in the regression-based estimation methods, (ii)

1See, for example, the debate in The Economist 2009, July 16th, “What went wrong with economics.” In
a survey article, Cochrane (2006, chap. I.1) argues: “The general equilibrium approach is a vast and largely
unexplored new land. The papers [in this area] are like Columbus’ report that the land is there.”
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obtain an explicit solution for the equilibrium dynamics of the economy in terms of data

and parameters for the MEF approach, and (iii) account for the dependence among eco-

nomic variables during the unit observation interval. It is important to study the estimation

problems encountered in simple continuous-time models before addressing more elaborate

models at the vanguard of the DSGE literature. We illustrate our approach for a class of

DSGE models where the equilibrium dynamics are available in terms of observable quantities,

namely, consumption, output, and spot interest rates. We consider both logarithmic and

constant relative risk aversion (CRRA) preferences. Although log preferences are included

in the more general CRRA class, they constitute an important benchmark case that allows

for closed-form solution. Specifications of this kind date back at least to Cox, Ingersoll, and

Ross (1985a). Our examples can be used as points of reference for exploring broader classes

of dynamic general equilibrium models.

We introduce the linkage to financial markets by basing our approach on continuous-time

equilibrium term structure models along the lines of Vasicek (1977) and Cox, Ingersoll, and

Ross (1985b). We use daily data on the 3-month interest rate as a proxy for the spot rate

(cf. Chapman, Long, and Pearson, 1999), along with aggregate consumption and output

at lower frequency, to facilitate estimation of the structural parameters of the system in

a parsimonious specification. The choice of the 3-month rate is a starting point, as it is

necessary to build up empirical experience with combinations of macro and financial data

available at different frequencies.

We depart from the traditional discrete-time formulation of DSGE models and their

estimation for three related reasons.2 First, the continuous-time approach has proved useful

in formulating and solving dynamic models in macroeconomics and finance. There is no need

to perform numerical integration to compute expectations, since the Bellman equation is non-

stochastic, thus simplifying computation of the first-order conditions. Closed-form solutions

are obtained in many cases and may serve as benchmarks for numerical solutions. Second,

the presence of closed-form solutions can simplify inference on structural parameters even in

the presence of non-linearities and non-normality (cf. Posch, 2009). Third, many financial

models (e.g., equilibrium term structure models) are stated in continuous time. When linking

the macro economy and financial markets, any discrete period length is arbitrary, and it

seems natural to make the least stringent timing assumption, formulating both the macro

and financial sides of the model in continuous time, thus avoiding specific discrete-time

approximations for either of the data generating processes.

2A non-exhaustive list of references on structural estimation of discrete-time DSGE models is Fernández-
Villaverde and Rubio-Ramı́rez (2007) and An and Schorfheide (2007). While the first authors show how to
use the output of the particle filter to estimate the structural parameters of the model, the latter review
Bayesian methods for estimating discrete-time DSGE models.
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There is a tradition estimating continuous-time models in macroeconomics formulated by

systems of stochastic differential equations (e.g. Bergstrom, 1966; Phillips, 1972, 1991), and

rational expectations models (Hansen and Sargent, 1991; Hansen and Scheinkman, 1995).

Since data are sampled only at fixed points in time, we follow Bergstrom’s idea and integrate

our equilibrium system of stochastic differential equations to obtain the ‘exact discrete-time

model’. The traditional formulations (as in Bergstrom, 1966; Phillips, 1972) typically imply

a coefficient matrix that is a function of the exponential of a matrix depending on the

structural parameters. As shown by McCrorie (2009), this property is problematic, as it

complicates the identification of continuous-time models from discrete-time data due to the

aliasing phenomenon: Distinct continuous-time processes may look identical when sampled

at discrete time intervals (cf. Hansen and Scheinkman, 1995, p.769). In this paper we

adopt the alternative approach of integrating the logarithmic system. In specific models

we consider, the resulting system for logarithmic growth rates rather than levels involves a

coefficient matrix that is linear in a set of known functions of the structural parameters. The

system does not involve any matrix exponential, thus circumventing the aliasing problem.

The relevant untransformed system of stochastic differential equations in the DSGE model

is nonlinear and generally does not have a closed-form solution, so working with the log-

transformed system involves no loss in this sense.

We apply our model to both simulated and empirical data on production, consump-

tion, and interest rates. A Monte Carlo study examines the properties of our estimation

approaches for 1,000 simulated data sets of 25 years each for both monthly and quarterly

macro data, roughly in line with the availability of empirical data. The results show that both

the regression-based and MEF approaches are able to accurately estimate the parameters

of the model with logarithmic preferences. While our model with CRRA preferences turns

out to be more challenging for the simpler regression-based approaches, the MEF approach

produces reliable estimation results.

Our empirical application of more than 20 years of U.S. data shows that the system can

indeed be applied to a combination of macro and financial series. The results indicate a

long run mean of the short rate of interest around 5% with a 3% volatility annually and

weak mean reversion, as well as higher relative risk aversion in the representative agent

than under logarithmic preferences. The elasticity of consumption with respect to wealth is

strongly significant but below unity, the value corresponding to log preferences, whereas the

interest rate elasticity of consumption differs insignificantly from the zero value implied by

log preferences.

The paper proceeds as follows. Section 2 summarizes the macroeconomic theory and

solution techniques. Section 3 presents the estimation strategies. Sections 4 and 5 provide
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Monte Carlo evidence on small sample properties of our estimation strategies and report

empirical estimates. Section 6 concludes.

2 The macro-finance framework

We consider dynamic stochastic general equilibrium models cast in continuous time (Eaton,

1981; Cox, Ingersoll, and Ross, 1985a). This allows the application of Itô’s calculus, and in

some cases we can solve the model analytically to obtain closed-form expressions facilitating

statistical inference.

2.1 The model

Production possibilities. At each point in time, certain amounts of capital, labor, and factor

productivity are available in the economy, and these are combined to produce output. The

production function is a constant returns to scale technology subject to regularity conditions

(see Chang, 1988),

Yt = AtF (Kt, L), (1)

where Kt is the aggregate capital stock, L is the constant population size, and At is total

factor productivity (TFP), in turn driven by a standard Brownian motion Bt,
3

dAt = µ(At)dt+ η(At)dBt, (2)

with µ(At) and η(At) generic drift and volatility functions satisfying regularity conditions.4

The capital stock increases if gross investment It exceeds capital depreciation,

dKt = (It − δKt)dt+ σKtdZt, (3)

where δ denotes the mean and σ the volatility of the stochastic depreciation rate, driven by

another standard Brownian motion Zt.

Equilibrium properties. In equilibrium, factors of production are rewarded with marginal

products rt = YK and wt = YL, subscripts K and L indicating derivatives, and the goods

market clears, Yt = Ct+It. By an application of Itô’s formula (e.g., Protter, 2004; Sennewald,

2007), the technology in (2), capital accumulation in (3), and market clearing condition

together imply that output evolves according to

dYt = YAdAt + YKdKt +
1
2
YKKσ

2K2
t dt

= (µ(At)YA + (It − δKt)YK + 1
2
YKKσ

2K2
t )dt+ YAη(At)dBt + σYKKtdZt. (4)

3Since Bt is a standard Brownian motion, B0 = 0, Bt+∆ −Bt ∼ N (0,∆), t ∈ [0,∞).
4We assume that E(At) = A ∈ R+ exists, and that the integral describing life-time utility in (5) below is

bounded, so that the value function is well-defined.
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This corresponds to equation (1) in Cox, Ingersoll, and Ross (1985a) (henceforth CIR), where

It − δKt is the amount of the output good allocated to the production process. In general,

Yt can be a nonlinear activity with respect to capital, determined by its output elasticity.5

Preferences. We consider an economy with a single consumer, interpreted as a repre-

sentative “stand in” for a large number of identical consumers. The consumer maximizes

expected additively separable discounted life-time utility given by

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct, At)dt, uC > 0, uCC < 0, (5)

subject to

dKt = ((rt − δ)Kt + wtL− Ct)dt+ σKtdZt, (6)

where ρ is the subjective rate of time preference, rt is the rental rate of capital, and wt is the

labor wage rate. We do not consider financial claims, although they could easily be added.

The paths of factor rewards are taken as given by the representative consumer. The generic

utility flow function specification u(Ct, At) allows the possibility that technology enters as

an argument. This may represent a quest for technology and is included for comparability

with Cox, Ingersoll, and Ross (1985a).

2.2 The Euler equation

The relevant state variables are capital and technology, (Kt, At). For given initial states, the

value of the optimal program is

V (K0, A0) = max
{Ct}∞t=0

U0 s.t. (6) and (2), (7)

i.e., the present value of expected utility along the optimal program. It is shown in the

appendix that the first-order condition for the problem is

uC(Ct, At) = VK(Kt, At), (8)

for any t ∈ [0,∞), and this allows writing consumption as a function of the state variables,

Ct = C(Kt, At). The Euler equation is

duC
uC

= (ρ− (rt − δ))dt− uCC(Ct, At)

uC(Ct, At)
CKσ

2Ktdt+
uCC(Ct, At)

uC(Ct, At)
CAη(At)dBt

+
uCA(Ct, At)

uC(Ct, At)
η(At)dBt +

uCC(Ct, At)

uC(Ct, At)
CKσKtdZt, (9)

5Unless we consider a nonlinear production process, our model is formally included in the CIR economy.
We are not aware of any paper estimating the model’s structural parameters using macro and financial data.
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also derived in the appendix. This implicitly determines the optimal consumption path.

In the following, we restrict attention to the case u(Ct, At) = u(Ct). Using the inverse

marginal utility function, c = g(u′(c)), we obtain the path for consumption,

dCt =
u′(Ct)

u′′(Ct)
(ρ− (rt − δ))dt− σ2CKKtdt− 1

2
(C2

Aη(At)
2 + C2

Kσ
2K2

t )
u′′′(Ct)

u′′(Ct)
dt

+CAη(At)dBt + CKσKtdZt,

where u′ > 0 and u′′ < 0 (strict concavity of preferences).

2.3 Equilibrium dynamics of the economy

The equilibrium dynamics of the economy may be represented as

d lnCt =

(
u′(Ct)

u′′(Ct)Ct
(ρ− rt + δ)− σ2CKKt

Ct
− 1

2

C2
Aη(At)

2 + C2
Kσ

2K2
t

C2
t

u′′′(Ct)Ct + u′′(Ct)

u′′(Ct)

)
dt

+CAη(At)/CtdBt + CKσKt/CtdZt,

d lnYt =

(
µ(At)

At
+

(
Yt − Ct

Kt
− δ

)
KtYK
Yt

+ 1
2
σ2K

2
t YKK

Yt

)
dt− 1

2

Y 2
Aη(At)

2 + σ2Y 2
KK

2
t

Y 2
t

dt

+YAη(At)/YtdBt + σYKKt/YtdZt,

d lnKt = (rt − δ + wt/Kt − Ct/Kt − 1
2
σ2)dt+ σdZt.

If all left-hand side variables, the logarithms of Ct, Yt, and Kt, were observed, along with

At, estimation could be based directly on this system and the TFP equation (2). Consump-

tion and income are standard variables in most macro studies. Capital and technology are

notoriously problematic, due to the risk of mismeasurement. This is where we propose using

financial variables, instead. Thus, suppose that interest rates rt are observed, along with

Ct and Yt.
6 We consider systems of stochastic differential equations that can be used for

estimation based on data on Ct, Yt, and rt, by recasting the equilibrium dynamics in terms

of these observables.

2.4 An illustration: The stochastic AK model

Consider an economy where labor is not an input of production, Yt = AtKt, known as an

AK model,7 and assume that the representative consumer has constant relative risk aversion

6One caveat is that some variables are observed as an integral over an interval (flows) rather than at
a point in time (stocks). It thus appears more difficult to estimate continuous-time models compared to
their discrete-time counterparts (Harvey and Stock, 1989). In this paper we adopt a pragmatic approach:

we approximate a flow variable, e.g., Yt at time t, by the integral
∫ t

t−∆
Ysds. Observed growth rates of flow

variables thus correspond to lnYt − lnYt−∆. In our simulation study we find a negligible ‘time-aggregation
bias’.

7The AK framework is also used in other macro-finance models (cf. Brunnermeier and Sannikov, 2011).
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(CRRA) preferences, u(Ct) = C1−θ
t /(1 − θ). With these assumptions, At = YK = rt and

Kt = Yt/At = Yt/rt, so the state variables (At, Kt) are expressed as known functions of the

readily observable (Yt, rt). Since wt = YL = 0, equilibrium dynamics are

d lnCt =
(
rt − ρ− δ − θσ2π(Yt, rt) +

1
2
(θη(rt)τ (Yt, rt))

2 + 1
2
(θσπ(Yt, rt))

2
)
/θdt

+η(rt)τ(Yt, rt)dBt + σπ(Yt, rt)dZt, (10a)

d lnYt =
(
µ(rt)/rt + (1− Ct/Yt)rt − δ − 1

2
η(rt)

2/r2t − 1
2
σ2
)
dt+ η(rt)/rtdBt + σdZt,(10b)

drt = µ(rt)dt+ η(rt)dBt, (10c)

where π(Yt, rt) ≡ CKKt/Ct and τ(Yt, rt) ≡ CA/Ct are the relevant sensitivities of the con-

sumption function with respect to the state variables. In particular, π(Yt, rt) is the capital

elasticity of consumption. Similarly, the term τ (Yt, rt) is an infinitesimal version of the per-

centage change in consumption associated with a percentage point change in the interest

rate (or TFP). In general, the consumption function is non-homogeneous with respect to

the interest rate rt and capital Kt (or wealth, here the output-TFP ratio), thus implying

that the time-varying portion of these sensitivities is small. The functions µ(·) and η(·) are
chosen such that suitable boundedness conditions are met (cf. Posch, 2009). We illustrate

the estimation of the stochastic AK model with the interest rate governed by a Vasicek

specification (henceforth the AK-Vasicek model).

2.4.1 AK-Vasicek model: Logarithmic preferences

With logarithmic utility, u(C) = lnC, corresponding to the case of relative risk aversion

θ = 1, it can be shown that optimal consumption is linear in the capital stock, Ct = ρKt

(cf. appendix). This implies that the consumption function is linear-homogeneous in capital,

yielding unit elasticity, π(Yt, rt) = 1. Moreover, consumption does not respond to changes in

the interest rate or technology, CA = 0, so τ (Yt, rt) = 0. The Vasicek (1977) mean-reverting

interest rate specification is µ(rt) = κ(γ − rt) and η(rt) = η, where κ > 0 is the speed and

γ the target of mean reversion, and η the constant volatility. In this case, the equilibrium

dynamics are

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt, (11a)

d lnYt =
(
κγ/rt − 1

2
η2/r2t + rt − κ− ρ− δ − 1

2
σ2
)
dt+ η/rtdBt + σdZt, (11b)

drt = κ(γ − rt)dt+ ηdBt. (11c)

Alternative specifications of the interest rate process as in Äıt-Sahalia (1996, p.528) can be

implemented and the system estimated along the lines developed below. The closed-form

solution, however, does not depend on the particular choice.
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2.4.2 AK-Vasicek model: CRRA preferences

A slightly more general specification is that of CRRA utility. As no closed-form solution is

known for the case θ 6= 1, our parametric estimation approach requires an approximation

for the consumption function to determine the unknown functions τ (Yt, rt) and π(Yt, rt). In

particular, we assume that the consumption elasticities with respect to both state variables

are roughly constant, CKKt/Ct ≈ π̄, Crrt/Ct ≈ τ ,8 so that

d lnCt =
(
(rt − ρ− δ)/θ + 1

2
θ(τη)2/r2t +

1
2
(θπ̄ − 2)π̄σ2

)
dt+ ητ/rtdBt + σπ̄dZt, (12a)

d lnYt =
(
κγ/rt − 1

2
η2/r2t + (1− Ct/Yt)rt − (κ+ δ + 1

2
σ2)
)
dt+ η/rtdBt + σdZt, (12b)

drt = κ(γ − rt)dt+ ηdBt. (12c)

For reasonable parametric restrictions, our assumptions are economically meaningful. We

provide a particular numerical solution of the system (12) and the consumption elasticities

with respect to the interest rate and capital stock in Appendix A.2.1. These numerical

results are based on the collocation method.9 In a nutshell, the idea is to approximate

the unknown value function by a linear combination of known basis functions evaluated at

the collocation nodes.10 For the case θ = 2, and with reasonable calibrations for the other

parameters (cf. Appendix A.2.1), we find that the dependence of the elasticities π(Yt, rt) and

τ(Yt, rt)rt on the state variables (At, Kt) is negligible, with 1.0057 < π(Yt, rt) < 1.0211 and

0.1623 < τ(Yt, rt)rt < 0.2625, thus confirming the relevance of the approximate system (12).

In economic terms, our results are that consumption increases by about 2% per percentage

point increase in the interest rate, whereas the percentage changes in consumption and wealth

are about equal.

3 Estimation

In this section we describe how to estimate the equilibrium system (11) using macro and

financial data. First, we integrate the system to obtain the exact discrete-time model. Sec-

tion 3.1 presents the resulting formulation of the model for estimation purposes. Section

3.2 illustrates (i) how reduced-form parameters can be estimated by means of standard

regression-based methods, and (ii) how structural parameters are obtained using minimum

distance. Section 3.3 shows how structural parameters may alternatively be estimated di-

rectly using the martingale estimating function approach. Our illustrations are based on the

8We tried alternatives (e.g., Cr/Ct constant), and results were qualitatively similar.
9Our non-linear solver is based on the CompEcon toolbox for Matlab (cf. Miranda and Fackler, 2002).

10Since wealth is not bounded, we consider Kt = 1 as a benchmark and explore the region 0.5 < Kt < 1.25,
while for the interest rate we study a strip around its long run mean, 0.8γ < rt < 1.2γ. We employ 10 and
7 Chebychev polynomial bases for Kt and At = rt, at standard Chebychev nodes.
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AK-Vasicek model with logarithmic utility. In the appendix we show the generalization of

our estimation approach to the case of CRRA preferences, as in system (12).

3.1 Discrete-time formulation

In order to accommodate the discrete-time nature of the data, we integrate over s ≥ t,

employing exact solutions whenever possible. Using the system of differential equations

(11), we obtain

ln(Cs/Ct)−
∫ s

t

rvdv = −
(
ρ+ δ + 1

2
σ2
)
(s− t) + σ(Zs − Zt), (13a)

ln(Ys/Yt)−
∫ s

t

rvdv = κγ

∫ s

t

1/rvdv − 1
2
η2
∫ s

t

1/r2vdv −
(
κ+ ρ+ δ + 1

2
σ2
)
(s− t)

+

∫ s

t

η/rvdBv + σ(Zs − Zt), (13b)

rs = e−κ(s−t)rt + (1− e−κ(s−t))γ + ηe−κ(s−t)

∫ s

t

eκ(v−t)dBv. (13c)

This system of three equations forms the basis of our first empirical specifications. At the

same time it illustrates the main ideas underlying our approach. First, the continuous-

time analysis delivers the explicit functional forms of the relations among observables.

Second, the availability of interest rate data at higher frequency (say, daily) than con-

sumption and production (monthly or quarterly) allows precise approximation of the or-

dinary (although not the stochastic) integrals involving the interest rate by summation over

days. In our applications we approximate the integrals by the Riemann sum
∫ s

t
g(rv)dv ≈

(s − t)
∑P

i=1 g(rt+i(s−t)/P )/P , where g(·) is a smooth function of rt+i(s−t)/P , the prevailing

interest rate on day i in the period between t and s, and P is the number of days in the

period.11 Third, the structural parameters enter into the coefficients on the terms involving

interest rates, highlighting that financial data help identify the parameters of interest. The

system is in fact linear in a set of reduced-form parameters that in turn are known functions

of the structural parameters.

We have some choice in turning system (13) into an empirical specification. Initially,

we specify a system of three regression equations for equidistant macro data, i.e., we define

∆ ≡ s− t (∆ = 1/12 for monthly macro data, ∆ = 1/4 for quarterly). Given the higher (say,

daily) frequency of the interest rate data, an alternative would be to start out with separate

estimation of the third equation, but the full system is likely closer to that required for more

complicated models (e.g., if consumption or income enters endogenously in the interest rate

11For notational convenience, we write P as a constant, but in our empirical approach we use the actual
number of days in the period.
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equation), and the high-frequency property of the interest rate data is in any case exploited

in the approximation of the integrals as Riemann sums.

3.2 A regression-based approach

In this section we propose simple regression-based procedures to obtain parameter estimates.

To start with, we employ unrestricted ordinary least squares (OLS) to get reduced-form pa-

rameters, although this does not identify the structural parameters of interest. Next, we

consider cross-equation correlation, controlling for endogeneity through instrumental vari-

ables, and estimation of structural parameters by minimum distance.

3.2.1 Reduced-form model

With s− t fixed at ∆, system (13) is linear in a set of reduced-form parameters and may be

recast as

yj,t = xj,tβj + εj,t, j = C, Y, r, (14)

where the left-hand side variables are yC,t = ln(Ct/Ct−∆) −
∫ t

t−∆
rvdv, yY,t = ln(Yt/Yt−∆)−∫ t

t−∆
rvdv, and yr,t = rt. Simlarly, the right-hand side variables xt = (xC,t, xY,t, xr,t), with

xC,t = 1, xY,t = (1,
∫ t

t−∆
1/rvdv,

∫ t

t−∆
1/r2vdv), and xr,t = (1, rt−∆). The reduced-form or

linear parameters βC , βY = (βY,1, βY,2, βY,3)
⊤, and βr = (βr,1, βr,2)

⊤ are given in terms of

the structural parameters as

βC = −
(
ρ+ δ + 1

2
σ2
)
∆, (15a)

βY,1 = −
(
κ + ρ+ δ + 1

2
σ2
)
∆, (15b)

βY,2 = κγ, (15c)

βY,3 = −1
2
η2, (15d)

βr,1 = (1− e−κ∆)γ, (15e)

βr,2 = e−κ∆. (15f)

Hence, the system (13) can be summarized in form of simple regression equations, with error

terms given by

εC,t = σ(Zt − Zt−∆), (16a)

εY,t =

∫ t

t−∆

η/rvdBv + σ(Zt − Zt−∆), (16b)

εr,t = ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv. (16c)
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For a simple reduced-form estimator, linearity in β suggests unrestricted OLS,

β̂j = (x⊤j xj)
−1x⊤j yj, j = C, Y, r, (17)

where xj is the matrix with typical row xj,t and yj the vector with typical entry yj,t. Struc-

tural parameter estimates obtained by minimum distance appliued to the reduced-form esti-

mates (17) using the link (15a)-(15f) serve as useful benchmarks for assessing more elaborate

structural approaches.

3.2.2 Cross-equation correlation

Unrestricted OLS estimation (17) allows for different variances of the error terms εj,t, j =

C, Y, r, in the sense that it is carried out separately by equation, but it does not exploit

any other property of the errors. Classical seemingly unrelated regressions (SUR) analysis

is intended to exploit cross-equation correlation in cases where the right-hand side variables

are not common across equations. The present model structure implies both different right-

hand side variables (indeed, of different dimensions) across the equations, and cross-equation

correlation. In particular, from (13), the errors in (14) take the form (16a)-(16b), where, e.g.,

the term σ(Zt − Zt−∆) is common to both (16a) and (16b). This suggests that a standard

SUR correction of the reduced-form estimates should lead to better structural parameter

estimates (using minimum distance). In particular, the reduced-form SUR estimates are

more efficient than OLS (see the appendix for details on the SUR estimator and constrained

nonlinear regression estimates that are asymptotically equivalent to the resulting minimum

distance estimates).

Let ε̂ be the T × 3 matrix of OLS residuals, with typical element {ε̂j,t}, where T is the

number of time periods in the data set. The SUR estimate of the 3 × 3 contemporaneous

system variance-covariance matrix is Σ̂ = ε̂⊤ε̂/T (in particular, the residual variance esti-

mates along the diagonal coincide with the standard OLS assessments), and the FGLS-SUR

estimate of β is

β̂SUR = (x⊤V̂ −1x)−1x⊤V̂ −1y, (18)

where y is the 3T -vector stacking the yj, x is the conformable matrix with the xj along

the block-diagonal, and V̂ −1 = Σ̂−1 ⊗ IT , with IT the identity matrix and ⊗ the Kronecker

product. The standard SUR assessment of the asymptotic variance-covariance matrix of

β̂SUR is V̂SUR = (x⊤V̂ −1x)−1. Note that the (i, j)’th block of the matrix being inverted is

Σ̂ijx⊤i xj , with Σ̂ij the (i, j)’th entry in Σ̂−1, and if estimated covariances Σ̂ij (i 6= j) are zero

then the estimated asymptotic variance of β̂j coincides with the OLS assessment Σ̂jj(x
⊤
j xj)

−1.

More generally, the SUR approach suggests that the variance-covariance matrix V̂OLS of the

11



unrestricted OLS estimator from (17) has blocks estimated as Σ̂ij(x
⊤
i xi)

−1x⊤i xj(x
⊤
j xj)

−1, and

V̂OLS ≥ V̂SUR in the partial order of positive semi-definite matrices.

3.2.3 Structural parameters

The structural parameters are estimated by exploiting the manner in which they enter into

the reduced-form (linear) parameters β from (15a)-(15f). The estimated variance-covariance

matrix of either β̂OLS or β̂SUR may form the basis of a minimum distance approach (see

Section 3.2.5 below). The minimum distance estimator based on SUR should be more ef-

ficient than that based on OLS. Estimators that are asymptotically equivalent to the two

minimum distance estimators are alternatively obtained by minimizing the OLS respectively

the SUR objective function under the relevant structural restrictions (15a)-(15f) on β. This

amounts to weighted nonlinear regression and is carried out by iterating over the structural

parameters. In particular, the OLS objective is
∑

j=C,Y,r ε
⊤
j εj/Σ̂jj and the SUR objective

∑T
t=1 ε

⊤
t Σ̂

−1εt, where εj and εt are residual vectors of dimension T and 3, respectively, with

typical elements εj,t.

If estimated residual variances or covariances are used to identify structural parameters,

then these may be included in the minimum distance approach, using asymptotic indepen-

dence between estimated β̂ and Σ̂. Again, an asymptotically equivalent estimator may be

based on the SUR objective function, with Σ as it depends on structural parameters instead

of as Σ̂, and the nonlinear minimization is over structural parameters as they enter Σ as well

as ε. This use of the Gaussian log-likelihood function amounts to quasi maximum likelihood

(QML) since clearly εY,t in (16b) is non-Gaussian.

3.2.4 Endogeneity

The regression approaches (OLS and SUR) do not control for possible endogeneity of right-

hand side variables in (13)-(16), which may be an issue in the DSGE model. In particular,

xY,t includes two integrals involving the evolution of the interest rate from t −∆ through t

and so is correlated with both εr,t and εY,t. The standard regression-based tool for handling

endogeneity is instrumental variables (IV) or two-stages least squares (2SLS). Here, we con-

sider first-stage regressions of each of xY,t,2 =
∫ t

t−∆
1/rvdv and xY,t,3 =

∫ t

t−∆
1/r2vdv on their

respective lags xY,t−∆,2 and xY,t−∆,3 and an intercept. Next, in the computation (17) of β̂Y ,

fitted values from the first stage regressions replace xY,t,2 and xY,t,3. Third, fitted residuals

are calculated using the new second stage estimate β̂Y but the original xY,t,2 and xY,t,3 (not

their fitted values from the first stage), and these residuals form the basis of the 2SLS as-

sessment of Σ̂. Finally, the FGLS-SUR-IV step is carried out using this new Σ̂ in calculating

β̂SUR in (18) and again using the fitted values for xY,t,2 and xY,t,3. Once again, minimum

12



distance or restricted (nonlinear) regression is used to estimate structural parameters. The

minimum distance approach requires a variance-covariance matrix, and this has the same

form as before, but with the new Σ̂ and with fitted values for the relevant portions of x, and

similarly for the OLS and SUR objective functions for the restricted nonlinear regressions.

3.2.5 Minimum distance

The structural parameters are κ, γ, η, ρ, δ, and σ, a total of six. From (15), we may identify

four structural parameters, i.e., κ, γ, η, ρ+ δ + 1
2
σ2, the latter being a combination of three

of the original six, if the functional form of the error variances (the variances of (16a)-

(16c)) are not exploited to help identification. By including the variance of the consumption

residual (16a) as a separate moment, we may identify one additional structural parameter,

i.e., κ, γ, η, ρ+ δ, and σ are identified, since σ2 is separately identified from the variance of

(16a).

We obtain the structural model parameters from the OLS, SUR, and FGLS-SUR-IV

reduced form parameter estimates using a minimum distance approach. An alternative

(asymptotically equivalent) method is restricted (nonlinear) regression, described in the ap-

pendix. We carry out minimum distance estimation based on three different unrestricted

parameter sets from the reduced form regressions: (1) the estimates of β in (15); (2) β along

with the variance σ2∆ of the consumption equation residual in (16a); (3) β along with the

variances of the consumption and interest rate residuals (16a) and (16c). The first of these

is applied to both the OLS and SUR reduced form parameter estimators, the latter two

only to OLS. In each of the cases considered, labeled with subscript i, we use a numerical

optimization algorithm to solve the problem

φ̂ = argmin
φ

(ωi(φ)− ω̂i)
⊤ Ω̂−1

i (ωi(φ)− ω̂i) ,

where φ denotes the relevant vector comprising four or five structural parameters. Thus,

when no variances are included, φ = (κ, γ, η, ρ+δ+ 1
2
σ2)⊤. If the variance of the consumption

equation is included (or the variances of both the consumption and interest rate equations),

then σ is identified and enters as a separate argument, φ = (κ, γ, η, ρ+ δ, σ)⊤. The reduced

form estimates are collected in

ω̂1 = β̂, Ω̂−1
1 =




Σ̂CCx⊤CxC Σ̂CY x⊤CxY Σ̂Crx⊤Cxr
Σ̂Y Cx⊤Y xC Σ̂Y Y x⊤Y xY Σ̂Y rx⊤Y xr
Σ̂rCx⊤r xC Σ̂rY x⊤r xY Σ̂rrx⊤r xr


 ,

ω̂2 =

(
ω̂1

Σ̂CC

)
, Ω̂−1

2 =

(
Ω̂−1

1 06×1

01×6

(
2Σ̂2

CC

)−1

)
, ω̂3 =

(
ω̂2

Σ̂rr

)
, Ω̂3 =

(
Ω̂−1

2 07×1

01×7

(
2Σ̂2

rr

)−1

)
,

13



as before with xj , j = C, Y, r, denoting the regressors for each regression collected in a matrix

for all observations. As already discussed, non-zero off-diagonal blocks is an immediate

extension (the SUR case, i.e., Ω̂1 = V̂SUR is the inverse of the matrix with blocks Σ̂CC(x⊤CxC),

Σ̂Y C(x⊤Y xC), etc.). The vectors mapping the structural parameters to the reduced form

estimates are (see (15a)-(15f))

ω1(φ) =
(
−(ρ+ δ + 1

2
σ2)∆ −(κ + ρ+ δ + 1

2
σ2)∆ κγ −1

2
η2 (1− e−κ∆)γ e−κ∆

)⊤
,

ω2(φ) =
(
ω1(φ)

⊤ σ2∆
)⊤
,

ω3(φ) =
(
ω2(φ)

⊤ 1
2
η2(1− e−2κ∆)/κ

)⊤
.

Standard errors on the structural parameters are obtained using the delta method. When

controlling for endogeneity using the FGLS-SUR-IV method, fitted values from the first stage

are used for all regressors in the expressions for Ω̂i, but not when calculating the residuals

used to estimate the Σ̂ij factors in the expressions, although the residuals are based on IV-

corrected second-stage coefficient estimates in this case. This combination of FGLS, SUR,

and IV/2SLS (labeled FGLS-SUR-IV) appears to be novel.

3.3 The martingale estimating function approach

The issue remains whether all endogeneity issues in the structural DSGE model have been

fully corrected for. The lagged values of the relevant integrals involving the interest rate may

be expected to correlate with rt−∆, and hence with εY,t from (16b), although presumably

less than without lagging (this is the idea of the instrumentation). Any such correlation

between the error terms and the right-hand side variables (even when using fitted values)

indicates that part of the endogeneity issue remains. For a full solution and a consistent and

asymptotically efficient estimator, we turn to a computationally slightly more demanding

procedure, the martingale estimating function (MEF) approach, exploiting the martingale

structure of the model. This important next step builds naturally on the above regression-

based approach. The latter has the advantage of permitting easy off-the-shelf implemention,

and provides useful benchmark estimates and starting values for iterative solution for the

optimal MEF estimator.

Let φ denote the parameter vector, whether the structural parameters of interest, or sim-

ply β from the reduced form. Let mt = mt(φ) denote the N -vector of martingale increments

generated by the model, expressed in terms of data and parameters. Specifically, in the AK-

Vasicek model with logarithmic utility, we let mt = εt = (εC,t, εY,t, εr,t)
⊤ from (16a)-(16b),

so N = 3. Clearly, mt is a martingale difference sequence, and from system (13) we have
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that in terms of data and parameters

mt =




ln(Ct/Ct−∆)−
∫ t

t−∆
rvdv +

(
ρ+ δ + 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rvdv +

(
κ+ ρ+ δ + 1

2
σ2
)
∆− κγ

∫ t

t−∆
1/rvdv +

1
2
η2
∫ t

t−∆
1/r2vdv

rt − (1− e−κ∆)γ − e−κ∆rt−∆


 ,

(19)

where the integrals are approximated by Riemann sums over days between t−∆ and t. More

general versions of the model give rise to other mt, some with higher dimension N .

3.3.1 The MEF method

The MEF method differs slightly from the generalized method of moments (GMM) of Hansen

(1982). It is at least as efficient as GMM—usually strictly more efficient. It is instructive

to start with the GMM, then show how to modify this appropriately, to see how the MEF

method comes about. Since mt is a martingale difference sequence, we have Et−∆ (mt) = 0.

The standard GMM approach is to consider instruments, say zt, belonging to the information

set and hence known at time t − ∆, so that Et−∆ (zt ⊗mt) = 0, where ⊗ is the Kronecker

product. For example, the instruments could be lagged RHS variables from the regressions,

zt = (1,
∫ t−∆

t−2∆
1/rvdv,

∫ t−∆

t−2∆
1/r2vdv, rt−2∆)

⊤, since these are all in the information set at t−∆.

Defining ht = ht(φ) = zt ⊗mt, we have that ht is of dimension dim h = dim z ×N , or 12 in

the AK-Vasicek model with logarithmic utility. To construct the GMM estimator, let

HT =
1

T

T∑

t=1

ht (20)

be the sample average, evidently a martingale at the true value of the parameter φ. Since

the unconditional expectation E(ht) = 0, it would be natural to choose the estimator to

match the sample analogue HT of E(ht) to zero. Typically, dim h > dimφ, so it is not

possible to solve the equation HT = 0 exactly. Instead, the GMM estimator is defined as

the minimizer of HT (φ)
⊤WHT (φ), where W is a weight matrix. Optimal GMM is obtained

by using the identity matrix IT for W in a first step minimization, then using the resulting

estimator to calculate a consistent estimate of var(HT )
−1 that is used for W in the second

step minimization.

To see how the MEF approach differs from GMM, note that the first order conditions for

the minimization in GMM are

∂HT (φ)
⊤

∂φ
WHT (φ) = 0, (21)

that is, the same number of zero conditions as number of parameters in φ, as it should be.

An estimator that is asymptotically equivalent to GMM may be obtained by solving the
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dimφ equation G
∑T

t=1 ht(φ) = 0, where G is an initial consistent estimate of the dimφ ×
dimh matrix ∂HT (φ)

⊤/∂φ · W in (21). Thus, G could be based on the first step GMM

estimator, just like W . The equations are solved by treating G as fixed and finding φ

that sets (21) exactly equal to zero, and the result is asymptotically equivalent to optimal

GMM. It is now apparent that a more flexible estimation approach obtains by not just

solving the equations with a fixed dimφ× dimh matrix G from the first step (the approach

asymptotically equivalent to optimal GMM), but instead allowing a separate dimφ× dim h

matrix each time period, say, gt. Thus, there are still dimφ equations, but they now take

the more general form
T∑

t=1

gtht(φ) = 0, (22)

instead of G
∑T

t=1 ht(φ) = 0. Clearly, this is a zero-mean martingale for any choice of weight

matrices gt, which may depend on data through t−∆. They may also depend on parameters,

but here we use initial consistent estimates, i.e., all gt may be calculated after the first step

estimation. The question is how to choose the gt optimally. If they indeed vary across time,

the resulting estimator differs from optimal GMM. The special case gt ≡ G returns the

optimal GMM estimator. The relevant theory for optimal estimators is based on Godambe

and Heyde (1987), and the dynamic case (optimal choice of time-varying gt) is treated in

Christensen and Sørensen (2008).

In fact, it is unnecessary to expand mt to ht by introducing the instruments zt in ht =

zt ⊗mt, since if mt is used instead of ht and in fact zt is needed in the optimal estimator,

then zt will just be part of the optimally chosen gt. Thus, we leave the problem involving zt

and define the martingale estimating function

MT =
T∑

t=1

wtmt, (23)

clearly a zero-mean martingale for any choice of weight matrices wt, which may depend on

data through t − ∆. A martingale estimating function (or MEF) is given by specifying wt

as a series of d × N matrices, where d = dimφ. At the true parameter value, E(MT ) = 0,

and φ is estimated by solving the martingale estimating equation

MT (φ) = 0. (24)

The optimal weights are given by

wt = ψ⊤
t (Ψt)

−1, (25)

where Ψt is the conditional variance of the martingale increment,

Ψt = V art−∆(mt) = Et−∆(mtm
⊤
t ), (26)
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and ψt the conditional mean of its parameter derivative

ψt = Et−∆(∂mt/∂φ
⊤). (27)

The conditioning on information available through t−∆ requires integrating out with respect

to the evolution of the interest rate from t−∆ through t. This can be computationally more

demanding than the regression-based approaches, but it does circumvent the endogeneity

problem in the DSGE model. The choice of weights (25) gives the optimal martingale esti-

mating function, across choice of weights wt. The optimal weights do depend on parameters,

but these may be replaced by initial consistent estimates, e.g., from GMM, without altering

the asymptotic behavior of the martingale estimate. This is consistent (in particular, the

endogeneity issue is resolved) and asymptotically normal,

√
T (φ̂− φ) → N (0, VMEF ), (28)

with asymptotic variance-covariance matrix given by

VMEF =
(
E(ψ⊤

t (Ψt)
−1ψt)

)−1
, (29)

consistently estimated by the inverse sample average V̂MEF =
(
T−1

∑T
t=1 ψ

⊤
t (Ψt)

−1ψt

)−1
. If

φ = β, then ψt is block-diagonal with xj,t in the j’th diagonal block, j = C, Y, r. When φ

consists of the structural parameters, ψt is this block-diagonal matrix post-multiplied by the

Jacobian of the transformation ω1(φ) from structural parameters to β. Again, in the AK-

Vasicek model with log utility, this Jacobian has rank five, so five structural parameters may

be identified whenN = 3. The martingale differencemt may be expanded with ε2C,t−σ2∆, and

possibly ε2r,t− η2(1− e−2κ∆)/(2κ), to identify one more structural parameter, i.e., separating

ρ+ δ and σ2, and ψt then has one more column.

3.3.2 Comparison of MEF and GMM

Before applying the MEF method to the DSGE model, let us briefly return to the com-

parison between MEF and optimal GMM. Obviously, the GMM estimator is consistent,

and the standard consistent estimate of the asymptotic variance takes the form V̂GMM =(
(T−1

∑T
t=1 ∂ht/∂φ

⊤)⊤(T−1
∑T

t=1 hth
⊤
t )

−1(T−1
∑T

t=1 ∂ht/∂φ
⊤)
)−1

. Sometimes, a Newey and

West (1987) correction is used in the middle matrix, the estimate of var(ht), but it is un-

necessary under the null that mt and hence ht is a martingale difference sequence, and in

any case it makes no difference for the comparison. In particular, except in the special case

where the two estimators coincide, the MEF estimator is strictly more efficient than optimal

GMM,

V̂MEF < V̂GMM ,
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in the partial order of positive semi-definite matrices. This is essentially a generalized

Cauchy-Schwartz inequality, once it is recognized that ht may be used for mt in the MEF

case (the resulting MEF estimators based on ht and mt coincide, as the weights if neces-

sary incorporate zt, following the above discussion). Specifically, we always have VGMM =(
E(∂ht/∂φ

⊤)⊤var(ht)
−1E(∂ht/∂φ

⊤)
)−1

, and by iterated expectations and using ht for mt

we have ψt = Et−∆(∂ht/∂φ
⊤), Ψt = Et−∆(hth

⊤
t ), and therefore E(∂ht/∂φ

⊤) = E(ψt),

var(ht) = E(Ψt). It follows that the efficiency comparison is simply

VMEF =
(
E(ψ⊤

t (Ψt)
−1ψt)

)−1
<
(
E(ψt)

⊤E(Ψt)
−1E(ψt)

)−1
= VGMM .

The asymptotic variance of the martingale estimator is smaller than that of GMM because

the expectation is taken after multiplying the relevant matrices, instead of before, as in

GMM.

When does the MEF method reduce to GMM? The GMM estimator solves HT (φ) =
∑T

t=1 ht(φ) = 0 in the exactly identified case, and (up to asymptotic equivalence) G
∑T

t=1 ht(φ) =

0 in the overidentified case where dim h > dimφ, with G = ∂HT (φ)
⊤/∂φ · W . The

question is when the MEF estimator solving MT (φ) =
∑T

t=1 ψ
⊤
t (Ψt)

−1mt(φ) = 0 with

ψt = Et−∆(∂mt/∂φ
⊤) and Ψt = Et−∆(mtm

⊤
t ) takes this standard GMM form. This re-

quires that the researcher has started out with either (i) moments not given by the N -vector

of martingale differences mt, and also not by ht = zt⊗mt, for arbitrary zt in the information

set at t − ∆, but instead given by the dimφ vector ψ⊤
t (Ψt)

−1mt(φ); or, (ii), moments in

fact given by the N -vector mt,in a situation with N < dimφ, and where an expansion of

moment conditions from the original N -vector mt to ht = zt ⊗ mt happens to deliver the

dimφ vector ht = ψ⊤
t (Ψt)

−1mt(φ). In addition, the vector zt that makes this happen must

be in the information set at t−∆. Since the conditional mean ψt and conditional variance

Ψt typically depend on parameters, this case rarely occurs for standard instrumental vari-

ables zt in the data set. Firstly, it would require that dimφ = dim z ·N . Secondly, writing

ht = zt⊗mt = (zt ⊗ Idim z)mt, it also requires that ψ⊤
t (Ψt)

−1 has very special structure, i.e.,

it can be represented in the Kronecker product form zt ⊗ Idim z.

In all other cases, the MEF and GMM estimators differ, with VMEF < VGMM , i.e., the

martingale estimator is asymptotically strictly more efficient than GMM. In our specific

DSGE applications, we see below that ψ⊤
t (Ψt)

−1 is complicated, certainly not on Kronecker

product form (case (ii)), and it is also highly unlikely that a researcher would a priori

start with moment conditions ψ⊤
t (Ψt)

−1mt(φ) rather than mt(φ) (case (i) above), except if

purposefully applying the MEF rule of always transforming from any arbitrary moment mt

(univariate or multivariate) to ψ⊤
t (Ψt)

−1mt(φ) at the outset. In this sense, MEF could be

considered GMM with optimal (typically parameter-dependent) instruments, namely, using
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ψ⊤
t (Ψt)

−1 instead of the standard but arbitrary zt ⊗ Idim z.

3.3.3 A martingale estimating function with three moment restrictions

For illustration, we report the functional form of the martingale estimating function for the

AK-Vasicek model with logarithmic utility. Let mt = εt = (εC,t, εY,t, εr,t)
⊤ be the 3-vector of

error terms (16), clearly a martingale difference sequence. This may be expressed in terms

of data and parameters as in (19), where the integrals are approximated by summation

over days between t − ∆ and t. This allows computing mt at trial parameter values. To

construct the MEF (24), we need the weights wt in (25), which depend on the conditional

mean of the parameter derivatives, ψt, and the conditional variance, Ψt, of mt. Here, we

have the conditional variances Ψt,11 = σ2∆, Ψt,22 = η2Et−∆(
∫ t

t−∆
1/r2vdv)+σ2∆, and Ψt,33 =

η2(1 − e−2κ∆)/(2κ). Similarly, the conditional covariances are Ψt,12 = σ2∆, Ψt,13 = 0, and

Ψt,23 = η2e−κ∆Et−∆

(
(
∫ t

t−∆
1/rvdBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

)
. Since analytical expressions are

not available, we use Euler approximations for Ψt,22 and Ψt,23,

Ψt =




σ2∆ σ2∆ 0
σ2∆ σ2∆+ η2∆/r2t−∆ η2e−κ∆∆/rt−∆

0 η2e−κ∆∆/rt−∆
1
2
η2(1− e−2κ∆)/κ


 . (30)

Consistency and the expression for the asymptotic variance are unaffected by this approx-

imation. Using martingale increments (19), we get the conditional mean of the derivatives

with respect to the parameter vector φ = (κ, γ, η, ρ+ δ, σ)⊤ as

ψt =




0 0 0 ∆ σ∆

∆− γEt−∆

∫ t

t−∆
1/rvdv −κEt−∆

∫ t

t−∆
1/rvdv ηEt−∆

∫ t

t−∆
1/r2vdv ∆ σ∆

−∆e−κ∆γ +∆e−κ∆rt−∆ −(1− e−κ∆) 0 0 0


 .

(31)

For the conditional expectations we first interchange the order of integration in (31), then

use the deterministic Taylor expansion (e.g. Äıt-Sahalia, 2008), which for s ≥ u is

E(g(rs)|ru) =
k∑

i=0

∆i

i!
Aig(ru) +O(∆k+1), (32)

where A is the infinitesimal generator in the Vasicek model, Ag(x) = κ(γ−x)g′(x)+ 1
2
η2g′′(x).

The function g(·), for example g(x) = 1/x in ψt,21, must be sufficiently smooth. For illustra-

tion, for ψt,21 a first-order Taylor expansion, k = 1, yields
∫ t

t−∆

Et−∆(1/rv)dv ≈
∫ t

t−∆

(
1/rt−∆ + (v − (t−∆))

(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

))
dv

= ∆/rt−∆ − (t−∆)
(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

)
∆

+1
2
(t2 − (t−∆)2)

(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

)

= ∆/rt−∆ −
(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2.

19



Similarly, for ψt,23 a first-order Taylor expansion yields

∫ t

t−∆

Et−∆(1/r
2
v)dv ≈ ∆/r2t−∆ −

(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2.

Using a first-order Taylor expansion for ψt,21, ψt,22, and ψt,23 in (31), it can be easily verified

that the transpose of the conditional mean of parameter derivatives ψ⊤
t reads




0 ∆− γ
(
∆/rt−∆ −

(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2
)

−∆e−κ∆γ +∆e−κ∆rt−∆

0 −κ
(
∆/rt−∆ −

(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2
)

−(1− e−κ∆)
0 η

(
∆/r2t−∆ −

(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2
)

0
∆ ∆ 0
σ∆ σ∆ 0



.

(33)

This completes the construction of the martingale estimating functionMT =
∑

t ψ
⊤
t (Ψt)

−1mt.

The conditionMT (φ) = 0 involves the same number of equations and unknowns, and is solved

exactly for the optimal estimator φ̂. The asymptotic distribution is given by (28)-(29).

3.3.4 Latent Variables and Missing Data

So far, we have considered the case where all variables in the system are observable, albeit

at different frequencies. Our approach can be generalized to the case of latent variables, as

we now illustrate. The ability to accommodate latent variables is important for applications

to a number of important DSGE models, e.g., models with stochastic volatility, stochastic

discount rates, labor and capital in a production function with stochastic TFP, etc.. In this

section, we consider two representative cases, set in the context of the AK-Vasicek model:

(i) The interest rate rt is unobserved, i.e., latent; and (ii) output Yt is observed at a lower

(say, quarterly) frequency than consumption Ct (observed monthly). The first case serves

to illustrate the approach to the case of missing data series. For example, expected inflation

and hence the real rate of interest may be treated as missing. This case also covers models

involving unobserved state variables, such as stochastic volatility. Case (ii) reinforces our

use of data sampled at mixed frequencies. For example, output may be proxied by industrial

production at the monthly frequency, but it may be of interest to compare with results

using actual output, available only quarterly. In the latter case, consumption need not be

aggregated to quarterly frequency.

The basis of the MEF approach with complete data is that the condition E (MT ) = 0

is satisfied at the true parameter value, where MT =
∑T

t=1wtmt. In the incomplete data

setting (i) where rt is latent, define Ft as the information set generated by {Cs, Ys}ts=1 (but

not the missing interest rates). By E (MT ) = 0 and iterated expectations, we have both

E (
∑

twtE (mt|Ft)) = 0 and E (
∑

twtE (mt|Ft−1)) = 0, for weights wt depending only on
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information through t − 1. Thus, in the estimation, we may replace additive terms in the

moments mt by their conditional expectations given either Ft or Ft−1. In particular, without

daily interest rate data, this allows replacing the integrals involving the interest rate by

conditional expectations given monthly interest rate proxies, based on the information set.

In the stochastic AK-Vasicek model, this allows deriving moments for estimation, say, m∗
t ,

given by

E (mt|Ft−∆) =


ln(Ct/Ct−∆)− E
(∫ t

t−∆
rvdv|r∗t−∆

)
+
(
ρ+ δ + 1

2
σ2
)
∆

ln(Yt/Yt−∆) +
(
κ+ ρ+ δ + 1

2
σ2
)
∆− E

(∫ t

t−∆
rvdv + κγ

∫ t

t−∆
1/rvdv − 1

2
η2
∫ t

t−∆
1/r2vdv|r∗t−∆

)

r∗t − (1− e−κ∆)γ − e−κ∆r∗t−∆


 ,

(34)

where r∗t−∆ is an interest rate proxy based on consumption and income data through t−∆.

Here, ∆ = 1 is used in the empirical work. From earlier, the model implies Kt = Yt/rt and

Ct = ρKt, so a valid proxy at the macro frequency is r∗t = ρYt/Ct. In the simulated MEF

approach, the conditional expectations of the integrals in (34) are computed by integrating

out the latent interest rate process rv by simulation. Thus, each integral involves drawing

a path for rv from drv = κ(γ − rv)dv + ηdBv using an Euler scheme from v = t − ∆ to

t, starting at the proxy value for r∗t−∆, and the expectation is formed by averaging over

paths. More complicated models may be treated similarly, in each case using the model to

back out latent state variables from observables. The interest rate (latent state variable) is

similarly integrated out of wt = ψ⊤
t (Ψt)

−1, or, in the specific case, rt−∆ is simply replaced

by its proxy r∗t−∆ in the expressions (33) and (30) for ψ⊤
t and Ψt. In the iterative solution of

the estimating equation
∑

t ψ
⊤
t (Ψt)

−1m∗
t = 0, the parameter dependence (in our particular

model, through ρ) of the implied state variables is accounted for. The approach is general,

e.g., in the stochastic volatility case, too, the relevant state variable (volatility) would be

implied out of the available data for given trial parameter values and at the given sampling

frequency, then integrated out between sampling periods using the model.

The mixed frequency case (ii) where output is only available quarterly is slightly different.

Here, a complete (monthly) output proxy series Y ∗
t is simply constructed recursively by

letting Y ∗
t = Yt in the (quarterly) periods where output data are available, and

Y ∗
t = exp

(
ln(Y ∗

t−∆) +

∫ t

t−∆

rvdv −
(
κ+ ρ+ δ + 1

2
σ2
)
∆+ κγ

∫ t

t−∆

1/rvdv − 1
2
η2
∫ t

t−∆

1/r2vdv

)

in the intra-quarter periods where output is missing. This is not simulation, but model

consistent prediction. In particular, the resulting proxy series Y ∗
t depends on the parameters.
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The proxy series is is now substituted for Yt in the original estimating equation
∑

twtmt = 0.

When solving for the parameter estimates, the dependence of the constructed output proxy

series on trial parameter values is again accounted for.

In both cases, (i) and (ii), the approach is akin to filtering. Thus, in the simulated MEF

approach, case (i), mt in the estimating equation is recast in terms of a set of conditional

expectations or filtered predictions, given information actually available. In (ii), as well, a

conditional prediction given the actual observations is used to replace missing data. In both

cases, standard errors may be adjusted using the bootstrap.

4 Simulation Study

To assess the estimation methods from the previous section we run a simulation study. We

first detail the set-up of our analysis. As in the previous section, our illustration is based on

the AK-Vasicek model with logarithmic utility. We do point out, however, the differences

for the case of the CRRA preferences. Finally, we discuss the findings for the AK-Vasicek

model with logarithmic or general CRRA preferences.

4.1 Set-Up

We simulate 25 years of both monthly and quarterly data from the AK-Vasicek model as

given in Section 2.4.1. We use simple Euler approximations to the differential equations in

(11). The step length of the Brownian terms is taken as 1/3000. This corresponds to dividing

each of the 12 months of the year into 25 days, each in turn consisting of 10 periods.

There are two further computational issues when simulating from the AK-Vasicek model

with log preferences: Obtaining the integrals involving the interest rate and initialization

of the simulations. Concerning the first issue, we obtain the monthly integrals over the

interest rate, denoted with
∫ t

t−∆
g(rv)dv where ∆ = 1/12 as also in Section 3.1, by taking

the average of the functions g(rv) over the 25 simulated days per month. For example,∫ t

t−∆
1/rvdv for the monthly simulations is approximated by (

∑25
i=1 1/rt−∆+i∆/25)∆/25. For

the quarterly simulated data we use a similar approximation, but now over the 75 days in

the Euler approximation. Concerning the second issue, we initialize the variables as follows:

ln(Y0) = 0, r0 = γ, and ln(C0) = ln(ρ× Y0/r0).

When simulating from the AK-Vasicek model with CRRA preferences, there are only few

differences compared to the model with log preferences. Again, an Euler approximation is

used, now based on (38) in the Appendix. The main difference is that an additional term is

approximated using the Euler scheme, the third term
∫ t

t−∆
(1−Cv/Yv)rvdv in (38b) (cf. also

Appendix A.2).
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We generate 1,000 data sets and estimate the parameters according to the approaches

of Section 3. In particular, we estimate the parameters using the OLS, FGLS-SUR, FGLS-

SUR-IV, and MEF methods. In the first three cases, we use the minimum distance approach

to go from the reduced form estimates to the structural model parameters; in our exposition

we focus on the latter. We choose the data generating process (DGP) parameter values from

the numerical solution given in Appendix A.2.1. That is, for the AK-Vasicek model with

CRRA preferences we use κ = 0.2, γ = 0.1, η = 0.005, ρ = 0.05, δ = 0.05, σ = 0.05, θ = 2,

τ̄ = 0.207, and π̄ = 1.021. For the model with log preferences we take the same values for

the common parameters (while θ = 1, τ̄ = 0, π̄ = 1).

4.2 Results

[insert Table 1]

Table 1 provides the results for the simulation study of the AK-Vasicek model with log

preferences. In the first column we list the parameter values as they are used in the data

generating process (DGP), in columns 2-5 the estimates obtained on the simulated monthly

data, and in columns 6-9 the estimates for the quarterly data. For all four estimation methods

we provide the median estimate of each parameter, and below this the interquartile range of

the 1,000 estimates. For the three regression-based estimation methods, the estimates of γ

and ρ + δ + σ2/2 are remarkably close to the values used in the DGP. The mean-reversion

parameter κ is slightly more problematic: 0.2 is used in the DGP, and the estimates are 0.23,

0.16, and 0.22 for the OLS, FGLS-SUR, and FGLS-SUR-IV methods, respectively, using

monthly data. Given the relatively wide interquartile range, this is still within reasonable

distance. Thus, the estimates may be noisy, but not severely biased. The estimates of the

short rate innovation variance η do deviate from the DGP value, and in case of the OLS and

FGLS-SUR methods, the median estimates are relatively far from the DGP value, given the

interquartile range. Especially the OLS method produces a considerable positive bias in η.

Similar results hold for the quarterly data.

The fifth and ninth column of Table 1 show the median estimate obtained based on the

MEF approach. With MEF we are able to identify σ separately from ρ + δ, whereas the

regression approaches reported only identify ρ+δ+σ2/2. The martingale estimating function

approach is able to successfully estimate all parameters from the model. In particular, the

median estimates of γ, η, ρ + δ, and σ are very close to the DGP values. The κ estimate

are slightly higher than the DGP value in the monthly case, but somewhat closer using

quarterly data. In both cases, the median estimate and the DGP value are close relative to

the interquartile range.
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In unreported experiments,12 we implemented the expanded minimum distance methods

from Section 3.2.5, using the residual variance from the consumption or both the consump-

tion and interest rate equation as additional moments along with β in the regression-based

approach, thus allowing separate identification of σ and ρ+ δ in this case, too. The changes

in results were negligible for the reported parameters when only expanding with the con-

sumption residual variance, but the upward bias in the η estimate was reduced by including

the interest rate residual variance. The σ and ρ+ δ median estimates were similar to those

from the MEF approach. Overall, the preferred approach in terms of bias and interquartile

range appears to be the MEF, except for the estimation of κ based on monthly data.

[insert Figure 1]

In Figure 1 we provide the histograms of the 1,000 estimates that we obtain for the

parameters using the MEF approach on both monthly (Panel (A)) and quarterly (Panel

(B)) data. The figure confirms the findings from the table: γ, η and ρ+ δ are centered close

to the DGP values. In addition, it becomes clear that the mode of the histograms for κ and

σ are in fact quite close to the DGP values, but the estimates are skewed, thus causing the

difference between median estimates and DGP values reported in Table 1.

[insert Table 2]

Table 2 provides the output for the simulation study of the AK-Vasicek model with

CRRA preferences. Using the regression-based approach, most parameters are estimated

inaccurately, γ being one exception. In particular τ̄ , θ, and η are estimated with considerable

error. The difficulty in estimating these parameters appears in all three regression-based

methods. Even addressing cross-equation correlation through SUR or endogeneity of the

integral terms does not yield much improvement.13

[insert Figure 2]

In contrast, the estimates obtained with the MEF approach as reported in Table 2 are

relatively accurate. First, the approach allows identification of all nine model parameters.

The regression-based methods only identify seven parameters or parameter functions, and

expanding with error variances in the minimum distance approach no longer helps identifying

more parameters since the errors are more complicated (see (40a)-(40c)). Second, using

the MEF, all median parameter estimates are relatively close to those of the DGP. Even

12Results are available from the authors on request.
13Restricting either θ or τ̄ does not improve the estimates of the other parameters.
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parameters that are historically found difficult to obtain from data, such as θ, are estimated

accurately. In Figure 2 we provide the histograms of the 1,000 obtained series. As in the

histograms for the model with logarithmic preferences, the mode of each histogram is close

to the DGP value of the relevant parameter.

Taken together, the simulation study indicates that the martingale estimating function

approach is successful in obtaining parameter estimates from the data. The regression-

based methods exhibit reasonable performance for the AK-Vasicek model with logarithmic

preferences, but encounter difficulties in case of the more complicated model with general

CRRA preferences.

5 Data and Results

In this section we estimate the AK-Vasicek model with logarithmic preferences from Section

2.4.1 and with CRRA preferences from Section 2.4.2. We use the techniques from Section 3,

and employ both U.S. macro and financial data in our approaches.

5.1 Data

[insert Figure 3]

[insert Figure 4]

To estimate the systems (11) and (38) we need data on production, consumption, and the

short rate. We obtain these data for the US from the Federal Reserve Economic Dataset

(FRED), maintained by the Federal Reserve Bank of St. Louis. To measure production,

we use both real Industrial Production (IP), available at the monthly level, and real Gross

Domestic Product (GDP), available at the quarterly level. In Panel (A) of Figures 3 (monthly

data) and 4 (quarterly data) we show the time series plots of the growth rates of the variables,

the data actually used in our analysis. Our data set spans the period from January 1982 to

December 2000.

We combine the data on these aggregate macro series with financial data at higher fre-

quency, in particular, the short rate. The short rate as a theoretical concept in principle

corresponds to infinitesimal term to maturity. In applied work, it is sometimes treated as a

latent variable that needs to be filtered from observed yield time series (e.g., De Jong, 2000).

Chapman, Long, and Pearson (1999) show that when the short rate is proxied by available

short-term interest rates, this does not lead to economically significant problems. We follow

this approach, and take the 3-month interest rate as a proxy for the short rate. This rate

is available from the FRED data set at daily frequency. We use this series to obtain our
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monthly and quarterly series by taking the last observation in the relevant period.14 Panel

(B) of Figures 3 and 4 shows the interest rate series. In both the monthly and quarterly

series, the general downward trend of the series is evident. This is combined with multiple

increasing and decreasing interest rate cycles in our sample period.

Finally, we use the above series to compute approximations to the integrals for both

models. For the integrals that only depend on the short rate we approximate the monthly and

quarterly series of integrals using the daily spot rate observations. Following the systems (11)

and (38), we approximate three integrals:
∫ t

t−∆
g(rv)dv ≈ ∆/P

∑P
i=1 g(rt−∆+i∆/P ), where

rt−∆+i∆/P is the 3-month interest rate on day i of period t, and P the number of days in the

period between t − ∆ and t. For the model with CRRA preferences there is an additional

integral to consider, the third term in Equation (38b). We approximate this integral using∫ t

t−∆
(1 − Cv/Yv)rvdv ≈ ∆(1 − Ct−∆/Yt−∆)rt−∆.

15 Panel (C) of Figures 3 and 4 show the

resulting time series of approximations to the integrals.

5.2 Results

[insert Table 3]

Table 3 provides the estimates of the AK-Vasicek model with log preferences for both monthly

and quarterly data (using industrial production and GDP for output, respectively) of the

OLS, FGLS-SUR, FGLS-SUR-IV, and MEF approaches. The regression-based estimation

methods provide fairly similar estimates for each of the data frequencies (monthly and quar-

terly). The short rate is mean-reverting with speed parameter κ around 0.17 (0.05 to 0.11 for

quarterly data), the long-term rate it reverts to is about 9% and the volatility of the short

rate innovation is about 2%. The sum of structural parameters ρ + δ + σ2/2 is estimated

at 0.035. The MEF approach provides somewhat different results. Most notably, the mean

reversion parameter estimate is much higher, at 7.9 in monthly data, and 11.6 in quarterly.

In addition, σ is separately identified and estimated to about 0.9%. Based on the asymp-

totic t-statistics, all regression-based estimates are insignificant in monthly data, and only

γ (the long run interest rate) turns significant in quarterly data. In contrast, all estimates

are strongly significant at both data frequencies when using the MEF approach. In unre-

ported results, we implemented the expanded regression-based minimum distance methods

14A disadvantage is that the interest rate series is in nominal terms, rather than real. There are a number
of ways to overcome this, which is part of our research agenda. Dealing with this issue is not straightforward,
as in periods with short-term nominal rates very low (early and late 2000’s) real rates have been negative.

15For monthly data we only have the industrial production index, and not actual output. We obtain a
monthly output estimate by for each year weighting the annual GDP (calculated as the average of the four
quarterly GDP figures in a year) using as weights the monthly IP contribution to the annual total.
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including in addition the error variances, but estimated precision remained less than under

the MEF approach.

[insert Table 4]

Table 4 provides the estimates of the AK-Vasicek model with CRRA preferences using

the four methods. The results of the simulation study generated serious worries about the

performance of the regression-based methods for the general case. Though most of the

parameter estimates are roughly similar across approach and data frequency, the unstable

θ estimate may indicate such difficulties. Due to these reasons we focus on the estimates

obtained using the MEF approach. We highlight a few findings. When allowing for general

CRRA preferences, the MEF approach no longer yields a large estimate of κ. Instead,

mean reversion of the interest rate is modest and insignificant, with κ estimated at about

0.4 for monthly and 0.6 for quarterly data. The mean interest rate is estimated at about

5.3%, more than one percentage point below the estimate in the log utility case, and the

short rate volatility at 3.3%. The point estimate for risk aversion θ is about 6 for both

data frequencies, although with a great degree of uncertainty. The MEF approach separates

ρ + δ from σ under log utility and further separates ρ and δ in the general CRRA case,

but the latter separation seems less successful in the data. Thus, perhaps surprisingly, the

depreciation rate δ turns negative at both data frequencies, and the subjective rate of time

preference ρ seems too high, at 10.9% in monthly data, and 23.6% in quarterly. The volatility

of the stochastic depreciation rate σ is estimated to about 0.4 in monthly data, but is only

borderline significant in quarterly data (asymptotic t-statistic of 1.75).

The parameter estimates in the AK-Vasicek model with CRRA preferences are somewhat

different from the estimates obtained in the model with logarithmic preferences. This is not

unexpected, as the latter model is a restricted version of the former. In order to obtain

the logarithmic case out of the more general CRRA case, the parameter restrictions that

must hold are θ = 1, τ̄ = 0, and π̄ = 1. This suggests a drop in degrees of freedom of

three, going from nine free parameters to six. However, only five parameters are identified

under the logarithmic null (ρ and δ cannot be separated), thus suggesting a drop of four

degrees of freedom. Due to the relatively complicated model structure, the setting is one

where a nuisance parameter (say, ρ or δ) is only identified under the alternative. This type

of situation has been studied by Andrews and Ploberger (1994) and Hansen (1996), and the

asymptotic distribution of the Wald-type test on the three parameters is non-standard. In

our case, the evidence is against the restrictions, and particularly the wealth elasticity of

consumption π̄ at 0.25 in monthly data and 0.82 in quarterly is strongly significant and,

in particular, significantly below the unit value corresponding to logarithmic preferences.
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The interest sensitivity of consumption τ̄ is related to the marginal rate of intertemporal

substitution and in particular vanishes with log utility, and this is better in line with our

results.

6 Conclusion

The literature has been surprisingly quiet on the links between macroeconomics and finance,

though anecdotal evidence - such as the recent financial crisis - clearly shows that financial

markets and the real economy are closely linked.

This paper describes both regression-based procedures and the asymptotically efficient

martingale estimating function approach in order to estimate the structural parameters of

continuous-time DSGE models using macroeconomic and financial market data. We illus-

trate our approach by solving and estimating a stochastic AK model with mean-reverting

interest rates. Our results for both simulated and empirical data are very promising and

show that financial market and macro data can indeed be used jointly to facilitate the esti-

mation of structural parameters in continuous-time versions of the DSGE models. Overall,

on the methodological side, our work suggests that the martingale method is preferred over

the regression-based. It allows identifying all structural parameters, and estimates are more

precise, numerically stable, and economically meaningful. On the substantive side, our re-

sults indicate a long run mean of the short rate of interest around 5% with a 3% volatility

annually and weak mean reversion, as well as higher relative risk aversion than logarithmic.

The wealth elasticity of consumption is significantly below unity, the value corresponding

to log preferences, whereas the interest rate elasticity of consumption differs insignificantly

from the zero value implied by the log case. Development of further models in this class,

extending the Cox, Ingersoll, and Ross (1985a) framework to more elaborate specifications,

and formal testing of these is part of our research agenda.

A Appendix

A.1 The Bellman equation and the Euler equation

As a necessary condition for optimality, Bellman’s principle gives at time s

ρV (Ks, As) = max
Cs

{
u(Cs, As) +

1

dt
EsdV (Ks, As)

}
.
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Using Itô’s formula yields

dV = VKdKs + VAdAs +
1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
dt

= ((rs − δ)Ks + ws − Cs)VKdt+ VKσKsdZs + VAµ(At)dt+ VAη(As)dBs

+1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
dt.

Using the properties of stochastic integrals, we may write

ρV (Ks, As) = max
Cs

{u(Cs, As) + ((rs − δ)Ks + ws − Cs)VK

+1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
+ VAµ(As)

}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-order

condition (8), which makes optimal consumption a function of the state variables.

For the evolution of the costate we use the maximized Bellman equation

ρV (Kt, At) = u(C(Kt, At), At) + ((rt − δ)Kt + wt − C(Kt, At))VK

+1
2

(
VAAη(At)

2 + VKKσ
2K2

t

)
+ VAµ(At), (35)

where rt = r(Kt, At) = YK and wt = w(Kt, At) = YL to compute the costate,

ρVK = ((rt − δ)Kt + wt − Ct)VKK + (rt − δ)VK

+1
2

(
VAAKη(At)

2 + VKKKσ
2K2

t

)
+ VKKσ

2Kt + VAKµ(At).

Collecting terms we obtain

(ρ− (rt − δ))VK = ((rt − δ)Kt + wt − Ct)VKK

+1
2

(
VAAKη(At)

2 + VKKKσ
2K2

t

)
+ VKKσ

2Kt + VAKµ(At). (36)

Using Itô’s formula, the costate obeys

dVK = VAKµ(At)dt+ VAKη(At)dBt

+1
2

(
VKAAη(At)

2 + VKKKσ
2K2

t

)
dt

+((rt − δ)Kt + wt − Ct)VKKdt+ VKKσKtdZt,

where inserting (36) into the last expression yields

dVK = (ρ− (rt − δ))VKdt− VKKσ
2Ktdt+ VAKη(At)dBt + VKKσKtdZt,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (8) to obtain the Euler equation (9).
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As shown in Posch (2009), the model has a closed-form solution for θ = 1, and the value

function is V (Kt, At) = lnKt/ρ + f(At), where f(At) solves a simple ODE, which in turn

depends on the functional forms of η(At) and µ(At). The idea of this proof is as follows.

We use a guess of the value function and obtain conditions under which both the maximized

Bellman equation (35) and the first-order condition (8) are fulfilled. Our guess is

V (Kt, At) = C1 lnKt + f(At). (37)

From (8), optimal consumption is a constant fraction of wealth, Ct = C
−1
1 Kt. Now use the

maximized Bellman equation (35) and insert the candidate solution,

ρC1 lnKt + g(At) = lnKt − lnC1 + ((At − δ)Kt − C
−1
1 Kt)C1/Kt,

in which g(At) ≡ ρf(At) − 1
2
(fAAη(At)

2 − σ2) − fAµ(At). Thus, we obtain the condition

C1 = 1/ρ and collect the remaining terms in g(At) = ln ρ+At − δ − ρ. In the Vasicek case,

η(At) = η and µ(At) = κ(γ−At), we get f(At) = C2At +C3, in which C2 = C1/(ρ+ κ) and

C3 = (κγC2 − lnC1 − 1− (δ + 1
2
σ2)C1)/ρ.

A.2 AK-Vasicek model (CRRA preferences)

A.2.1 Numerical solution

[insert Figure A.1]

This section illustrates one particular numerical solution to obtain reasonable values for

the consumption elasticities with respect to changes in wealth and the interest rate. We

parameterize our system using κ = 0.2, γ = 0.1, η = 0.005, ρ = 0.05, δ = 0.05, σ = 0.05,

and θ = 2. Our solution implies elasticities of τ ≈ 0.207 and π̄ ≈ 1.021. These results are

obtained using the collocation method on a 10× 7 Chebychev polynomial basis at standard

Chebychev nodes (for an introduction see Miranda and Fackler, 2002). Our results confirm

that the time-variability of these elasticities is small (see Figure A.1).

A.2.2 Equilibrium dynamics for general CRRA preferences

Here, we show the generalization of our estimation approach to the case of general CRRA

preferences. Using the equilibrium dynamics system of differential equations (12), we obtain
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ln(Cs/Ct) = 1/θ

∫ s

t

rvdv +
1
2
θ(τ̄ η)2

∫ s

t

1/r2vdv − ((ρ+ δ)/θ − 1
2
(θπ̄ − 2)π̄σ2)(s− t)

+

∫ s

t

ητ̄/rvdBv + σπ̄(Zs − Zt), (38a)

ln(Ys/Yt) = κγ

∫ s

t

1/rvdv − 1
2
η2
∫ s

t

1/r2vdv +

∫ s

t

(1− Cv/Yv)rvdv

−(κ+ δ + 1
2
σ2)(s− t) +

∫ s

t

η/rvdBv + σ(Zs − Zt), (38b)

rs = e−κ(s−t)rt + (1− e−κ(s−t))γ + ηe−κ(s−t)

∫ s

t

eκ(v−t)dBv. (38c)

Comparing to the case of logarithmic utility in (13a)-(13c), only the first two equations are

different. Since consumption and output data are not available at the same frequency as

the spot rate, we need to make an approximation. For the integral involving output, con-

sumption and the short rate we use an Euler approximation scheme
∫ s

t
g(v)dv = g(t)(s− t).

Alternatively, one could employ the approximation
∫ s

t
g(v)dv = g(s)(s−t) or the trapezoidal

rule (employs averages)
∫ s

t
g(v)dv ≈ 1

2
(s− t) [g(s) + g(t)] .

A.2.3 A regression-based approach

We collect the left-hand side variables in the vector yt = (yC,t, yY,t, yr,t)
⊤, where yC,t =

ln(Ct/Ct−∆), yY,t = ln(Yt/Yt−∆)−
∫ t

t−∆
(1−Cv/Yv)rvdv, and yr,t = rt. The parameters are β =

(
β⊤
C , β

⊤
Y , β

⊤
r

)⊤
, where βC = (βC,1, βC,2, βC,3)

⊤, βY = (βY,1, βY,2, βY,3)
⊤, βr = (βr,1, βr,2)

⊤,

βC,1 = −
(
(ρ+ δ)/θ − 1

2
(θπ̄ − 2)π̄σ2

)
∆, (39a)

βC,2 = 1/θ, (39b)

βC,3 = 1
2
θ(τ̄ η)2, (39c)

βY,1 = −
(
κ + δ + 1

2
σ2
)
∆, (39d)

βY,2 = κγ, (39e)

βY,3 = −1
2
η2, (39f)

βr,1 = (1− e−κ∆)γ, (39g)

βr,2 = e−κ∆. (39h)

In particular, the system (38) is linear in the right-hand side variables in xt = (xC,t, xY,t, xr,t),

with xC,t = (1,
∫ t

t−∆
rvdv,

∫ t

t−∆
1/r2vdv), xY,t = (1,

∫ t

t−∆
1/rvdv,

∫ t

t−∆
1/r2vdv), xr,t = (1, rt−∆).
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Hence, the system (38) can be written in the form of simple regression models (14), where

εC,t =

∫ t

t−∆

ητ̄/rvdBv + σπ̄(Zt − Zt−∆), (40a)

εY,t =

∫ t

t−∆

η/rvdBv + σ(Zt − Zt−∆), (40b)

εr,t = ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv. (40c)

A.2.4 A martingale estimating function with three moment restrictions

Let mt = εt = (εC,t, εY,t, εr,t)
⊤ be the 3-vector of error terms expressed in terms of data and

parameters. From system (40), mt is clearly a martingale difference series, so we use

mt =




ln(Ct/Ct−∆)− 1/θ
∫ t

t−∆
rvdv − 1

2
θ(τ̄ η)2

∫ t

t−∆
1/r2vdv + ((ρ+ δ)/θ − 1

2
(θπ̄ − 2)π̄σ2)∆

ln(Yt/Yt−∆)−
∫ t

t−∆
(1− Cv/Yv)rvdv − κγ

∫ t

t−∆
1/rvdv +

1
2
η2
∫ t

t−∆
1/r2vdv + (κ+ δ + 1

2
σ2)∆

rt − (1− e−κ∆)γ − e−κ∆rt−∆


 ,

(41)

where the integrals are approximated by summation over days between t−∆ and t.

Starting with the conditional variance, Ψt, it is useful to recast mt as

mt =




∫ t

t−∆
ητ̄/rvdBv + σπ̄(Zt − Zt−∆)∫ t

t−∆
η/rvdBv + σ(Zt − Zt−∆)

ηe−κ∆
∫ t

t−∆
eκ(v−(t−∆))dBv


 . (42)

Hence, we have the conditional variances Ψt,11 = (ητ̄ )2Et−∆(
∫ t

t−∆
1/r2vdv) + (σπ̄)2∆, Ψt,22 =

η2Et−∆(
∫ t

t−∆
1/r2vdv)+σ

2∆, and Ψt,33 = η2(1−e−2κ∆)/(2κ). The conditional covariances are

Ψt,12 = η2τ̄Et−∆(
∫ t

t−∆
1/r2vdv)+σ

2π̄∆, Ψt,13 = η2τ̄ e−κ∆Et−∆

(
(
∫ t

t−∆
1/rvdBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

)
,

and Ψt,23 = η2e−κ∆Et−∆

(
(
∫ t

t−∆
1/rvdBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

)
. Since analytical expressions

are not available, we use Euler approximations for Ψt,11, Ψt,22, Ψt,12, Ψt,13 and Ψt,23,

Ψt =




(ητ̄ )2∆/r2t−∆ + (σπ̄)2∆ η2τ̄∆/r2t−∆ + σ2π̄∆ η2τ̄ e−κ∆∆/rt−∆

η2τ̄∆/r2t−∆ + σ2π̄∆ σ2∆+ η2∆/r2t−∆ η2e−κ∆∆/rt−∆

η2τ̄ e−κ∆∆/rt−∆ η2e−κ∆∆/rt−∆
1
2
η2(1− e−2κ∆)/κ


 . (43)

Using martingale increments (41), we get the transpose of the conditional mean of the
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derivatives ψ⊤
t with respect to the parameter vector φ = (κ, γ, η, ρ, δ, σ, π̄, τ̄ , θ)⊤ as




0 ∆− γEt−∆

∫ t

t−∆
1/rvdv −∆e−κ∆γ +∆e−κ∆rt−∆

0 −κEt−∆

∫ t

t−∆
1/rvdv −(1 − e−κ∆)

−θτ̄ 2ηEt−∆

∫ t

t−∆
1/r2vdv ηEt−∆

∫ t

t−∆
1/r2vdv 0

∆/θ 0 0
∆/θ ∆ 0

−(θπ̄ − 2)π̄σ∆ σ∆ 0
−(θπ̄ − 1)σ2∆ 0 0

−θτ̄η2Et−∆

∫ t

t−∆
1/r2vdv 0 0

Et−∆

∫ t

t−∆
1/θ2rv − 1

2
(τ̄ η)21/r2vdv

−
(
(ρ+ δ)/θ2 + 1

2
(π̄σ)2

)
∆

0 0




.

For the conditional expectation we interchange the order of integration, and then use the

deterministic Taylor expansion. Using a first-order Taylor expansion for ψt,21, ψt,22, ψt,23,

ψt,13, ψt,18 and ψt,19 allows approximating the integrals in ψt by

Et−∆

∫ t

t−∆

1/rvdv ≈ ∆/rt−∆ −
(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2,

Et−∆

∫ t

t−∆

1/r2vdv ≈ ∆/r2t−∆ −
(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2,

Et−∆

∫ t

t−∆

rvdv ≈ ∆rt−∆ + κ(γ − rt−∆)
1
2
∆2.

For the last approximation, we may instead use the exact solution,

∫ t

t−∆

Et−∆(rv)dv =

∫ t

t−∆

(
e−κ(v−(t−∆))rt−∆ + (1− e−κ(v−(t−∆)))γ

)
dv

= γ∆+ (rt−∆ − γ)(1− e−κ∆)/κ.

This completes the construction of the estimating equation. All nine structural parameters

are separately identified.

A.3 Comparison to the discrete-time model

To introduce the reader to the potential advantages of the continuous-time formulation,

we shall examine the equivalent formulation (and solution) of our model in a discrete-time

environment. A straight-forward way of a discrete-time formulation is to consider the Euler

approximation of our model (see e.g., Kloeden and Platen, 1999).
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A.3.1 The model

Production possibilities. For the ease of readability, we present the full model below. The

production function is a constant returns to scale technology

Yt = AtF (Kt, L), (44)

where Kt is the (predetermined) aggregate capital stock, L is the constant population size,

and At is total factor productivity, which follows an autoregressive process

At+1 − At = µ(At) + η(At)ǫA,t+1, ǫA ∼ N(0, 1), (45)

with µ(At) and η(At) generic drift and volatility functions.16 The capital stock increases if

gross investment It exceeds capital depreciation,

Kt+1 −Kt = It − δKt + σǫK,t+1, ǫK ∼ N(0, 1), (46)

where δ is a deterministic rate of depreciation and σ determines the variance of a shock to

the depreciation rate. Note that the stochastic depreciation does not depend on the level of

the predetermined capital stock. This modification is necessary to compute the discrete-time

Euler equation independent from the costate variables (see below).17

Equilibrium properties. In equilibrium, factors of production are rewarded with marginal

products rt = YK and wt = YL, subscripts K and L indicating derivatives, and the goods

market clears, Yt = Ct+It. Although there is no stochastic calculus for discrete-time models,

we may express the evolution of equilibrium output in this economy as

Yt+1 = (At + µ(At) + η(At)ǫA,t+1)F (Kt + It − δKt + σǫK,t+1, L). (47)

Alternatively, we may use an Euler scheme to approximate the next period’s output for small

time intervals (no approximation error in the limit) by

Yt+1 − Yt = µ(At)YA + (It − δKt)YK + 1
2
YKKσ

2 + YAη(At)εA,t+1 + σYKεK,t+1. (48)

Obviously, comparing both (47) and (48) it seems much easier to get a dynamic formulation

of the model which can be used for estimation with the help of stochastic calculus.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes expected

additively separable discounted life-time utility given by

U0 ≡ E0

∞∑

t=0

βtu(Ct, At)dt, uC > 0, uCC < 0, (49)

16We assume that E(At) = A ∈ R+ exists, and that the sum describing life-time utility in (49) below is
bounded, so that the value function is well-defined.

17It is insightful to relate the two shocks in the system to the continuous-time counterpart by looking at
the Euler approximation ǫA,t+1 ≡ Bt+1 −Bt ∼ N(0, 1) and ǫK,t+1 ≡ Zt+1 − Zt ∼ N(0, 1).
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subject to

Kt+1 −Kt = (rt − δ)Kt + wtL− Ct + σǫK,t+1, (50)

where β is the subjective discount factor, rt is the rental rate of capital, and wt is the labor

wage rate. The paths of factor rewards are taken as given by the representative consumer.

A.3.2 The Euler equation

The relevant state variables are capital and technology, (Kt, At). For given initial states, the

value of the optimal program is

V (K0, A0) = max
{Ct}∞t=0

U0 s.t. (50) and (45), (51)

i.e., the present value of expected utility along the optimal program. As a necessary condition

for optimality, Bellman’s principle gives at time s

V (Ks, As) = max
Cs

{u(Cs, As) + βEs [V (Ks+1, As+1)]} . (52)

Hence, the first-order condition for the problem is

uC(Ct, At) = βEt [VK(Kt+1, At+1)] , (53)

for any t ∈ [0,∞), and this allows us to write consumption as a function of the state

variables, Ct = C(Kt, At). Obviously, comparing the condition (8) to (53), the discrete-time

model requires evaluating an integral (integrating out expectations) to obtain the optimal

consumption function. The reason is that the Hamilton-Jacobi-Bellman (HJB) equation in

the discrete-time model (52) requires to solve a stochastic difference equation in contrast to

a deterministic differential equation (which can be useful in finding the numerical solution).

Using the concentrated Bellman equation,

V (Kt, At) = u(C(Kt, At)) + βEtV (Kt+1, At+1)

we may replace the unknown costate variable by known functions to get the Euler equation.

Differentiating with respect to capital (using the envelope theorem) gives18

VK(Kt, At) = βEt [VK(Kt+1, At+1)(1− δ + rt)]

= (1− δ + rt)uC(Ct, At).

18If the stochastic depreciation depends on the predetermined capital stock in (50), it is not possible to
fully replace the costate variable by known functions. The corresponding expression would be

VK(Kt, At) = βEt [VK(Kt+1, At+1)(1 − δ + rt)] + βEt [VK(Kt+1, At+1)σǫK,t+1]

= (1 − δ + rt)uC(Ct, At) + βEt [VK(Kt+1, At+1)σǫK,t+1] .
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Leading the expression one period ahead and applying expectations yields

Et [VK(Kt+1, At+1)] = Et [(1− δ + rt+1)uC(Ct+1, At+1)] .

Inserting back into the first-order condition (53) we arrive at the Euler equation

uC(Ct, At) = βEt [(1− δ + rt+1)uC(Ct+1, At+1)] , (54)

Alternatively, we may use an Euler scheme to approximate the next period’s marginal utility

for small time intervals (no approximation error in the limit) by

uC(Ct+1, At+1) = (1 + ρ− (rt − δ))uC(Ct, At) + uCC(Ct, At)CKσǫK,t+1

+(uCC(Ct, At)CAη(At) + uCA(Ct, At)η(At))ǫA,t+1, (55)

Again, the continuous-time formulation may help to obtain a dynamic formulation which

can be used for estimation of the structural parameters. For example, (55) could be used to

put structure on the residuals in a regression-based estimation approach.

In the following, we restrict attention to the case u(Ct, At) = u(Ct).

A.3.3 The equilibrium dynamics

Our equilibrium dynamics of the economy can be summarized as

u′(Ct) = βEt [(1− δ + rt+1)u
′(Ct+1)] (56a)

Yt+1 = (At + µ(At) + η(At)ǫA,t+1)F (Kt + It − δKt + σǫK,t+1, L) (56b)

Kt+1 = (1 + rt − δ)Kt + wtL− Ct + σǫK,t+1 (56c)

At+1 = At + µ(At) + η(At)ǫA,t+1 (56d)

Provided that variables Ct, Yt, Kt and also At are observed, the econometrician needs to

consider the system (56) for statistical inference on the deep parameters.

For comparison, the equilibrium dynamics the corresponding continuous-time economy

analogous to the model used in the main text can be summarized as

dCt =
u′(Ct)

u′′(Ct)
(ρ− (rt − δ))dt− 1

2
(C2

Aη(At)
2 + C2

Kσ
2)
u′′′(Ct)

u′′(Ct)
dt

+CAη(At)dBt + CKσdZt (57a)

dYt = (µ(At)YA + (It − δKt)YK + 1
2
YKKσ

2)dt+ YAη(At)dBt + σYKdZt (57b)

dKt = ((rt − δ)Kt + wtL− Ct)dt+ σdZt (57c)

dAt = µ(At)dt+ η(At)dBt (57d)
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Provided that Ct, Yt, Kt and also At are observed, the econometrician needs to consider the

system (57) for statistical inference on the deep parameters.

In what follows, we assume that the capital stock Kt is a latent variable, but we can

obtain the real interest rate from financial market data

A.3.4 An illustration: the stochastic AK model

Consider an AK economy, Yt = AtKt, which implies rt = At and Kt = Yt/rt, and assume

that the consumer has CRRA preferences with risk aversion θ, system (56) reduces to,

C−θ
t = βEt

[
(1− δ + rt+1)C

−θ
t+1

]
(58a)

Yt+1 = (1 + µ(rt)/rt + η(rt)/rtǫA,t+1) (Yt + (rt − δ)Yt − rtCt + rtσǫK,t+1)

= Yt + Ytµ(rt)/rt + (rt − δ)Yt − rtCt + Ytη(rt)/rtǫA,t+1 + rtσǫK,t+1

+((rt − δ)Yt − rtCt + rtσǫK,t+1) (µ(rt)/rt + η(rt)/rtǫA,t+1) (58b)

rt+1 = rt + µ(rt) + η(rt)ǫA,t+1 (58c)

whereas system (57) reduces to

dCt = (rt − δ − ρ)Ct/θdt+
1
2
(1 + θ)(C2

Aη(At)
2 + C2

Kσ
2)/Ctdt

+CAη(At)dBt + CKσdZt (59a)

dYt = (Ytµ(rt)/rt + (r − δ)Yt − rtCt)dt+ Ytη(rt)/rtdBt + σrtdZt (59b)

drt = µ(rt)dt+ η(rt)dBt (59c)

Both systems give the model in terms of observables (macro and financial market data).

One way of proceeding is to use an Euler scheme to discretize the system (59) for small

time intervals (no approximation error in the limit). We do not follow this route because the

continuous-time formulation naturally accounts for the different observation frequencies of

macro and financial market data. Instead we proceed by integrating the system of equations

and/or use closed-form solutions, for example for the interest rate.

A.3.5 Estimation

There is now a vast literature on estimating the deep parameters in discrete-time dynamic

general equilibrium models. For example, An and Schorfheide (2007) use likelihood-based

methods to estimate the structural parameters of system (58). One important caveat is

that the nonlinear dynamics do not readily imply a likelihood function. To get around this

problem, most of the previous literature has used the approximated likelihood derived from

a linearized version of the model (Uhlig, 1999). Together with a state-space formulation,
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the system can now be estimated using the Kalman filter (see e.g., Fernández-Villaverde,

Rubio-Ramı́rez, Sargent, and Watson, 2007). As an alternative approach the particle filter

has been suggested to evaluate the likelihood function of the nonlinear model (Fernández-

Villaverde and Rubio-Ramı́rez, 2007). This procedure combines a nonlinear solution method

with a state-space representation to estimate the deep parameters.

We show in this paper that a continuous-time formulation of the model can facilitate

estimating the deep parameters of the model. We make use of the fact that system (59)

provides a much clearer description of the equilibrium dynamics. This paper now provides

an alternative route which fully accounts for nonlinear structure of the equilibrium dynamics

without leaving the regression-based and/or simulation-based estimation framework.
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A.4 On problems of measurement with flow variables

The logarithmic specification in the main text was chosen in order to get the reduced-form

parameters as a linear function of the observables. One caveat is that we do not observe the

rate at which a flow variable, say Ct, changes over time, we only observe
∫ t+1

t
Csds.

Consider the Euler equation for consumption with CRRA preferences,

dCt = (rt − δ − ρ)Ct/θdt− σ2CKKtdt+
1
2
(1 + θ)(C2

Aη(At)
2 + C2

Kσ
2K2

t )/Ctdt

+CAη(At)dBt + CKσKtdZt,

Integrating the equation yields

Ct+1 − Ct =

∫ t+1

t

[
(rs − δ − ρ)Cs/θ − σ2CKKs +

1
2
(1 + θ)(C2

Aη(As)
2 + C2

Kσ
2K2

s )/Cs

]
ds

+

∫ t+1

t

CAη(As)dBs +

∫ t+1

t

CKσKsdZs,

It seems infeasible to consider changes in observed consumption (even further integration).

Our approach therefore is to approximate the growth rates

lnCt+1 − lnCt ≈ ln

∫ t+1

t

Csds− ln

∫ t

t−1

Csds
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Table 1: Simulation Study – AK-Vasicek Model (Logarithmic Preferences)
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using OLS, FGLS-SUR, FGLS-SUR-IV,
and MEF approaches for the AK-Vasicek model with logarithmic preferences. For 1,000 replications, we generate 25 years of data from the underlying
data generating process (DGP) and apply our estimation strategy. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study

Monthly Data Quarterly Data
DGP OLS FGLS-SUR FGLS-SUR-IV MEF OLS FGLS-SUR FGLS-SUR-IV MEF

κ 0.2 0.227
0.189

0.162
0.13

0.220
0.126

0.351
0.273

0.227
0.197

0.173
0.131

0.180
0.147

0.235
0.104

γ 0.1 0.100
0.00703

0.100
0.00748

0.100
0.00664

0.100
0.00624

0.100
0.00722

0.0999
0.00769

0.100
0.00733

0.0999
0.00692

η 0.005 0.00865
0.00188

0.00353
0.000521

0.00408
0.000888

0.00499
0.000383

0.00842
0.0021

0.00366
0.000772

0.00366
0.00125

0.00528
0.000383

ρ+ δ + 1
2σ

2 0.101 0.100
0.0127

0.101
0.0128

0.101
0.013

0.100
0.0128

0.101
0.0129

0.101
0.0125

ρ+ δ 0.1 0.0997
0.0129

0.0995
0.0201

σ 0.05 0.0511
0.00352

0.0573
0.0272
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Figure 1: Simulation Study MEF Approach – AK-Vasicek Model (Logarithmic Preferences)
The figure reports output of a simulation study of the accuracy of the structural model parameters estimated
using the MEF approach for the AK-Vasicek model with logarithmic preferences. For 1,000 replications, we
generate 25 years of data from the underlying data generating process (DGP) and apply our estimation
strategy. We plot the distribution of the obtained estimates, in Panel (A) for monthly data and in Panel
(B) for quarterly data.
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Table 2: Simulation Study – AK-Vasicek Model (CRRA Preferences)
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using OLS, FGLS-SUR, FGLS-SUR-IV,
and MEF approaches for the AK-Vasicek model with CRRA preferences. For 1,000 replications, we generate 25 years of data from the underlying
data generating process (DGP) and apply our estimation strategy. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study

Monthly Data Quarterly Data
DGP OLS FGLS-SUR FGLS-SUR-IV MEF OLS FGLS-SUR FGLS-SUR-IV MEF

κ 0.2 0.351
0.27

0.151
0.108

0.187
0.0943

0.304
0.188

0.348
0.274

0.139
0.123

0.128
0.11

0.285
0.253

γ 0.1 0.100
0.00619

0.100
0.00756

0.100
0.00699

0.100
0.00631

0.100
0.00632

0.100
0.00811

0.100
0.00834

0.100
0.00631

η 0.005 0.0607
0.028

0.00421
0.0301

0.00000170
0.0000163

0.00669
0.0027

0.0597
0.0306

0.00334
0.0319

0.00000295
0.019

0.00695
0.00669

ρ 0.05 0.0519
0.015

0.0515
0.0226

δ 0.05 0.0475
0.0138

0.0484
0.0186

σ 0.05 0.0518
0.0123

0.0558
0.035

π̄ 1.02 1.00
0.347

1.01
0.524

τ̄ 0.207 0.00000229
4.08

3.96
216

0.745
3.03

0.161
0.233

0.00000201
3.98

2.94
218

0.377
2.53

0.116
0.546

θ 2 0.301
0.985

0.630
0.348

1.73
0.728

2.06
0.676

0.308
1.22

0.659
0.591

1.33
0.733

2.29
1.91

δ + 1
2σ

2 0.0513 −0.134
0.18

0.0400
0.047

0.0493
0.017

−0.125
0.181

0.0405
0.0514

0.0469
0.0257

ρ/θ −A# 0.0488 0.910
3.52

0.139
0.129

0.0282
0.0147

0.900
3.39

0.133
0.211

0.0370
0.0519

#: For brevity we write A = 1
2 ((θπ̄ − 2)π̄ + 1

θ )σ
2

45



Figure 2: Simulation Study MEF Approach – AK-Vasicek Model (CRRA Preferences)
The figure reports output of a simulation study of the accuracy of the structural model parameters estimated
using the MEF approach for the AK-Vasicek model with CRRA preferences. For 1,000 replications, we
generate 25 years of data from the underlying data generating process (DGP) and apply our estimation
strategy. We plot the distribution of the obtained estimates, in Panel (A) for monthly data and in Panel
(B) for quarterly data.
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Figure 3: Overview of Monthly Variables
In this figure we show time series plots of the macroeconomic variables in our data set at the monthly fre-
quency. In Panel (A) we show the growth rate of Industrial Production (IP) and Real Personal Consumption
Expenditure (PCE), both from the Federal Reserve Bank of St. Louis Economic Dataset (FRED). In Panel
(B) we show the nominal 3m interest rate series also obtained from the FRED (last day of month observa-
tion from the daily data set). Panel (C) shows the approximations to the three integrals from the structural
model based on the daily nominal 3m interest rate series, and the integral based on consumption, income,
and the interest rate. In all cases, the sample runs from January, 1982 until December, 2000.
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Figure 4: Overview of Quarterly Variables
In this figure we show time series plots of the macroeconomic variables in our data set at the quarterly
frequency. In Panel (A) we show the growth rate of Real Gross Domestic Product (GDP) and Real Personal
Consumption Expenditure (PCE), both from the Federal Reserve Bank of St. Louis Economic Dataset
(FRED). In Panel (B) we show the nominal 3m interest rate series also obtained from the FRED (last day
of quarter observation from the daily data set). Panel (C) shows the approximations to the three integrals
from the structural model based on the daily nominal 3m interest rate series, and the integral based on
consumption, income, and the interest rate. In all cases, the sample runs from 1982:Q1 until 2000:Q4.
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Table 3: Estimates – AK-Vasicek Model (Logarithmic Preferences)
The table reports estimates for the structural model parameters estimated using OLS, FGLS-SUR, FGLS-SUR-IV, and MEF approaches for the
AK-Vasicek model with logarithmic preferences. We run the estimation for monthly data (where production is measured by IP) and quarterly data
(production measured by GDP). The sample runs from 1982 until 2001. Asymptotic t-statistics are given below the estimates.

Parameter Estimates from Empirical Data

Monthly Data Quarterly Data
OLS FGLS-SUR FGLS-SUR-IV MEF OLS FGLS-SUR FGLS-SUR-IV MEF

κ 0.170
0.699

0.154
0.357

0.186
0.346

7.91
19.3

0.107
0.176

0.0591
0.195

0.0545
0.399

11.6
4.03

γ 0.0857
1.04

0.0876
0.000199

0.0888
0.00000436

0.0649
74.2

0.0876
3.27

0.0926
2.94

0.0930
6.27

0.0767
21.2

η 0.0221
0.0224

0.0213
2.59

0.0241
0.000000781

0.0301
2.59

0.0173
0.981

0.0129
0.0748

0.0125
0.238

0.154
13.3

ρ+ δ + 1
2σ

2 0.0334
0.157

0.0346
0.259

0.0345
0.303

0.0344
0.643

0.0348
0.774

0.0335
0.357

ρ+ δ 0.0355
18

0.0351
18.6

σ 0.00855
508

0.00817
530
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Table 4: Estimates – AK-Vasicek Model (CRRA Preferences)
The table reports estimates for the structural model parameters estimated using OLS, FGLS-SUR, FGLS-SUR-IV, and MEF approaches for the
AK-Vasicek model with CRRA preferences. We run the estimation for monthly data (where production is measured by IP) and quarterly data
(production measured by GDP). The sample runs from 1982 until 2001. Asymptotic t-statistics are given below the estimates.

Parameter Estimates from Empirical Data

Monthly Data Quarterly Data
OLS FGLS-SUR FGLS-SUR-IV MEF OLS FGLS-SUR FGLS-SUR-IV MEF

κ 0.336
0.136

0.335
0.298

0.388
0.243

0.398
1.13

0.269
0.32

0.246
0.287

0.247
0.0503

0.562
1.33

γ 0.0494
1.95

0.0493
0.000155

0.0516
1.06

0.0531
2.52

0.0360
0.508

0.0321
0.000361

0.0309
0.000179

0.0544
3.24

η 0.0248
0.695

0.0247
0.145

0.0275
0.0644

0.0329
3.37

0.0184
3.3

0.0159
0.0000361

0.0156
0.0897

0.0379
5.76

ρ 0.109
0.795

0.236
6.44

δ −0.266
−2.06

−0.272
−3.24

σ 0.372
8.28

0.0968
1.75

π̄ 0.253
3.47

0.818
102

τ̄ 0.0224
0.00559

0.00104
0.000000287

0.000459
0.000314

0.00384
0.00132

0.000576
0.00214

0.000820
0.00000107

0.104
0.0000266

−0.00000285
−0.00000840

θ 91.1
0.0000157

37669
1.69e+005

17202
1.11e+003

6.33
0.487

15735
6.35e+005

10918
2.16e+005

11.2
0.00019

6.00
0.202

δ + 1
2σ

2 −0.132
−0.0493

−0.13
−0.161

−0.146
−0.115

−0.139
−0.164

−0.131
−0.136

−0.136
−0.0284

ρ/θ −A# −0.0208
−0.00614

−0.0236
−0.00356

−0.0228
−0.00416

−0.0245
−0.0088

−0.0240
−0.00887

−0.00459
−0.000231

#: For brevity we write A = 1
2((θπ̄ − 2)π̄ + 1

θ )σ
2
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Figure A.1: Numerical solution of the AK-Vasicek model (CRRA preferences)
In this figure we show (from left to right) optimal consumption as a function of wealth and the interest rate,
the residuals of the Bellman equation, the consumption elasticity with respect to changes in wealth, π̄, and
the interest rate, τ̄ , for a parametrization (κ, γ, η, ρ, δ, σ, θ) = (0.2, 0.1, 0.005, 0.05, 0.05, 0.05, 2).
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