
Design and Application of Modern HeuristicsDesign and Application of Modern Heuristics

Mainz, September 2012

Franz Rothlauf

• These slides have been the basis for a class on the
design and application of modern heuristics given at
the university of Mainz in fall 2012

• The slides are based on the book "Design of Modern
Heuristics" published at Springer

2

Heuristics" published at Springer

• You are free to use the material contained in these
slides for your own classes or presentations. A
reference to the book would be nice.

• Many thanks to Jörn Grahl who contributed to preparing
the slides. For editing some of the latex displays, we
used texpoint.

• Enjoy modern heuristics!

Agenda

1. Modern Heuristics (10)
1. Heuristics

2. Approximation Algorithms (20)

3. Modern (Meta) Heuristics (27)

2. Optimization Problems (37)
1. Prerequisites

1. Search Spaces

2. Fitness Landscapes

4. Search Operators (189)
1. Design Principles

2. Standard Search Operators (199)

5. Fitness Function (206)
1. Design Guidelines

2. Examples

6. Initialization (216)

3

2. Fitness Landscapes

2. Problem Complexity (54)

3. No-Free Lunch Theorem (77)

4. Locality (84)
1. Fitness distance correlation

2. Ruggedness

5. Decomposability (102)

3. Representations (115)
1. Introduction

2. Design Guidelines for
Representations (138)

3. Properties of Representations
1. Locality (147)

2. Redundancy (161)

6. Initialization (216)

7. Search Strategies (220)
1. Diversification and Intensification

2. Variable Neighborhood Search (228)

3. Pilot Method (233)

4. Evolution Strategies (237)

5. Genetic Algorithms (244)

8. Design Principles (252)
1. High Locality

2. Bias

Intro

• Round of introductions

• Purpose of class

• Organisational Issues

4

Grading and Participation

• First two days: Lecture

• Third day: Problem presentations and discussion of

particular problems (see workshop literature)

• Fourth day: Discussion and Development of

5

• Fourth day: Discussion and Development of

enhanced methods

Class Background Literature

• Rothlauf, F. (2011): Rothlauf, F. (2011): Rothlauf, F. (2011): Rothlauf, F. (2011): Design of Modern Heuristics: Principles and ApplicationDesign of Modern Heuristics: Principles and ApplicationDesign of Modern Heuristics: Principles and ApplicationDesign of Modern Heuristics: Principles and Application. Springer, Berlin. Springer, Berlin. Springer, Berlin. Springer, Berlin

• 2.1 Kallel, L.; Naudts, B.; Reeves, C. R. (2001): Properties of fitness functions and search landscapes.
Theoretical aspects of Evolutionary Computing 2001, Springer, London, 175-206.

• 2.2 He, J.; Reeves, C.; Witt, C.; Yao, X. (2007): A Note on Problem Difficulty Measures in Black-Box
Optimization: Classification, Realizations and Predictability. Evolutionary Computation 15(4): 435-443.

• 2.3
– Wolpert, D. H.; Macready, W. G. (1997): No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary

Computation 1(1): 67-82.

6

Computation 1(1): 67-82.

– Christensen, S.; Oppacher, F. (2001): What can we learn from No Free Lunch? A first attempt to characterize the concept
of a searchable function. Proceedings of the Genetic and Evolutionary Computation Conference 2001, Morgan-Kaufman,
San Francisco CA, 1219-1226.

– Koehler, G. J. (2007): Conditions that obviate the No Free Lunch Theorem. INFORMS Journal on Computing 19(2): 273-
279

• 5. Coello Coello, C. A. (2002): Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the art. Computer methods in applied mechanics and
engineering (191) 2002: 1245-1287.

• 7.
– Blum, C.; Puchinger, J.; Raidl, G.; Roli, A. (2011): Hybrid metaheuristics in combinatorial optimization: A survey. Applied

Soft Computing 11 (2011) 4135-4151.

– Blum, C.; Roli, A. (1993): Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM
Computing Surveys 35(3): 268-308.

Selected Workshop Literature

• Debels, D.; Vanhoucke, M. (2007): A Decomposition-Based Genetic
Algorithm for the Resource-Constrained Project-Scheduling Problem. In:
Operations Research 55 (3), S. 457–469.

• Ropke, S.; Pisinger, D. (2006): An Adaptive Large Neighborhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows. In:
Transportation Science 40 (4), S. 455–472.

• Schittekat, P.; Sorensen, K. (2009): OR Practice--Supporting 3PL Decisions

7

• Schittekat, P.; Sorensen, K. (2009): OR Practice--Supporting 3PL Decisions
in the Automotive Industry by Generating Diverse Solutions to a Large-Scale
Location-Routing Problem. In: Operations Research 57 (5), S. 1058–1067.

• Sung-Soon Choi; Byung-Ro Moon (2008): Normalization for Genetic
Algorithms With Non-synonymously Redundant Encodings. In: IEEE
Transactions on Evolutionary Computation 12 (5), S. 604–616.

Background

Performing Experimental Studies

• Bartz-Beielstein, T. (2006): Experimental Research in
Evolutionary Computation - The New Experimentalism.
Springer-Verlag, Berlin, Heidelberg, New York.

Publishing: what and how?

8

Publishing: what and how?

• Schrader, U.; Hennig-Thurau, T. (2009): VHB-JOURQUAL2:
Method, Results, and Implications of the German Academic
Association for Business Research's Journal Ranking. BuR -
Business Research 2(2): 180-204.

Writing a Review:

• Lee, A. S. (1995): Reviewing a manuscript for publication.
Journal of Operations Management 13 (1995) 87-92.

left intentionally blank

9

Modern Heuristics

1. Heuristics

a. Construction Heuristics

b. Improvement Heuristics

2. Approximation Algorithms

10

2. Approximation Algorithms

3. Modern Heuristics (Metaheuristics)

History

• Until 1970s: mostly exact optimization

• Many practical problems are NP-complete

→ exact approaches have exponential running time

• Idea: relax optimality, increase efficiency

Modern Heuristics

11

• Idea: relax optimality, increase efficiency

→ Heuristics

Construction heuristics

• A.k.a. single-pass heuristics

• Build solution from scratch

– Several steps

– Fix one part of solution per step

Modern Heuristics - Heuristics

12

– Fix one part of solution per step

– Often: fix one decision variable per step

• Terminate when solution is complete

• No improvement steps

Improvement heuristics

• Start from a complete solution

• Improve solution

– Several steps

– Possible changes define a „neighborhood“

Modern Heuristics - Heuristics

13

– Possible changes define a „neighborhood“

– No diversification: objective value increases

– If no improvement is possible: terminate

Greedy search

• Construction & improvement heuristics

are often greedy

• Choose alternative with highest objective value

• No looking ahead, myopic, fast, sub-optimal

Modern Heuristics - Heuristics

14

• No looking ahead, myopic, fast, sub-optimal

Example: Travelling salesman problem

• Connect n cities with minimal total distance

Modern Heuristics - Heuristics

15

Data Optimal solution

•node location

•distance weights

•path

Construction heuristics for TSP (1)

• Nearest neighbor (Rosenkrantz et al, 1977)

– Start with random city

– Connect nearest unconnected city

– Terminate when all cities are connected

Modern Heuristics - Heuristics

16

– Terminate when all cities are connected

– Although an upper bound

exists on solution quality, it does not perform

well in practice

l(T)/l(Topt) ≤ (log2 n)/2

Construction heuristics for TSP (3)

• Nearest insertion

– Start with a random two-city tour

– Select city with minimal distance to any connected city

– Add city in a way that minimizes increase of tour length

Modern Heuristics - Heuristics

17

– Add city in a way that minimizes increase of tour length

– Worst case performance:

• Cheapest insertion

– Like nearest insertion, but chooses city that increases
tour length the least

– Worst case performance:

l(T)/l(Topt) ≤ 2

l(T)/l(Topt) ≤ log2 n

Construction heuristics for TSP (3)

• Furthest insertion

– Start with longest two-city tour

– Iteratively add city that increases tour length the most

when inserted it in the best position on the current tour

Modern Heuristics - Heuristics

18

when inserted it in the best position on the current tour

– Idea: start with cities that are far apart

– Worst-case performance is

(like cheapest insertion), but furthest insertion

outperforms the other construction heuristics in

practice.

l(T)/l(Topt) ≤ log2 n

Improvement heuristics for TSP (1)

• Two-opt
– Remove any two possible edges and obtain two subtours. Insert

two new edges such that resulting tour length is minimal.

– If distances are Euclidean, no edges in resulting tour do cross (on-
crossing tour)

– Worst case performance O(4
√

n)

Modern Heuristics - Heuristics

19

– Worst case performance

• k-opt (Lin, 1965)
– Generalization of 2-opt. Examine some or all -subsets of

edges in a tour

– If exchange of k edges does not improve tour, tour is k-optimal

– If triangle inequality holds, worst case performance of

k-opt is (Chandra et al, 1994)O
�
1
4n

1

2k

�

O(4
√

n)

�
n
k

�
k

Approximation Algorithms

• Heuristics substitute optimality by tractability

• Approximation algorithms are heuristics with a

quality bound

• Performance is measured by approximation ratio

Modern Heuristics - Approximations

20

• Performance is measured by approximation ratio

n is problem size, xapprox is solution returned by

algorithm, and x* is optimal solution

• Definition holds for minimization and maximization

ρ(n) ≥ max
�
f(xapprox)
f(x⋆) , f(x⋆)

f(xapprox)

�

Understanding approximation ratio

• An algorithm has an approximation ratio ρ(n)

if for any input size n the objective value of the
returned solution is within a factor of ρ(n) of the

optimal objective value.

Modern Heuristics - Approximations

21

optimal objective value.

• If an algorithm always returns the optimum ρ(n)=1

• If algorithm returns solution that is never worse than
2f*, then ρ(n)=2

Trade-off between effort and quality

• Some approximation algorithms can achieve
increasingly smaller approximation ratios ρ(n)→ 1

by using more and more computation time.

• We call them approximation schemes

Modern Heuristics - Approximations

22

• We call them approximation schemes

• Required input : ǫ

• Approximation schemes return for any fixed ǫ >0 a

solution with approximation ratio 1+ǫ

Fully polynomial-time approx. scheme

• FPAS, FPTAS

• Returns a solution with approximation ratio (1+ǫ)

• Running time is polynomial in both input size n and

1/ǫ

Modern Heuristics - Approximations

23

1/ǫ

• Fast for small ǫ and large n

• Allows effective problem solving

Polynomial-time approx. scheme

• PAS, PTAS

• Returns a solution with approximation ratio of
(1+ǫ)

• Running time polynomial in input size n

Modern Heuristics - Approximations

24

• Running time polynomial in input size n

• However, running time can grow exponentially in
1/ǫ

• Fast for large n but not for small ǫ

Constant-factor approximations

• APX

• Guarantee a constant-factor approximation ratio

• Approximation ratio is fixed, not a parameter

• Running time is polynomial in problem size

Modern Heuristics - Approximations

25

• Running time is polynomial in problem size n

Approximation and complexity

• FPTAS are most effective, followed by PTAS and APX

• Introduce new complexity classes

• Problems in P can be solved in polynomial time

• Problems in NP require exponential time

Modern Heuristics - Approximations

26

• Problems in NP require exponential time

•
• Problem is PTAS-hard if no FPTAS exists

• Problem is APX hard if no PTAS exists

P ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ NP

Modern heuristics

• Extended variants of improvement heuristics,
„metaheuristics“

• Modern heuristics

– Can be applied to a wide range of problems

Modern Heuristics – Modern Heuristics

27

Can be applied to a wide range of problems

– Use intensification (exploitation) and diversification
(exploration) steps

• Intensification steps shall improve quality

• Diversification explores new areas of search space,
also accepting complete or partial solutions that are
inferior to current solution

Principles (1)

• Start with one or more random solutions

• In iterative steps modify solution(s) to generate one or more
new solution(s)

• New solutions are created by search operators (variation
operators)

Modern Heuristics – Modern Heuristics

28

operators)

• Regularly perform intensification and exploration phases

– During intensification, it uses objective function values and
focuses variation on high-quality solutions

– During diversification, usually objective function values are not
considered. Modify solutions such that new areas of search space
are explored.

Principles (2)

• Modern heuristics perform a limited number of

search steps

• To be applicable, two requirements must be met

– Representation: We must be able to represent complete

Modern Heuristics – Modern Heuristics

29

– Representation: We must be able to represent complete

solutions so that variation operators can be used.

– Pair wise fitness comparisons must be possible,

indicating which of two solutions is better.

Design elements of Modern Heuristics

1. Representation

2. Variation operators

3. Fitness function

4. Initial solution(s)

Modern Heuristics – Modern Heuristics

30

4. Initial solution(s)

5. Search strategy

• Can be addressed to build a new heuristic and to
categorize existing ones

• Central to this course

Example: Simulated Annealing (SA)

• Local search that accepts inferior solutions to

escape from local optima

• Probability of accepting inferior solution depends

on solution quality; it decreases during run.

Modern Heuristics – Modern Heuristics

31

on solution quality; it decreases during run.

• Analogy from cooling metals or liquids

Simulated Annealing

• Uses iterative steps

• In each step: apply variation operator(s) to current
solution xo , obtain new solution xn

• Accept xn with probability

Modern Heuristics – Modern Heuristics

32

• Accept xn with probability

• Temperature T is a strategy parameter

• δE is the fitness difference

Pacc(T) =

�
1 if f(xn) ≤ f(xo)

exp(−δET) if f(xn) > f(xo)

Diversification and intensification

Modern Heuristics – Modern Heuristics

33

• For T→ 0, SA becomes local search

• Probability of accepting inferior solution decreases with
fitness difference

Getting the cooling schedule right

• If T is reduced very slowly, SA returns optimal
solution; however resulting runtime is prohibitive

• If T is reduced too fast, SA converges to local
optimum.

Modern Heuristics – Modern Heuristics

34

optimum.

• Often a fixed schedule is used where Ti+1=cTi
(0<c<1) and c∈[0.9, 0.999]

• T0≈ σ(f(x)) … 2σ(f(x)), where σ(f(x)) is the standard
deviation of objective function values of randomly
generated solutions.

Example: SA for the TSP (1)

• Representation: sequence of cities

• a is starting city

• Two solutions x,y are neighbors if Hamming

distance d(x,y)=2.

Modern Heuristics – Modern Heuristics

35

distance d(x,y)=2.

• Three solutions: adbca (12), abdca (17), adcba (11)

• Linear cooling schedule Ti+1 = 0.9Ti

σ =
√

62/3 ≈ 2.62 → T0 = 3

Example: SA for the TSP (2)

• Start with initial solution x=abcda, f(x0)=11

• Variation operator randomly exchanges the position of two
cities in tour

• New solution: x1 = abdca, f(x1) = 17

• Replace x0 with x1 with probability P=exp(-6/3)≈ 0.14

Modern Heuristics – Modern Heuristics

36

• Replace x0 with x1 with probability P=exp(-6/3)≈ 0.14

• Generate uniform random number rnd=[0,1) and if
rnd<0.14 replace old solution, otherwise continue with x0.

• Then, reduce the temperature: T1 = 2.7

• Continue until a time limit reached or no improvement for
some number of steps.

2. Optimization Problems

1. Prerequisites

1. Search Spaces

2. Fitness Landscapes

2. Problem Complexity

37

2. Problem Complexity

3. No-Free Lunch Theorem

4. Locality

1. Fitness distance correlation

2. Ruggedness

5. Decomposability

Search spaces

• For formulating optimization models, we need a set

of (feasible) solutions

• This set defines a search space X

• The search spaces "contains"

Optimization Problems - Prerequisites

38

• The search spaces "contains"

– possible solutions of a problem and

– relations between the different solutions

(Topological space)

� Very general, a search space can be defined as a
topological space

� A topological space is defined as a set X of decision
alternatives together with a collection of subsets of X
called open sets such that
� the empty set ∅ and whole space X are open sets,

Optimization Problems - Prerequisites

39

� the empty set ∅ and whole space X are open sets,
� the intersection of a finite number of open sets is also an

open set, and
� the union of an arbitrary number of open sets is an open set.
� A set Y is a subset of a set X (denoted as Y⊂X) if every

element ∈ Y is also in X (x∈ Y→ x∈X)

� To define a topological space, we need no definition of
similarity between elements in a search space.

Metric search spaces

• Common topological space where similarity between elements can

be measured using some kind of metric

• We have a set X of solutions and a real-valued distance function

(also called a metric)

d : X ×X → R

Optimization Problems - Prerequisites

40

assigning a real-valued distance to any pair x,y∈X . It is required,

that for any x,y,z∈X:

d : X ×X → R

City-block metric (Manhattan metric)

• For x,y∈R, define distance d(x,y) = |x-y|

• Extending to two dimensions: city-block metric (also known as

Manhattan distance)

d(x,y) = |x1 -y| + |x -y|

Optimization Problems - Prerequisites

41

where x =(x ,x), y=(y1, y).

• In n dimensions, the metric becomes

d(x, y) =

n�

i=1

|xi − yi|

Euclidean metric

• Solutions are vectors of continuous variables

x=(x , x , …, xn), xi∈R

• Euclidean distance between x and y is

Optimization Problems - Prerequisites

42

• For n=1: city-block metric, n=2: standard straight line distance

between two points on a 2d-plane

Hamming metric

• Often used for binary search spaces; counts number of items that are
not identical

where d(x,y)∈{0,…,n}.

Optimization Problems - Prerequisites

43

where d(x,y)∈{0,…,n}.

• Binary Hamming metric can be extended to continuous and discrete
decision variables:

where

Neighborhoods

• On metric search spaces, we can define similarities between
solutions based on the used distance d.

• Neighborhoods determine which solutions are similar to each other

with respect to some metric.

• A neighborhood is a mapping N(x): X→ 2x

2. Search SpacesOptimization Problems - Prerequisites

44

• A neighborhood is a mapping N(x): X→ 2x

where X is the search space, 2x is the set of all possible subsets of

X and N is a mapping that assigns to each element x∈X a set of

elements y∈X .

• Usually a neighborhood definition assigns to each solution x∈X a

set of solutions y that are similar to x in some sense.

Euclidean Neighborhoods

• We define a neighborhood for a 2-

dimensional continuous search space

and Euclidean distances.

• All solutions y, where d(x,y) <ǫ are

x

ε d(x,y)

2. Search SpacesOptimization Problems - Prerequisites

45

• All solutions y, where d(x,y) <ǫ are

neighboring solutions to x

• All neighboring solutions can be found
inside a circle around x with radius ǫ.

ε
y

d(x,y)

City-Block Neighborhoods

• We define a neighborhood for a 2-

dimensional continuous search space

and city-block distances.

• All solutions inside a rhombus with

(x ,y +)ε1 1

xε (x + ,y)1 1ε

2. Search SpacesOptimization Problems - Prerequisites

46

• All solutions inside a rhombus with
the vertices (x-ǫ,y), (x,y1+ǫ),

(x1+ǫ,y1), (x1,y1-ǫ) are neighboring

solutions.

1

yd(x,y)

1 1(x ,y -)ε

(x - ,y)1 ε

Neighborhoods

• Defining a proper neighborhoods is difficult

• Example:
– A user can choose from four fruits. These four decision alternatives can be

modeled using a metric search space X={0,1}2. Each solution ((0,0),
(0,1),(1,0), (1,1)) represents one type of fruit.

– Although no similarities are defined for the different fruits, the use of a binary

2. Search SpacesOptimization Problems - Prerequisites

47

– Although no similarities are defined for the different fruits, the use of a binary
search space induces that the solution (0,0) is more similar to (0,1) than to
(1,1) (using Hamming distance).

– Therefore, this problem space is inappropriate for the problem definition as it
defines similarities where no similarities exist.

– A more appropriate model would be x∈{0,…3} and using Hamming distance.
Then, all distances between the different solutions are equal and all solutions
are neighboring solutions (for ǫ=1).

Neighborhoods

• Definition and use of decision variables naturally leads to a metric.

• If metric induced by decision variables does not fit to the metric of the

problem description, the model is inappropriate.

• If a metric used in problem definition does not fit to the metric used

in the model, similarities between different decision alternatives do

2. Search SpacesOptimization Problems - Prerequisites

48

in the model, similarities between different decision alternatives do

not match the similarities between different solutions described by

the model.

Neighborhoods: Example

• Nine different decision alternatives {a, b, c, d, e, f, g, h, i}. An objective value is
assigned to each decision alternative. We assume that the decision alternatives
form a metric space using the city-block metric, where the distances between all
elements are equal. Therefore, all decision alternatives are neighbors (for ǫ =1).

• Model 1Model 1Model 1Model 1: We use a metric space X={0,1,2}2 and the city-block metric. Therefore,
each decision alternative is represented by x=(x,x), where xi∈{0,1,2}. Two
solutions are similar to each other if the decision variables have the same values
(e.g. solution (1,1) is more similar to (1,2) than to (2,2)). For ǫ =1, each solution has

2. Search SpacesOptimization Problems - Prerequisites

49

solutions are similar to each other if the decision variables have the same values
(e.g. solution (1,1) is more similar to (1,2) than to (2,2)). For ǫ =1, each solution has
either three or four neighbors. Consequently, our neighborhood differs from the
original problem.

• Model 2Model 2Model 2Model 2: We use binary variables xij and the search space is defined as X=xij,
where xij∈{0,1}. We have an additionial restriction, ∑j xij=1, where i∈{1,2} and
j∈{1,2,3}. Again, Hamming distance can be used. For ǫ=1, no neighboring
solutions exist. For ǫ=2, each solution has only two neighbors.

• We see that different models for the same problem result in different
neighborhoods which do not coincide with the neighborhoods of the original
problem.

Neighborhoods: Example

Different search spaces result into different problems

2. Search SpacesOptimization Problems - Prerequisites

50

Fitness Landscapes (1)

• For combinatorial search spaces where a metric is defined, we can

introduce the concept of fitness landscape.

• A fitness landscape (X,f,d) of a problem instance consists of

– a set of solutions x∈X,

– a distance measure d,

2. Search SpacesOptimization Problems - Prerequisites

51

– a distance measure d,

– and an objective function f

that measures the quality

of each solution.

Fitness Landscapes (2)

• dmin=minx,y∈X(d(x,y)) is the minimum distance between two

elements x and y of a search space.

• Two solutions x and y are denoted as neighbors if d(x,y)=dmin.

• Often, dmin=1.

• The fitness landscape can be described as a graph G with a vertex

Optimization Problems - Prerequisites

52

• The fitness landscape can be described as a graph GL with a vertex

set V=X and an edge set E={(x,y)∈ S×S | d(x,y)=dmin}.

• The distance between two solutions x,y∈X is proportional to the

number of nodes that are on the path of minimal length between x
and y in the graph GL.

Fitness Landscapes and Optimal Solutions

• We have a one-dimensional minimization
problem. Independently of the used
neighborhood, u is the global optimum.

• If we use the 1-dimensional Euclidean
distance as metric, we can define a
neighborhood around x as
N(x)={y|y∈X ,d(x,y) ≤ ǫ}. The solution

f(x)

2 w
v

d

2. Search SpacesOptimization Problems - Prerequisites

53

N(x)={y|y∈X ,d(x,y) ≤ ǫ}. The solution
v is a local optimum if ǫ<d1 .

• Analogously, w is a local optimum for all
neighborhoods with ǫ<d2 .

• For ǫ≥ d2 , the only locally optimal
solution is the global optimal solution u.

d1

10

u

v

x

Intro: What are difficult problems?

• Two different questions:

– How difficult is a problem?

• Equivalent to "What is the complexity of the best-performing

algorithm that can solve this problem?

3. Problem DifficultyOptimization Problems – Problem Complexity

54

algorithm that can solve this problem?

• Complexity classes

– How well can a problem be solved using optimization

method xyz?

• Is optimization methods xyz the right one?

• No-free lunch theorem

Example: Random Search

• Functionality
– New solutions are chosen randomly and no prior

information about the structure of the problem or
previous search steps is used.

– All possible optimization problems have the same

3. Problem DifficultyOptimization Problems – Problem Complexity

55

– All possible optimization problems have the same
difficulty

• There are no easy or difficult problems for random
search.

• Number of fitness evaluations for finding the
optimum is independent from optimization
problem (if optimum is unique).

Difficult Problems (Problems closed under

permutation)

• Problems, where no meaningful metric can be
defined/exists
– Examples:

• Finding largest value in unordered sequence
• Finding largest value in white noise

– We have a set of solutions x∈X with objective values f(x).

3. Problem DifficultyOptimization Problems – Problem Complexity

56

– We have a set of solutions x∈X with objective values f(x).
– No metric is defined: search algorithms do not “know” how

to guide the search through the search space
– Can only be solved by to iteratively examining all elements

of search space, returning the best found solution
– All optimization methods that can be applied to such

problems behave like random search
– The difficulty of such problems (O(|X|)) is independent of

used optimization algorithm.

Complexity of Problems and Algorithms

• The complexity of a problem is the effort that is necessary to

solve the problem.

• It is possible to define upper and lower bounds on problem

difficulty.

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

57

difficulty.

• Lower bounds tell us that a problem has at least this

problem difficulty whereas upper bound limit problem

difficulty from above.

• Complexity of problems is closely related to the complexity

of algorithms.

Complexity of Problems and Algorithms

Upper bounds on problem difficulty:

• We can find upper bounds on problem difficulty

• Based on the complexity of algorithms

• If an algorithm can solve a problem, an upper bound on the difficulty

of the problem is the complexity of the algorithm.

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

58

of the problem is the complexity of the algorithm.

Example:
• We study the problem of finding a friend's telephone number in the telephone book. The most

straightforward approach is to search through the whole book starting from ‘A’. Effort O(n). Therefore,

we have an upper bound on problem complexity (linear) as we know a linear algorithm that can solve the

problem. A more effective way to solve this problem is bisection which iteratively splits the entries of the
book in halves. With n entries, we only need log(n) search steps to find an address. So, we have a new,

improved, upper bound on problem difficulty.

Complexity of Problems and Algorithms

Lower bounds on problem complexity

• Finding lower bounds on problem difficulty is more difficult

• We have to show that no algorithm exists that needs less effort to
solve the problem.

• Optimization problems where no metric is defined can only be solved
when examining all available solutions.

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

59

when examining all available solutions.

• Therefore, we have a lower bound on problem difficulty as the effort
of algorithms to solve such problems increases at least linearly with
the size of the search space.

• The lower bound must hold for all possible algorithms that can be
used to solve the problem.

• A problem is denoted to be closed if the upper and lower bound on its
problem difficulty are identical.

Formulating Complexity: Landau notation

• Landau notation can be used to compare

asymptotic growth of functions

• Helpful when measuring the complexity of problems

or algorithms.

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

60

or algorithms.

• Allows to formulate asymptotic upper and lower

bounds on function values.

Landau notation

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

61

Landau notation

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

62

Examples

1. We want to find the smallest number in an unordered list of n numbers.
The complexity of this problem is Θ(n) when using linear search and
examining all possible elements in the list. As it is not possible to solve
this problem faster than linear, there is no gap between the lower bound
Ω(n) and upper bound O(n).

2. We want to find an element in an ordered list with O(n) items (for example

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

63

2. We want to find an element in an ordered list with O(n) items (for example
finding a telephone number in the telephone book). Binary search
iteratively splits the list in two halves and can find any item in log(n)
search steps. Therefore, the upper bound on the complexity of this
problem is O(log(n)). As the lower bound is equal to the upper bound (see
literature), the complexity of the problem is Θ(log(n)).

3. We want to sort an array of n arbitrary elements. By using standard sorting
algorithms like merge sort it can be solved in O(n log(n)). As the lower
bound is Ω (n log(n)), the difficulty of this problem is Θ (n log(n)).

Complexity Classes

• Computational complexity theory categorizes decision problems in

different groups based on their difficulty.

• Difficulty is defined with respect to the amount of computational

resources that are at least necessary.

• Effort (amount of computational resources) necessary to solve an

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

64

• Effort (amount of computational resources) necessary to solve an

optimization problem depends on time and space complexity.

– Time complexity: how many iterations/number of search steps

are necessary to solve a problem.

– Space complexity: amount of space (memory) necessary to solve

a problem.

• Both depend on the size n of the problem.

Complexity Classes

• A set of problems where the amount of computational

resources necessary to solve the problem have the same

asymptotic behavior.

• For all problems in one complexity class, we can give

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

65

• For all problems in one complexity class, we can give

bounds on the computational complexity (in general, time

and space complexity).

• Usually, bounds depend on the size n of the problem.

Complexity Class P

• The complexity class P (polynomial) is the set of decision problems

that can be solved by an algorithm with worst-case polynomial time

complexity.

• Time necessary to solve a problem in P is asymptotically bounded
(for n>n) by a polynomial function O(nk).

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

66

(for n>n) by a polynomial function O(n).

• For all problems in P, an algorithm exists that can solve any instance
of the problem in O(nk).

• All problems in P can be solved effectively.

Complexity Class NP

1. Set of decision problems where a “yes” solution of a problem can be
verified in polynomial time.
– Formal representation of x and time to check its validity are polynomial or

polynomially-bounded.

2. Set of all decision problems that can be solved by a non-
deterministic algorithm in worst-case polynomial time

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

67

deterministic algorithm in worst-case polynomial time
– A non-deterministic algorithm always selects the value (possibility) that leads

to a “yes” answer, if a “yes” answer exists.

• Both definitions of NP are equivalent to each other (Consider that
non-deterministic algorithms can not be carried out by conventional
computers and there is no idea how to construct a non-deterministic
algorithm).

Complexity Class NP: Informally

• The class NP consists of all “reasonable” problems of practical

importance where a “yes” solution can be verified in polynomial time

• This means the objective value of the optimal solution can be

calculated fast.

• For problems not in NP, even verifying that a solution is valid (is a

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

68

• For problems not in NP, even verifying that a solution is valid (is a

“yes” answer) can be extremely difficult (needs exponential time).

Optimization Problems: Difficulty

Tractable and Intractable Problems

• Problems that can be solved using a polynomial-time algorithm
(upper bound O(nk) on the running time of the algorithm, k constant)
are tractable.

• Tractable problems are easy to solve

• Running time increases relatively slowly with larger problem size n.

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

69

Running time increases relatively slowly with larger problem size n.

• Example: Finding the lowest element in an unordered list of size n is
tractable. There are algorithms with O(n) time complexity. Spending
twice as much effort allows us to solve problems twice as large.

Optimization Problems: Difficulty

Tractable and Intractable Problems

• Problems are intractable if they cannot be solved by a
polynomial-time algorithm and there is a lower bound on
the running time which is Ω (kn).

• Example:
– Finding the correct number for a decimal door lock with n digits is

Optimization Problems – Problem Complexity

70

– Finding the correct number for a decimal door lock with n digits is
intractable. The time necessary for finding the correct key is
Ω(10n). Using a lock with one more digit increases number of
search steps by a factor of 10.

– We have n binary decision variables and assign a random variable
to each solution. Resulting problem is closed under permutation.
Finding optimal solution is Θ(log(n)).

Optimization Problems: Difficulty

Polynomial and Exponential functions

constant O(1)

logarithmic O(log n)

linear O(n)

quasilinear O(n log n)

quadratic O(n)

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

71

quadratic

polynomial (of order c) O(n
c
), c>1

exponential O(kn)

factorial O(n!)

super-exponential O(nn)

NP-hard

• All decision problems in P are tractable

• If we assume that P≠NP, then some problems are in NP but not in P.

• They are difficult: no polynomial-time algorithms exist.

• Among decision problems in NP, there are problems where no
polynomial algorithm is available and which can be transformed to

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

72

polynomial algorithm is available and which can be transformed to
each other in polynomial time.

• Consequently, a problem is denoted to be NP-hard if an algorithm for
solving this problem is polynomial-time reducible to an algorithm
that is able to solve any problem in NP.

NP-hard

• A problem A is polynomial-time reducible to a different problem B if
and only if there is a transformation that transforms any solution of A
into a solution of B in polynomial time such that if and only if a
solution is a “yes” instance for A it is also a “yes” instance for B.

• Informally, a problem A is reducible to some other problem B if
problem B has same difficulty or is easier than problem A.

Optimization Problems – Problem Complexity

73

problem B has same difficulty or is easier than problem A.

• Therefore, NP-hard problems are at least as hard as any other
problem in NP, although they might be harder. Therefore, NP-hard
problems are not necessarily in NP.

NP-complete

• Cook introduced the set of NP-complete problems as a subset of NP.

• A decision problem A is denoted to be NP-complete if

– A is in NP and

– A is NP-hard.

• No other problem in NP is more than a polynomial factor harder than
any NP-complete problem.

3. Problem Difficulty – Problem ComplexityOptimization Problems – Problem Complexity

74

any NP-complete problem.

• NP-complete problems are the most difficult problems in NP.

NP-complete

• All NP-complete problems form one set: NP-complete problems have

the same complexity.

• However, it is unclear if NP-complete problems are tractable, or not.

• If we are able to find a polynomial-time algorithm for any one of the

NP-complete problems, then every NP-complete problem can be

Optimization Problems – Problem Complexity

75

NP-complete problems, then every NP-complete problem can be

solved in polynomial time.

• Then, also all other problems in NP can be solved in polynomial time

(are tractable) and thus P=NP.

• On the other hand, if it can be shown that one NP-complete problem

is intractable, then all NP-complete problems are intractable and P≠
NP (one million Dollar question!).

Different classes of NP optimization problems

APX
MAX SAT
symmetric TSP

NP TSP

Optimization Problems – Problem Complexity

76

P

KnapsackFPTAS

PTASEuclidean TSP

APX symmetric TSP
vertex cover

No-Free-Lunch Theorem and Black-box

optimization

• There is a trade-off between effectiveness and application
range of optimization methods

• Black-box optimization methods are algorithms that need no
additional information about the structure of a problem but
are able to reliably and efficiently return high-quality

Optimization Problems - NFL

77

are able to reliably and efficiently return high-quality
solutions for a large variety of different optimization problems

• NFL theorem says that Black-box optimization is not possible

• An algorithm's performance can only be high if (correct)
problem-specific assumptions are made about the structure
of the optimization problem and the algorithm is able to
exploit these problem-specific properties.

No-Free-Lunch Theorem

… for both static and time dependent
optimization problems, the average
performance of any pair of algorithms across
all possible problems is exactly identical. This
means in particular that if some algorithm A 's

Optimization Problems - NFL

78

means in particular that if some algorithm A1's

performance is superior to that of another
algorithm A2 over some set of optimization
problems, then the reverse must be true over
the set of all other optimization problems
(Wolpert and Macready, 1997)

• Optimization Problem f; X � Y
– X is finite

– Y is finite and ordered

• Heuristics search method H
• Sequence of solutions generated by H:

H(f, m) = ((x1, f(x1)), (x2, f(x2)), …, (xm, f(xm)))

2. GrundlagenOptimization Problems - NFL

No-Free-Lunch Theorem

79

H(f, m) = ((x1, f(x1)), (x2, f(x2)), …, (xm, f(xm)))

• H generates xm+1 dependent on H(f, m)
– „Black-Box Algorithm“, solutions are only sampled once

• We observe a sequence of fitness values HY(f, m) = (f(x1), f(x2), …, f(xm))

• We measure performance of search g:
– g(HY(f, m))
– Example: g(f(x1), f(x2), …, f(xm)) = mini=1,…,m {f(xi)}

• Average performance (over all possible problems f)
– ∑f∈F g(HY(f, m)) / |F|

79

• Assumption: F is closed under permutation

– All possible permutations Π of the search space X

Π : X � X,
where f Π (x) = f (Π-1(x))

– ffff ∈∈∈∈ FFFF⇒⇒⇒⇒ ffff ΠΠΠΠ ∈∈∈∈ FFFF

2. GrundlagenOptimization Problems - NFL

No-Free-Lunch Theorem

80

– ffff ∈∈∈∈ FFFF⇒⇒⇒⇒ ffff ΠΠΠΠ ∈∈∈∈ FFFF

Example:

80

f

X

f ΠΠΠΠ1 f ΠΠΠΠ2 f ΠΠΠΠ3 f ΠΠΠΠ4 f ΠΠΠΠ5

X X X X X

Y

The average performance of any pair of
algorithms across all possible
problems is exactly identical
(independent on how we measure the performance

No-Free-Lunch Theorem

Optimization Problems - NFL

81

(independent on how we measure the performance

of the algorithms)

81

• Wolpert/Macready: „We cannot emphasize enough that
no claims whatever are being made in this paper
concerning how well various search algorithms work in
practice.“

• However, statements like „In general, metaheuristic H

2. GrundlagenOptimization Problems - NFL

Comments on NFL (1)

82

• However, statements like „In general, metaheuristic H1

is better than H2 “ make no sense.

• An algorithm's performance can be increased if
(correct) problem-specific assumptions are made about
the structure of the optimization problem and the
algorithm is able to exploit these problem-specific
properties.

82

Comments on NFL (2)

NFL holds for

• Needle-in-a-haystack problems

• Random problems with trivial topology, …

The NFL-Theorem does not hold for problems that are not

Optimization Problems - NFL

83

The NFL-Theorem does not hold for problems that are not
closed under permutation

• Decomposable problems

• Problems with high locality

• Problems, where neighboring solutions have similar
fitness (Christensen and Oppacher, 2001)

Difficult of Problems for Heuristics

• Exact optimization methods (like Branch&Bound,
cutting plane, and others) have exponential effort
for NP-complete problems.

• Heuristics are not optimal (no guarantee that

3. Problem Difficulty – Problem ComplexityOptimization Problems - Locality

84

• Heuristics are not optimal (no guarantee that
optimal solution is found) but their effort can be
adjusted by user. Solution quality is often good.

• Question:

– What makes problems difficult (easy) for heuristics?

– For which problems do metaheuristics perform better
than random search?

Number of local optima

• One optimum: unimodal, can often be solved well

by hillclimber

• Even functions with low number of local optima can

be arbitrarily hard. Compare needle in haystack

Optimization Problems - Locality

85

be arbitrarily hard. Compare needle in haystack

with sphere, or deceptive traps

• Number of optima no sufficient indicator for

problem difficulty

Basins of attraction

• For several optima: basin of attraction of local

optimum is the set of solutions from which the local

optimum is reached by a hillclimber („part of the

same peak“)

Optimization Problems - Locality

86

same peak“)

• Performance of local search correlates inversely

with size of basin of attraction

• Sphere function: one basin of attraction, usually

simple to solve.

Measuring the locality of problems

• “Do similar solutions have similar fitness?”
• Locality describes how well the distances d(x,y) between x,y∈X

correspond to the differences of the objective values |f(x)-f(y)|.

• The locality of a problem is high

– if neighboring solutions have similar objective values

3. Problem Difficulty - LocalityOptimization Problems - Locality

87

– if neighboring solutions have similar objective values

– and difference of the objective values increases with larger distance

• The locality of a problem is low

– if small distances do not correspond to small differences of the objective

values.

Measuring the locality of problems

• The important determinants for the locality of a problem are

– the metrics defined on the search space

– and the objective function f

• For continuous decision variables, locality is known as causality. High

and low locality correspond to strong and weak causality,

Optimization Problems - Locality

88

and low locality correspond to strong and weak causality,

respectively.

Locality and guided search

• Guided search methods: iteratively sample solutions and use the
objective values of previously sampled solutions to guide the future
search process

• In contrast to random search: distinguish between promising and
non-promising areas in the fitness landscape

• New solutions are usually generated in the neighborhood of

3. Problem Difficulty - LocalityOptimization Problems - Locality

89

• New solutions are usually generated in the neighborhood of
promising solutions with high-objective values.

• Most local search algorithms fall in this category

Locality and guided search

• The locality of optimization problems has a strong impact on their
difficulty for guided search methods.

• High locality allows guided search to find high-quality solutions in the
neighborhood of already found good solutions.

• Moving from low-quality solutions to high-quality solutions works well
if the problem has high locality.

Optimization Problems - Locality

90

• Moving from low-quality solutions to high-quality solutions works well
if the problem has high locality.

• If a problem has low locality, guided search can not make use of
previous search steps

• Can not extract information that can be used for guiding the search

• For problems with low locality, guided search methods behave like
random search.

Measures of Locality of Search Spaces

• Fitness-Distance Correlation

• Ruggedness

3. Problem Difficulty - LocalityOptimization Problems - Locality

91

Fitness-Distance Correlation (FDC)

• FDC measures the difficulty of problems for guided search methods

• The difficulty of an optimization problem is determined by

– how the objective values are assigned to the solutions x∈X and

– what metric is defined on X.

3. Problem Difficulty - LocalityOptimization Problems - Locality

92

Fitness-Distance Correlation

3. Problem Difficulty - LocalityOptimization Problems - Locality

93

Fitness-Distance Correlation

• The fitness-distance correlation coefficient ρ FDC∈ [-1,1] measures

the linear correlation between the fitnesses of search points and their
distances to the global optimum x*

• As ρ FDC represents a summary statistic of f and dopt , it works well if f
and dopt follow a bivariate normal distribution.

3. Problem Difficulty - LocalityOptimization Problems - Locality

94

and dopt follow a bivariate normal distribution.

• For problems, where f and dopt do not follow a normal distribution,

using the correlation as a measurement of problem difficulty for

guided search methods will not yield meaningful results.

Fitness-Distance Correlation

• Based on the FDC coefficient, we can classify fitness landscapes into
three classes,
– straightforward (ρ FDC ≤ -0.15)

– difficult (-0.15≤ ρ FDC ≤ 0.15)

– misleading (ρ FDC ≥ 0.15)

• Straightforward:

3. Problem Difficulty - LocalityOptimization Problems - Locality

95

• Straightforward:
– Fitness of a solution is correlated with the distance to the optimal solution.

– With lower distance, the fitness difference to the optimal solution decreases.

– The structure of the search space guides search methods towards the optimal
solution

– Such problems are usually easy for guided search method.

Fitness-Distance Correlation

• Difficult:
– No correlation between the fitness difference and the distance to the optimal

solution.

– Fitness values of neighboring solutions are uncorrelated

– The structure of the search space provides no information about which
solutions should be sampled next by the search method.

• Misleading:

Optimization Problems - Locality

96

• Misleading:
– Fitness difference is negatively correlated with distance to optimal solution

– Structure of the search space misleads a local search method to sub-optimal
solutions.

Fitness-Distance Correlation

• Different classes of problem difficulty
op

t

|f

 -
f|

op
t

|f

 -
f|

op
t

|f

 -
f|

3. Problem Difficulty - LocalityOptimization Problems - Locality

97

neg. correlation

op
t

|f

 -
f|

op
t

|f

 -
f|

op
t

d d d
uncorrelatedpos. correlation

|f

 -
f|

Ruggedness

• For studying the FDC of problems, it is necessary to know the optimal

solution.

• However, in general the optimal solution is not known.

• The difficulty of problems for guided search methods is influenced by

properties of the fitness landscape like

3. Problem Difficulty - LocalityOptimization Problems - Locality

98

properties of the fitness landscape like

– the number of local optima or peaks in the landscape,

– the distribution of the peaks in the search space, and

– the height of the different peaks.

Random walks and ruggedness

• Correlation functions have been proposed to measure the ruggedness

of a fitness landscape.

• Like in fitness-distance correlation, the idea is to consider the

objective values as random variables and to obtain statistical

properties on how the distribution of the objective values depends on

Optimization Problems - Locality

99

properties on how the distribution of the objective values depends on

the distances between solutions.

Ruggedness

• The autocorrelation function of a fitness landscape is defined as

3. Problem Difficulty - LocalityOptimization Problems - Locality

100

Ruggedness

• The autocorrelation function has the attractive property of being in

the range [-1,1]. An autocorrelation value of 1 indicates perfect

correlation (positive correlation) and -1 indicates prefect anti-

correlation (negative correlation).

• For a fixed distance d, ρ is the correlation between the objective

3. Problem Difficulty - LocalityOptimization Problems - Locality

101

• For a fixed distance d, ρ is the correlation between the objective

values of all solutions that have a distance of d.

Decomposability

• The decomposability of a problem describes how well a problem can

be decomposed into several, smaller sub-problems that are

independently of each other.

– The decomposability of a problem is high if the structure of the objective

function is such that not all decision variable must be considered

simultaneously to calculate the objective function but there are groups of

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

102

function is such that not all decision variable must be considered

simultaneously to calculate the objective function but there are groups of

decision variables that can be set independently of each other.

– It is low if it is not possible to decompose a problem into sub-problems that

have little interdependencies between.

Decomposability

• If a problem can only be solved by considering all n

variables at the same time, it is not separable

• If decisions about the next solution to visit can
reliably be made with just considering k<<n

Optimization Problems - Decomposability

103

reliably be made with just considering k<<n

decision variables, the problem is separable

• Separable functions are often easier because less

dimensions/variables depend on each other

• Reduces number of solutions, e.g. 2k << 2n

Decomposability

• Decomposability is relevant for recombination-based search

methods

• Recombination-based methods try different decompositions of the

problem, solve the sub-problems, put together the solutions for these

sub-problems.

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

104

sub-problems.

• For such types of optimization methods, decomposability is

meaningful as high decomposability results in low problem difficulty

• Solving smaller sub-problems is usually easier than solving the

larger, original problem.

• Different approaches for measuring decomposability of problems:

– Polynomial decomposition

– Walsh Analysis

– Schemata Analysis and Building Blocks

Polynomial Decomposition

• The linearity of an optimization problem can be measured by the
polynomial decomposition of the problem.

• It measures how well a problem can be decomposed into smaller sub-
problem

• For binary decision variables, each objective function f defined on l
decision variables {0,1} can be decomposed in the form

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

105

For binary decision variables, each objective function f defined on l
decision variables xi∈ {0,1} can be decomposed in the form

where en contains 1 in n-th column and 0 elsewhere, T denotes
transpose, the αN are coefficients

Polynomial Decomposition

• The coefficients αi describe the non-linearity of the problem

• If there are high order coefficients in the decomposition of the

problem, the function is (highly) nonlinear.

• If the decomposition of a problem only has order 1 coefficients, then

the problem is linear decomposable.

Optimization Problems - Decomposability

106

the problem is linear decomposable.

Polynomial Decomposition

• It is possible to determine the maximum non-linearity
of f(x) by its highest polynomial coefficients.

• The higher the order of the αi, the more non-linear the
problem is.

• There is some correlation between the non-linearity of a

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

107

• There is some correlation between the non-linearity of a
problem and the difficulty of a problem for
recombination-based search methods

• The order of non-linearity can only give an upper limit
on the problem difficulty.

• There could be high order αi although the problem can
still easily be solved by recombining search methods.

Polynomial Decomposition: Example

f(x)=α +α x +α x +α x x =1+x +3x +5x x .

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

108

f(x)=α0+α1x0+α2x1+α3x0x1=1+x0+3x1+5x0x1.

• Easy for recombining search methods: two decision variables can be
solved independently of each other.

• The problem is (wrongly) classified as difficult.

• This misclassification of problem difficulty is due to the fact that the
polynomial decomposition assumes a linear decomposition and could
not appropriately describe non-linear (quadratic) dependencies.

Schemata Analysis and Building Blocks

• Schemata analysis is mainly used in the genetic algorithm domain

• Main search operator of genetic algorithms is recombination

• Schemata are usually defined for binary search spaces and thus
schemata analysis is mainly applicable to problems with binary
decision variables. However, the ideas of building blocks are also
applicable to other search spaces.

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

109

decision variables. However, the ideas of building blocks are also
applicable to other search spaces.

• When using l binary decision variables xi∈{0,1}, a schema
h=(h,h,…,hl) is defined as a ternary string of length l

• hi∈{0,1,*}. * denotes a“don't care” symbol and tells us that the lth
decision variable is not fixed.

Schemata

• A position in a schema is fixed if there is a 0 or a 1

• The size or order o(h) of a schema h is defined as the number of fixed
positions (0s or 1s) in the schema string.

• The defining length δ(h) of a schema h is defined as the distance
between (number of bits that are between) the two outermost fixed
bits.

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

110

bits.

• The fitness f(h) of a schema is defined as the average fitness of all
instances of this schema and can be calculated as

• For example, x=01101 and y=01100 are instances of h=0*1**.

• The number of solutions that are an instance of a schema h can be
calculated as 2l-o(h).

Building Blocks

• “highly fit, short-defining-length schemata”.

• A BB can be described as a solution to a subproblem that can be expressed as a
schema. A thus-like schema has high fitness and its size is smaller than the length l
of the binary solution.

• By combining BBs of lower order, recombining search methods like genetic
algorithms can form high-quality over-all solutions.

• We can interpret BBs also from a biological perspective.

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

111

• We can interpret BBs also from a biological perspective.
– Using the notion of genes we can interpret BBs as genes. A gene consists of one or more alleles

and can be described as a schema with high fitness. The alleles in a chromosome can be
separated (decomposed) into genes which do not interact with each other and which determine
one specific property of an individual like hair or eye color.

• BBs can be used to describe the difficulty of optimization problems for
recombining search algorithms.

• If the sub-solutions to a problem (the BBs) are short (low δ(h)) and of low order (low
o(h)), then the problem is assumed to be easy.

BB-based Problem Difficulty

• There are three types of problem difficulty:

• Difficulty within a building block (intra-BB difficulty)

• Difficulty between building blocks (inter-BB difficulty)

• Difficulty outside of building blocks (extra-BB difficulty)

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

112

Intra-BB difficulty

• If we count the number of schemata of order o(h)=k that have the
same fixed positions, there are 2k different schemata.

• Viewing a BB of size k as a subproblem, there are 2k different
solutions to this subproblem.

• Such subproblems can not be decomposed any more and usually
guided or random search methods are applied to find the correct

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

113

• Such subproblems can not be decomposed any more and usually
guided or random search methods are applied to find the correct
solution BB for the decomposed subproblems.

• Deceptive Problems (see negative fitness distance correlation) are at
the core of intra-BB difficulty

• The intra-BB difficulty of a problem can be measured by the
maximum length δ(h) and size k=o(h) of the BBs h.

Inter-BB and Extra-BB difficulty

• The contributions of different sub-problems to the objective function can be
different. The sub-problems can have a non-uniform contribution to the overall
objective value of a solution.

• Important for inter-BB difficulty.

• A problem can often not be decomposed into completely separated and
independent sub-problems, but there are still some interdependencies between
the different subproblems which are an additional source of inter-BB difficulty.

3. Problem Difficulty - DecomposabilityOptimization Problems - Decomposability

114

the different subproblems which are an additional source of inter-BB difficulty.

• Sources of extra-BB difficulty are factors like noise.

• Additional, non-deterministic noise can randomly modify the objective values of
solutions and make the problem more difficulty for recombining search methods as
no accurate decisions can be made on the optimal solutions for the different sub-
problems.

• A similar problem occurs if the evaluation of the solutions is non-stationary. Non-
stationary environments results into solutions that have different evaluation values
at different moments in time.

Representations

1. A Short Introduction to Representations

1. Defining Representations

2. Representations, Operators, and Metrics

3. Direct and Indirect Representations

115

3. Direct and Indirect Representations

2. Design Guidelines for Representations

3. Properties of Representations

1. High-Locality Representations

2. Redundant Representations and Neutral Networks

Review: Modern heuristics

• Modern heuristics

– Can be applied to a wide range of problems

– Use intensification (exploitation) and diversification

(exploration) steps

116

(exploration) steps

• Intensification steps shall improve quality

• Diversification explores new areas of search space,

also accepting complete or partial solutions that

are inferior to current solution

Review: Principles of Modern Heuristics

• Start with one or more random solutions

• In iterative steps modify solution(s) to generate one or more
new solution(s)

• New solutions are created by search operators (variation
operators)

117

operators)

• Regularly perform intensification and exploration phases

– During intensification, use objective function value and focus
variation on high-quality solutions

– During diversification, usually objective function values are not
considered. Modify solutions so that new areas of search space
are explored

Genotypes and phenotypes

• Mendel recognized that nature stores information about an
individual in pair-wise alleles

• Genetic information determines properties, appearance,
shape of an individual

• Distinguish between genetic code and outward appearance

Representations - Intro

118

• Distinguish between genetic code and outward appearance

• There is a transformation between the genetic information
(genotypes) and the outward appearance (phenotypes)

• Transformation is called a „representation“

• Representations map genotypes on phenotypes

Defining representations (1)

• A representation assigns genotypes to corresponding
phenotypes.

• Every search and optimization algorithms needs a
representation.

• The representation allows us to represent a solution to a

Representations - Intro

119

• The representation allows us to represent a solution to a
specific problem.

• Different representations can be used for the same problem.

• Performance of search algorithm depends on properties of
the used representation and how suitable is the
representation in the context of the used genetic operators.

Defining representations (2)

• An optimization problem f(x) can be separated into a genotype-

phenotype mapping fg and a phenotype-fitness mapping fp

where f=f ◦f = f (f (x))

fg(xg) : Φg → Φp,

fp(xp) : Φp → R,

Representations - Intro

120

where f=fp◦fg = fp(fg(xg))

• A change of fg also changes the properties of f

• The genetic operators mutation and crossover are applied to xg

whereas the selection process is based on the fitness of xp

• fp (xp) determines the fitness and complexity of the problem

• fg (xg) determines the used representations

Standard genotypes: Binary genotypes

• Commonly used in Genetic Algorithms

• Recombination is main operator, mutation is background noise

• Search space is Φg = {0,1}l where l is length of a binary vector
xg =(xg


,…, xg

l
)

• Representation depends on problem to be solved

Representations - Intro

121

• Representation depends on problem to be solved

• Often natural for combinatorial problems

• When using binary representations for integers, decide between
unary, Gray, or binary.

• When using binary representations for floats, precision
depends on number of bits in genotype.

Standard genotypes: Integer genotypes

• Use χ-ary alphabet instead of binary, where

{χ∈N|χ >2} can also be used in phenotypes

• Instead of coding 2l solutions, size of search space

becomes χl

Representations - Intro

122

becomes

• Recommended when phenotype is integer

Standard Genotypes: Continuous genotypes

• The search space is Φg = Rl where l is the size of the real-

valued vector

• Often used in evolution strategies, nonlinear numerical

optimization, rely on local search

Representations - Intro

123

optimization, rely on local search

• Can also encode permutations, trees, schedules, or tours.a

Representations make the difference

• Representations change

the character and

difficulty of optimization

problems

• E.g. fp = xp, x∈N

Representations - Intro

124

• E.g. fp = xp, x∈N

• Different problem

depending on the used

representation

Representations make the difference (2)

• Phenotypic problem easy to solve for hill-climber.

• When using bit-flipping GA the Gray-encoded problem

is easier to solve than the binary-encoded problem.

• Gray encoding induces less local optima when used on

Representations - Intro

125

• Gray encoding induces less local optima when used on

problems of practical relevance (compare Free Lunch

theorem).

• Search performance depends on used search method.

If other search methods (e.g. different operators) are

used, then search performance is different

Representations, Operators, Metrics

• Representation, metric defined on Φg and Φp, and genetic
operators depend on each other and are closely related.
– A representation is just a mapping from Φg to Φp . It assigns any

possible xg∈Φg to an xp∈Φp

– In both search spaces, Φg and Φp, a metric is or has to be

Representations - Intro

126

– In both search spaces, Φg and Φp, a metric is or has to be
defined. The metric determines the distances between the
individuals and is the basis for measuring similarities between
individuals. In general, the metric used for Φp is defined by the
considered problem. The metric used for Φg is determined by the
used search operators.

– Genotypic operators like mutation and crossover are defined
based on the used metric

Representations, Operators, Metrics (2)

• Mutation:

– The application of mutation to an individual results in a

new individual with similar properties. There is a small

distance between offspring and parent.

Representations - Intro

127

distance between offspring and parent.

• Crossover:

– Crossover combines the properties of two or more

parents in an offspring. The distance between offspring

and parent should be equal or smaller than the distance

between both parents.

Representations, Operators, Metrics (3)

• Results:

– Metric on Φg and used operators depend on each other.

The one determines the other.

– Representations “transform” the metric on Φg to the

Representations - Intro

128

– Representations “transform” the metric on Φg to the

(problem dependent) metric on Φp. (Compare locality,

causality, and distance distortion)

Direct representations

• If the genetic operators are applied directly to the phenotypes it is not

necessary to specify a representation and the phenotypes are

identical with the genotypes:

fg(xg) : Φg → Φg,

f (x) : Φ → R.

Representations - Intro

129

This means, fg is the identity function fg(xg)=xg. Using direct

representations do not neccessarily make life easier:

– Design of proper operators is difficult

– How can we apply specific types or EAs (like EDAs)?

– Representation issues are not important any more (Φg = Φp and fg(xg)=xg).

→
fp(xp) : Φg → R.

Direct representations – Genetic Programming

• Representation issues are also relevant to Genetic
Programming.

• Phenotypes: Programs, logical expressions.
Genotypes: Parse trees, bitstrings, linear structures, ...

• Neglecting proper genotype-phenotype mappings can result

Representations - Intro

130

• Neglecting proper genotype-phenotype mappings can result
in low performance of GP approaches.

• Example: Standard GP (expression tree representation and
subtree swapping crossover) cannot solve problems where
optimal solutions require very full or very narrow trees. This is
due to problems of the representation (interplay between
genotypes and used search operators).

Benefits of Indirect representations

• The use of an explicite genotype-phenotype mapping has some

benefits:

– specific constraints can be considered.

– Standardized genetic operators with known behavior and properties can be

used.

Representations - Intro

131

used.

– An indirect representation is necessary if problem-specific operators are either

not available or difficult to design.

– Representation can make problem easier by incorporating problem-specific

knowledge.

Specific constraints

• Example: Tree optimization problems

• A tree is a fully connected graph with exactly n−1 links (for an n node

network). There are no circles in a tree.

• A graph can be represented by its characteristic vector.

Representations - Intro

132

Specific constraints (2)

• Prüfer numbers are a one-to-one mapping between trees and a
sequence of integers (like other Cayley codes). A tree with n nodes is

represented by a string of length n−2 over an alphabet of n symbols.

• Therefore, using Prüfer numbers allows us to consider the constraint

that the graph is a tree (For other representations repair operators are

Representations - Intro

133

that the graph is a tree (For other representations repair operators are

necessary).

Standardized operators

• When mapping many different types of phenotypes on only a
few types of different genotypes (binary, integer, or
continuous representations), it is possible to use
standardized operators.

• Behavior of EAs for standard representations like binary
(simple GAs) or continuous (evolution strategies)

Representations - Intro

134

(simple GAs) or continuous (evolution strategies)
representations well understood.

• Mapping phenotypes on binary genotypes allows the use of
schemata and effective linkage learning GAs (under the
assumption that the problem still remains decomposable and
that binary encodings allow a natural encoding of the
problem).

Problem-specific operators

• Developing of problem-specific

operators is difficult and often

additional repair mechanisms

must be used to ensure a valid

solutiona

Representations - Intro

135

solutiona

Problem-specific operators (2)

• For some types of problems no problem-specific operators exist that

can be applied to direct representations

Representations - Intro

136

Indirect Representations - Problem-specific

Knowledge

• Incorporating problem-specific knowledge in the

representations to increase GA performance:

– Increase the initial supply of solutions that are similar to the

optimal solution.

– Use high-locality representations for easy problems.

Representations - Intro

137

– Use high-locality representations for easy problems.

– Consider specific properties of the optimal solution (e.g. stars

and trees).

– Use representations that make a problem easier for a

specificoptimization method.

Goldberg’s Recommendations

• Principle of meaningful building blocks: The schemata should be

short, of low order, and relatively unrelated to schemata over other

fixed positions.

• Principle of minimal alphabets: The alphabet of the encoding should

be as small as possible while still allowing a natural representation of

Representations – Design Guidelines

138

be as small as possible while still allowing a natural representation of

solutions

Goldberg’s Recommendations (2)

• The recommendations caused a lot of critics

– What is a natural representation of a problem? (For example, is using binary

representations for encoding real-valued phenotypes a natural

representation?)

• Principles mainly aimed at binary representations and

Representations – Design Guidelines

139

Principles mainly aimed at binary representations and

crossoverbased GAs that process schemata. No big help for other

search methods like evolution strategies or evolutionary

programming as these search methods do not process schema.

Radcliffe's recommendations

• Representation and operators belong together and can not be
separated from each other.

• Design of representation-independent evolutionary
algorithms is possible if the following properties are
considered
– Respect: Offspring produced by recombination are members of all

Representations – Design Guidelines

140

– Respect: Offspring produced by recombination are members of all
formae to which both their parents belong.

– Transmission: Every gene is set to an allele which is taken from
one of the parents.

– Assortment: Offspring can be formed with any compatible
characteristics taken from the parents.

– Ergodicity: Iterative use of operators allows the search method to
reach any point in the search space.

Representation Invariant Genetic Operators

• Fact: Performance of genetic algorithms using one-point crossover

depends on order of objects (e.g. knapsack problem). Thus, one-point

crossover is not invariant under changes in the order of objects.

• Evolutionary operators are invariant with respect to a set of

representations if EA performance is independent of used

Representations – Design Guidelines

141

representations if EA performance is independent of used

representation (how objects are encoded).

• Rowe proposes an approach to generate invariant search operators.

• Examples for appropriate (representation-independent) search

operators for some types of problems (subset problems, permutation

problems, and balanced partition problems).

Palmer’s Recommendations

• An encoding should be able to represent all possible phenotypes.

• An encoding should be unbiased in the sense that all possible

individuals are equally represented in the set of all possible

genotypic individuals.

• An encoding should encode no infeasible solutions.

Representations – Design Guidelines

142

• An encoding should encode no infeasible solutions.

• The decoding of the phenotype from the genotype should be easy.

• An encoding should possess locality. Small changes in th genotype

should result in small changes in the phenotyp (compare statements

about metric).

Ronald‘s recommendations

• Encodings should be adjusted to a set of genetic operators in a way

that the building blocks are preserved from the parents to the

offspring

• Encodings should minimize nonlinearities in fitness functions. This

means, representations should make the problem easier (for local

Representations – Design Guidelines

143

means, representations should make the problem easier (for local

search methods!).

• Feasible solutions should be preferred.

Ronald‘s recommendations (2)

• The problem should be represented at the correct level of

Abstraction.

• Encodings should exploit an appropriate genotype-phenotype

mapping process if a simple mapping to the phenotype is not

possible.

Representations – Design Guidelines

144

possible.

• Isomorphic forms, where the phenotype of an individual is encoded

with more than one genotype, should not be used.

Design Guidelines - Summary

• Based on observations for specific test problems there are some

common, fuzzy ideas about what is a good representation.

• Some recommendations are too general to be helpful for designing or

evaluating representations.

• Analytical models describing the influence of representations on EAs

Representations – Design Guidelines

145

• Analytical models describing the influence of representations on EAs

are on their way.

• To verify (or reject) observations analytical models are necessary.

Design Guidelines - Summary

• Based on observations for specific test problems there are some

common, fuzzy ideas about what is a good representation.

• Some recommendations are too general to be helpful for designing or

evaluating representations.

• Analytical models describing the influence of representations on EAs

Representations – Design Guidelines

146

• Analytical models describing the influence of representations on EAs

are on their way.

• To verify (or reject) observations analytical models are necessary.

Locality

• Representations (genotype-phenotype mappings) can change the

neighborhood and the structure of the fitness landscapes.

• A neighbor can be reached directly by a move (mutation, crossover,

etc). Therefore, the neighborhood depends on the used

operator/metric.

Representations – High Locality Representations

147

operator/metric.

• The set of neighbors can be different for genotypes and phenotypes.

• The distance between two individuals is determined by the number of

moves between both individuals.

Locality of a Representation

• The locality of a representation describes how well
neighboring genotypes correspond to neighboring
phenotypes.

• Locality of a representation is high, if neighboring genotypes
correspond to neighboring phenotypes.

• Locality, causality, and distance distortion describe how well

Representations – High Locality Representations

148

• Locality, causality, and distance distortion describe how well
the metric on Φp fits to the metric on Φg. If they fit well,
locality is high.

• Representations fg that change the distances between
corresponding genotypes and phenotypes modify the
performance of particular optimization problems (method
performance(f) ≠ method performance(fp)).

Different Phenotype-Fitness Mappings

• Class 1: Fitness difference to optimal solution is positively correlated

with the distance to optimal solution. Structure of the search space

guides local search methods to the optimal solution → easy for

mutation-based search.

• Class 2: No correlation between fitness difference and distance to

Representations – High Locality Representations

149

• Class 2: No correlation between fitness difference and distance to

optimal solution. Structure of the search space provides no

information for guided search methods → difficult for guided search

methods.

• Class 3: Fitness difference is negatively correlated to distance to

optimal solution. Structure of search space misleads local search

methods to sub-optimal solutions → deceptive problems

Different Phenotype-Fitness Mappings (2)

Representations – High Locality Representations

150

Low versus High-Locality Representations

Representations – High Locality Representations

151

Influence of high versus low-locality
representations on genotype-

phenotype mappings

Effect of mutation for high

versus low-locality

representations

Low versus High-Locality Representations (2)

• Class 1:

– High-locality representations preserve difficulty of problem. Easy problems remain easy

for guided search.

– Low-locality representations make easy problems more difficult. Resulting problem

becomes of class 2.

• Class 2:

Representations – High Locality Representations

152

• Class 2:

– High-locality representations preserve difficulty of problem. Problems remain difficult

for guided search.

– Low-locality representations on average do not change class of problem. Problems

remain difficult.

• Class 3:

– High-locality representations preserve deceptiveness of problem. Traps remain traps.

– Low-locality representations transform problem to class 2 problem. Deceptive problems

become more easy to solve for guided search.

Example

• Both, genotypes and
phenotypes are binary.

• We use the bit-flipping
operator as a move
(Hamming distance).

• One-max problem (class 1).

Representations – High Locality Representations

153

• One-max problem (class 1).

• All building blocks
(regarding genotypes and
phenotypes) are of size k=1.
Therefore, problem is easy
for selectorecombinative
GAs

Example

• A representation with

lower locality.

• The neighborhood

structure changes.

• Not all genotypic building

Representations – High Locality Representations

154

• Not all genotypic building

blocks are of size 1.
Although, fp remains

unchanged, f becomes

more difficult for guided

search.

Example

• High-locality representation.

• Problem easy for

Selectorecombinative GAs.

• Different fitness for

Representations – High Locality Representations

155

• Different fitness for

genotypes 000 and 001.

• Problem more difficult for

selectorecombinative GAs.

• Neighborhood not preserved

by representation.

Example

• Neighborhood structure

of the genotypes

Representations – High Locality Representations

156

• Resulting neighborhood

structure of phenotypes

Comparing representations

• We compare the performance of selectorecombinative Gas over all

different representations for the one-max problem.

• When focusing on binary bitstrings and assigning l-bit genotypes to l-
bit phenotypes, there are 2l! different representations.

• For l=3 there are 8 different genotypes, resp. phenotypes, and 8! =

Representations – High Locality Representations

157

• For l=3 there are 8 different genotypes, resp. phenotypes, and 8! =

40, 320 different representations.

• 36 different representations result in the same overall problem f (for

the one-max problem).

Comparing representations

• To reduce problem complexity, xg = 111 is always assigned to

xp=111. Therefore, there are 7! = 5040 different representations.

• We concatenate ten 3-bit problems and use a GA with tournament
selection of size 2, uniform crossover, and N=16.

Representations – High Locality Representations

158

Comparing representations

Representations – High Locality Representations

159

Summary

• When using high locality representations, genotypic neighbors

correspond to phenotypic neighbors.

• High locality representations do not change the structure and

difficulty of the problem.

– Easy problems remain easy.

Representations – High Locality Representations

160

– Easy problems remain easy.

– Difficult problems remain difficult.

– Locality depends on the used distance metrics which depend on the used

operators.

Redundant representations

• Representations are redundant if the number of genotypes is larger

than the number of phenotypes.

– Using redundant representations fg means changing f = fp (fg). There are

additional plateaus in the fitness landscape.

– Redundant representations are more “inefficient” encodings which use a

higher number of alleles but do not increase the amount of encoded

Representations – Redundant Representations

161

Redundant representations are more “inefficient encodings which use a

higher number of alleles but do not increase the amount of encoded

information.

– Redundant representations are not an invention of AI researchers but are

commonly used in nature.

Redundant representations (2)

• There are different opinions regarding the influence of redundant

representation on the performance of EAs.

• Redundant representations reduce EA performance due to loss of

diversity (Davis, 1989; Eshelman and Schaffer, 1991; Ronald et al.,

1995)

Representations – Redundant Representations

162

1995)

• Redundant representations increase EA performance (Gerrits and

Hogeweg, 1991; Cohoon et al., 1988; Julstrom, 1999)

Redundant representations (3)

• Large amount of work considers the neutral theory (Kimura, 1983). This theory

assumes that not natural selection fixing advantageous mutations but the random

fixation of neutral mutations is the driving force of molecular evolution.

• Following these ideas redundant representations (neutral networks) have been

used in EAs with great enthusiasm.

• There was hope that increasing the evolvability of a system also increases the

Representations – Redundant Representations

163

• There was hope that increasing the evolvability of a system also increases the

performance of the system

• This is not true!

Redundant representations (4)

• Neutral Network: Set of

genotypes connected by

single-point mutations

that map to the same

Representations – Redundant Representations

164

that map to the same

phenotype

Guide

• In the following slides we study

– how to distinguish between synonymously and non-

synonymously redundant encodings

– how synonymous redundancy changes performance of

Representations – Redundant Representations

165

– how synonymous redundancy changes performance of

Eas (quantitative predictions), and

– the properties of non-synonymously redundant

representations

Redundant representations (5)

• Benefits of Neutral Networks
– Population can drift along these neutral networks.

– Reducing the chance of being trapped in sub-optimal
solutions.

– Population is quickly able to recover after a change has

Representations – Redundant Representations

166

– Population is quickly able to recover after a change has
occurred.

– Evolvability and connectivity of the system increases.

• Problems
– Higher evolvability and connectivity → Randomization of

search

– Genetic drift?

Synonymously versus non-synonymously

redundant representations

• When using redundant

representations it can be

distinguished between:

– Synonymously redundant

representations: All genotypes that

encode the same phenotype are

Representations – Redundant Representations

167

representations: All genotypes that

encode the same phenotype are

similar to each other.

– Non-synonymously redundant

representations: Genotypes that

encode the same phenotype are not

similar to each other.

Synonymously versus non-synonymously

redundant representations

• Non-synonymously redundant

representations do not allow

guided search.

– EA search becomes random.

– Similar effect as low locality

Representations – Redundant Representations

168

– Similar effect as low locality

representations.

Synonymously versus non-synonymously

redundant representations

• (Choi and Moon, 2003) defined uniformly redundant encodings that

are maximally non-synonymous and proved that such encodings

induce uncorrelated search spaces (fitness distance correlation is

equal to zero).

• For a maximally non-synonymous redundant encoding, the expected

Representations – Redundant Representations

169

• For a maximally non-synonymous redundant encoding, the expected

distance between any two genotypes that correspond to the same

phenotype is invariant and about equal to the problem size n.

• Normalization (transformation of one parent to be consistent with the

other) can transform uncorrelated search spaces into correlated

search spaces with higher locality.

Synonymously versus non-synonymously

redundant representations

• Some selected examples for problems with maximally non-

synonymous redundant encodings :

– Partitioning problems in graphs: k subsets are represented by integers from 0

to k−1 where nodes are contained in the same group if they are represented by

the same number.

– Each phenotype is represented by ! different genotypes. HIFF problems

Representations – Redundant Representations

170

– Each phenotype is represented by k! different genotypes. HIFF problems

(Watson et al., 1998): binary encoding where each phenotype is represented

by a pair of bitwise complementary genotypes.

– TSP: Order-based crossover, in which vertices are indexed from 1 to n and

each tour is represented by a permutation of the vertex indices. Each
phenotype is represented by 2n genotypes

Modeling redundant representations

• Synonymously redundant representations can be described

using

– order of redundancy

– over-, resp. underrepresentation r of the optimal solution due to

the problem representation f .

kr =
log |Φp|
log |Φg |

Representations – Redundant Representations

171

the problem representation fg.

• When using the notion of BBs and binary representations:

–
– r: Number of genotypic BBs of order kg that represent the optimal

phenotypic BB of order kp.

kr =
kg
kp

Modeling redundant representations

• k=2 (order of phenotypic BBs)

• kr=2 (One allele of a phenotype is represented using

two alleles of a genotype)

• Uniform redundancy: r=4 (the best BB (e.g.. xp = 11)

is represented by four genotypic BBs)

Representations – Redundant Representations

172

is represented by four genotypic BBs)

Modeling redundant representations

• k=1 (order of phenotypic BBs)

• kr=3 (One phenotypic allele is represented using three genotypic

alleles)

• Non-uniform redundancy: r=1 (best BB (xp = 1) is represented by one

genotypic BB (x = 111))

Representations – Redundant Representations

173

genotypic BB (xg = 111))

Population sizing for GAs

• The Gambler’s ruin model (Feller, 1957) can be used for modeling the

iterated decision making in GAs.

• A gambler with initial stake x wishes to increase his funds to a total

of N units by making a sequence of bets against a gaming house.
Each bet has fixed probability p of winning (q =1−p of losing), and we

Representations – Redundant Representations

174

Each bet has fixed probability p of winning (q =1−p of losing), and we

wish to know the probability of succeeding (getting N units) or failing

(losing all units).

• Following (Harik et al., 1997) the probability that a GA with a
population size N converges after tconv generations to the correct

solution is

Pn = 1−(q/p)x0
1−(q/p)N

Population sizing for GAs (2)

• After some calculations we get:

• N is the necessary population size, α = 1 − Pn the probability Pn

that the optimal BB cannot be found (probability of failure) and k is

N ≈ −2k−1 ln(α)σBB
√
πm′

d

Representations – Redundant Representations

175

that the optimal BB cannot be found (probability of failure) and k is

the order of the BBs.

• σBB (variance of BBs), d (fitness difference between best and second

best BB), m′ = m−1 (number of BBs) and k are problem-dependent.

Population sizing for GAs (3)

• 150-bit one-max problem
(k=1, σBB=0.25, d=1 and m=150)

Representations – Redundant Representations

176

Population sizing for GAs (4)

• Ten concatenated 3-bit deceptive traps
(k=3, σBB = 1, d=1 and m=10)

Representations – Redundant Representations

177

Population sizing for GAs (5)

• Now we have to ask how the redundancy of a

representation influences GA performance?

• Observation: Redundant representation change the
initial supply x of BBs.

Representations – Redundant Representations

178

initial supply x of BBs.

• For binary problem representation:

where N is the population size.

x0 = N r
2kkr

Population sizing for GAs (6)

• When using synonymously redundant representations the existing

model can be extended:

• The population size N that is necessary to find the optimal solution

N ≈ − 2krk−1

r ln(α)σBB
√
πm′

d

Representations – Redundant Representations

179

• The population size N that is necessary to find the optimal solution

with probability Pn=1−α

goes with O
�
2kr

r

�

Population sizing for GAs (7)

• Conclusions from this model:

– Redundant representations can change the performance of EAs.

– If representations are synonymously redundant:

• Uniformly redundant representations do not change the performance of EAs!

• If the optimal BB is overrepresented GA performance increases.

Representations – Redundant Representations

180

• If the optimal BB is underrepresented GA performance decreases.

• Redundant representations can not be used systematically if there is

no problem-specific knowledge!

Example: Trivial voting mapping

• The trivial voting mapping (TVM) assigns binary phenotypes to binary

genotypes.

• One bit of the phenotype is represented by kr genotypic bits.

• In general, a phenotypic bit is 0 if less than u genotypic bits are zero.

If more than u genotypic bits are 1 then the phenotypic bit is 1.

Representations – Redundant Representations

181

If more than u genotypic bits are 1 then the phenotypic bit is 1.

• For u=kr/2 the value of the phenotypic bit is determined by the

majority of the genotypic bits (majority vote)

• In general:

where u∈ {1,…,kr}.

xpi =

�
0 if

�kr−1
j=0 xgkri+j < u

1 if
�kr−1

j=0 xgkri+j ≥ u,

Examples

• k=1

• kr=3

• u=2

Representations – Redundant Representations

182

• k=1

• kr =3

• u=1

Trivial voting mapping (3)

Representations – Redundant Representations

183

• Experimental and theoretical results of the proportion of correct BBs on a
150-bit one-max problem using the trivial voting mapping for kr=2.

Trivial voting mapping (4)

Representations – Redundant Representations

184

• Experimental and theoretical results of the proportion of correct BBs on a
150-bit one-max problem using the trivial voting mapping for kr=3.

Trivial voting mapping (5)

Representations – Redundant Representations

185

• Experimental and theoretical results of the proportion of correct BBs
for ten concatenated 3-bit deceptive traps and kr = 2.

Trivial voting mapping (6)

Representations – Redundant Representations

186

• Experimental and theoretical results of the proportion of correct BBs for ten
concatenated 3-bit deceptive traps and kr = 3.

Population sizing for GAs (8)

• What must be considered when using redundant

representations?

– How does the used representation change the size of

the search space?

Representations – Redundant Representations

187

the search space?

– Is the representation synonymously redundant?

– Are some solutions overrepresented?

• Examining these properties allows the user to

increase the performance of EAs!

Summary

• There are theoretical models that allow us to predict the
expected GA performance when using redundant
representations (N = O(2kr /r)).

• There are guidelines for the design of redundant
representations:

Representations – Redundant Representations

188

representations:
– Do not use non-synonymously redundant representations!

– If you use redundant representations you have to investigate:
• How does the representation change the size of the search space?

• Are solutions similar to the optimal solution overrepresented?

• If there is no knowledge about the optimal solution use
a uniformly redundant representation.

Search Operators

1. Design Principles

1. Local Search Operators

2. Recombination Operators

2. Standard Search Operators

189

2. Standard Search Operators

Recap: Design of Search Operators

• Mutation:

– The application of mutation to an individual results in a

new individual with similar properties. There is a small

distance between offspring and parent.

Search Operators – Design Principles Local Search Operator

190

distance between offspring and parent.

• Crossover:

– Crossover combines the properties of two or more

parents in an offspring. The distance between offspring

and parent should be smaller than the distance between

both parents.

Local search operators

• Goal: find fitter individual by performing neighborhood search

• Local search creates offspring that are similar to parents

• Metric and operator thus depend on each other

• A metric defines possible local search operators and a local
search operator determines the metric

Search Operators – Design Principles Local Search Operator

191

search operator determines the metric

• Assumptions:

– structure of metric/fitness landscape has to guide search towards
optimal solution

– Good solutions can be found by a series of small steps

– Good solutions are typically clustered, so that they can be found
in the neighborhoods of other good solutions

Local search for binary genotypes

• Distance between two solutions often measured by Hamming
distance d(x,y)

• Local search usually generates solutions with d=1

• „Standard mutation“ or „bit flipping“

• l-bit string has l neighbors

Search Operators – Design Principles Local Search Operator

192

• l-bit string has l neighbors

Local search for integer genotypes

• For different metrics, different operators are necessary

• Binary Hamming metric

– Two solutions are neighbors if they differ in one decision variable.

– Operator based on this metric can randomly change one decision variable.

– Solution x∈ {0,…,k}l has lk neighbors.

Search Operators – Design Principles Local Search Operator

193

– Solution x∈ {0,…,k}l has lk neighbors.

– Example: x=(0,0) with xi = {0,1,2} has four neighboring solutions

((1,0),(2,0),(0,1),(0,2)).

• City-block metric:

– Local search can slightly decrease or increase one of the decision variables

(adding +/-1).

– Each solution of length l has at most 2l neighbors. Example: x=(0,0), xi∈

{0,1,2} has 2 neighbors ((1,0),(0,1))

Local search for integer genotypes

• Different when operator exchanges values of two decision variables
xi, xj

• Using Hamming distance, two neighbors have distance d=2, each

solution has at most different neighbors
�
l
2

�

Search Operators – Design Principles Local Search Operator

194

• x=(3,5,2) has 3 neighbors ((5,3,2),(2,5,3),(3,2,5))

Local search for continuous genotypes

• Analogue to integer genotypes

• Hamming distance: assign random variable
xi∈ [xmin , xmax] to i-th decision variable

• We can also define exchange operator

• Using city-block metric is a bit more complex

Search Operators – Design Principles Local Search Operator

195

• Using city-block metric is a bit more complex
– Search step should not be too small (we want progress)

– … and not too large (offspring should be similar to parent)

– Add random variable with zero mean: usually Gaussian with µ=0, and standard

deviation σ controlling „step-size“

Recombination operators

• Requires a population of solutions

• Goal is to combine meaningful properties from >1 parents

• Like local search, recombination-based search is based on a metric

• Given two parents xp , xp and one offspring xo, recombination should be
designed such that

Search Operators – Design Principles Recombination Operator

196

max(d(xp , xo), d(xp , xo)) ≤ d(xp, xp))

• Offspring should be „between the parents“

• Why use recombination?
– Real-world problems are often decomposable

– Large problems can be solved by decomposing it into smaller sub-problems (that
are usually easier to solve) and combined to form overall solution

Common recombination operators

Search Operators – Design Principles Recombination Operator

197

Intermediate recombination

• Uniform and n-point crossover can be applied independent of type of

decision variable (binary, discrete, continuous…)

• In contrast, intermediate recombination operators try to

blend/average over several parents. We explain arithmetic crossover.

• For two parents xp, xp, offspring is

Search Operators – Design Principles Recombination Operator

198

• For two parents xp, xp, offspring is

• For m parents,

• Takes weighted average of parents‘ decision variables

xoi = αxp1i + (1− α)xp2i , α ∈ [0, 1]

xoi =
�m

i=1 αix
pi
i ,
�m

i=1 αi = 1

Standard search operators

• We provide an overview of operators for standard search

spaces

• Can be genotypes or phenotypes (direct representation)

• Ordered by increasing complexity

Search Operators – Standard Operator

199

• Ordered by increasing complexity

Strings and Vectors

• Ordered lists of decision variables of fixed or variable length

• Often used

• Appropriate for sequences of characters or patterns. objects are

modeled as

– text,

Search Operators – Standard Operator

200

– text,

– characters,

– patterns.

• Can use standard local search and recombination-based operators

based on (binary) Hamming metric

• If length is variable, Levenshtein distance can be used

Coordinates and Points

• Represent locations in geometric space

• Integer or continuous

• Often: locations of cities or other spots on a 2d-grid

• Appropriate for problems that work on

– sites,

Search Operators – Standard Operator

201

– sites,

– Positions, or

– locations.

• Standard local and recombination operators for continuous decision

variables or integers

• Euclidean metric

Graphs

• Represent relationships between arbitrary objects

• Structure can be described as list of edges (with n nodes, there are

n(n-1)/2 possible edges)

• Appropriate for problems that seek a

– network,

Search Operators – Standard Operator

202

– network,

– graph, or

– relationship

• Common genotype is binary list of length n(n-1)/2

• Standard operators are based on Hamming metric: number of

different edges

• If no additional constraints: standard search operators are

applicable

Subsets

• Selections from a set of object; order of elements in set does not matter

• Given n objects, there are subsets of size k and 2n different

subsets.

• Subset of fixed size k can be represented by an integer vector x of

length k, where the x indicate the selected objects and x ≠ x for i≠ j

�
n
k

�

Search Operators – Standard Operator

203

length k, where the xi indicate the selected objects and xi≠ xj for i≠ j
and i,j∈ [1,k]

• Appropriate for problems that seek a

– cluster, collection, partition, group, packaging, or selection.

• Can use standard local search if each selected object is unique

• Recombination operators are difficult (Falkenauer , 1998; Choi and

Moon, 2003)

– Each subset is represented by k! different genotypes

– Redundancy

Permutations

• Orderings of items,

• n! permutations of n objects

• Many permutation problems are relevant but NP-hard

• Used in problems that seek an

– arrangement, tour, ordering, or sequence.

Search Operators – Standard Operator

204

– arrangement, tour, ordering, or sequence.

• Design of operators is demanding

• Often, an integer genotype of length n is used, where xi denotes an

object and has a unique value

• Standard operators fail: offspring usually is no permutation

Permutations

• Permutation-specific operators are based on absolute or
relative ordering.

– Absolute ordering: Two solutions are similar, if objects have same
absolute position

– Relative ordering: Two solutions are similar, if relative order of

Search Operators – Standard Operator

205

– Relative ordering: Two solutions are similar, if relative order of
pairs is similar

• Order crossover, partially matched crossover, … there are
many operators specifically designed for permutation
problems.

• See Whitley (1997), Mattfeld (1996), or Choi and Moon
(2008)

Fitness Function

1. Design Guidelines

2. Examples

206

Fitness function and objective function

• Fitness function is quality of solution as „seen by the

heuristic“

• Objective function (evaluation function) is based on

problem model

Fitness Function – Design Guidelines

207

problem model

• In general, fitness function and objective function are the

same, but we can modify fitness function to make search

easier for a modern heuristic

• Then, we would not use original objective function from

model, but a variant thereof

Ordinal and numerical ranking

• Fitness and objective functions can be ordinal or numerical

• Ordinal functions order solutions in a sequence

– Allow us to compare quality (best, second-best, …, worst)

– No absolute value of quality available

– Often used when fitness is evaluated by human experts who rank

Fitness Function – Design Guidelines

208

– Often used when fitness is evaluated by human experts who rank
alternatives

• Numerical objective functions assign a real-valued objective
value to all solutions

– Ordering possible

– Absolute value is available

– Standard for most mathematical models of cost, profit, lengths…

Design of objective function

• Make sure:

– Best solution should have highest quality

– Should make problem straightforward for local search

– Should make problem decomposable for recombining

Fitness Function – Design Guidelines

209

– Should make problem decomposable for recombining

methods

• In general, dissimilarity (measured by problem

metric) should be positively correlated with

difference in objective values

Example 1: Needle in haystack

• Search space X of size n

• Objective function assigns highest value to best solution
(f(maxx x)=n)

• All other n-1 solutions get random objective function in

Fitness Function - Examples

210

• All other n-1 solutions get random objective function in

{1,…,n-1}

• No guidance for local search

• Guided search methods will perform like random search

Example 2: Maximum Satisfiability (SAT)

• Instance is Boolean formula with three elements
– Set of n variables xi , i = {1,…,n}

– Set of literals. A literal is a variable or a negotiation of it

– Set of m distinct clauses {C, …, Cm}. Each clause

Fitness Function - Examples

211

– Set of m distinct clauses {C, …, Cm}. Each clause
consists only of literals combined by logical or
operators

• SAT is decision problem: It asks whether an
assignment to the xi exists, so that CÆCÆ…
Cm is true.

Fitness functions for SAT

• Obvious choice:

– Fitness function of 1 for all assignments that satisfies

compound statement

– 0 otherwise

Fitness Function - Examples

212

– 0 otherwise

– Needle in a haystack!

• Better choice:

– Measure number of satisfied clauses, use as fitness

– Smoother landscape

Fitness smoothing

• Fitness functions with large plateaus can be made easier

for guided search if we modify objective function and

consider objective function value of neighbors

• Smoothing the fitness landscape is a possible way to

Fitness Function - Examples

213

• Smoothing the fitness landscape is a possible way to

achieve this

Constraint handling

• We have to assign fitness values to solutions that are

infeasible

• Necessary if we cannot exclude all infeasible solutions from

search space

Fitness Function - Examples

214

search space

• Simplest choice: penalize violation of constraints

• Penalty functions depend highly on parameters

• Proper design of fitness function for constrained problem is

demanding

Accuracy-efficiency tradeoff

• Evaluation of fitness functions must be fast

• If calculation of fitness is time-consuming

– Rough approximation of fitness function could be used at

beginning

Fitness Function - Examples

215

– Increase precision during run

– Invest more time at the end of run

– Local search: compute only fitness change (if faster and no need

for complete fitness evaluation exists)

Initialization

216

Impact of initialization

• Proper choice of initial solutions has large effect on

efficiency of modern heuristics

• Initial solutions are starting points for search

• For guided search: single solution

Initialization

217

• For guided search: single solution

• For recombining methods: population of solutions

Random initialization

• Proper choice of initial solutions depends on
amount of problem-specific knowledge

• If we know no properties of high- or low-quality
solutions, we recommend random initialization

Initialization

218

solutions, we recommend random initialization

• All solutions are created with same probability,
covering the entire search space

• Unbiased sampling

– might be hard to ensure for direct representations

– easier for standard genotypes (integer, binary…)

Using problem specific knowledge

• If we know something about structure of high- or low-quality
solutions like
– variable ranges,

– Dependencies, or

– good solution parts

we can use such solutions as initial solutions

Initialization

219

we can use such solutions as initial solutions

• Advantage: guides the search into direction of optima

• Disadvantage: reduces search range

• Too much bias can lead to premature convergence because
– Solutions are too similar (recombining methods)

– search focuses too much on certain parts of search space
(recombining methods, and local search)

Search Strategies

1. Diversification and Intensification

2. Example: VNS

3. Example: Genetic Algorithm

220

Intensification and Diversification

• Different strategies for controlling search differ in the

design and control of the intensification and diversification

phases

• Search strategies must balance intensification and

Search Strategy – Diversification and Intensification

221

• Search strategies must balance intensification and

diversification during search and to allow search methods

to escape from local optima.

• This is achieved by various diversification techniques based

on the representationrepresentationrepresentationrepresentation, search operatorsearch operatorsearch operatorsearch operator, fitness functionfitness functionfitness functionfitness function,

initializationinitializationinitializationinitialization, or explicit diversification steps explicit diversification steps explicit diversification steps explicit diversification steps controlled by

the search strategy.

Local and Recombination-based Search

• Two fundamental concepts for heuristic search:

– local search methods versus (high-locality problems)

– recombination-based search methods (decomposable problems)

• Many real-world problems have high locality and are
decomposable

Search Strategy – Diversification and Intensification

222

decomposable

• Direct comparisons between local and recombination-based
search is only meaningful for particular problem instances

• General statements on the superiority of one or other of these
basic concepts are unjustified as method performance
depends on the specific characteristics of the problem
(locality versus decomposability).

Strategies for Intensification

• Intensification steps use the fitness of solutions to control search and
usually ensure that the search moves in the direction of solutions with
higher fitness.

• Keep the high-quality solutions or discard the low-quality ones

• No heuristic search possible without selection

• Intensification too strong (high selection pressure)

Search Strategy – Diversification and Intensification

223

• Intensification too strong (high selection pressure)
– Premature convergence

– Search gets stuck in local optimum

• Intensification too weak (low selection pressure)
– Drift

– High running times and low progress

• Optimal strength of intensification is problem-specific (example: evolution
strategies)

Strategies for Diversification: Representation and

Search Operators

• Choosing a combination of representation and search operators is
equivalent to defining a metric on the search space

• Representation/operator combination defines which solutions are
neighbors.

• By using different types of neighborhoods, it is possible to escape
from local optima and explore larger areas of the search space.

Search Strategy – Diversification and Intensification

224

from local optima and explore larger areas of the search space.

• Different neighborhoods can be the result of different genotype-
phenotype mappings or search operators applied during search.

• Standard examples for local search approaches that use
modifications of representations or operators to diversify the
search are variable neighborhood search, problem space search,
the rollout algorithm, or the pilot method.

Strategies for Diversification: Fitness Function

• Fitness function measures the quality of solutions.

• Modifying the fitness function has the same effect
as changing the representation as it assigns
different fitness values to the problem solutions.

Search Strategy – Diversification and Intensification

225

different fitness values to the problem solutions.

• Variations and modifications of the fitness function
lead to increased diversification

• Common example is guided local search (it
systematically changes the fitness function with
respect to the progress of search)

Strategies for Diversification: Initialization

• Search trajectory depends on the choice of the initial
solution (for example, greedy search always finds the
nearest local optimum)

• Diversification can be the result of search heuristics
using different initial solutions.

Search Strategy – Diversification and Intensification

226

using different initial solutions.

• Multi-start search approaches explore a larger area of
the search space and lead to higher diversification.

• Variants of multi-start approaches include iterated
descent, large-step Markov chains, iterated Lin-
Kernighan, chained local optimization, or iterated local
search.

Strategies for Diversification: Search Strategy

• The search strategy can control the sequence of diversification and
intensification steps.

• Diversification steps that do not move towards solutions with
higher quality can either be the results of random, larger, search
steps or based on information gained in previous search steps.

• Examples of search strategies that use a controlled number of

Search Strategy – Diversification and Intensification

227

• Examples of search strategies that use a controlled number of
search steps towards solutions of lower quality to increase
diversity are simulated annealing, threshold accepting, or
stochastic local search.

• Representative examples of search strategies that consider
previous search steps for diversification are tabu search or
adaptive memory programming.

Variable neighborhood search (VNS)

• Combines local search with dynamic neighborhood
structures that are changed depending on the progress
of search

• Based on the following observations:
– Local minimum for neighborhood A is not necessarily one for

Search Strategy – VNS

228

– Local minimum for neighborhood A is not necessarily one for
neighborhood B. Different neighborhoods result in different
metrics, result in different fitness landscapes.

– A global minimum is a global minimum with respect to all
possible neighborhoods. Neighborhoods change definition
of solution similarity, but not the fitness.

– Global optimum is not affected by search operators, but only
local optima are affected by search operators!

Variable neighborhood search (VNS)

• Local optima for different neighborhoods are often close to each other

• Local optima have structure and properties that are also relevant for

global optimum (similar to decomposability: parts of solution need to

be recombined)

• Local optima are not randomly scattered through search space but are

Search Strategy – VNS

229

• Local optima are not randomly scattered through search space but are

clustered together

• Changing the neighborhood from N1 to N2 allows local search to find

optimal solution

VNS pseudo-code

Search Strategy – VNS

230

VNS in a nutshell

• Define k different neighborhoods

• |N(x)|k is average number of neighbors

• Usually we order the neighborhoods in increasing |N(x)|k

• VNS iteratively performs a

Search Strategy – VNS

231

• VNS iteratively performs a

– Shaking phase: select a random solution w.r.t. current
neighborhood. Avoids cycling and explores new region

– Local search phase: Perform local search until local optimum is
found

– Switch to next neighborhood

– Track best found local optimum

Intensification and diversification in VNS

• Local search focuses search

• Shaking and switching neighborhoods are diversification
steps

• Since average number of neighbors grows with k,
diversification gets stronger

Search Strategy – VNS

232

diversification gets stronger

– Local search can select from more neighbors

– Covers larger areas of search space

– Sizes of basins of attraction increase

• Although VNS is recently quite popular, the underlying ideas are
actually old (see Design of Modern Heuristics, p. 136)

Pilot Method

• “Preferred Iterative LOok ahead Technique”
• Combines greedy construction heuristics with a greedy

measure to estimate the global impact of local choice

• Constructs solution step by step (Master solution)

Search Strategy – Pilot Method

233

• Constructs solution step by step (Master solution)

• Decides about the steps by completing the solution

using a fast construction heuristic, the so-called pilots

• Pilots look ahead. Similar to A* search

• Master solution evolves, Pilots are iteratively computed

Pilot Method for TSP (1)

• Combinatorial optimization problem defined on
fixed set of elements E

• Cost function c:E→R

• Find minimal cost subset S*⊂E satisfying some

Search Strategy – Pilot Method

234

• Find minimal cost subset S*⊂E satisfying some
constraints

• TSP: find set of edges with minimal cost that forms
a cycle

• Assume that a heuristic for the problem is known
that can complete any partial solution

Pilot Method for TSP (2)

• Master solution M contains elements e

• For each e∈M extend partial solution M to a complete

solution such that e is part of it

• Let p(e) denote objective function value of this solution

Search Strategy – Pilot Method

235

• Let p(e) denote objective function value of this solution

• e0 is most promising pilot: minimal value p() from all

e∈M.

• Include e into M. Start over.

• Terminate when M is complete.

Properties

• Greedy construction heuristic that "looks ahead";

no search through a search space

• Completion heuristic is designed such that it

exploits problem knowledge

Search Strategy – Pilot Method

236

exploits problem knowledge

• No explicit diversification steps

• See chapter on design principles (ordinal

representation)

Evolution strategies (ES)

• Local search for continuous search spaces

• Developed by Rechenberg and Schwefel, TU Berlin

• First applications: optimize shape of a bent pipe

• The main search operator in ES is mutation. To

Search Strategy – Evolution Strategies

237

• The main search operator in ES is mutation. To

exchange information between solutions,

recombination operators are used in population-

based ES as background search operators.

(1+1)-ES

• n-dimensional continuous vector x∈R is solution

• Creates offspring x‘ by adding n-dimensional

random variable, mostly Gaussian:

x ‘ = x + σ N (0,1)

Search Strategy – Evolution Strategies

238

xi‘ = xi + σ Ni(0,1)

• Offspring replaces parent if it is better

• Stochastic hillclimber

Two standard problem models

• Corridor model (x is far from optimum)

fcorr (x) = c0 +c1 x1 ∀ i∈{2,…, n}: -b/2≤ xi≤ b/2

• Sphere model (x is close to optimum)

f (x) = c + c ∑ (x –x *)2

Search Strategy – Evolution Strategies

239

fsphe (x) = c0 + c1∑i (xi–xi*)2

1/5th success rule

• Define ξ(t) as ratio of successful steps over all t

search steps

• For corridor and sphere model, ξ(t)=0.2 maximizes

convergence speed

Search Strategy – Evolution Strategies

240

convergence speed

• If ξ(t)>0.2 reduce σ, increase otherwise

(µ+λ), (µ,λ)- evolution strategies

• µ parents generate λ new solutions.

• µ offspring are chosen either from µ+λ ((µ+λ)-ES)

or from the λ new solutions ((µ,λ)-ES)

• Each individual has an own σ.

Search Strategy – Evolution Strategies

241

• Each individual has an own σ.

• SelfSelfSelfSelf----adaptation of strategy parameters adaptation of strategy parameters adaptation of strategy parameters adaptation of strategy parameters (σ is not

externally controlled).

• Step size is adapted (learned) during the run

Properties

• ES incorporate the most important parameters of the strategy, e.g. standard
deviations, into the search process. Thus, optimization not only takes place on
object variables, but also on strategy parameters (self-adaption).

• In population-based ES, intensification is a result of the selection mechanism
which prefers high-quality solutions.

• Recombination is a background operator which has both diversifying and
intensifying character.

Search Strategy – Evolution Strategies

242

intensifying character.
– By recombining two solutions, new solutions are created which lead to a more

diversified population.

– However, especially intermediate crossover leads to reduced diversity during an ES run
since the population converges to the mean values.

• Like for (1+1)-ES, the main source of diversification is mutation. With larger
standard deviations, diversification gets stronger as the step size increases. The
balance between diversification and intensification is maintained by the self-
adaptation of the strategy parameters.

State of the art

• ES are state-of-the-art for many nonlinear continuous
functions with medium dimensionality (n<100)

• CMA-ES (Covariance Matrix Adaptation Evolution Strategy)

from Hansen and co-workers

Search Strategy – Evolution Strategies

243

from Hansen and co-workers

Principles of Genetic Algorithms

• Population of solutions.

– properties of a solution are evaluated based on the phenotype

– variation operators are applied to the genotype.

– some of the solutions are removed from the population if the
population size exceeds an upper limit.

Search Strategy – Genetic Algorithm

244

population size exceeds an upper limit.

• Variation operators

– create new solutions with similar properties to existing solutions.

– main search operator is recombination

– mutation serves as background operator

• Selection

– High-quality individuals are selected more often for reproduction.

Functionality

• Generate set of different initial solutions

• Repeat until termination :

– Repeat within a population

• Combine several solutions to form a new one s‘

4. Heuristic Optimization Methods – Genetic AlgorithmsSearch Strategy – Genetic Algorithm

245

• Create a random neighboring solution s‘ in the neighborhood N(s) of s

– Select only a fraction of the newly created solutions s‘.

search space S

Different neighborhood in
comparison to local
search

Initial solution 2

Initial solution 1
Initial solution 3

new solution mutation

How does a GA work?

Selection

pop = random_population();
while (not done)

parents = {};
while (|parents| < |pop|)

x = tournament_winner(pop);
parents = parents + x;

end;
offspring = {};

4. Heuristic Optimization Methods – Genetic AlgorithmsSearch Strategy – Genetic Algorithm

246

Variation

Generation

while (|offspring| < |pop|)
x = get_random_with_deletion(parents);
y = get_random_with_deletion(parents);
(x’,y’) = crossover(x,y);
x” = mutation(x’);
insert(x”,offspring);
y” = mutation(y’);
insert(y”,offspring);

end;
pop = offspring;

end;

Genetic algorithms

• Two or more solutions create offspring using a recombination

operator

• Assumption:

– Solutions have characteristic properties

4. Heuristic Optimization Methods – Genetic AlgorithmsSearch Strategy – Genetic Algorithm

247

– Recombination has to identify relevant characteristics (building blocks) and

combine those characteristics in an offspring.

– Population necessary to ensure that different characteristica are available.

• Motivation: local optima for local search are no local optima for

recombination-based search.

• However: Resulting neighborhood structure is non-intuitive

Design choices

• Choose a proper representation and corresponding search
operators for the problem (ensure high locality for mutation
and recombination)

• Design a mechanism that compares quality of different
solutions.

• Set GA-specific parameters:

4. Heuristic Optimization Methods – Genetic AlgorithmsSearch Strategy – Genetic Algorithm

248

• Set GA-specific parameters:
– Population size (with increasing population size solution quality

increases; running time (number of generations) is independent of
pop size!).

– High recombination probability

– Low mutation probability (on allele level) to create similarsimilarsimilarsimilar
solutions

Intensification

• Due to selection

• In each selection step, the average fitness of a
population increases as only high-quality solutions
are chosen for the mating pool

Search Strategy – Genetic Algorithm

249

are chosen for the mating pool

• Due to selection, the population converges after a
number of generations

• Continuing recombination-based search after the
population has converged (hopefully to the global
optimum) makes no sense as diversity is minimal.

Diversification

• Main source of diversification is the initial population

• Therefore, large population are used

• Recombination operators

– Can create new solutions

– No active diversification. Recombination reduces diversity as the

Search Strategy – Genetic Algorithm

250

– No active diversification. Recombination reduces diversity as the
distances between offspring and parents are usually smaller than
the distance between parents

– Iterative application of crossover alone reduces the diversity of a
population as

• some solution properties can become extinct in the population (drift)) or

• the decision variables converge to an average value (especially for
continuous decision variables).

Diversification (2)

• Mutation has diversifying character
• Neighborhood structure does not remain constant during

search, as mutation does not generate only neighboring
solutions with small distance but can reach all solutions in the
search space in only one mutation step.

• Mutation is iteratively applied to all l decision variables with
probability p .

Search Strategy – Genetic Algorithm

251

probability pm.
• On average, pml alleles are mutated
• For large values of pm, the mutation operator can mutate all l

decision variables and, thus, reach all possible points in the
solution space.

• The diversifying character of mutation increases with
increasing pm, and for large pm, SGA behaves like random
search.

Design Principles

1. High Locality

2. Bias

252

Design Guidelines

Vast majority of real-world optimization problems are

• neither deceptive nor difficult and

• have high locality (used metric is meaningful)

Design Principles – High Locality

253

• Design of modern heuristics should not destroy the high
locality of a problem.

• Local search operators must generate neighboring
solutions

• Recombination operators must re-combine solutions

Biasing modern heuristics

• If we know something about good solutions, we can

seed such information into the modern heuristic

– Representation: incorporate construction heuristics, or

use redundant encodings

Design Principles - Biasing

254

use redundant encodings

– Search operators can distinguish between good and

bad solution features (building blocks)

– We can also bias the fitness function, the initial

solutions, the search strategy

Incorporating Construction Heuristics in

Representations

• Early example: ordinal representation (Grefenstette et al.
1985) for the TSP.

• Encodes a tour (permutation of n integers) by a genotype xg of
length n, where xg

i∈{1,…,n-i} and i∈{0,…,n-1}. For
constructing a phenotype, a predefined permutation xs of n
integers representing the n different cities is used. xs can be
problem-specific and, for example, consider edge weights. A

Design Principles - Biasing

255

problem-specific and, for example, consider edge weights. A
phenotype (tour) is constructed from xg by subsequently
adding (starting with i=0) the xg

ith element of xs to the
phenotype (which initially contains no elements) and removing
the xg

ith element of xs. Problem-specific knowledge can be
considered by choosing an appropriate xs as genotypes define
perturbations of xs and using small integers for the xg

i results
in a bias of the resulting phenotypes towards xs. For example,
for xg

i=1 (i∈{0,…,n-1}), the resulting phenotype is xs.

Biased representation

• Number of genotypes exceeds number of genotypes

• Redundant representations

• Redundant representations are biased if some

phenotypes are represented by a larger number of

Design Principles - Biasing

256

phenotypes are represented by a larger number of

genotypes

• Biased representation: overrepresentation of good

solutions, good solutions take larger share of

search space

Biased search operators

• Search operators are biased if they generate or

select certain solutions with higher probability

• Integration of structural features into new solutions

• Example: optimal TSP solutions do not cross

Design Principles - Biasing

257

• Example: optimal TSP solutions do not cross

– Operators should not generate crossing solutions

because they have bad quality

Biased fitness function

• Fitness function is objective function as the heuristic sees it

• Improve fitness of solutions that share a desired feature

• Penalize solutions that do not share a certain feature

• Handle constraints: penalize solutions that violate certain

Design Principles - Biasing

258

• Handle constraints: penalize solutions that violate certain

constraints

Biased search strategy

• If problem is known to be unimodal, we can favor

intensification and use less exploration

• If problem is known to be multimodal, local minima are

more important and we must diversify

Design Principles - Biasing

259

more important and we must diversify

• Example: use different starting temperatures in Simulated

Annealing approach, depending on multimodality of search

space

DoneDone

