The Shortest-Path Problem with Resource Constraints with (k, 2)-Loop Elimination and Its Application to the Capacitated Arc-Routing Problem

Claudia Bode^a, Stefan Irnich^{*,a}

^aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany,

Abstract

In many branch-and-price algorithms, the column generation subproblem consists of computing feasible constrained paths. In the capacitated arc-routing problem (CARP), elementarity constraints concerning the edges to be serviced and additional constraints resulting from the branch-and-bound process together impose two types of loop-elimination constraints. To fulfill the former constraints, it is common practice to rely on a relaxation where loops are allowed. In a k-loop elimination approach all loops of length k and smaller are forbidden. Following Bode and Irnich ('Cut-First Branch-and-Price-Second for the Capacitated Arc-Routing Problem', *Operations Research*, 2012, doi: 10.1287/opre.1120.1079) for solving the CARP, branching on followers and non-followers is the only known approach to guarantee integer solutions within branch-and-price. However, it comes at the cost of additional task-2-loop elimination constraints. In this paper, we show that a combined (k, 2)-loop elimination in the shortest-path subproblem can be accomplished in a computationally efficient way. Overall, the improved branch-and-price often allows the computation of tighter lower bounds and integer optimal solutions for several instances from standard benchmark sets.

Key words: constrained shortest paths, cycle elimination, capacitated arc-routing problem

1. Introduction

In this paper, we extend the works of Irnich and Villeneuve (2006) and Bode and Irnich (2012). The first paper considered k-cycle elimination for shortest-path problems with resource constraints (SPPRC, Irnich and Desaulniers, 2005). The elementary SPPRC (ESPPRC) is the subproblem of many column-generation formulations of routing problems. Since the ESPPRC is \mathcal{NP} -hard in the strong sense (Dror, 1994), early column-generation approaches solved the SPPRC, i.e., the corresponding non-elementary problem, or SP-PRC with 2-cycle elimination (see, e.g. Houck et al., 1980; Kohl et al., 1999), which are both relaxations, with the consequence that the lower bounds computed by the column-generation master program often deteriorate. The elimination of k-cycles, i.e., cycles with up to k edges, can be seen as a mean to gradually strengthen the linear relaxation of the column-generation master program while keeping the computational effort acceptable. Both from a practical and a worst-case point of view, k-cycle elimination is computationally attractive because there exist pseudo-polynomial labeling algorithms (Irnich and Villeneuve, 2006). Applied to the vehicle-routing problem with time windows some knowingly hard instances were solved for the first time. Nowadays, it seems that approaches based on solving ESPPRC (e.g. Jepsen et al., 2008) or ng-path relaxations (Baldacci et al., 2011a) are superior due to the extremely tight lower bounds produced. However, when routes become very long, solving even very few ESPPRC subproblems can become extremely time consuming (see e.g. Desaulniers et al., 2008).

We apply loop-elimination for solving the capacitated arc-routing problem (CARP) with the branch-andprice algorithm of Bode and Irnich (2012). The CARP is the basic multiple-vehicle arc-routing problem.

*Corresponding author

Email addresses: claudia.bode@uni-mainz.de (Claudia Bode), irnich@uni-mainz.de (Stefan Irnich) Technical Report LM-2013-01 It has applications in waste collection, postal delivery, winter services and more (Dror, 2000; Corberán and Prins, 2010). For a general overview on exact algorithms for the CARP we refer to the survey (Belenguer et al., 2013). In the paper (Bode and Irnich, 2012), the first full-fledged branch-and-price algorithm for the CARP was presented. It can be characterized by the idea of exploiting sparsity of the underlying CARP network. The advantage of sparse networks is that new CARP tours can be priced out efficiently (see also Letchford and Oukil, 2009). Bode and Irnich (2012) discussed that the sparse network however comes at the cost of a more intricate branching and they developed an effective branching scheme based on follower and non-follower constraints. This branching scheme seemed limited to the case that an SPPRC subproblem with 2-loop elimination is employed (the term loop refers to cycles w.r.t. services edges; a 2-loop is the repetition of the same service). Moreover, they showed that pricing relaxations based on kloop elimination can produce better column-generation lower bounds. However, a key question remained unclear: How can the branching scheme with branching on followers/non-followers be combined with k-loop elimination for k > 3. A positive answer will be given here because we can show that a combined (k, 2)cycle elimination accomplishes the problem. More precisely, k-loops w.r.t. tasks associated with services on required edges and 2-loops w.r.t. to tasks implied by non-follower constraints can be handled by a labeling approach presented here. Note that the companion paper (Bode and Irnich, 2013) studies several alternative relaxations including, e.g., extensions of the afore-mentioned ng-path relaxations. Its focus is the empirical comparison of these relaxations, the analysis of the impact of possible acceleration techniques, and the overall comparison of the different branch-and-price algorithms.

The contribution of this paper is therefore twofold: First, we provide the theoretical foundation of a labeling algorithm allowing the combined (k, 2)-loop elimination. This includes the definition of labels, the derivation of an effective dominance procedure, and a worst-case analysis. Second, we run the different branch-and-price algorithms for the CARP resulting from choosing different values of k, i.e., for k = 2, 3, and 4. It will be apparent that the controlled variation of k is beneficial when it comes to a comparison concerning the trade-off between the strength of a column-generation formulation and the computational burden for its resolution.

The remainder of this paper is structured as follows. Section 2 presents the new labeling algorithm and its theoretical analysis for SPPRC with combined (k, 2)-loop elimination. Section 3 presents computational results for using the respective relaxations as subproblems in a branch-and-price for the CARP. The paper ends with final conclusions in Section 4.

2. Labeling Algorithm for SPPRC with combined (k, 2)-loop Elimination

A general discussion of SPPRC solution approaches including a detailed discussion of dynamic programming labeling algorithms, at the moment the generally best performing methods, can be found in (Irnich and Desaulniers, 2005). Solution approaches tailored to ESPPRC are presented in (Feillet et al., 2004; Boland et al., 2006; Righini and Salani, 2006, 2008).

2.1. Basic SPPRC and Generic Labeling Algorithm

The SPPRC is defined over a digraph G = (V, A) with node set V and arc set A. A start or origin node $s \in V$ is given. For notational convenience we assume that G is simple so that arcs $(i, j) \in A$ can be uniquely identified by their end nodes i and j. The last node of a path P, i.e., its end node is denoted by $v(P) \in V$. The extension of a path $P = (s, \ldots, v(P))$ along an arc (i, j) requires v(P) = i and results in a new path $P' = (P, j) = (s, \ldots, v(P) = i, j)$. Resource extension functions $f = (f_{ij})_{(i,j)\in A}$ (REFs) handle the update of resources accumulated/consumed along the path. Thus, if path $P = (s, \ldots, i = v(P))$ has associated resources r(P) (generally a multi-dimensional vector) then its extension P' = (P, j) along arc (i, j) has resources $f_{ij}(r(P))$. Finally, multi-dimensional intervals $[a_i, b_j]$ for all nodes $j \in V$ are given.

In standard SPPRC, the problem is to compute a minimum-cost feasible path ending at each destination node $t \in V$. In case of non-decreasing REFs, a path P' = (P, j) is *feasible* (w.r.t. resources) if $r(P') \in [a_{v(P')}, b_{v(P')}]$ holds and the predecessor path P is also feasible. Then, for solving SPPRC, one typically computes, for each node, a set of paths $\{P_1, \ldots, P_q\}$ with $\{r(P_1), \ldots, r(P_q)\}$ forming the Pareto-optimal resource values. The particular importance of non-decreasing REFs is stressed in (Desaulniers et al., 1998; Irnich and Desaulniers, 2005; Irnich, 2008).

In the CARP pricing subproblem, the network G = (V, A) consists of the node set V defined by the CARP instance. The arc set A contains two types of arcs:

- Service arcs (i, j) and (j, i) correspond to proving service to a required edge $\{i, j\}$. These arcs consume a positive amount $q_{ij} > 0$ of the vehicle's capacity and have a (reduced) cost \tilde{c}_{ij}^{serv} (not restricted in sign).
- Deadheading arcs (i, j) and (j, i) correspond to traversing an arbitrary edge $\{i, j\}$ without providing service. These arcs consume nothing from the vehicle's capacity, i.e., $q_{ij} = 0$. Even with valid inequalities present in the column-generation master program, their (reduced) cost \tilde{c}_{ij} can be guaranteed to be non-negative (for details see Bode and Irnich, 2012).

Bode and Irnich (2012) explained how the column-generation restricted master program (RMP) provides with its dual solution the reduced costs \tilde{c}_{ij}^{serv} and \tilde{c}_{ij} . Summing up, the resources r(P) in the CARP case consumed along a path P are given by $r(P) = (q(P), \tilde{c}(P))$, where q(P) is restricted to integer values $0, 1, \ldots, C$ (C is the capacity of the vehicle) and $\tilde{c}(P)$ is the accumulated reduced costs.

The outline of a generic labeling approach for solving SPPRC is presented in Algorithm 1. Herein, each path P is represented by a label L(P), i.e., a data structure that allows the reconstruction of the associated path via labels of the predecessor path, provides additional information such as the resource consumption r(P), and allows to invoke a dominance algorithm. The set \mathcal{U} is the set of unprocessed labels L(P), i.e., paths P that are not extended along all arcs $(v(P), j) \in A$ of the forward star of node v(P). The set \mathcal{L} contains those labels that need to be kept.

```
Algorithm 1: Generic SPPRC Dynamic Programming Labeling Algorithm

SET \mathcal{U} := \{L(s)\}, \mathcal{L} := \emptyset

while \mathcal{U} \neq \emptyset do

// Path Extension Step

SELECT L(P) \in \mathcal{U}, REMOVE L(P) from \mathcal{U}, and ADD L(P) to \mathcal{L}

for (v(P), j) \in A do

if path (P, j) is feasible then

\lfloor ADD L(P, j) to \mathcal{U}

// Dominance Step

if /* any condition */ then

\lfloor APPLY dominance algorithm to labels \mathcal{U} \cup \mathcal{L}

// Filtering Step

IDENTIFY solutions S \subseteq \mathcal{L}
```

Depending on the path selection rule in the path extension step, different label processing procedures result such as label setting and label correcting algorithms. The invocation of a dominance algorithm is optional in the sense that otherwise the algorithm enumerates all feasible paths starting at node s. Dominance is however crucial in the design of *efficient* labeling algorithms, and we devote Section 2.3 for the detailed presentation of this basic component. In general, the intension of the dominance algorithm is to identify those paths that do not necessarily be extended, i.e., one or several other paths still allow finding (Pareto-)optimal paths. It can be applied at any time in the course of the algorithm and might be delayed to a point where several new paths with identical end node have been generated and stored in \mathcal{U} . Any reasonable strategy for invoking the dominance algorithm will optimize the tradeoff between the computational effort and the risk that a path is extended before one finds out that it is dominated.

In the presence of additional path-structural constraints (such as cycle- or loop-elimination constraints discussed in Section 2.2, see also Section 2.2 of (Irnich and Desaulniers, 2005)), the set \mathcal{L} must generally

include additional labels for paths that are not necessarily Pareto-optimal. It this case, a final filtering step is needed to identify an Pareto-optimal subset. Efficient algorithms for that purpose can be found in (Bentley, 1980).

2.2. Task-Loops and Loop Elimination

In the column-generation context, a *task* is something (such as visiting a node, edge or arc) that needs to be performed by a column (a vehicle route or a schedule etc.). Generally, a task is associated with a setpartitioning or covering constraint of the master program, and it can be found at one or several nodes and arcs of the network. The work by Irnich and Villeneuve (2006) mainly addresses k-cycle elimination where every node of the subproblem's network represents an individual task (implied by standard node-elementarity constraints).

The paper at hand, however, addresses the more general case that an arbitrary sequence \mathcal{T}_{ij} of tasks (including empty sequences) is associated with every arc $(i, j) \in A$. Then, feasible paths $P = (v_0, v_1, \ldots, v_p)$ are those where the joint task sequence $\mathcal{T}(P) := (\mathcal{T}_{v_0,v_1}, \mathcal{T}_{v_1v_2}, \ldots, \mathcal{T}_{v_{p-1}v_p})$ does not contain a task-k loop. It is important to highlight that the literature distinguishes between k-cycles and k-loops. The term k-cycle is traditionally used in the context of unique tasks associated with nodes. A 2-cycle is a cycle of length two such as (i, j, i), and a k-cycle is any cycle of length k or smaller. In contrast, a 2-loop is a repeated task (a, a) for any task $a \in \mathcal{T}$. A 2-loop can result from a subpath (i, j, i) where both arcs (i, j) and (j, i) (or an edge $\{i, j\}$ in the undirected case) have the task sequence $\mathcal{T}_{ij} = \mathcal{T}_{ji} = (a)$. However, the same task-2-loop results for (sub)path $P = (v_0, v_1, \ldots, v_p)$ if arc (v_0, v_1) has a task sequence (\ldots, a) ending with task a, arcs $(v_1, v_2), \ldots, (v_{p-2}, v_{p-1})$ have an empty task sequence (also called deadheading), and arc (v_{p-1}, v_p) has a task sequence (a, \ldots) starting with task a. In general, for k > 2 a task-k-loop is task-cycle of length k - 1 or smaller.

The rationale behind these seeming confusing definitions is that 2-cycle elimination and task-2-loop elimination can be handled with almost identical algorithmic approaches: Dominance rules require that only a best and a second-best path with different last task need to be kept in \mathcal{L} (see Algorithm 1). The dominance rules were first presented by (Houck et al., 1980) for 2-cycle elimination in the node-routing context and by (Benavent et al., 1992) for task-2-loop elimination and the CARP.

2.3. Dominance Rules in Combined (k_1, k_2) -loop Elimination

This section contains new theoretical results for labeling procedures that simultaneously consider two sets of tasks for which loop freeness must be guaranteed. In our CARP application, paths are desired to be *k*-loop-free w.r.t. tasks \mathcal{T}^E induced by route's elementarity constraints. Here, we would like k > 2 to be as large as possible (of course there is the trade-off between strength of the relaxation and effort for pricing). Moreover, one needs paths to be exactly 2-loop-free w.r.t. the tasks \mathcal{T}^B induced by non-follower constraints resulting from branching.

Generalizing, we will derive results for a combined (k_1, k_2) -loop elimination for the tasks sets \mathcal{T}^1 and \mathcal{T}^2 . For simplicity, we abbreviate paths feasible w.r.t. both tasks sets \mathcal{T}^1 and \mathcal{T}^2 as (k_1, k_2) -loop-free paths. In particular, we suppress the prefix 'task-'.

It is rather simple to define attribute updates and extension rules for (k_1, k_2) -loop elimination. The crucial part for an effective labeling algorithm is however the definition of a dominance relation. Straightforward approaches allow dominance only between paths that have identical sequences of the last $k_1 - 1$ tasks of \mathcal{T}^1 and the last $k_2 - 1$ tasks of \mathcal{T}^2 . This is rather easy, but turns out to be ineffective due a possible number of $\mathcal{O}(|\mathcal{T}^1|^{k_1-1} \cdot |\mathcal{T}^2|^{k_2-1})$ labels at the same node and otherwise identical state (all resources except for cost; identical load in the CARP case). Irnich and Villeneuve (2006) discuss this point for node-k-cycle elimination in detail. Therefore, the decisive point is the development of effective dominance rules guaranteeing a small number of labels.

Such an effective dominance rule, based on the one for node-k-cycle elimination proposed by Irnich and Villeneuve (2006), does not only compare pairs of paths. Instead, several paths together may be needed to dominate another path. In the following, we will distinguish between paths and labels. Paths are represented by labels, but labels contain additional attributes needed to efficiently test for domination. Moreover, paths

can mutually dominate each other, while we will make sure that dominance is uni-directional among labels. This can be achieved using a unique identifier (an ID) for each label, which breaks ties whenever two labels with identical resources are compared (for a more detailed discussion of that point see (Irnich and Villeneuve, 2006, p. 393f)).

The dominance principle says that labels $L(P_1), \ldots, L(P_g)$ $(g \ge 1)$ representing paths P_1, \ldots, P_g dominate a label L(P) representing path P if

- 1. P_1, \ldots, P_g and P share the same end node $v(P_1) = \ldots = v(P_g) = v(P)$.
- 2. Every feasible completion Q of P, i.e., (P, Q) is a feasible path, must also result in a feasible path (P_j, Q) for at least one path $P_j, j \in \{1, \ldots, g\}$.
- 3. The cost of (P_j, Q) must not exceed the cost of (P, Q) for all $j \in \{1, \ldots, g\}$.

As a consequence, the label L(P) does not need to be considered in a labeling algorithm because it can never produce a better feasible extension to the destination node than possible with at least one extension of the labels $L(P_1), \ldots, L(P_g)$. It is however crucial that the labels $L(P_1), \ldots, L(P_g)$ are kept.

The second condition (2.) is typically replaced by a (sufficient) condition that is easier to check, involving resource consumptions and task loops. In fact, all paths P_1, \ldots, P_g must have resources not larger than the resources of P, i.e.,

$$r(P_1), \dots, r(P_g) \le r(P),\tag{1}$$

which is in the CARP case equivalent to $q(P_1), \ldots, q(P_g) \leq q(P)$ and $\tilde{c}(P_1), \ldots, \tilde{c}(P_g) \leq \tilde{c}(P)$, while feasibility regarding tasks loops is *not* checked via resources.

The fundamental idea for (k_1, k_2) -loop elimination is to efficiently encode the set of possible extensions of a path. For this purpose, let $\mathcal{E}(P)$ denote the set of loop-free extensions of the path P. $\mathcal{E}(P)$ solely considers task loops and not resource consumptions. The second condition (2.) above is fulfilled for P_1, \ldots, P_g and Pif (1) and

$$\bigcup_{i=1}^{g} \mathcal{E}(P_i) \supseteq \mathcal{E}(P) \tag{2}$$

holds. We will now describe how to encode this condition in order to handle two sets of tasks efficiently.

Encoding the Possible Extensions by Self-Hole Sets. Recall that there are two sets of tasks \mathcal{T}^1 and \mathcal{T}^2 for which loop freeness has to be ensured. Let S be the set of all (k_1, k_2) -loop-free paths, i.e., k_1 -loop-free w.r.t. tasks in \mathcal{T}^1 and k_2 -loop-free with respect to tasks in \mathcal{T}^2 . Let $P, Q \in S$ be two feasible paths, where the end node v(P) of P is identical with the start node of Q. Then, the concatenation (P,Q) is also a path in S if and only if both $(\mathcal{T}^1(P), \mathcal{T}^1(Q))$ is k_1 -loop-free and $(\mathcal{T}^2(P), \mathcal{T}^2(Q))$ is k_2 -loop-free. This condition holds if

$$(\mathcal{T}^1(P), \mathcal{T}^1(Q)) = (\dots, t_{k_1-1}^1, \dots, t_2^1, t_1^1, s_1^1, s_2^1, \dots, s_{k_1-1}^1, \dots) \text{ fulfills } t_p^1 \neq s_q^1 \text{ for all } p+q \le k_1$$

and

$$(\mathcal{T}^2(P), \mathcal{T}^2(Q)) = (\dots, t_{k_2-1}^2, \dots, t_2^2, t_1^2, s_1^2, s_2^2, \dots, s_{k_2-1}^2, \dots) \text{ fulfills } t_p^2 \neq s_q^2 \text{ for all } p+q \le k_2.$$

The relevant entries of $\mathcal{T}^1(Q)$ and $\mathcal{T}^2(Q)$ are the first $k_1 - 1$ and $k_2 - 1$ entries, and we denote these by $\mathcal{T}^1_{k_1}(Q)$ and $\mathcal{T}^2_{k_2}(Q)$, respectively. We assume in the following that both sequences $\mathcal{T}^1_{k_1}(Q)$ and $\mathcal{T}^2_{k_2}(Q)$ always contain exactly $k_1 - 1$ and $k_2 - 1$ elements, respectively, where missing tasks are represented by a '.'. (Here we remind the reader about the notation that for h = 1 or h = 2 the term \mathcal{T}^h (without subscript) refers to the set of all tasks, \mathcal{T}^h_{ij} is the task sequence associated to an arc (i, j), and $\mathcal{T}^h_k(Q)$ is the (k - 1)-tuple describing the sequence of the first k - 1 tasks in a path Q possibly extended with succeeding \cdot .)

We are able to express the above condition as

$$\mathcal{T}_{k_1}^1(Q) \neq (\cdot, \ldots, \cdot, t_{n,i}^1, \cdot, \ldots, \cdot)$$
 for all p with $1 \leq p+i \leq k_1$

and

$$\mathcal{T}_{k_2}^2(Q) \neq (\cdot, \dots, \cdot, t_{p,i}^2, \cdot, \dots, \cdot)$$
for all p with $1 \le p+i \le k_2$
5

where *i* refers to the *i*th position in the right-hand-side vector, and $t_{p,i}^1$ and $t_{p,i}^2$ have the value t_p^1 and t_p^2 , respectively. The last $k_1 - 1$ entries of $\mathcal{T}^1(P)$, i.e., t_p^1 with $p \in \{1, \ldots, k_1\}$, and the last $k_2 - 1$ entries of $\mathcal{T}^2(P)$, i.e., t_p^2 with $p \in \{1, \ldots, k_2\}$ have to be compared with $\mathcal{T}_{k_1}^1(Q)$ and $\mathcal{T}_{k_2}^2(Q)$, respectively. It follows that any extension Q of path P is infeasible if $\mathcal{T}_{k_1}^1(Q)$ or $\mathcal{T}_{k_2}^2(Q)$ matches with the respective tuple (still '.' refers to an unspecified entry).

These infeasible extensions can be represented by *set forms*, a concept introduced first in (Irnich and Villeneuve, 2006): The tuples on the right hand side of the above inequality are in fact set forms. The finite union of such set forms defines the self-hole set H(P) of a path P.

Example 1. For (4,2)-loop elimination in the CARP context, i.e., $k_1 = 4$, $k_2 = 2$ and $\mathcal{T}^1 = \mathcal{T}^E$, $\mathcal{T}^2 = \mathcal{T}^B$, let path P have $\mathcal{T}^E(P) = (\dots, a, b, c)$ and $\mathcal{T}^B(P) = (\dots, \alpha)$. It means that the last three required edges serviced were the edges a, b, and c. In addition, we are in a branch of the branch-and-price search tree where a non-follower constraint is active, e.g., say for the edges c and f, imposing that they have the new identical task α assigned in order to prevent c and f being serviced consecutively.

Then, any extension Q produces a feasible path w.r.t. loop elimination if

$$(\mathcal{T}_4^E(Q), \mathcal{T}_2^B(Q)) \neq (\cdot, \cdot, \cdot)(\alpha), (a, \cdot, \cdot)(\cdot), (b, \cdot, \cdot)(\cdot), (\cdot, b, \cdot)(\cdot), (c, \cdot, \cdot)(\cdot), (\cdot, c, \cdot)(\cdot), (\cdot, \cdot, c)(\cdot).$$

Equivalently, the self-hole set of P is

$$H(P) = (\cdot, \cdot, \cdot)(\alpha) \cup (a, \cdot, \cdot)(\cdot) \cup (b, \cdot, \cdot)(\cdot) \cup (\cdot, b, \cdot)(\cdot) \cup (c, \cdot, \cdot)(\cdot) \cup (\cdot, c, \cdot)(\cdot) \cup (\cdot, \cdot, c)(\cdot), (\cdot) \cup (\cdot, \cdot, c)(\cdot) \cup (\cdot, \cdot, c)(\cdot) \cup (\cdot, \cdot, c)(\cdot), (\cdot) \cup (\cdot, \cdot, c)(\cdot) \cup (\cdot, c)(\cdot) \cup (\cdot) (\cdot) \cup (\cdot) \cup (\cdot) \cup (\cdot, c)(\cdot) \cup (\cdot, c)(\cdot) \cup (\cdot)$$

where each set form encodes the set of task sequences matching the respective pattern.

For example, if a path Q_1 produces the task sequence $\mathcal{T}_4^E(Q_1) = (d, a, b)$ and $\mathcal{T}_2^B(Q_1) = (\beta)$ then there is no match with H(P), and the extension (P, Q_1) is feasible w.r.t. loop elimination. In contrast, for a path Q_2 with task sequence $\mathcal{T}_4^E(Q_2) = (d, e, c)$ there is a match with $(\cdot, \cdot, c)(\cdot)$ so that (P, Q_2) is infeasible.

The representation of H(P) as the union of set forms is quadratic in k_1 and k_2 , i.e., up to $\frac{k_1(k_1-1)}{2} + \frac{k_2(k_2-1)}{2}$ different set forms are necessary to describe all infeasible extensions of path P.

Now we consider a dominance situation where (1) and (2) are fulfilled for dominating paths P_1, \ldots, P_g and a dominated path P. By de Morgan's law, we get

$$\bigcup_{i=1}^{g} \mathcal{E}(P_i) \supseteq \mathcal{E}(P) \quad \iff \quad \bigcap_{i=1}^{g} H(P_i) \subseteq H(P) \tag{3}$$

so that the condition (2) for loop-free extensions can be equivalently stated with the help of self-hole sets. The point is now that any intersection of the self-hole sets, resulting on the right hand side, can be calculated and represented as a union of set forms again.

Example 2 (Example 1 continued). Let P' be another path with $\mathcal{T}^{E}(P') = (a, d)$ (just two edges serviced along P') and $\mathcal{T}^{B}(P') = (\beta)$. The self-hole set of P' is

$$H(P') = (\cdot, \cdot, \cdot)(\beta) \cup (a, \cdot, \cdot)(\cdot) \cup (\cdot, a, \cdot)(\cdot) \cup (d, \cdot, \cdot)(\cdot) \cup (\cdot, d, \cdot)(\cdot) \cup (\cdot, \cdot, d)(\cdot)$$

Then, the intersection of the self-hole sets is

$$\begin{split} H(P) \cap H(P') = &(a, \cdot, \cdot)(\alpha) \cup (\cdot, a, \cdot)(\alpha) \cup (d, \cdot, \cdot)(\alpha) \cup (\cdot, d, \cdot)(\alpha) \cup (\cdot, \cdot, d)(\alpha) \cup \\ &(a, \cdot, \cdot)(\beta) \cup (b, \cdot, \cdot)(\beta) \cup (\cdot, b, \cdot)(\beta) \cup (c, \cdot, \cdot)(\beta) \cup (\cdot, c, \cdot)(\beta) \cup (\cdot, \cdot, c)(\beta) \cup \\ &(a, d, \cdot)(\cdot) \cup (a, \cdot, d)(\cdot) \cup (b, a, \cdot)(\cdot) \cup (b, d, \cdot)(\cdot) \cup (b, \cdot, d)(\cdot) \cup (a, b, \cdot)(\cdot) \cup (d, b, \cdot)(\cdot) \cup \\ &(\cdot, b, d)(\cdot) \cup (c, a, \cdot)(\cdot) \cup (c, d, \cdot)(\cdot) \cup (c, \cdot, d)(\cdot) \cup (a, c, \cdot)(\cdot) \cup (d, c, \cdot)(\cdot) \cup (\cdot, c, d)(\cdot) \cup \\ &(a, \cdot, c)(\cdot) \cup (\cdot, a, c)(\cdot) \cup (d, \cdot, c)(\cdot) \cup (\cdot, d, c)(\cdot) \end{split}$$

The computation of the intersection of two unions of set forms, as in the above example, requires two algorithmic components: First, set forms need to be tested for inclusion. For example, $(a, \cdot, b, e)(\alpha)$ is included in $(\cdot, \cdot, b, \cdot)(\alpha)$, while $(a, e, b)(\cdot)$ is not included in $(a, \cdot, c)(\cdot)$. It can be shown similarly as for nodek-cycle elimination that this test requires only $\mathcal{O}(k_1 + k_2)$ time and space (Irnich and Villeneuve, 2006, p. 398).

Second, proper intersections of set forms need to be computed. For two set forms s and t, the intersection $s \cap t$ is empty if different entries are specified at the same position. For example, $s = (a, b, \cdot)(\alpha)$ and $t = (a, c, b)(\alpha)$ result in $s \cap t = \emptyset$. Moreover, by definition, the intersection is empty if an infeasible loop is created, e.g., the intersection of $(a, b, \cdot)(\alpha)$ and $(\cdot, b, a)(\cdot)$ is empty because it induces the 3-loop (a, b, a) w.r.t. tasks \mathcal{T}^1 . In contrast, the set forms $(a, b, \cdot)(\alpha, \cdot)$ and $(\cdot, b, d)(\cdot, \cdot)$ have non-empty intersection $(a, b, d)(\alpha, \cdot)$. Here again, the computation including loop detection requires only $\mathcal{O}(k_1 + k_2)$ amortized time and space. As a result, the computation of the intersection of two self-hole sets, say with p and q set forms each, requires $\mathcal{O}((k_1 + k_2)pq)$ amortized time and space; see (Irnich and Villeneuve, 2006, p. 398) for details.

In order to know the overall time complexity, it is important to quantify the maximum number of elements present in an intersection of two collections of set forms. The next paragraph will give an answer.

Upper Bound on the Number of Set Forms in an Intersection of Self-Hole Sets. For node-k-cycle elimination, any collection of set forms resulting from the intersection of self-hole sets does not contain more than $(k-1)!^2$ different set forms. This result is stated in (Irnich and Villeneuve, 2006, p. 399) for node-k-cycle elimination. Notice that in node-k-cycle elimination all paths ending at the same node share an identical last task (corresponding to that node), which therefore can be omitted. Task-k-loop elimination, however, must ensure that there are at least k-1 other tasks before a task is repeated. Therefore, in both cases, recording only k-1 elements is sufficient to encode all relevant dominance information, which results in the stated complexity.

The result for combined (k_1, k_2) -loop elimination in SPPRC is the following:

Theorem 1. For combined (k_1, k_2) -loop elimination, the maximum number of different set forms needed to represent any intersection of self-hole sets $H(P_1) \cap H(P_2) \cap \cdots \cap H(P_l)$ of any set of l paths is $\omega(k_1, k_2) := (k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot {\binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}}$. This bound $\omega(k_1, k_2)$ is tight.

A proof of this theorem and all other theoretical results is included in the Appendix. The following example shows how to construct instances where the bound is indeed tight.

Example 3. Consider a combined (3, 2)-loop elimination. Moreover, let P_1 , P_2 , and P_3 be three paths with no tasks in common. Thus,

$$\begin{split} H(P_1) &= (\cdot, \cdot)(\alpha) \cup (a, \cdot)(\cdot) \cup (b, \cdot)(\cdot) \cup (\cdot, b)(\cdot) \\ H(P_2) &= (\cdot, \cdot)(\beta) \cup (c, \cdot)(\cdot) \cup (d, \cdot)(\cdot) \cup (\cdot, d)(\cdot) \\ H(P_3) &= (\cdot, \cdot)(\gamma) \cup (e, \cdot)(\cdot) \cup (f, \cdot)(\cdot) \cup (\cdot, f)(\cdot) \end{split}$$

giving rise to

$$H(P_1) \cap H(P_2) \cap H(P_3) = (a,d)(\gamma) \cup (b,d)(\gamma) \cup (c,b)(\gamma) \cup (d,b)(\gamma) \cup (c,f)(\alpha) \cup (d,f)(\alpha) \cup (e,d)(\alpha) \cup (f,d)(\alpha) \cup (a,f)(\beta) \cup (b,f)(\beta) \cup (e,b)(\beta) \cup (f,b)(\beta).$$

These are twelve set forms which is the maximum number $(k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot {\binom{k_1 - 1 + k_2 - 1}{k_1 - 1}} = (3 - 1)!^2 \cdot (2 - 1)!^2 \cdot {\binom{(3 - 1) + (2 - 1)}{3 - 1}} = 4 \cdot 1 \cdot 3 = 12.$

Upper Bound on the Number of Paths with Identical State. The paragraph above presented results on the number of set forms in an intersection of an arbitrary number of paths. The question considered in this paragraph is about the maximum number of paths P with identical state (resource vector except for cost; for the CARP, with identical load q(P)). Let a collection of g paths P_1, \ldots, P_g with identical state ending

at a node $i = v(P_1) = \ldots = v(P_g)$ be given. The corresponding labels can be sorted in a unique way using the IDs of the labels so that the following ordering is given:

$$L(P_1) \prec_{dom} L(P_2) \prec_{dom} \ldots \prec_{dom} L(P_g),$$

meaning that, e.g., $L(P_g)$ is dominated by all other labels $L(P_1), L(P_2), \ldots, L(P_{g-1})$. It follows for the intersections of the self-hole sets of the dominating labels $(L(P_1) \text{ dominates } L(P_2), L(P_1) \text{ and } L(P_2) \text{ dominate } L(P_3) \text{ etc.})$ that

$$I_1 := H(P_1) \supseteq I_2 := H(P_1) \cap H(P_2) \supseteq \dots \supseteq I_g := \bigcap_{i=1}^g H(P_i).$$

holds. Irnich and Villeneuve (2006) have shown that a path P_t can be discarded if $I_t = I_{t-1}$ holds. The reason is that $I_t = I_{t-1}$ implies $H(P_1) \cap \ldots \cap H(P_{t-1}) \subseteq H(P_t)$ so that conditions (3) hold. Therefore, the maximum length of a properly decreasing chain of intersections of self-hole sets is a bound on the maximum number of labels to consider with identical state.

Theorem 2. A collection of g dominating paths $P_1 \prec_{dom} P_2 \prec_{dom} \ldots \prec_{dom} P_g$ ending at the same node is given. Let the intersections of the corresponding self-hole sets $H(P_1), H(P_2), \ldots, H(P_g)$ form a properly decreasing chain, i.e., $H(P_1) \supseteq H(P_1) \cap H(P_2) \supseteq \cdots \supseteq \bigcap_{i=1}^g H(P_i)$. Then, the length g of the properly decreasing chain is bounded by $\gamma(k_1, k_2) = [k_1 + k_2 - 1] \cdot (k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot \binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}$.

Note that the bound $\gamma(k_1, k_2)$ is generally not tight as already shown for node-k-cycle elimination (Irnich and Villeneuve, 2006, p. 400f).

For the special case of a combined (k, 2)-loop elimination, the bound is $\gamma(k, 2) = (k+1) \cdot (k-1)!^2 \cdot k = (k-1)! \cdot (k+1)!$. In particular, we get the bounds $\gamma(3, 2) = 2 \cdot 24 = 48$ and $\gamma(4, 2) = 6 \cdot 120 = 720$. For the CARP, it follows that the maximum number of labels to be kept at a node $v \in V$ is bounded by $(C+1)\gamma(k, 2)$.

As in (Irnich and Villeneuve, 2006), the new labeling approach will store the intersection of the self-hole sets of all dominating labels as the so-called *running-hole set*, i.e.,

$$H^{run}(P) := \bigcap_{i=1}^{g} H(P_i)$$

whenever L(P) is dominated by $L(P_1), \ldots, L(P_g)$. The label L(P) can be discarded if $H^{run}(P) \subseteq H(P)$ because this is equivalent to $I_g = \bigcap_{i=1}^g H(P_i) = H(P) \cap I_g =: I_{g+1}$. Additional algorithmic tricks for storing the intersection and checking the above condition were discussed in (Irnich and Villeneuve, 2006, p. 399).

2.4. Specifics and Complexity of the CARP Pricing Problem

As mentioned before, in the CARP case the only resources are load and cost. The number of possible states associated with any node $i \in V$ is always bounded by the capacity $(C + 1 \text{ states } 0, 1, \dots, C)$.

Letchford and Oukil (2009) developed a tailored SPPRC labeling algorithm for the CARP that has a very attractive worst-case time complexity of $\mathcal{O}(CD(n,m))$, where D(n,m) is the complexity of Dijkstra's algorithm on a digraph with n nodes and m edges. Using the Fibonacci-heap data structure, the best known bound is $D(n,m) = m + n \log(n)$ (Ahuja et al., 1993).

Letchford and Oukil (2009) modify the label selection rule (for choosing the next path P to be extended) in the following way:

- 1. In an outer loop over possible values q = 0, 1, 2, ..., C of the load resource paths P with q(P) = q are extended.
- 2. The extension is split into two parts, the extension along all deadheading arcs first and the extensions along all service arcs second.

- 3. The first extension (deadheading) produces only labels with identical load q. All extensions can be handled together using a Dijkstra-type of labeling. Note that for the CARP, the only relevant resource is cost whenever load is fixed. By pre-assigning minimum-cost labels at all nodes, the time complexity D(n,m) can be reached.
- 4. The latter extensions (service) produce not more than $\mathcal{O}(2m)$ new labels L(P), all with load q(P) > q.
- 5. The overall complexity of all extensions is therefore dominated by the complexity of the Dijkstra algorithm. Taking the outer loop over all load values into account implies an overall complexity of $\mathcal{O}(CD(n,m))$.

In the presence of loop-elimination constraints, up to $\gamma(k_1, k_2)$ labels L(P) with identical load q(P) = q might exist as a consequence of Theorem 2. Therefore, the number of labels to extend can also grow by factor $\gamma(k_1, k_2)$.

Whenever a newly created label dominates another one w.r.t. resources, the update of the running-hole sets of the latter requires only $\mathcal{O}((k_1 + k_2)\omega(k_1, k_2))$ time. Note that dominance compares pairs of labels so that the overall factor is bounded by $\mathcal{O}((k_1 + k_2)\omega(k_1, k_2)\gamma(k_1, k_2)^2)$. This is a constant whenever k_1 and k_2 are fixed.

We have the following final result:

Theorem 3. For fixed k, labeling for the CARP with combined (k, 2)-loop elimination can be performed in $\mathcal{O}(CD(n,m))$ time, where C is the vehicle capacity and D(n,m) the time of performing the Dijkstra algorithm.

3. Computational Results

This section reports computational results of the branch-and-price algorithm for the CARP first presented in (Bode and Irnich, 2012) when (k, 2)-loop free relaxations for $k \in \{2, 3, 4\}$ are used. We quantify the impact of the different (k, 2)-loop free relaxations on the computation time and the overall best lower bound achieved at the end of the branch-and-price. The branching scheme presented in (Bode and Irnich, 2012) consists of three levels of branching decisions: First branching on non-even node degrees, and second branching on edges with fractional edge flow. Both decisions have no impact on the structure of the pricing problem. The third decision is branching on follower information, whenever the information if two edges are serviced consecutive is fractional. This branching rule, however, modifies the network of the underlying graph of the pricing problem. In particular, it requires a second task set to be handled in the SPPRC labeling algorithm that solves the pricing subproblem.

For the branch-and-price, no initial upper bound is given and the node selection rule in branch-andbound is best-bound first. Note that the same formulation of the (restricted) master problem is used as in (Bode and Irnich, 2012), while for the pricing subproblem the following modifications are made: Whenever possible, the simple k-loop elimination pricing is used. If, however, any non-follower constraints is active, the simple k-loop elimination pricing is replaced by (k, 2)-loop elimination pricing. Moreover, we use standard heuristic pricing procedures and acceleration techniques for exact pricing as presented in the companion paper (Bode and Irnich, 2013). The two acceleration techniques applied are bounding with the 2-loop elimination relaxation and bi-direction labeling; for details we refer to (Mingozzi et al., 1997; Baldacci et al., 2011b,a; Righini and Salani, 2006).

The computational study uses two standard benchmark sets from the literature: The first benchmark set egl was introduced by Eglese and Li (1992) and can be downloaded from http://www.uv.es/~belengue/carp/. This set consists of 24 instances based on the road network of Cumbria. The first 12 instances have 77 nodes and 98 edges, whereas the remaining 12 instances are larger and have 140 nodes and 190 edges. Instances with the same graph size further differ in the number of required edges and the vehicle capacity. The second benchmark set bmcv consisting of 100 instances is obtained from the road network of Flanders, Belgium (Beullens et al., 2003). These instances range from 26 to 97 nodes and 35 to 142 edges, where only a subset of the edges is required. The instances were kindly provided by Muyldermans (2012) and the transformed instances into the standard format can be downloaded from http://logistik.bwl.uni-mainz.

de/Dateien/bmcv.zip. These instances comprise four subsets, where the underlying graph for individual instances of subset C and E is identical, but the vehicle capacity is 300 for the C set and 600 for the E set. The same holds for the subsets of instances named D and F.

All computations were performed on a standard PC with an IntelCCoreTM i7-2600 at 3.4 GHz processor with 16 GB of main memory. The algorithm was coded in C++ (MS-Visual Studio, 2010) and the callable library of CPLEX 12.2 was used to iteratively reoptimize the RMP. A hard time limit of four hours for computation has been set for the column-generation and branch-and-price algorithms.

To shorten the notation, we will skip the second entry in (k, 2) so that, in the following, k-loop is a shortcut for (k, 2)-loop-free. Since a comprehensive study of linear relaxation results for k-loop elimination with and without activated acceleration techniques are presented in (Bode and Irnich, 2012, 2013), this section focuses on integer results obtained when the branch-and-bound ends (either with an optimal solution or when the given time limit is reached). Tables 3–7 present the integer results for the egl and bmcv instances. The header entries in all tables have the following meaning:

instance	name of the instance
	(for egl instances the prefix egl- is omitted for the sake of brevity)
ub_{best} or opt	the best known upper bound (not underlined) or the optimum (underlined) reported
	in Beullens et al. (2003) or Bartolini et al. (2012)
lb^{tree}	lower bound provided by the branch-and-price algorithm within the time limit of four
	hours; (rounded up to the next integer)
	'OPT' indicates that the instance is solved to proven optimality within four hours
	if the value of lb^{tree} matches the best known upper bound the gap was closed, but no
	integer optimal solution was computed within the time limit
time	computation time in seconds; if the time limit is reached it is indicated by 4h
B&B nodes	report the number of solved branch-and-bound nodes
lb_{own}^{best}	best lower bound over all relaxations tested here
lb_{known}^{best}	best lower bounds round to a multiple of five reported in Beullens et al. (2003) or
10100 0010	Bartolini et al. (2012)

The following additional information is given for the respective relaxation:

Num lb_{own}^{best}	number of instances for which the best lower bound lb_{own}^{best} was reached
Num opt	number of integer optimal solutions
ave time	average time for branch-and-price (with maximum time 4h)
ave %gap	average gap computed as $\frac{(ub_{best} - lb^{tree})}{ub_{best}} \times 100$

Lower bounds written in **bold** indicate that this bound is a new best bound exceeding the best known lower bounds from the literature. The upper bounds ub = 11529 for the instance egl-e4-c and ub = 4650 for the bmcv instance E11 (written in **bold** also) result from new best integer solutions found with branch-and-price.

For the egl-instances, average lower bound values increases with increasing k: The average gap for 2-loop relaxation is 0.54, while it is 0.46 and 0.43 for 3-loop and 4-loop, respectively. There are four exceptions (e4-a, s3-a, s3-b, and s4-a) where 2-loop relaxation results in better lower bound when the time limit of four hours is reached. Regarding the computation time, 2-loop relaxation performs better for the group of smaller instances (egl-e), while the two optimal solutions in the second group (egl-s) are computed fastest with 4-loop relaxation. Overall, four new best lower bounds are obtained for e2-b, e3-b, e4-c and s4-b with 3-loop and 4-loop relaxation.

For the subsets D and F of bmcv instances, 2-loop relaxation gives the best results both regarding bounds

and computation times, meaning that the number of best lower bounds and optimal integer solutions is the highest. Moreover, on average the computation times and the gap is also smaller compared to 3-loop or 4-loop. However, for the subsets C and E with smaller vehicle capacity, results are different: While the number of best lower bounds is still highest with 2-loop relaxation, 3-loop produces for the subset C the same number of integer solutions and the same average gap. Moreover, the average computation time decreases for 3-loop. Within the subset E, 4-loop relaxation results in more best lower bounds and obtains more integer solutions than 2-loop. Moreover, the average computation time and gap are also smaller for 4-loop than for 2-loop.

Overall, we are able to obtain 30 new best lower bounds out of 33 previously unsolved bmcv-instances (10 for subset C, 6 for subset D, 9 for subset E and 5 for subset F). Thereof, 15 instances (C04, C19, C21, C24, D08, D14, D19, E11, E16, E19, E20, E24, F04, F08 and F12) are solved to optimality for the first time. Bartolini et al. (2012) mentioned that the objective value is always a multiple of five. Using this fact, optimality can be proven also for instances D23 and F23. At the end, 12 egl-instances and 16 bmcv-instances remain open.

		2-loop			3-loop				4-loop	lb_{best}^{own}	lb_{best}^{known}	
instance	ub_{best} or \underline{opt}	lb^{tree}	time	B&B nodes	lb^{tree}	time	B&B nodes	lb^{tree}	time	B&B nodes		
e1-a	3548	OPT	176	23	OPT	516	19	OPT	589	11	3548	3548
e1-b	4498	OPT	1343	659	OPT	1512	374	OPT	3827	311	4498	4498
e1-c	5595	5545	4h	3326	5551	4h	3057	5555	4h	2271	5555	5595
e2-a	5018	OPT	892	340	OPT	2955	227	OPT	6345	102	5018	5018
e2-b	$\underline{6317}$	6301	4h	3293	6301	4h	1376	6306	4h	779	6306	6301
e2-c	$\underline{8335}$	8242	4h	5601	8269	4h	5104	8303	4h	3907	8303	8335
e3-a	5898	OPT	106	26	OPT	562	22	OPT	761	19	5898	5898
e3-b	7775	7730	4h	3431	7735	4h	1519	7732	4h	607	7735	7728
e3-c	10292	10191	4h	5396	10220	4h	4490	10226	4h	3479	10226	10244
e4-a	6444	6408	4h	3361	6405	4h	280	6399	4h	66	6408	6408
e4-b	8961	8892	4h	4392	8899	4h	1627	8900	4h	1096	8900	8935
e4-c	11529	11456	4h	5924	11488	4h	5045	11502	4h	4316	11502	11493
s1-a	5018	OPT	11683	97	OPT	7762	43	OPT	4312	14	5018	5018
s1-b	$\underline{6388}$	6386	4h	210	OPT	13072	130	OPT	12250	49	6388	6388
s1-c	<u>8518</u>	8440	4h	354	8476	4h	314	8500	4h	310	8500	8518
s2-a	9884	9805	4h	847	9806	4h	257	9804	4h	114	9806	9825
s2-b	13100	12970	4h	2320	12978	4h	1548	12982	4h	1054	12982	13017
s2-c	16425	16351	4h	2041	16377	4h	2189	16380	4h	1949	16380	16425
s3-a	10220	10160	4h	547	10154	4h	66	10150	4h	13	10160	10160
s3-b	13682	13630	4h	1515	13629	4h	800	13627	4h	274	13630	13648
s3-c	17188	17096	4h	3102	17122	4h	2505	17125	4h	2217	17125	17188
s4-a	12268	12149	4h	1617	12147	4h	271	12142	4h	62	12149	12149
s4-b	16283	16104	4h	2366	16106	4h	1449	16105	4h	473	16106	16105
s4-c	20481	20374	4h	2797	20397	4h	3556	20406	4h	3157	20406	20430
Num lb_{own}^{best}		9			9			17				
Num opt		5			6			6				
ave $\%$ gap		0.54			0.46			0.43				

Table 3: Integer Results for egl Instances

4. Conclusions

We have presented a new dynamic programming labeling algorithm for handling combined task- (k_1, k_2) loop elimination (with $k_1, k_2 \ge 2$) in SPPRC for situations where loops with respect to two different task sets must be avoided. Compared to standard SRRRC without loop elimination, the proposed dominance

		2-loop			3-loop				4-loop			
lce												
itaı	best <u>op</u> i	ree	це	$\mathcal{L}B$	ree	лe	$\mathcal{L}B$	ree	лe	$\mathcal{L}B$		
ins	ub_l	lb^t	tin	B_{0}^{2}	lb^t	tin	B_{0}^{2}	lb^t	tin	B_{0}^{2}	lb_{best}^{own}	lb_{best}^{known}
C01	4150	4144	4h	2834	4140	4h	1435	4140	4h	862	4144	4105
C02	3135	OPT	6	5	OPT	28	10	OPT	60	6	3135	3135
C03	2575	OPT	6494	3746	OPT	171	115	OPT	252	120	2575	2575
C04	3510	OPT	2163	1317	OPT	2678	773	OPT	4403	532	3510	3480
C05	5365	OPT	59	81	OPT	169	103	OPT	272	81	5365	5365
C06	$\underline{2535}$	OPT	163	310	OPT	314	157	OPT	196	53	2535	2535
C07	4075	OPT	278	456	OPT	561	465	OPT	724	401	4075	4075
C08	<u>4090</u>	OPT	751	474	OPT	778	347	OPT	634	178	4090	4090
C09	5260	5244	4h	2989	5242	4h	1922	5242	4h	1454	5244	5235
C10	<u>4700</u>	OPT	1363	1604	OPT	1344	1087	OPT	1493	810	4700	4700
C11	4635	4608	4h	2564	4608	4h	1332	4607	4h	612	4608	4585
C12	4240	4234	4h	4356	4231	4h	2072	4226	4h	1211	4234	4210
C13	$\underline{2955}$	OPT	288	612	OPT	456	411	OPT	589	356	2955	2955
C14	<u>4030</u>	4010	4h	5189	4021	4h	2810	4024	4h	1610	4024	4030
C15	4940	4918	4h	1620	4915	4h	977	4916	4h	670	4918	4910
C16	1475	OPT	6	13	OPT	42	13	OPT	196	13	1475	1475
C17	3555	OPT	17	26	OPT	20	16	OPT	23	11	3555	3555
C18	5620	5570	4h	1958	5568	4h	691	5563	4h	292	5570	5575
C19	3115	OPT	2311	1324	OPT	3204	902	OPT	6706	978	3115	3095
C20	2120	OPT	12	20	OPT	136	26	OPT	392	9	2120	2120
C21	3970	OPT	9947	3113	OPT	1007	130	OPT	3284	117	3970	3960
C22	$\underline{2245}$	OPT	32	16	OPT	60	11	OPT	256	13	2245	2245
C23	4085	4073	4h	2752	4072	4h	1078	4069	4h	400	4073	4030
C24	3400	OPT	1358	454	OPT	975	124	OPT	2325	130	3400	3385
C25	<u>2310</u>	OPT	6	10	OPT	10	9	OPT	20	4	2310	2310
Num lb_{own}^{best}		24			18			18				
Num opt		17			17			17				
ave time			5619			5086			5481			
ave $\%$ gap		0.13			0.13			0.14				

Table 4: Integer Results for bmcv Instances, Subset C

relation is still efficient in the following sense: Labels need to be extended by additional attributes (the so-called set forms), where each set form has $k_1 + k_2$ entries and not more than $\omega(k_1, k_2) = (k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot \binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}$ different set forms need to be stored. While in standard SPPRC there is at most one label per state, the maximum number of labels with identical state cannot exceed $\gamma(k_1, k_2) = [k_1 + k_2 - 1] \cdot (k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot \binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}$. Even if these values grow fast with k_1 and k_2 , for fixed k_1 and k_2 , the bounds $\omega(k_1, k_2)$ and $\gamma(k_1, k_2)$ are constants. Together with the presented update procedures for the attributes these constants guarantee that, for fixed k_1 and k_2 , the worst-case computational complexity for solving standard SPPRC and SPPRC with combined task- (k_1, k_2) -loop elimination is identical.

We have applied the new labeling algorithm for SPPRC with combined task-(k, 2)-loop elimination for solving pricing subproblems in a branch-and-price algorithm for the CARP. It was known from the work of Bode and Irnich (2012) that task-k-loop elimination can significantly improve bounds of the linear relaxation of the column-generation master program. However, branching, i.e., a genuine branch-and-price was not possible due to the branching rule implying 2-loop elimination constraints on a new task set. The new results using the SPPRC subproblem relaxation with task-(k, 2)-loop elimination allow for a comparison of overall computation times and lower bounds when the branch-and-price algorithm terminates. Using standard benchmark set, we have shown that the approach is competitive: Several new best lower bounds were presented and some knowingly hard instances were solved to proven optimality for the first time.

D			2-loop			3-loop			4-loop			
instance	ub_{best} or \underline{opt}	lb^{tree}	time	B&B nodes	lb^{tree}	time	B&B nodes	lb^{tree}	time	B&B nodes	lb_{best}^{own}	lb_{best}^{known}
E01	4910	4898	4h	3269	4896	4h	2064	4896	4h	1517	4898	4885
E02	<u>3990</u>	3971	4h	4363	3985	4h	1835	OPT	862	126	3990	3990
E03	2015	OPT	3	1	OPT	19	3	OPT	23	2	2015	2015
E04	4155	OPT	1593	914	OPT	2584	707	OPT	2789	449	4155	4155
E05	4585	OPT	506	448	OPT	128	61	OPT	68	17	4585	4585
E06	$\underline{2055}$	OPT	5	7	OPT	25	13	OPT	54	10	2055	2055
E07	4155	4137	4h	4508	4149	4h	4079	OPT	6684	2053	4155	4155
E08	<u>4710</u>	OPT	208	131	OPT	160	55	OPT	198	53	4710	4710
E09	5820	5802	4h	1028	5800	4h	935	5798	4h	642	5802	5780
E10	<u>3605</u>	OPT	9	9	OPT	21	6	OPT	48	5	3605	3605
E11	4650	4650	4h	2218	OPT	4244	279	4650	4h	363	4650	4635
E12	<u>4180</u>	4167	4h	3623	4169	4h	2435	4170	4h	1653	4170	4180
E13	3345	OPT	155	220	OPT	264	240	OPT	437	249	3345	3345
E14	<u>4115</u>	4108	4h	5195	OPT	1996	1453	OPT	2089	1052	4115	4115
E15	4205	4199	4h	1819	4196	4h	712	4194	4h	292	4199	4190
E16	3775	OPT	1287	793	OPT	246	103	OPT	380	82	3775	3755
E17	$\underline{2740}$	OPT	4	3	OPT	8	2	OPT	10	2	2740	2740
E18	3835	3825	4h	1245	3825	4h	446	3825	4h	146	3825	3825
E19	3235	OPT	7855	993	OPT	5905	591	OPT	13935	639	3235	3220
E20	2825	2815	4h	5261	2820	4h	2175	OPT	3112	464	2825	2800
E21	<u>3730</u>	3730	4h	5396	3730	4h	1434	3730	4h	263	3730	3730
E22	$\underline{2470}$	OPT	32	24	OPT	74	33	OPT	74	17	2470	2470
E23	3710	3704	4h	548	3703	4h	385	3699	4h	223	3704	3685
E24	4020	OPT	9489	2123	4020	4h	1933	OPT	13135	1130	4020	4000
E25	1615	OPT	1	4	OPT	3	1	OPT	2	1	1615	1615
Num lb_{own}^{best}		20			17			21				
Num opt		14			15			18				
ave time			7758			6963			6364			
ave $\%$ gap		0.12			0.08			0.07				

Table 5: Integer Results for $\verb+bmcv$ Instances, Subset E

0		2-loop			3-loop				4-loop			
instance	ub_{best} or \overline{opt}	lb^{tree}	time	B&B nodes	lb^{tree}	time	B&B nodes	lb^{tree}	time	B&B nodes	lb_{best}^{own}	lb_{best}^{known}
D01	3215	OPT	50	13	OPT	992	17	OPT	4117	16	3215	3215
D02	2520	OPT	26	22	OPT	86	14	OPT	286	15	2520	2520
D03	<u>2065</u>	OPT	43	15	OPT	172	9	OPT	1472	9	2065	2065
D04	<u>2785</u>	OPT	105	33	OPT	600	33	OPT	9022	26	2785	2785
D05	<u>3935</u>	OPT	24	15	OPT	145	19	OPT	166	17	3935	3935
D06	<u>2125</u>	OPT	20	18	OPT	97	5	OPT	1615	15	2125	2125
D07	3115	3108	4h	3069	3102	4h	893	3098	4h	403	3108	3115
D08	3045	OPT	3730	736	3041	4h	411	3027	4h	113	3045	2995
D09	4120	OPT	106	36	OPT	929	47	OPT	1654	36	4120	4120
D10	3340	OPT	33	21	OPT	195	23	OPT	493	17	3340	3340
D11	3745	3745	4h	1061	OPT	1945	21	OPT	11009	28	3745	3745
D12	3310	OPT	123	17	OPT	539	21	OPT	198	4	3310	3310
D13	2535	OPT	997	741	OPT	61	15	OPT	605	15	2535	2535
D14	3280	3280	4h	3513	OPT	564	35	OPT	1804	30	3280	3270
D15	<u>3990</u>	OPT	602	41	OPT	3347	17	-	-	-	3990	3990
D16	<u>1060</u>	OPT	7	7	OPT	66	8	OPT	677	10	1060	1060
D17	<u>2620</u>	OPT	11	18	OPT	31	14	OPT	42	8	2620	2620
D18	4165	OPT	2951	48	-	-	-	4165	4h	2	4165	4165
D19	2400	OPT	552	225	OPT	3174	186	OPT	13090	195	2400	2395
D20	<u>1870</u>	OPT	15	22	OPT	149	21	OPT	2004	20	1870	1870
D21	3050	3005	4h	2615	2988	4h	261	2982	4h	75	3005	2985
D22	1865	OPT	36	15	OPT	251	11	OPT	3200	15	1865	1865
D23	3130	3126	4h	341	3114	4h	13	3111	4h	1	3126	3115
D24	2710	2704	4h	884	2691	4h	132	2679	4h	45	2704	2675
D25	<u>1815</u>	OPT	10	13	OPT	25	4	OPT	155	8	1815	1815
Num lb_{own}^{best}		25			20			20				
Num opt		19			19			18				
ave time			3834			4567			6673			
ave $\%$ gap		0.08			0.15			0.20				

Table 6: Integer Results for bmcv Instances, Subset D

		2-loop			3-loop				4-loop			
instance	ub_{best} or \overline{opt}	lb^{tree}	time	B&B nodes	lb^{tree}	time	B&B nodes	lb^{tree}	time	B&B nodes	lb_{best}^{own}	lb_{best}^{known}
F01	4040	OPT	10942	1103	OPT	988	26	OPT	2170	27	4040	4040
F02	<u>3300</u>	OPT	40	27	OPT	166	13	OPT	1957	77	3300	3300
F03	1665	OPT	14	17	OPT	124	14	OPT	507	11	1665	1665
F04	3485	OPT	198	48	OPT	6933	160	OPT	9654	39	3485	3475
F05	<u>3605</u>	OPT	61	25	OPT	220	19	OPT	1023	27	3605	3605
F06	1875	OPT	16	18	OPT	73	19	OPT	350	13	1875	1875
F07	<u>3335</u>	OPT	46	15	OPT	190	15	OPT	226	11	3335	3335
F08	3705	OPT	174	62	OPT	531	40	OPT	1927	46	3705	3690
F09	4730	OPT	526	38	OPT	1533	34	4730	4h	42	4730	4730
F10	2925	OPT	10	13	OPT	58	11	OPT	373	15	2925	2925
F11	3835	OPT	209	33	OPT	1473	30	OPT	4889	26	3835	3835
F12	3395	OPT	2341	289	3395	4h	255	3392	4h	107	3395	3390
F13	2855	OPT	19	28	OPT	86	27	OPT	306	20	2855	2855
F14	<u>3330</u>	OPT	23	9	OPT	130	14	OPT	822	13	3330	3330
F15	3560	OPT	277	41	3560	4h	169	3560	4h	95	3560	3560
F16	$\underline{2725}$	OPT	44	18	OPT	147	10	OPT	543	9	2725	2725
F17	2055	OPT	6	7	OPT	26	10	OPT	90	7	2055	2055
F18	3075	3065	4h	962	3065	4h	72	3065	4h	36	3065	3065
F19	2525	2515	4h	804	2515	4h	164	2514	4h	124	2515	2500
F20	2445	OPT	56	21	OPT	820	27	OPT	2210	22	2445	2445
F21	<u>2930</u>	OPT	112	33	OPT	1213	29	OPT	3582	37	2930	2930
F22	2075	OPT	25	17	OPT	70	16	OPT	141	19	2075	2075
F23	3005	3003	4h	140	2998	4h	53	2994	4h	26	3003	2995
F24	3210	OPT	251	29	OPT	2575	32	OPT	10106	33	3210	3210
F25	<u>1390</u>	OPT	4	15	OPT	20	10	OPT	89	10	1390	1390
Num lb_{own}^{best}		25			24			22				
Num opt		22			20			19				
ave time			2344			3575			5095			
ave $\%$ gap		0.03			0.04			0.05				

Table 7: Integer Results for ${\tt bmcv}$ Instances, Subset F

A. Proofs

This section contains proofs of the worst-case complexity results for combined (k_1, k_2) -loop elimination as introduced in Section 2.3. Note that the proofs follow similar ideas as discussed in the first article on k-cycle elimination (focused on node-routing applications) and we refer the reader to this (Irnich and Villeneuve, 2006) for a more detailed motivation.

A.1. Proof of Theorem on Maximum Number of Set Forms

Theorem 1. For combined (k_1, k_2) -loop elimination, the maximum number of different set forms needed to represent any intersection of self-hole sets $H(P_1) \cap H(P_2) \cap \cdots \cap H(P_l)$ of any set of l paths is $\omega(k_1, k_2) := (k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot {\binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}}$. This bound $\omega(k_1, k_2)$ is tight.

Proof. Define $I_1(s), I_2(s)$ of an arbitrary set forms $s = (s_1^1, \ldots, s_{k_1-1}^1)(s_1^2, \ldots, s_{k_2-1}^2)$ with $s_i^1 \in \mathcal{T}^1 \cup \{\cdot\}$ and $s_i^2 \in \mathcal{T}^2 \cup \{\cdot\}$ as

$$I_1(s) := \{i \in \{1, \dots, k_1 - 1\} | s_i^1 = \cdot\} \quad \text{and} \quad I_2(s) := \{j \in \{1, \dots, k_2 - 1\} | s_j^2 = \cdot\}$$

Let the $I(s) = (I_1(s), I_2(s))$ be the *type* of an arbitrary set form *s*. To shorten the notation we will write $I = (I_1, I_2)$ instead of $I(s) = (I_1(s), I_2(s))$. We denote by $n_{k_1,k_2}(I)$ the maximum number of different set forms that can be generated from a set form of type *I* by intersection with arbitrarily chosen self-hole sets. n_{k_1,k_2} is defined on all subsets $I = (I_1, I_2) \subseteq (\{1, \ldots, k_1 - 1\}, \{1, \ldots, k_2 - 1\})$. The following recurrences are valid for n_{k_1,k_2} :

$$\begin{aligned} n_{k_1,k_2}(\emptyset,\emptyset) &= 1\\ n_{k_1,k_2}(I) &= \sum_{i \in I_1} (k_1 - i) n_{k_1,k_2}(I_1 \setminus \{i\}, I_2) + \sum_{j \in I_2} (k_2 - j) n_{k_1,k_2}(I_1, I_2 \setminus \{j\})\\ &\forall I_1 \subseteq \{1, \dots, k_1 - 1\} \text{ and } I_2 \subseteq \{1, \dots, k_2 - 1\} \text{ and } I \neq (\emptyset, \emptyset) \end{aligned}$$

The first equation is clear. The second equation is implied by the intersection operation. For each position l there are either $k_1 - l$ or $k_2 - l$ different possibilities to place an element of the self-hole set at this position. This recurrence is solved by

$$n_{k_1,k_2}(I) = \left[|I_1|! \prod_{i \in I_1} (k_1 - i) \right] \left[|I_2|! \prod_{j \in I_2} (k_2 - j) \right] \left[\binom{|I_1| + |I_2|}{|I_1|} \right].$$

This can be seen by induction on the cardinality of I. For $I = (\emptyset, \emptyset)$ this gives $n_{k_1,k_2}(\emptyset, \emptyset) = 1$, which is correct. Now assume, that the above equality is true for all subsets with cardinality |I| - 1.

$$\begin{split} n_{k_{1},k_{2}}(I) &= \sum_{i \in I_{1}} (k_{1}-i)n_{k_{1},k_{2}}(I_{1} \setminus \{i\}, I_{2}) + \sum_{j \in I_{2}} (k_{2}-j)n_{k_{1},k_{2}}(I_{1}, I_{2} \setminus \{j\}) \\ &= \sum_{i \in I_{1}} (k_{1}-i)(|I_{1}|-1)! \prod_{l \in I_{1} \setminus \{i\}} (k_{1}-l)|I_{2}|! \prod_{m \in I_{2}} (k_{2}-m) \binom{|I_{1}|+|I_{2}|-1}{|I_{1}|-1} + \\ &\sum_{j \in I_{2}} (k_{2}-j)|I_{1}|! \prod_{l \in I_{1}} (k_{1}-l)(|I_{2}|-1)! \prod_{m \in I_{2} \setminus \{j\}} (k_{2}-m) \binom{|I_{1}|+|I_{2}|-1}{|I_{1}|} \\ &= \sum_{i \in I_{1}} (|I_{1}|-1)!(k_{1}-i) \prod_{l \in I_{1} \setminus \{i\}} (k_{1}-l)|I_{2}|! \prod_{m \in I_{2}} (k_{2}-m) \binom{|I_{1}|+|I_{2}|-1}{|I_{1}|-1} + \\ &\sum_{j \in I_{2}} |I_{1}|! \prod_{l \in I_{1}} (k_{1}-l)(|I_{2}|-1)!(k_{2}-j) \prod_{m \in I_{2} \setminus \{j\}} (k_{2}-m) \binom{|I_{1}|+|I_{2}|-1}{|I_{1}|} \end{split}$$

$$\begin{split} &= \sum_{i \in I_1} (|I_1| - 1)! \prod_{l \in I_1} (k_1 - l) |I_2|! \prod_{m \in I_2} (k_2 - m) \binom{|I_1| + |I_2| - 1}{|I_1| - 1} + \\ &\sum_{j \in I_2} |I_1|! \prod_{l \in I_1} (k_1 - l) (|I_2| - 1)! \prod_{m \in I_2} (k_2 - m) \binom{|I_1| + |I_2| - 1}{|I_1|} \\ &= \prod_{l \in I_1} (k_1 - l) \prod_{m \in I_2} (k_2 - m) \left[\sum_{i \in I_1} (|I_1| - 1)! |I_2|! \binom{|I_1| + |I_2| - 1}{|I_1| - 1} + \sum_{j \in I_2} |I_1|! (|I_2| - 1)! \binom{|I_1| + |I_2| - 1}{|I_1|} \right) \right] \\ &= |I_1|! \prod_{l \in I_1} (k_1 - l) |I_2|! \prod_{m \in I_2} (k_2 - m) \left[\binom{|I_1| + |I_2| - 1}{|I_1| - 1} + \binom{|I_1| + |I_2| - 1}{|I_1|} \right] \\ &= |I_1|! \prod_{l \in I_1} (k_1 - l) |I_2|! \prod_{m \in I_2} (k_2 - m) \binom{|I_1| + |I_2|}{|I_1| - 1} + \binom{|I_1| + |I_2| - 1}{|I_1| - 1} \right] \end{split}$$

The above expression proves that we can get at most $(k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot \binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}$ different elements in the intersection. To show that this bound is tight we choose any $\bar{k} = k_1 + k_2$ different paths $P_1, \ldots, P_{\bar{k}}$ with disjoint predecessor tasks on both task-sets. Then the intersection of the corresponding self-hole sets consists of exactly $(k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot \binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}$ elements.

A.2. Proof of Theorem on Maximum Number of Labels in Chain of Inter

Theorem 2. A collection of g dominating paths $P_1 \prec_{dom} P_2 \prec_{dom} \ldots \prec_{dom} P_g$ ending at the same node is given. Let the intersections of the corresponding self-hole sets $H(P_1), H(P_2), \ldots, H(P_g)$ form a properly decreasing chain, i.e., $H(P_1) \supseteq H(P_1) \cap H(P_2) \supseteq \cdots \supseteq \bigcap_{i=1}^g H(P_i)$. Then, the length g of the properly decreasing chain is bounded by $\gamma(k_1, k_2) = [k_1 + k_2 - 1] \cdot (k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot {\binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}}.$

Proof. Every new element of the chain is a result of the intersections made before with one new intersection with a self-hole set $H(P_i)$. From Theorem 1 we know that there are at maximum $(k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot \binom{(k_1-1)+(k_2-1)}{k_1-1}$ different set forms in such an intersection. Every set form has $(k_1 - 1) + (k_2 - 1)$ entries which results in $[(k_1 - 1) + (k_2 - 1)](k_1 - 1)!^2 \cdot (k_2 - 1)!^2 \cdot \binom{(k_1 - 1) + (k_2 - 1)}{k_1 - 1}$ different entries in total. For the computation of the intersection there are two possible operations:

- 1. A new set form is generated, where a previously free entry \cdot is specified by an element $t^1 \in \mathcal{T}^1$ or $t^2 \in \mathcal{T}^2$. There exists at most $[(k_1-1)+(k_2-1)] \cdot (k_1-1)!^2 \cdot (k_2-1)!^2 \cdot \binom{(k_1-1)+(k_2-1)}{k_1-1}$ possible entries to specify.
- 2. On the other hand, a set form can be deleted. This can happen at most $(k_1 1)!^2 \cdot (k_2 1)!^2 \cdot \binom{(k_1 1) + (k_2 1)}{k_1 1}$ times.

Since each intersection performs at least one of the above operations, this yields to an upper bound of $[(k_1-1)+(k_2-1)+1](k_1-1)!^2 \cdot (k_2-1)!^2 \cdot {\binom{(k_1-1)+(k_2-1)}{k_1-1}}$.

References

- Ahuja, R., Magnanti, T., Orlin, J., 1993. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, New Jersey.
- Baldacci, R., Mingozzi, A., Roberti, R., 2011a. New route relaxation and pricing strategies for the vehicle routing problem. Operations Research 59 (5), 1269–1283.
- Baldacci, R., Mingozzi, A., Roberti, R., 2011b. New state-space relaxations for solving the traveling salesman problem with time windows. INFORMS Journal on Computing.
- Bartolini, E., Cordeau, J.-F., Laporte, G., 2012. Improved lower bounds and exact algorithm for the capacitated arc routing problem. Mathematical Programming, 1–44.
- Belenguer, J.-M., Benevent, E., Irnich, S., 2013. The capacitated arc routing problem: Exact algorithms. In: Corberán, A., Laporte, G. (Eds.), Arc Routing: Problems, Methods and Applications. MOS-SIAM Series on Optimization. SIAM, Philadelphia, Ch. 9, (In preparation.).

- Benavent, E., Campos, V., Corberán, A., Mota, E., 1992. The capacitated arc routing problem: Lower bounds. Networks 22, 669–690.
- Bentley, J., 1980. Multidimensional divide-and-conquer. Communications of the ACM 23 (4), 214–229.
- Beullens, P., Muyldermans, L., Cattrysse, D., van Oudheusden, D., 2003. A guided local search heuristic for the capacitated arc routing problem. European Journal of Operational Research 147 (3), 629–643.
- Bode, C., Irnich, S., 2012. Cut-first branch-and-price-second for the capacitated arc-routing problem. Operations Research 60 (5), 1167–1182.
- Bode, C., Irnich, S., 2013. In-depth analysis of pricing problem relaxations for the capacitated arc-routing problem. Technical Report LM-2013-02, Chair of Logistics Management, Johannes Gutenberg University Mainz, Mainz, Germany, available online at http://logistik.bwl.uni-mainz.de/158.php.
- Boland, N., Dethridge, J., Dumitrescu, I., 2006. Accelerated label setting algorithms for the elementary resource constrained shortest path problem. Operations Research Letters 34 (1), 58–68.

Corberán, A., Prins, C., 2010. Recent results on arc routing problems: An annotated bibliography. Networks 56 (1).

- Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., Soumis, F., Villeneuve, D., 1998. A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In: Crainic, T., Laporte, G. (Eds.), Fleet Management and Logistics. Kluwer Academic Publisher, Boston, Dordrecht, London, Ch. 3, pp. 57–93.
- Desaulniers, G., Lessard, F., Hadjar, A., 2008. Tabu search, partial elementarity, and generalized k-path inequalities for the vehicle routing problem with time windows. Transportation Science 42 (3), 387–404.
- Dror, M., 1994. Note on the complexity of the shortest path models for column generation in VRPTW. Operations Research 42 (5), 977–978.

Dror, M. (Ed.), 2000. Arc Routing: Theory, Solutions and Applications. Kluwer, Boston.

Eglese, R., Li, L., 1992. Efficient routeing for winter gritting. Journal of the Operational Research Society 43 (11), 1031–1034.

- Feillet, D., Dejax, P., Gendreau, M., Guéguen, C., 2004. An exact algorithm for the elementary shortest path problem with
- resource constraints: Application to some vehicle routing problems. Networks 44 (3), 216–229. Houck, D., Picard, J., Queyranne, M., Vemuganti, R., 1980. The travelling salesman problem as a constrained shortest path
- problem: Theory and computational experience. Opsearch 17, 93–109. Irnich, S., 2008. Resource extension functions: Properties, inversion, and generalization to segments. OR Spectrum 30 (1), 113–148.
- Irnich, S., Desaulniers, G., 2005. Shortest path problems with resource constraints. In: Desaulniers, G., Desrosiers, J., Solomon, M. (Eds.), Column Generation. Springer, New York, NY, Ch. 2, pp. 33–65.
- Irnich, S., Villeneuve, D., 2006. The shortest path problem with resource constraints and k-cycle elimination for $k \ge 3$. INFORMS Journal on Computing 18 (3), 391–406.

Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D., 2008. Subset-row inequalities applied to the vehicle-routing problem with time windows. Operations Research 56 (2), 497–511.

- Kohl, N., Desrosiers, J., Madsen, O., Solomon, M., Soumis, F., 1999. 2-path cuts for the vehicle routing problem with time windows. Transportation Science 33 (1), 101–116.
- Letchford, A. N., Oukil, A., 2009. Exploiting sparsity in pricing routines for the capacitated arc routing problem. Computers & Operations Research 36 (7), 2320–2327.
- Mingozzi, A., Bianco, L., Ricciardelli, S., 1997. Dynamic programming strategies for the traveling salesman problem with time window and precedence constraints. Operations Research 45 (3), 365–377.

Muyldermans, L., July 2012. Personal Communication.

- Righini, G., Salani, M., 2006. Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Discrete Optimization 3 (3), 255–273.
- Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource constrained elementary shortest path problem. Networks 51 (3), 155–170.