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Abstract

This paper introduces parametric spectrum estimation to the analysis of financial cycles.
Our contribution is to formally test properties of financial cycles and to characterize their
international interaction in the frequency domain. Existing work argues that the financial
cycle is considerably longer in duration and larger in amplitude than the business cycle
and that its distinguishing features became more pronounced over time. Also, a global
cycle, being driven by US monetary policy, is said to be behind national financial cycles.
We provide strong statistical evidence for the US and slightly weaker evidence for the
UK validating the hypothesized features of the national financial cycle. In Germany,
however, the financial cycle is much less visible. Similarly, a US-driven global financial
cycle significantly affects national cycles in the UK but not in Germany.
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1 Introduction

Fluctuations in financial markets play a key role in the macroeconomic dynamics of modern
economies, often leading to either significant economic booms or severe economic crises, see
e.g. Schularick and Taylor (2012) and Jordà et al. (2017). The last twenty years provide
several examples, from the asset market crash in the early 1990s to the 2007/2008 global
financial crisis which led the world economy to the brink of a new Great Depression. Against
this background, a growing body of literature argues that the cyclical behavior of financial
aggregates may be seen not only as a pure reflection of the real side of the economy, but also
as the result of underlying changes in the general perception and attitudes towards financial
and macroeconomic risk (see e.g. Borio, 2014 for a recent survey). For central banks and
macroprudential regulation, the empirical and theoretical characterization of financial cycles
has become one of the most central topics, see ECB (2014) and ESRB (2014).

The largest part of existing studies focuses on two aspects. The first aspect is the description
of the empirical properties of financial cycles. According to Claessens et al. (2011), the most
distinctive features of financial cycles seem to be that their duration is considerably longer
and their amplitudes are larger than those of the classical business cycle. These results were
obtained through a turning point analysis of financial aggregates using the dating algorithms
of Bry and Boschan (1971) and Harding and Pagan (2002). Related studies apply frequency-
based filters (Drehmann et al., 2012 and Aikman et al., 2015), model-based filters (Koopman
and Lucas, 2005, Rünstler and Vlekke, 2016 and Galati et al., 2016) or wavelet analysis
(Verona, 2016 and Ardila and Sornette, 2016).1 The extended length of the financial cycle is
often considered to reflect the build-up of macro-financial instability which contributed most
recently to the 2007/2008 financial crisis. Note, however, that the empirical properties of the
financial cycle have not yet been formally tested.

The second aspect is the analysis of the synchronization of financial cycles across countries and
the possible existence of a global financial cycle. Rey (2015) argues that the global financial
cycle is highly correlated with the VIX and mainly driven by US monetary policy through
the risk-taking channel. Using a large recursive VAR, she finds that the global financial cycle
drives capital flows, asset prices and credit growth around the world. The nexus of of the
financial cycle, monetary policy and the business cycle in the US is analyzed in Juselius et al.
(2016). Passari and Rey (2015) document a transmission mechanism of US monetary policy
shocks on the financial conditions in the United Kingdom. Further results at the global level
from a Bayesian VAR are given by Miranda-Agrippino and Rey (2015). Empirical evidence
for the risk-taking channel (Borio and Zhu, 2012) of US monetary policy at the domestic level
is provided by Bekaert et al. (2013) and Bruno and Shin (2015). Common to most studies
of the global financial cycle is that their results are based on a time domain analysis.

1For a Bayesian unobserved components approach see also Barbone Gonzalez et al. (2015).
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The contribution of this paper is twofold. First, as an alternative method to describe the
properties of financial cycles in the frequency domain, we use the indirect spectrum estimation
approach. A distinguishing feature of this method is its estimation efficiency. The estimated
parameters and their standard errors allow for formal statistical testing of the cyclical prop-
erties of financial variables. We provide a thorough univariate frequency domain analysis of
credit, the credit to GDP ratio, house prices and equity prices, all of which are considered
key financial cycle indicators by existing work, see e.g. Claessens et al. (2011), Drehmann
et al. (2012) and Borio (2014). Including data for the US, the UK and Germany, our study is
structured around tests of the following hypotheses which we identify from the literature. a)
Financial cycles are longer than business cycles. b) Financial cycles have a larger amplitude
than business cycles. c) Financial cycles increased in length over time. d) Financial cycles
are primarily a medium-term phenomenon.

Second, we extend the literature by a multivariate frequency domain analysis of the interac-
tion of financial cycles within countries and across countries. In contrast to an analysis in
the time domain, our approach gives a more detailed picture and allows not only to analyze
whether it exists a relation between financial variables at all, but also whether there is a
relation at specific frequencies. For instance, if there was a relation only for a small range of
frequencies it may not be discovered in the time domain. Similarly, if a significant relation
is found in the time domain, it remains unclear whether the interaction is taking place at
high frequencies or - as one may suspect in an analysis of financial cycles - at low frequencies.
Using a multivariate indirect spectrum estimation, we can formally test frequency-specific
Granger causality. Therefore, our multivariate frequency domain analysis complements and
extends most recent time domain studies on the global financial cycle of, for instance, Rey
(2015) and Miranda-Agrippino and Rey (2015). In particular, we investigate effects of US
monetary policy through the risk-taking channel on financial and real activity in the UK and
in Germany.

Our main findings are as follows. We find that the typical duration of the financial cycle,
when measured by credit and house prices, has significantly increased in recent times in the
United States and the United Kingdom, currently being about 15 years. Also, compared
to the business cycle in these countries, we find strong statistical evidence in support of a
longer duration and a larger amplitude of the financial cycle. In line with the results of
Rünstler and Vlekke (2016), in the case of Germany, distinct characteristics of the financial
cycle are, if at all, much less visible. A further clear result holds across all three countries:
Equity has cyclical properties very similar to those of GDP and is hence mostly driven by
cycles between 2 and 8 years. The multivariate analysis confirms the low frequency nature
of credit and house prices. It also shows that these variables mainly interact at very low
frequencies and that this interaction is statistically significant. As concerns the effect of US
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monetary policy through the risk-taking channel, we find significant Granger causality at
very low frequencies from the US VIX on credit and GDP in the UK. For Germany, however,
the evidence is again much weaker. The effect of the US is not significant, but a tendency
to a figure similar to that for the UK is visible. These findings add to our understanding of
the cross-border impact of the risk-taking channel of US monetary policy. Since this channel
operates mainly at medium-term frequencies, as our results indicate, and financial cycles have
long-lasting effects, as argued also in Juselius et al. (2016), US monetary policy affects on the
macroeconomic dynamics of other countries may last beyond the period of a business cycle.

The remainder of the paper is organized as follows. We discuss the methodology in Section
2. In Section 3, we present the data and the empirical results of our univariate analysis as
well as the formal hypotheses tests. The multivariate analysis is shown in Section 4. Finally,
we draw some conclusions from our study in Section 5.

2 Methodology

2.1 Univariate Spectral Analysis

The methodological starting point is the well-known fact that any covariance-stationary pro-
cess has a time domain and a frequency domain representation which are fully equivalent.2

The frequency domain representation of a time series is more suited to analyze its cyclical
features. The spectrum of a process can, for instance, be used to derive the contribution of
certain cycles to the overall variation of the process.3 However, a (parsimonious) parametric
time domain representation is better suited for estimation. Standard procedures can be used
to consistently and efficiently estimate the parameters of a process. In order to combine the
advantages of both representations, we apply the indirect spectrum estimation approach. In
a nutshell, we do the estimation in the time domain and transform the estimated processes
into the frequency domain to analyze their cyclical properties.

Our approach assumes that the data generating process (DGP) can be well approximated in
the time domain by an autoregressive moving average (ARMA) model of the form

A(L)yt = δ +B(L)εt , εt ∼WN(0, σ2
ε) , (1)

where A(L) and B(L) denote polynomials in the lag operator L of order p and q, respectively.
For stable processes, the MA(∞) representation has the form

yt − µ = B(L)
A(L)εt , µ = δ

A(1) . (2)

2This was first discussed in Wiener (1930) and Khintchine (1934).
3This is because the spectrum represents an orthogonal decomposition of the variance.

3



Expanding the series B(L)/A(L) into a lag polynomial of order infinity shows that an ARMA
representation can be interpreted as a filter of infinite length (which, however, depends only
on a finite number of parameters). This specific filter transforms the white noise process εt
into the observed time series yt. As further detailed in Appendix B.1, the spectrum of yt can
be derived from the parameters of the process and is given by

fy(λ) = |B(e−iλ)|2

|A(e−iλ)|2 fε(λ) , (3)

where λ ∈ [−π, π] is the frequency, |B(e−iλ)|2/|A(e−iλ)|2 represents the transfer function,
fε(λ) = σ2

ε
2π is the constant spectrum of the white noise process and i2 = −1. Equation (3)

represents the main idea of the indirect spectrum estimation and allows to derive the complete
spectrum of yt in a consistent and efficient way.4 Normalizing the spectrum by the process
variance yields the spectral density.5 Our inference is based on bootstrapped standard errors;
see Appendix B.4.

From fy(λ) we can identify which frequency range explains most of the variance of yt. The
spectrum will exhibit a peak at a given frequency if the cyclical variation around that fre-
quency is particularly important for the overall variation of the process. Also, if the spectral
mass is more concentrated in a given range around the peak, the corresponding cycle will
show a larger amplitude causing more regular swings in the time domain.

Note that a large part of the existing insights into the characteristics of the financial cycle is
based either on the analysis of turning points (e.g. Claessens et al., 2011, 2012), frequency-
based filter methods (e.g. Drehmann et al., 2012, Aikman et al., 2015) or on direct spectrum
estimation (e.g. Schüler et al., 2015). Compared to our approach, the turning point approach
requires a pre-specified rule which is applied to an observed time series in order to find local
maxima and minima. Frequency-based filter methods require a pre-specified frequency range
at which the financial cycle is assumed to operate. Directly estimating spectra requires very
long time series to get precise estimates. For a more detailed comparison of our approach to
filters and to non-parametric spectrum estimation, see Appendices B.1 and B.3.

4As described in Hamilton (1994, p. 167), “If the model is correctly specified, the estimates [of the
ARMA(p,q) model] will get closer and closer to the true values as the sample size grows; hence, the resulting
estimate of the population spectrum should have this same property”. The approach has also been applied by
A’Hearn and Woitek (2001) in an analysis of the historical properties of international business cycles.

5The process variance is calculated by numerically integrating the spectrum.
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2.2 Multivariate Spectral Analysis

In order to analyze a common financial cycle, we use the indirect spectrum estimation ap-
proach in a multivariate setup. This allows us to investigate at which frequencies a relation-
ship between certain variables is particularly strong or weak. In order to keep the notation
simple, consider the concrete case of a two-dimensional VAR model of order p with variable
vector zt = (yt, xt)′,

zt = A1zt−1 + · · ·+Apzt−p + ut . (4)

The (2×2) coefficient matrices Aj , j = 1, 2, . . . , p can be estimated consistently and efficiently
by ordinary least squares.6 The two-dimensional error vector ut = (uy, ux)′ is assumed
to be white noise with E(ut) = 0 and positive definite (2 × 2) variance-covariance matrix
E(utu′t) = Σu.

From the MA(∞) representation zt = (I −A1L− · · · −ApLp)−1ut we can derive the (2× 2)
spectral matrix:

Fz(λ) = (I −A1e
−iλ − · · · −Ape−ipλ)−1 Σu

2π (I −A1e
−iλ − · · · −Ape−ipλ)−1′ (5)

with 0 ≤ λ ≤ π and (I −A1e
−iλ − · · · −Ape−ipλ)−1′ denoting the complex conjugate. Fz(λ)

includes the real valued spectra fxx(λ) and fyy(λ) and the complex valued cross-spectra
fyx(λ) and fxy(λ) = fyx(λ)

Fz(λ) =
(
fyy(λ) fyx(λ)
fxy(λ) fxx(λ)

)
. (6)

The spectra fyy(λ) and fxx(λ) represent, just as in the univariate case, orthogonal decom-
positions of the variances of y and x in cyclical components. The spectral densities include
information about the variance contributions of cycles at different frequencies.

The cross-spectra fyx(λ) and fxy(λ) = fyx(λ) can be used for measuring the strength of the
relation between y and x. The squared coherency is given by

K2
yx(λ) = |fyx(λ)|2

fyy(λ)fxx(λ) = K2
xy(λ) (7)

with 0 ≤ K2
yx(λ) ≤ 1. This measure is analogous to the coefficient of determination R2 for

a linear relation between the cycles of y and x at frequency λ. Note that, in contrast to
the R2, the coherency is invariant to different linear transformations applied to y and x. In
particular, this implies that is does not change when going from the relation in levels to the

6In a cointegrated VAR, ordinary least square still yields consistent estimates.
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relation in first differences. Further, the coherency does not change when regressing y on x
or x on y. Defining the (2× 2) matrix

B(L) = (I −A1L− · · · −ApLp)−1P (8)

with PP ′ = Σu and P as lower triangular regular matrix, the individual spectral densities of
y and x can be written as

fyy(λ) = 1
2π (|Byy(e−iλ)|2 + |Byx(e−iλ)|2) . (9)

Based on this measure, Geweke (1982, 1984) and Breitung and Candelon (2006) proposed to
test for Granger causality at different frequencies using the statistic7

Mx→y(λ) = ln
(

1 + |Byx(e−iλ)|2

|Byy(e−iλ)|2

)
. (10)

It holds that Mx→y(λ) = 0 if |Byx(e−iλ)|2 = 0, i.e., when xt does not Granger cause yt at
frequency λ. The higher the value of Mx→y(λ) the stronger the impact of x on y.

2.3 Multivariate Spectral Analysis with Cointegration

If the variables yt and xt in (4) are cointegrated, the system can be represented as a vector
error correction model (VECM) where the relation between the first differences is separated
from the long-run relation between the levels. However, cointegration also implies that the
individual time series are non-stationary and thus their spectral densities have a pole at
frequency λ = 0. Needless to say, the information that all variation of a trending variable is
explained by a cycle of length infinity is only of limited use.

In contrast, the spectral densities of the first differences are more interesting. In practice,
the spectral matrix of ∆zt can be derived in two steps. The first step is to simply estimate
the VAR in (4) under the parameter restriction that the variables are cointegrated8

zt = Ar1zt−1 + · · ·+Arpzt−p + ut . (11)

In the second step the multivariate first difference filter Φ(eiλ) is applied to the spectral
matrix of the levels. The frequency domain representation of the first difference vector time
series is given by

F∆z(λ) = Φ(eiλ)Fz(λ)Φ(e−iλ)′ . (12)
7For further details see e.g. Breitung and Schreiber (2017) where also a version of the test is discussed that

allows for more detailed null hypotheses.
8Since a VECM requires to estimate less parameters than an unrestricted VAR, imposing cointegration on

the VAR parameters in (4) increases estimation efficiency.
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3 Univariate Empirical Analysis

3.1 Data Description

Studies as English et al. (2005), Ng (2011), and Hatzius et al. (2010) and Menden and Proaño
(2017) have used principal components and factor analysis to identify the common factors
of a number of financial price and quantity variables for the characterization of the financial
cycle. According to Claessens et al. (2011), the core of financial intermediation should be
well captured by the three distinct market segments of credit, housing and equity. Further
financial variables considered in the literature are, for instance, the debt service ratio, see
Juselius and Drehmann (2016). Drehmann et al. (2012) and Borio (2014) argue that the
financial cycle can be most parsimoniously described in terms of credit and property prices, a
result also found by Schüler et al. (2015) across European countries. Following these studies,
in the univariate analysis of this section we use the most common proxy variables for the
financial cycle, namely quarterly, seasonally adjusted aggregate data on credit volume, the
credit to GDP ratio, house prices and equity prices. To study business cycles, we focus on
real GDP. We analyze three industrialized countries: the United States (US), the United
Kingdom (UK), and Germany. The US is not only the largest economy in the world, but
it also has the worldwide most important financial sector. As representative countries for
Europe, we consider the UK due to its leading financial sector and Germany as the largest
EMU country.

We employ data transformations similar to those in Drehmann et al. (2012) to allow for a
meaningful comparison to existing studies. All series are measured in logs, deflated with
the consumer price index and normalized by their respective value in 1985Q1 to ensure
comparability of units. Yearly growth rates are obtained by taking annual differences of each
time series.9 The only exception is the credit to GDP ratio which is expressed in percentage
points and measured in deviations from a linear trend.10 We use the longest possible sample
for each individual time series which is mostly 1960Q1 until 2013Q4 for the US and the UK.
Due to data availability the German time series start only in 1970Q1. The data are shown
in Figures 8 to 10 in Appendix A, where they are also described in more detail.

We split the data into two subsamples with break dates closely in line with the literature to
9Our results from the univariate analysis therefore refer to cycles in yearly growth rates. The multivariate

analysis in Section 4.1 shows, however, that the results are robust to using quarterly growth rates. Appendix
B.2 provides a theoretical discussion of the frequency domain properties of the quarterly and yearly growth
rate filters.

10Unit root tests of the level series indicate that, with the exception of the credit to GDP ratios which are
found to be trend-stationary, all other time series can be considered as integrated of order one. Therefore,
working with annual growth rates for GDP, credit, housing and equity, i.e., annually differencing the data, is
in line with the unit root test results. In the case of the credit to GDP ratio, we eliminated a deterministic
linear trend. Results are available upon request.
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analyze possible changes in the characteristics of the financial cycles over time. According
to Claessens et al. (2011, 2012) and Drehmann et al. (2012), the break point is specified
at 1985Q1 for the US and UK.11 In the case of Germany, we choose the break point close
to the German reunification, 1990Q2.12 To statistically support the specified break dates
which are adopted from the existing literature, we also estimate ARMA models for the full
sample period and apply Chow break point tests as well impulse indicator saturation (IIS),
an endogenous break point search; see Hendry (2011), Ericsson (2013) and the references
therein. Chow tests provide statistical support for a break at 1985Q1 for the US and the
UK. For Germany, the evidence for a break at 1990Q2 is weaker, but for GDP and credit we
clearly reject the null hypothesis of no break; see Appendix C.1. Nonetheless, the German
reunification is a natural break date from an economic point of view. Also, the results from
the IIS break point search indicate a break at mid to late 1980s for US and UK and around
1990 for Germany; see Appendix C.2. Finally, as it will be seen in the next subsection, the
computed spectra are in most cases of substantially different shape across the subsamples.13

In the final part of the paper we use a number of additional variables, also sampled at the
quarterly frequency. We use data on the VIX index, the Fed Funds rate as well as the $/£
and $/e exchange rates.

3.2 Univariate Frequency Domain Characterization of Financial Cycle Variables

We begin the discussion of our results by focusing on the spectral representation of the
variables resulting from the estimated ARMA models. Further details on a concrete example
of estimation and transformation are provided in Appendix B.5. As can be seen in Appendix
C.1, all parameters in the final specifications are statistically significant at standard confidence
levels and the estimated residuals are free from autocorrelation according to the Lagrange
multiplier (LM) test.14

The estimated spectral densities are shown in Figures 1 to 3 in the range [0 , π/4], i.e., for
periods of ∞ to 2 years.15 We do not show frequencies in [π/4 , π] since almost no spectral

11This is often seen as the starting point of the financial liberalization phase in mature economies. Moreover,
during this period, monetary policy regimes being more successful in controlling inflation are established, see
Borio (2014).

12From 1990Q2 on, official data for the unified Germany are available.
13In in Figures 8 to 10 in Appendix A, the vertical gray line highlights the sample split. A first visual

inspection of the data shows that the credit and house price growth rates exhibit more pronounced swings
than GDP growth, particularly in the US and the UK. In Germany, this is only true for housing. In view of
equity, the figures illustrate that these series not only feature a high volatility, but their dynamics seem to be
very different from the other proxy variables for the financial cycle, credit and housing.

14The specification of these ARMA models follows the principle of parsimony. Starting with the specifica-
tion suggested by standard information criteria, we delete insignificant terms and include additional ones if
necessary to guarantee the most important feature of a well-specified model: white noise residuals.

15When using quarterly data, all cycles of length infinity to half a year are described by the spectrum in the
range from 0 to π because fy(λ) is an even symmetric continuous function. We approximate the continuous
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mass is located in this range. The traditional business cycle range of 8 to 2 years corresponds
to the frequency interval [π/16 , π/4]. The financial cycle range [π/64 , π/16], as proposed by
Drehmann et al. (2012), includes cycles between 32 and 8 years and is highlighted by the gray
area. An initial visual inspection of Figures 1 to 3 delivers at least two noteworthy results.
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Figure 1: Spectral Densities in the US. Note: Spectral densities in the gray area from frequencies
π/64 to π/16 correspond to the financial cycle range between 32 and 8 years, as proposed by Drehmann
et al. (2012). Frequencies π/16 to π/4 correspond to cycles in the traditional business cycle range
between 8 and 2 years.

First, especially for the US and the UK, the spectral densities of credit, credit to GDP
and house prices are substantially shifted to the left in the later period compared to the
first one. This indicates, at least superficially, that longer cycles could have became more
present. Moreover, the peaks of the spectral densities of these variables are more pronounced,
suggesting that longer cycles may have become more important for the variation of the
process, too. For Germany, as illustrated in Figure 3, this is only true for house prices. We
obtain no clear results for German credit and credit to GDP. Therefore, it seems that German
data do not provide much evidence in favor of the postulated financial cycle properties.

Second, Figures 1, 2 and 3 clearly show that in all three countries the spectral densities
of GDP and equity changed very little from the period before the sample split to the one
thereafter. The interesting exception is the spectrum of UK GDP growth which may indeed
have experienced a change. The general impression, however, is that in almost all cases GDP

spectrum by 1000 equally spaced frequency bands from 0 to π.
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Figure 2: Spectral Densities in the UK. Note: Spectral densities in the gray area from frequencies
π/64 to π/16 correspond to the financial cycle range between 32 and 8 years, as proposed by Drehmann
et al. (2012). Frequencies π/16 to π/4 correspond to cycles in the traditional business cycle range
between 8 and 2 years.

and equity show very similar spectral shapes with less pronounced peaks compared to the
other variables.

It remains unclear from the graphical analysis, however, whether any of these properties
changed significantly or whether certain variables have different properties. In preparation
for the formal hypotheses testing in the next section, we propose four different statistics
derived from the spectral densities: cycle length, amplitude, variance contribution of shorter
cycles and variance contribution of longer cycles. We use these statistics to describe the main
features of business and financial cycles.

Table 1 summarizes the measures for all countries under consideration and the two estimation
subsamples. The first two columns include the main cycle length in years measured at the
peak of the spectrum. It is given by 2π

λmax
with λmax as the frequency where the spectral

density has its unique maximum. The remaining columns include the information about the
amplitude and the variance contributions of certain frequency ranges. These statistics are
related to the spectral mass, i.e. the area below the spectral density function, normalized to
1. For example, if the spectral mass between two frequencies, say [λlow, λhigh], would equal
0.5, we would conclude that 50% of the underlying time series’ variance is explained by cycles
in that frequency range. To approximate the variance contribution of the main cycle (the
’amplitude’), we report the spectral mass, measured in percentage points, which is located
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Figure 3: Spectral Densities in Germany. Note: Spectral densities in the gray area from frequencies
π/64 to π/16 correspond to the financial cycle range between 32 and 8 years, as proposed by Drehmann
et al. (2012). Frequencies π/16 to π/4 correspond to cycles in the traditional business cycle range
between 8 and 2 years.

around λmax. We choose a symmetric frequency band with length of about π
20 .

16 We also
calculate the spectral mass for pre-defined ranges which are often used in the literature, i.e.,
8 to 32 years for the financial cycle and 2 to 8 years for the business cycle. The values in
brackets below the point estimates are the 95% bootstrap confidence intervals.

According to the point estimates in Table 1, the duration of the financial may have increased
from the first to the second subsample. Averaging over the four financial variables, we find
cycles of 6.5, 6.6 and 7.6 years during the first period, and 14.4, 12.7 and 11.7 years during
the second period in the US, UK, and Germany, respectively.17 However, our estimates do
not show much of a change in the length of the business cycle. This would be in line with
the standard notion that business cycles have a duration between 2 and 8 years, see Hodrick
and Prescott (1997).

16Using a band is necessary because the variance contribution of single frequency is zero by definition. The
band is defined as λmax ± π

1000 ·25 and its size therefore equals 5% of all frequencies. In that sense it is referred
to as “small”. During computation we discretize the frequencies into 1000 steps.

17For Germany, cases where we do not obtain finite standard errors are not taken into account.
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3.3 Hypotheses Tests

Let us now see which of the above impressions survive statistical testing. We investigate four
distinct hypotheses. a) The financial cycle is longer than the business cycle. b) The financial
cycle increased in length over time. c) The financial cycle has a larger amplitude than the
business cycle. d) The importance of the financial cycle increase over time.

3.3.1 Hypothesis a): The financial cycle is longer than the business cycle.

As a starting point, we test whether the financial cycle tends to be a medium-term phe-
nomenon with a significantly longer cycle length than that of the business cycle as suggested,
by Claessens et al. (2011), Drehmann et al. (2012) and Borio (2014), among others. Table 2

Table 2: Is the Financial Cycle Longer Than the Business Cycle?

H0: The financial cycle and the business cycle are of equal length.
H1: The financial cycle is longer than the business cycle.

pre break post break
t̂-stat p-value t̂-stat p-value

US

credit 0.26 0.399 2.45 0.007
credit to GDP 0.47 0.319 0.64 0.260

housing 0.76 0.224 1.95 0.025
equity −1.57 0.942 −0.04 0.514

UK

credit 0.64 0.259 4.28 0.000
credit to GDP 1.19 0.118 0.26 0.399

housing −1.86 0.968 1.72 0.042
equity −1.82 0.966 −3.63 0.999

GER

credit 1.37 0.085 − −
credit to GDP − − − −

housing 0.90 0.185 5.39 0.000
equity 1.40 0.080 0.34 0.366

Notes: t̂-stat represents the estimated value of the t-statistic of a one-sided two-sample t-test.
By ”−” it is indicated that we could not obtain finite bootstrap standard deviations which
implies that it is not possible to conduct a t-test.

reports the test results of the null hypothesis that the financial cycle and the business cycle
are of equal length against the alternative hypothesis that the financial cycle is longer than
the business cycle. According to the one-sided two-sample t-tests, the null hypothesis cannot
be rejected in the first subsample for any of the countries; at least at the 5%-level. This holds
also for the second subsample for the credit to GDP ratio and equity. The cycle lengths of
credit and housing, however, are significantly longer than the one of GDP. With respect to
the information given in Table 1 this is not surprising. In the second subsample the average
financial cycle is twice as long as the average business cycle.
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3.3.2 Hypothesis b): The financial cycle has a larger amplitude than the busi-
ness cycle.

Next, we test whether the financial cycle and the business cycle feature the same amplitude
in the two subperiods. Table 3 shows a clear result for equity, where the amplitude is never

Table 3: Does the Financial Cycle Have a Larger Amplitude Than the Business Cycle?

H0: The financial cycle and the business cycle have the same amplitude.
H1: The financial cycle has a larger amplitude than the business cycle.

pre break post break
t̂-stat p-value t̂-stat p-value

US

credit 2.64 0.004 6.48 0.000
credit to GDP 0.92 0.178 7.13 0.000

housing 0.82 0.207 5.05 0.000
equity −1.09 0.861 −1.19 0.884

UK

credit 2.27 0.012 3.97 0.000
credit to GDP 5.01 0.000 3.19 0.000

housing 3.01 0.001 1.66 0.049
equity 0.77 0.219 −4.36 0.999

GER

credit 0.96 0.169 − −
credit to GDP 8.29 0.000 4.80 0.000

housing 3.17 0.001 3.54 0.000
equity 0.81 0.209 −0.52 0.698

Notes: The approximate amplitude is defined as the spectral mass in the symmetric frequency band
with a length of about π

20 around λmax, where λmax is the frequency where the spectral density has
its unique maximum. t̂-stat represents the estimated value of the t-statistic of a one-sided two-sample
t-test. By ”−” it is indicated that we could not obtain finite bootstrap standard deviations which
implies that it is not possible to conduct a t-test.

found to be different from the one of GDP. For the other variables we get somewhat mixed
evidence in the first sample period, as the null is rejected only in a few cases. In the second
period, however, the results are again very clear. Apart from equity, we strongly reject for
all variables in all countries. This implies that, particularly in recent times and when taking
credit, the credit to GDP ratio and housing as indicators, the financial cycle is characterized
by a significantly larger amplitude than the business cycle.

3.3.3 Hypothesis c): The financial cycle increased in length over time.

We now analyze whether the medium-term nature of the financial cycle is a recent phe-
nomenon, i.e., whether its length increased over time. Statistical evidence is shown in Table
4. The results clearly support the hypothesis for credit and housing, both having longer
cycles during the second sample period. These results thus provide statistical support for the
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Table 4: Did the Financial Cycle Increase in Length Over Time?

H0: The length of the financial cycle has not changed over time.
H1: The length of the financial cycle has increased over time.

t̂-stat p-value

US

credit 2.32 0.010
credit to GDP 0.66 0.256

housing 2.59 0.005
equity 2.35 0.009

UK

credit 5.69 0.000
credit to GDP 0.33 0.370

housing 7.26 0.000
equity 0.84 0.200

GER

credit − −
credit to GDP − −

housing 3.01 0.001
equity −1.74 0.959

Notes: t̂-stat represents the estimated value of the t-statistic of a one-sided two-
sample t-test that compares the cycle lengths in the pre and post sample period.
By ”−” it is indicated that we could not obtain finite bootstrap standard deviations
which implies that it is not possible to conduct a t-test.

findings of Claessens et al. (2011), Drehmann et al. (2012) and Borio (2014). However, the
tests also show that it should be looked closely at each variable. For the credit to GDP ratio
and equity we find almost no evidence for an increase in the cycle length.

3.3.4 Hypothesis d): The importance of the financial cycle increased over time.

Finally, we investigate whether the financial cycle has become more important over time.
We address this question by testing whether the main cycle’s amplitude has increased, i.e.
whether a larger part of the overall process variance is explained by the financial cycle. A
higher amplitude would be reflected by a higher peak of the main cycle, implying an increase
in its variance contribution. As can be seen from Table 5, the t-tests strongly support the
alternative hypothesis of a significant increase for US credit, credit to GDP and housing. In
the UK, the t-test results deliver a significant result only for the credit series. Germany seems
again to be characterized by different dynamics, as the main cycles’ amplitudes of the credit
to GDP ratio as well as the growth rates of house prices and equity do not appear to have
changed between the two time periods.

One explanation of the different findings for Germany is given by Rünstler and Vlekke, 2016.
The private home ownership rate is considerably lower in Germany than in the US and the
UK. While we find long cycles in German house prices, they have not become more important
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over time. Also, the cycles in credit and credit to GDP and not as pronounced as in the US
and the UK.

Table 5: Did the Importance of the Financial Cycle Increase Over Time?

H0: The main cycle’s amplitude has not changed over time.
H1: The main cycle’s amplitude has increased over time.

t̂-stat p-value

US

credit 5.38 0.000
credit to GDP 11.06 0.000
housing 2.18 0.015
equity −0.49 0.688

UK

credit 2.28 0.011
credit to GDP 0.89 0.186
housing −0.59 0.722
equity −0.28 0.611

GER

credit − −
credit to GDP 0.31 0.379
housing 0.06 0.478
equity −0.93 0.825

Notes: The approximate amplitude is defined as the spectral mass in the symmetric
frequency band with a length of about π

20 around λmax, where λmax is the frequency
where the spectral density has its unique maximum. t̂-stat represents the estimated
value of the t-statistic of a one-sided two-sample t-test. By ”−” it is indicated that
we could not obtain finite bootstrap standard deviations which implies that it is not
possible to conduct a t-test.

Altogether, the results show a statistically significant change of the overall shape of the
spectral density over time, particularly for credit and housing. In more recent times, the
largest share of spectral mass of the credit and housing series in the US and UK is clearly
located at cycles longer than the business cycle. Therefore, our results also support the
conjecture of Drehmann et al. (2012) and Borio (2014) that particularly credit and house
prices capture the most important features of financial cycles. Credit represents a direct
financing constraint to the economy and real estate is one of the assets that is mainly financed
by credit. Besides, house prices can be related to the perception of value and risk in the
economy. For a detailed discussion of the role of subjective and possibly biased perceptions
of value and risk in the housing market, see Geanakoplos et al. (2012).

Our results also highlight that credit and house prices should be at the center of interest when
monitoring the financial cycle. To some extend, this is already the case. With the intention of
curbing the financial cycle, the European Systemic Risk Board, for instance, recommends the
credit to GDP ratio as financial cycle indicator to guide the setting of countercyclical buffer
rates, see ESRB (2014). However, our results indicate that the credit to GDP ratio shows only
a few of the hypothesized financial cycle properties. This implies that there is considerable
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statistical uncertainty associated with the estimation of the frequency domain representation
of that time series. It seems that when credit and GDP are considered individually, they are
quite informative, but when forming the ratio, the combined measure provides only a mixed
picture.

A formal interpretation of that finding is suggested by the representation of credit and GDP
in terms of their p reciprocal roots {z1, ..., zp} of their characteristic equations. Assuming
for simplicity that both time series are pure AR(p) processes, they have representations
ycreditt = (1 − zcredit1 )−1 · (1 − zcredit2 )−1 · ... · (1 − zcreditp )−1εcreditt and yGDP

t = (1 − zGDP
1 )−1 ·

(1− zGDP
2 )−1 · ... · (1− zGDP

p )−1εcreditt . When forming the credit to GDP ratio ycreditt /yGDP
t ,

common (or similar) roots in numerator and denominator will (almost) cancel out and it
is unclear what kind of dynamics the resulting polynomial actually shows. Therefore, the
cyclical properties of the credit to GDP ratio are very difficult to interpret.

A clearer result of our univariate analysis is that for none of the countries considered equity
shows any of the financial cycle characteristics. This finding is consistent with (near) market
efficiency. If equity prices are a good approximation of all the information available to market
participants, the strength of serial correlation should be limited.

4 Multivariate Empirical Analysis: Characterizing a Common Financial
Cycle in the Frequency Domain

4.1 Credit and House Prices Interaction

A widespread conjecture is that there exists one financial cycle that is common to several
financial variables. If the common financial cycle was important, variables which are affected
by it should first exhibit similar dynamics and, second, should be related to each other at low
frequencies. As to the first aspect, the findings from our previous univariate analysis indicate
that similar cyclical properties are only found for credit and house prices, which both show
long cycles with large amplitudes. Therefore, we start our multivariate analysis by looking
at these two variables within each country.18

As to the second aspect, it remains the question where to suspect a low frequency relation;
between the levels of credit and house prices, the growth rates or both? Since the levels
of credit and house prices are non-stationary, a cointegration relation would represent the
interesting case of a common long-run trend, i.e. a relation at the lowest possible frequency
λ = 0. However, a probably more popular view in the literature is to think of the common
cycle as a low frequency common component of very persistent but still stationary financial

18Note that a multivariate analysis is compatible with a univariate study. Even if the true data generating
process was a VAR, there still exists a univariate ARMA representation of each time series in the system, see
e.g. Maravall and Mathis (1994).
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variables, like the growth rates of credit and house prices. Evidently, focusing only on the
growth rates could lead to the conclusion that no relation exists while in fact there is a
relation in levels. The same holds when focusing only on levels.

Therefore, we estimate vector error correction models (VECM) in the time domain to have a
representation that separates the relations in levels from the one in first differences and allows
us to test for cointegration. After transforming the VECMs into the frequency domain, we
consider the coherency measure. A convenient feature of the coherency is that it is invariant
to linear transformations and therefore remains unchanged when moving from the levels to
first differences. Therefore, we can also use the coherency for the first differences to check at
which frequencies we have the strongest correlation between house price and credit growth.

Note that the first differences in the VECMs represent quarterly growth rates. This is another
interesting aspect, because it allows us to check whether our results from the univariate
analysis of yearly growth rates are robust to using quarterly growth rates.

A formal test of the hypothesis of a common cycle, for example in the series of US credit
and house prices, is to check whether there is significant interaction between the levels and
the first differences of these variables. However, this would only be a necessary condition.
The sufficient condition would be that the interaction takes place at low frequencies. We
start with an analysis of the levels. Table 6 shows cointegration test results. In all countries

Table 6: Cointegration Tests

pre post
H0 (rank) lags trace test λmax-test H0 (rank) lags trace test λmax-test

US r = 0 4 35.4 (0.002) 29.1 (0.001) r = 0 5 28.0 (0.027) 21.1 (0.028)
r ≤ 1 4 6.3 (0.419) 6.3 (0.419) r ≤ 1 5 6.9 (0.355) 6.9 (0.355)

UK r = 0 3 24.1 (0.083) 17.0 (0.106) r = 0 2 23.3 (0.102) 18.0 (0.078)
r ≤ 1 3 7.0 (0.343) 7.0 (0.343) r ≤ 1 2 5.2 (0.562) 5.2 (0.562)

GER r = 0 4 36. (0.002) 27.2 (0.003) r = 0 4 26.0 (0.048) 20.2 (0.038)
r ≤ 1 4 9.0 (0.179) 9.0 (0.179) r ≤ 1 4 5.8 (0.483) 5.8 (0.483)

Notes: This table shows the Johansen (1995) cointegration test results. We use two test statistics, the λmax and
the trace statistic. The lag length of each VECM is specified by using standard information criteria and residual
autocorrelation tests to confirm that the lag order is sufficient to guaranty white noise residuals. Since all series are
trending, the deterministic terms in the VECMs allow for different drifts of the time series.

and for both sample periods, we find one significant cointegration relation between credit and
house prices. We also obtain clear-cut evidence against a second cointegration relation, which
formally implies that the data are in fact non-stationary and contain one common stochastic
trend. The long-run equilibrium relation of these two variables is also clearly visible in the
frequency domain when regarding the coherencies in Figure 4. As implied by cointegration,
at frequency λ = 0 the coherency is equal to 1.
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Figure 4 is also very informative about the interaction at cycles of finite length. It can be seen
that for the US and UK the center of correlation has shifted from business cycle frequencies
before the sample split to much lower frequencies thereafter. For the case of Germany, the
coherency remains more stable.
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Figure 4: Coherency Between Credit and House Prices. Note: This Figure shows the coherency
between credit growth and house prices. Since the coherency is invariant to linear transformations, it
applies to the levels and to the first differences of the time series.

Results for the dynamics of each quarterly growth rate are provided in Figure 5. We derived
the individual spectral densities using the estimated VECM parameters as outlined in Section
2.3. While the shapes of the spectral densities differ to some extend, the overall picture is
fairly in line with the one obtained from the univariate analysis in the previous section.

As explained in detail in Appendix B.2, this can be interpreted as follows. If most of the
spectral mass of the true data generating process is located at frequencies lower than, say,
π/16, it makes only little difference between using the (1 − L)-filter or the (1 − L4)-filter.
Acting similar at low frequencies, both filters will provide an accurate picture of the cyclical
properties of the stationary component of the times series under investigation.

The above results from the multivariate analysis of credit and house prices within countries
have shown correlation at very low frequencies. However, this can only be a first indication
of a common cycle. In order to go a little further towards a more detailed analysis of the
global cycle, we estimate four bivariate cross-country VARs consisting of the US plus either
the UK or Germany. We now look at frequency-wise Granger causality for credit and house
prices. The Granger causality across frequencies is calculated according to (10) and measures
the causality from the US to the second country in the system. Figure 6 shows the results.
While the exact magnitude of the measures is not informative, it can still be observed that
the impact of the US on the UK and on Germany is concentrated around specific frequencies
and has moved over time towards lower ones.
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Figure 5: Spectral Densities of First Differences. Note: Individual spectral densities for quarterly
growth rates of credit and house prices derived from country-specific VECM representations.
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Figure 6: Cross-Country Granger Causality Note: This Figure shows the Granger causality
measure of Breitung and Candelon (2006). The measures are derived from bivariate cross-country
VARs and show the causality from the US to the second country in the system.
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4.2 US Monetary Policy Transmission and the Global Financial Cycle

Rey (2015), Passari and Rey (2015) and Miranda-Agrippino and Rey (2015) suggest that the
correlation of national financial cycles is driven by a global financial cycle which is shown
to be highly correlated with the VIX volatility index and is therefore related to agents’
risk appetite.19 The VIX, in turn, is influenced by US monetary policy, see e.g. Bekaert
et al. (2013). Thus, the existence of a global cycle represents an additional international
transmission channel of US monetary policy which may weaken the effectiveness of national
monetary policies.

Our analysis in the previous section provided some indications which seem to be in line with
the idea of a global financial cycle. The frequency domain perspective allowed us to show
that the effects of the US financial cycle on the financial cycles in the UK and in Germany
have shifted from higher to lower frequencies in the last decades. However, the analysis was
based on bivariate systems of credit and house prices only.

As a natural next step, we extend our VARs by a number of variables to investigate in
more detail Rey’s (2015) global financial cycle hypothesis. The models are estimated for the
sample 1990Q1-2013Q4.20 We then study Granger causality in the time and in the frequency
domain. The spectral matrix of the VAR models is derived from the estimated time domain
parameters. On this basis, we calculate p-values of the Breitung and Candelon (2006) test
with the null hypothesis of no Granger causality at a given frequency.

For the US, we estimate a VAR model consisting of the variables credit, real GDP, house
prices (all three in logs), the real short-term interest rate (calculated as in Bruno and Shin,
2015 as the target Fed Funds rate minus the CPI inflation rate) and the log VIX, in this
order. The models for the UK and Germany include the real exchange rate as an additional
endogenous variable. This reflects that the US may be considered a large and rather closed
economy while the UK and Germany are comparatively small and open economies. Besides,
the exchange rate will control for the traditional transmission mechanism of US monetary
policy on other countries.

Table 7 shows p-values for the time domain Granger tests with the null hypothesis of no
causality, see Toda and Yamamoto (1995). Figure 7 illustrates the p-values of the Breitung
and Candelon (2006) test for Granger causality in the frequency domain for credit, housing
prices and GDP.21

19The notion of the existence of such a common financial cycle is not new: Seminal works by Fisher (1933),
Keynes (1936), von Mises (1952), Hayek (1933) and Minsky (1982) stressed the inherently procyclical behavior
of the financial system and the role of bounded rational behavior by financial market participants.

20The shorter length for this multivariate analysis is due to the data availability of the VIX series, which
starts only at 1990Q1. As in the univariate analysis, the lag order of the VAR models is determined through
standard information criteria and, if necessary, adjusted until all autocorrelation is removed from the residuals.

21The p-value graphs for the other variables are available upon request.
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Table 7: Time domain Granger non-causality tests (p-values), Estimation sample: 1990:1-
2013Q4.

. . . is not Granger-caused by . . . Credit GDP RER Housing Prices Real Interest Rate VIX
United States

Credit – 0.231 – 0.001 0.640 0.363
GDP 0.211 – – 0.154 0.257 0.370
RER – – – – – –
House Prices 0.009 0.093 – – 0.132 0.175
Real Interest Rate 0.771 0.984 – 0.948 – 0.638
VIX 0.853 0.172 – 0.122 0.520 –

United Kingdom
Credit – 0.205 0.814 0.445 0.553 0.094
GDP 0.359 – 0.509 0.120 0.979 0.001
RER 0.906 0.364 – 0.004 0.124 0.265
House Prices 0.059 0.853 0.106 – 0.999 0.304
Real Interest Rate 0.046 0.439 0.029 0.517 – 0.274
VIX 0.714 0.104 0.545 0.641 0.181 –

Germany
Credit – 0.001 0.318 0.003 0.698 0.509
GDP 0.171 – 0.118 0.458 0.338 0.376
RER 0.545 0.191 – 0.421 0.879 0.872
House Prices 0.778 0.495 0.622 – 0.242 0.232
Real Interest Rate 0.521 0.184 0.596 0.947 – 0.639
VIX 0.474 0.100 0.709 0.257 0.319 –

For the US, we find significant time domain Granger causality from credit to housing and the
other way around. From the frequency domain we obtain the information that this relation is
particularly significant at lower frequencies. This corroborates the results from the coherency
analysis of the bivariate VARs in the previous section (see Figure 4). While Granger causality
remains a reduced form concept, our findings are in line with the widespread notion that house
prices were a key factor of the pronounced credit expansion in the US during the 1990s and
2000s which led to 2007/2008 crisis and the following collapse in economic growth. In the
time domain, where relations at specific frequencies cannot be identified, US GDP appears
not to be significantly influenced by housing or credit, at least not at the 10%-level. However,
looking in the frequency domain, we can see that house prices do significantly affect GDP,
but they do so only at lower frequencies. Similarly, Figure 7 also shows a significant low
frequency Granger-causal relationship from the VIX to house prices.

Does US monetary policy transmit through the risk taking channel and affect national fi-
nancial cycles in other countries? If so, there should be significant Granger causality at low
frequencies between the US VIX and foreign credit (or house prices). In the UK, we obtain
time domain evidence for a significant relation between the VIX and credit. In the frequency
domain, we see that the significance of this relation is driven by low frequencies. The same
result holds for the effect of the US VIX on macroeconomic activity in the UK.
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Figure 7: Breitung and Candelon (2006) p-values for frequency domain Granger non-causality
(low p-values indicate a rejection of the null hypothesis of non-causality).

For Germany, the results look different. The time domain tests indicate that the US VIX is
neither Granger causal to credit or house prices nor to GDP. However, the frequency domain
reveals that the picture may not be too different from that of the UK. The VIX does not
affect credit and GDP significantly (at the 10%-level), but the significance clearly increases
to levels of less than 20% towards lower frequencies. Therefore, it could well be the case
that the higher dimensional VAR for Germany would need just a bit more data to be able to
deliver the same results as for the UK.

5 Concluding Remarks

What are the main characteristics of the financial cycle? Is it a medium-term phenomenon,
meaning it is longer than the business cycle, as suggested in the literature, or does it share sim-
ilar characteristics with the business cycle? How are financial cycles related within countries
and what could explain internationally related financial cycles? In this paper we intended
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to shed some light on these and other related questions by estimating the data generating
processes of financial and business cycle variables using standard econometric methods. We
extended the literature by formally testing various cyclical properties and economic interpre-
tations that have been suggested by existing work. Most of our analysis of the financial cycle
was performed in the frequency domain, while the estimation was carried out in the time
domain. Our approach allowed us to take into account all possible cycles without a priori
assuming different ranges for financial and business cycles. The efficiency of the paramet-
ric spectrum estimation made it possible to test for time-variation of cyclical properties via
subsample analysis and to test for Granger causality in a multivariate setting.

For the US and the UK, we found strong evidence that growth rates of credit and house
prices feature longer cycles and larger amplitudes than the business cycle. We also found
time variation of these properties and showed that they have become more visible recent
times. The statistical significance of our findings contributes to establishing stylized facts of
the properties of financial cycles. Further, we found statistical evidence at low frequencies
supporting the relevance of Rey’s (2015) global financial cycle hypothesis and thus of the
risk-taking channel of US monetary policy.

Our results highlight the need for closely monitoring the evolution of financial cycles and for
policy-measures to curb extreme fluctuations (as, for instance, counter-cyclical capital buffer
rates) in order to mitigate the effects of the global financial cycle.

An interesting and straightforward extension of our approach that could be applied in both
a univariate and a multivariate framework would be to use time-varying parameter models.
These could possibly provide deeper insights into the question of when the financial cycle has
developed its distinguishing features and what events have caused the parameter changes.
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Appendix A Data Sources and Definitions

All series are measured in logs and deflated using the consumer price index. All series
are normalized by their respective value in 1985Q1 to ensure comparability of the units. We
obtain annual growth rates by taking annual differences of the time series. The only exception
is the credit to GDP ratio which is expressed in percentage points.

Table 8: Definition and Sources of the Data

Source Identifier Notes
GDP OECD.Stat CARSA national currency
CPI OECD.Stat Consumer Prices national index
credit Datastream USBLCAPAA, UKBLCAPAA, national currency, credit to private

BDBLCAPAA non-financial sector from all sectors
housing OECD.Stat House Prices national index

equity IMF USQ62...F, UK62...F,
BDQ62.EPC national index
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Figure 8: Real GDP and Financial Variables in the United States. Note: All series are annual
growth rates, except the credit to GDP ratio, which represents deviations from a linear trend measured
in percentage points. The vertical gray line shows the sample split.
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Figure 9: Real GDP and Financial Variables in the United Kingdom. Note: All series are
annual growth rates, except the credit to GDP ratio, which represents deviations from a linear trend
measured in percentage points. The vertical gray line shows the sample split.
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Figure 10: Real GDP and Financial Variables in Germany. Note: All series are annual growth
rates, except the credit to GDP ratio, which represents deviations from a linear trend measured in
percentage points. The vertical gray line shows the sample split.
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Appendix B Methodological Discussion

B.1 Comparison of Indirect Spectrum Estimation and Filtering

A popular approach in the analysis of the financial cycle is to work with frequency-based
filters (Drehmann et al., 2012, Aikman et al., 2015) which are usually based on Baxter and
King (1999) or refinements thereof, see e.g. Christiano and Fitzgerald (2003). When filters
are used to analyze cycles, a crucial point is that the frequency range has to be pre-specified
by the researcher. This may lead to results biased into the direction of the pre-defined
range. The intuition behind this difficulty is best described by briefly discussing the general
functioning of filters.

In the time domain, any linear filter can be written in the form of a two-sided moving average

yt =
n∑

j=−m
ajxt−j . (13)

The filtered series yt depends simultaneously on the properties of the filter (the coefficients
aj) and the data (the observed series xt). To convert equation (13) into the frequency domain,
one uses the corresponding filter function

C(λ) =
n∑

j=−m
aje
−iλj , i2 = −1 , (14)

and its transfer function
T (λ) = |C(λ)|2 , (15)

where λ ∈ [−π, π] denotes the frequency range, see e.g. Wolters (1980a, 1980b). The
relationship between the spectra of the original and the filtered series is given by

fy(λ) = T (λ)fx(λ). (16)

When compared to the time domain, a major advantage of the representation in (16) is that
now the filter effect T (λ) is separated from the data fx(λ).

For the spectrum of the filtered series fy(λ) to accurately identify cycles in the spectrum of
the observed series fx(λ), a so-called band pass filter must be used. Such a filter has the
value 1 at the frequency range of interest [λlow, λhigh] and 0 otherwise. In view of equation
(16), this implies fy(λ) = fx(λ) for λ ∈ [λlow, λhigh] and fy(λ) = 0 for λ /∈ [λlow, λhigh].
Theoretically, the ideal time domain filter can be achieved by moving averages of infinite
order. Yet, in practice, this is not possible since only a limited number of observations is
available.
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The main idea of frequency-based filters is to pre-specify a range from λlow to λhigh and to
choose finite values for m and n in equation (13) to find the weights aj which approximate
the ideal filter as good as possible. Due to the approximation, the spectrum of the filtered
series is in general different from the one of the observed series in [λlow, λhigh] and reflects a
mixture of filter and data properties in the form of T (λ)fx(λ). More precisely, it can be shown
that any filter has the tendency to overstate the contributions of cycles in the pre-defined
frequency range [λlow, λhigh] to the overall variance of the underlying time series. Because of
this tendency, artificial cycles may be produced even if the true data generating process has
no cycles.22

In this study, we emphasize that the appropriate λlow and λhigh are unknown. Indeed, while
there seems to be general consensus in the literature about the relevant frequency range for
the business cycle (2 to 8 years), the relevant frequency range for the financial cycle is less
clear. For instance, Drehmann et al. (2012) construct their financial cycle measure from the
underlying series with a priori chosen cycle length between 8 and 30 years.

B.2 The Effect of Quarterly and Yearly Growth Rate Filters: ∆ vs. ∆4

Our univariate analysis of financial cycles focuses on yearly growth rates of a number of
financial variables. This allows us to compare our results to those provided by existing
studies. The fact that most of the literature focuses on yearly growth rates also highlights
that the dynamics of yearly changes are of general interest to economists.

Nonetheless, when calculating yearly growth rates, a specific filter, the (1 − L4)-filter, is
applied to the level of the time series. This raises the concern if and how this filter changes
the cyclical properties of the data. Another interesting aspect is whether it makes a difference
when using the (1− L)-filter to calculate quarterly instead of yearly growth rates.

What we do know about the level data is that they are non-stationary. Hence, the spectral
density collapses at frequency λ = 0 because all the variation of the series is explained by
the cycle with length infinity. Therefore, the more relevant question must be whether using
the (1 − L4) or (1 − L)-filter gives a good approximation of the cyclical properties of the
stationary component of the time series which remains when the unit root is removed. The
correct answer, in turn, depends crucially on the DGP.

Consider the DGP
(1− L4)A(L)yt = εt (17)

with A(L) stationary and εt white noise. The process in (17) is still fairly general and could
22This issue has been raised already in the 1950’s and 1960’s. For a discussion of the general problem see

e.g. König and Wolters (1972), King and Rebelo (1993), Baxter and King (1999), Christiano and Fitzgerald
(2003), Harvey and Trimbur (2003) and Murray (2003).
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well be the generating process behind the present data. The true spectrum of the level of yt
is given by

fy(λ) = [2(1− cos(4λ))]−1 · [|A(e−iλ)|2]−1 · fεt(λ)

= [2(1− cos(4λ))]−1 · f∆4(λ) ·
σ2
εt

2π

In that case, the (1−L4)-filter, which has the frequency domain representation [2(1−cos(4λ))],
should indeed be applied because it would give us exactly (up to a constant scale factor σ2

εt
2π )

the true spectrum of the cyclical component. Of course, the crucial assumption is that true
spectrum of the cyclical component is f∆4(λ) = [|A(e−iλ)|2]−1. Naturally, the same argument
could be made against the (1− L4)-filter by assuming the DGP was (1− L)A(L)yt = εt.

Sticking to the example that the true DGP is (17), using the (1−L)-filter would not produce
the correct spectrum of the stationary component of yt. This can be seen from Figure 11
which shows the transfer functions of both filters. The (1− L)-filter would dampen the true
spectrum at lower frequencies. Similarly, if the DGP was (1−L)A(L)yt = εt, the (1−L4)-filter
would dampen the true spectrum for λ < π/12 and intensify frequencies for π/12 < λ < π/4.
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Figure 11: Comparing the Filters (1 − L4) and (1 − L). Note: The Figure shows the transfer
functions of the yearly and quarterly growth rate filters, i.e. 2(1− cos(4λ)) and 2(1− cos(λ)).

To assess the relevance of this issue in an empirical analysis of financial cycles in growth
rates, it is instructive to state that the (1− L4)-filter can be decomposed as follows

(1− L4) = (1− L)(1 + L+ L2 + L3) . (18)
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According to (18), the (1−L4)-filter is equivalent to taking first differences and then forming a
moving average of the remainder. Figure 12 shows the transfer functions of both components
of the (1−L4)-filter. The transfer function of the (1+L+L2 +L3)-filter reflects what is done
to the data on top of forming first differences when using the (1 − L4)-filter. Note that the
transfer function of the (1 + L+ L2 + L3)-filter is quite flat in the gray region which reflects
the financial cycle area.
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Figure 12: Decomposing the Filter for Yearly Growth Rates. Note: The figure shows the transfer
functions of the two components (1− L) and (1 + L+ L2 + L3) of the (1− L4)-filter.

Let us now make the assumption that all (or most) of the true spectral mass of the cyclical
component of yt is located at longer cycles. If that was actually the case, then, compared to
taking first differences, the (1− L4)-filter scales up the true spectrum by a roughly constant
number. However, when forming the spectral densities by dividing through the area below
the spectrum, the scaling effect becomes irrelevant. Therefore, given all spectral mass is
truly located at very low frequencies, the (1 − L4)-filter and the(1 − L)-filter should deliver
similar spectral densities. Since we have shown in Section 4.1, that for quarterly growth rates
of credit and housing the spectral densities are indeed very similar to those obtained from
the univariate analysis of yearly growth rates, we conclude that these long cycles are in fact
present in the true data generating process.

B.3 Comparison of Indirect and Direct Spectrum Estimation

A direct non-parametric estimation of a spectrum produces generally less precise estimates
than the parametric (indirect) approach.23 In order to get consistent estimates, one has to

23Two interesting applications can be found in Aikman et al. (2015) and Schüler et al. (2015). Aikman
et al. (2015) directly estimate the spectral density for UK real loan growth using yearly data from 1880-2008
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use a kernel estimator. Thus, the estimates depend on the specific kernel and its bandwidth
parameter M , implying that a large amount of observations is required to have the necessary
degrees of freedom. For instance, if one estimates the spectrum from T observations by
transforming the first M estimated autocovariances, one has C · TM degrees of freedom. The
constant C is kernel-specific and usually takes on values of around 3. A small value of M
decreases the variance but increases the bias of the estimator. Having in mind the data in
our empirical analysis, let us consider a sample size of T = 100. In that case, a reasonable
choice forM may be 20, leading to only about 15 degrees of freedom. In contrast, the indirect
estimation approach, starting from an ARMA model with e.g. 5 parameters, leaves us with
95 degrees of freedom and hence implies a strong efficiency gain.

An important additional consequence of this reduction in estimation uncertainty is that it
facilitates to study possible changes in the spectrum across different time periods. Since
the indirect spectrum estimation is based on time domain estimates, it allows the use of
conventional break point tests, as e.g. the Chow test, or impulse indicator saturation to
endogenously determine breaks.24

B.4 Bootstrap Inference

To statistically assess the characteristics of the financial cycle across variables and different
sample periods, the inference in the empirical part is based on bootstrap methods.25 We
apply the following bootstrap procedure, see e.g. Benkwitz et al. (2001).

1. Estimate the parameters of the ARMA model in equation (1).

2. Generate bootstrap residuals u∗1, . . . , u∗T by randomly drawing with replacement from
the set of estimated residuals.

3. Construct a bootstrap time series recursively using the estimated parameters from step
1 and the bootstrap residuals from step 2.

4. Reestimate the parameters from the data generated in step 3.

5. Repeat step 2 to step 4 5000 times.

to analyze both the business and the financial cycle, while Schüler et al. (2015) also directly estimate spectral
measures to characterize financial cycles across Europe.

24When estimating spectral densities directly, comparable structural break tests are also available in the
frequency domain, see Ahmed et al. (2004) and Pancrazi (2015). Their advantage is that they allow to analyze
breaks of (integrated) spectral densities in any frequency range of interest. Generally, however, they are not
as precise as tests in the time domain since they are based on a non-parametric approach. During the further
procedure, this paper also uses frequency-wise testing to address a number of specific questions, but our testing
relies on the indirectly estimated spectra and their bootstrap standard errors.

25To the best of our knowledge, analytical expressions for such standard errors are not available.
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6. From the bootstrap distributions of the statistics of interest, e.g., cycle length, am-
plitude etc., we compute the standard errors and the corresponding 95% confidence
intervals.

B.5 Estimation Example

In order to provide an example of how we use the estimated ARMA models to obtain the
spectral densities, consider the following process of US real GDP growth during the pre-1985
period with t-values in parentheses (cf. Appendix C.1) and the notation as in equation (1):

yt = 0.002
(2.97)

+ 1.144
(19.21)

yt−1 − 0.224
(−4.37)

yt−3 − 0.985
(−42.04)

ut−4 + ut .

These estimates are applied to equation (3) to calculate the corresponding spectrum as

fy(λ) = |1− 0.985 e−i4λ|2

|1− 1.144 e−iλ + 0.224 e−i3λ|2
σ2

2π ,

with e−iλ = cos(λ)− i · sin(λ) by Euler’s relation and i2 = −1. According to this procedure,
we calculated the spectra for all countries and sample periods under consideration. Dividing
fy(λ) by the variance of yt yields the spectral densities.
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Appendix C Detailed Time Domain Estimation Results
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C.2 Testing for Breaks: Impulse Indicator Saturation

As outlined in Section 3.1 on the data, we want to analyze possible changes in the charac-
teristics of the financial cycle. Thereby, we follow the literature, which commonly specifies
the break at 1985Q1, arguing that around this time the process of financial liberalization
around the world started to speed up considerably (see e.g. Claessens et al., 2011, 2012 and
Drehmann et al., 2012). Chow tests provide some support for the break date 1985Q1; see
test results in Appendix C.1.

To provide additional statistical support without a priori specifying a break date (as it is
necessary for the Chow test), we conducted an impulse indicator saturation analysis. Follow-
ing Hendry (2011) and Ericsson (2013) (see also the references therein), we use the split-half
approach. That is, we include impulse dummies for all data points of the first half of the
sample and estimate the model over the full sample. From the estimation results, we identify
the significant dummies (see Block 1 in Figures 13 to 15). Similarly, we then repeat the esti-
mation including dummies only for the second half of the sample (see Block 2). Thereafter,
we estimate the model including all dummies which were significant in first two steps of the
test procedure. Finally, we retain all dummies being significant at the 10%-level (see Block
Combination).

From the test results in Figures 13 to 15, it can be seen that for most variables a considerable
amount of dummies remains significant in one half of the sample while in the other half only
a few dummies survive. Often the few surviving dummies are found in the second sample
half and only pick up outliers during the financial crisis. While the test procedure does not
provide specific break dates, it gives in most cases fairly strong indication that the model
parameters are subject to structural change. In particular, the results indicate a break around
mid to late 1980s for US and UK and around 1990 for Germany.

Note that the IIS procedure is quite general. It is possible to interpret many existing tests as
special cases of IIS, as e.g. recursive estimation, rolling regression, the Chow (1960) test, the
Andrews (1993) endogenous break point test, the Bai and Perron (1998) multiple breakpoint
test and the tests of extended constancy in Ericsson et al. (1998).

37



0

1

60 65 70 75 80 85 90 95 00 05 10

Final Model: Dummies Retained

0

1

60 65 70 75 80 85 90 95 00 05 10

0

1

60 65 70 75 80 85 90 95 00 05 10

US GDP

B
lo

c
k
 1

B
lo

c
k
 2

B
lo

c
k
 C

o
m

b
in

a
ti

o
n

0

1

60 65 70 75 80 85 90 95 00 05 10

Final Model: Dummies Retained

0

1

60 65 70 75 80 85 90 95 00 05 10

0

1

60 65 70 75 80 85 90 95 00 05 10

US Credit

0

1

60 65 70 75 80 85 90 95 00 05 10

Final Model: Dummies Retained

0

1

60 65 70 75 80 85 90 95 00 05 10

0

1

60 65 70 75 80 85 90 95 00 05 10

US Credit to GDP

0

1

70 75 80 85 90 95 00 05 10

Final Model: Dummies Retained

0

1

70 75 80 85 90 95 00 05 10

0

1

70 75 80 85 90 95 00 05 10

US Housing

B
lo

c
k
 1

B
lo

c
k
 2

B
lo

c
k
 C

o
m

b
in

a
ti

o
n

0

1

60 65 70 75 80 85 90 95 00 05 10

Final Model: Dummies Retained

0

1

60 65 70 75 80 85 90 95 00 05 10

0

1

60 65 70 75 80 85 90 95 00 05 10

US Equity

Figure 13: Endogenous Structural Break Point Search for the US. Note: The figure shows the
results from the Impulse Indicator Saturation procedure using the split-half approach.
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Figure 14: Endogenous Structural Break Point Search for the UK. Note: The figure shows the
results from the Impulse Indicator Saturation procedure using the split-half approach.
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Figure 15: Endogenous Structural Break Point Search for the GER. Note: The figure shows
the results from the Impulse Indicator Saturation procedure using the split-half approach.
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