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Abstract

In many branch-and-price algorithms, the column generation subproblem consists of computing feasible
constrained paths. In the capacitated arc-routing problem (CARP), elementarity constraints concerning the
edges to be serviced and additional constraints resulting from the branch-and-bound process together impose
two types of loop-elimination constraints. To fulfill the former constraints, it is common practice to rely on
a relaxation where loops are allowed. In a k-loop elimination approach all loops of length k and smaller are
forbidden. Following Bode and Irnich (‘Cut-First Branch-and-Price-Second for the Capacitated Arc-Routing
Problem’, Operations Research, 2012, doi: 10.1287/opre.1120.1079) for solving the CARP, branching on
followers and non-followers is the only known approach to guarantee integer solutions within branch-and-
price. However, it comes at the cost of additional task-2-loop elimination constraints. In this paper, we
show that a combined (k, 2)-loop elimination in the shortest-path subproblem can be accomplished in a
computationally efficient way. Overall, the improved branch-and-price often allows the computation of
tighter lower bounds and integer optimal solutions for several instances from standard benchmark sets.
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1. Introduction

In this paper, we extend the works of Irnich and Villeneuve (2006) and Bode and Irnich (2012). The first
paper considered k-cycle elimination for shortest-path problems with resource constraints (SPPRC, Irnich
and Desaulniers, 2005). The elementary SPPRC (ESPPRC) is the subproblem of many column-generation
formulations of routing problems. Since the ESPPRC is NP -hard in the strong sense (Dror, 1994), early
column-generation approaches solved the SPPRC, i.e., the corresponding non-elementary problem, or SP-
PRC with 2-cycle elimination (see, e.g. Houck et al., 1980; Kohl et al., 1999), which are both relaxations,
with the consequence that the lower bounds computed by the column-generation master program often
deteriorate. The elimination of k-cycles, i.e., cycles with up to k edges, can be seen as a mean to gradually
strengthen the linear relaxation of the column-generation master program while keeping the computational
effort acceptable. Both from a practical and a worst-case point of view, k-cycle elimination is computa-
tionally attractive because there exist pseudo-polynomial labeling algorithms (Irnich and Villeneuve, 2006).
Applied to the vehicle-routing problem with time windows some knowingly hard instances were solved for
the first time. Nowadays, it seems that approaches based on solving ESPPRC (e.g. Jepsen et al., 2008) or
ng-path relaxations (Baldacci et al., 2011a) are superior due to the extremely tight lower bounds produced.
However, when routes become very long, solving even very few ESPPRC subproblems can become extremely
time consuming (see e.g. Desaulniers et al., 2008).

We apply loop-elimination for solving the capacitated arc-routing problem (CARP) with the branch-and-
price algorithm of Bode and Irnich (2012). The CARP is the basic multiple-vehicle arc-routing problem.
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It has applications in waste collection, postal delivery, winter services and more (Dror, 2000; Corberán and
Prins, 2010). For a general overview on exact algorithms for the CARP we refer to the survey (Belenguer
et al., 2013). In the paper (Bode and Irnich, 2012), the first full-fledged branch-and-price algorithm for
the CARP was presented. It can be characterized by the idea of exploiting sparsity of the underlying
CARP network. The advantage of sparse networks is that new CARP tours can be priced out efficiently
(see also Letchford and Oukil, 2009). Bode and Irnich (2012) discussed that the sparse network however
comes at the cost of a more intricate branching and they developed an effective branching scheme based on
follower and non-follower constraints. This branching scheme seemed limited to the case that an SPPRC
subproblem with 2-loop elimination is employed (the term loop refers to cycles w.r.t. services edges; a
2-loop is the repetition of the same service). Moreover, they showed that pricing relaxations based on k-
loop elimination can produce better column-generation lower bounds. However, a key question remained
unclear: How can the branching scheme with branching on followers/non-followers be combined with k-loop
elimination for k ≥ 3. A positive answer will be given here because we can show that a combined (k, 2)-
cycle elimination accomplishes the problem. More precisely, k-loops w.r.t. tasks associated with services on
required edges and 2-loops w.r.t. to tasks implied by non-follower constraints can be handled by a labeling
approach presented here. Note that the companion paper (Bode and Irnich, 2013) studies several alternative
relaxations including, e.g., extensions of the afore-mentioned ng-path relaxations. Its focus is the empirical
comparison of these relaxations, the analysis of the impact of possible acceleration techniques, and the
overall comparison of the different branch-and-price algorithms.

The contribution of this paper is therefore twofold: First, we provide the theoretical foundation of a
labeling algorithm allowing the combined (k, 2)-loop elimination. This includes the definition of labels, the
derivation of an effective dominance procedure, and a worst-case analysis. Second, we run the different
branch-and-price algorithms for the CARP resulting from choosing different values of k, i.e., for k = 2, 3,
and 4. It will be apparent that the controlled variation of k is beneficial when it comes to a comparison
concerning the trade-off between the strength of a column-generation formulation and the computational
burden for its resolution.

The remainder of this paper is structured as follows. Section 2 presents the new labeling algorithm and
its theoretical analysis for SPPRC with combined (k, 2)-loop elimination. Section 3 presents computational
results for using the respective relaxations as subproblems in a branch-and-price for the CARP. The paper
ends with final conclusions in Section 4.

2. Labeling Algorithm for SPPRC with combined (k, 2)-loop Elimination

A general discussion of SPPRC solution approaches including a detailed discussion of dynamic program-
ming labeling algorithms, at the moment the generally best performing methods, can be found in (Irnich and
Desaulniers, 2005). Solution approaches tailored to ESPPRC are presented in (Feillet et al., 2004; Boland
et al., 2006; Righini and Salani, 2006, 2008).

2.1. Basic SPPRC and Generic Labeling Algorithm
The SPPRC is defined over a digraph G = (V,A) with node set V and arc set A. A start or origin

node s ∈ V is given. For notational convenience we assume that G is simple so that arcs (i, j) ∈ A can be
uniquely identified by their end nodes i and j. The last node of a path P , i.e., its end node is denoted by
v(P ) ∈ V . The extension of a path P = (s, . . . , v(P )) along an arc (i, j) requires v(P ) = i and results in
a new path P ′ = (P, j) = (s, . . . , v(P ) = i, j). Resource extension functions f = (fij)(i,j)∈A (REFs) handle
the update of resources accumulated/consumed along the path. Thus, if path P = (s, . . . , i = v(P )) has
associated resources r(P ) (generally a multi-dimensional vector) then its extension P ′ = (P, j) along arc
(i, j) has resources fij(r(P )). Finally, multi-dimensional intervals [aj , bj ] for all nodes j ∈ V are given.

In standard SPPRC, the problem is to compute a minimum-cost feasible path ending at each destination
node t ∈ V . In case of non-decreasing REFs, a path P ′ = (P, j) is feasible (w.r.t. resources) if r(P ′) ∈
[av(P ′), bv(P ′)] holds and the predecessor path P is also feasible. Then, for solving SPPRC, one typically
computes, for each node, a set of paths {P1, . . . , Pq} with {r(P1), . . . , r(Pq)} forming the Pareto-optimal
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resource values. The particular importance of non-decreasing REFs is stressed in (Desaulniers et al., 1998;
Irnich and Desaulniers, 2005; Irnich, 2008).

In the CARP pricing subproblem, the network G = (V,A) consists of the node set V defined by the
CARP instance. The arc set A contains two types of arcs:

• Service arcs (i, j) and (j, i) correspond to proving service to a required edge {i, j}. These arcs consume
a positive amount qij > 0 of the vehicle’s capacity and have a (reduced) cost c̃servij (not restricted in
sign).

• Deadheading arcs (i, j) and (j, i) correspond to traversing an arbitrary edge {i, j} without providing
service. These arcs consume nothing from the vehicle’s capacity, i.e., qij = 0. Even with valid inequal-
ities present in the column-generation master program, their (reduced) cost c̃ij can be guaranteed to
be non-negative (for details see Bode and Irnich, 2012).

Bode and Irnich (2012) explained how the column-generation restricted master program (RMP) provides
with its dual solution the reduced costs c̃servij and c̃ij . Summing up, the resources r(P ) in the CARP case
consumed along a path P are given by r(P ) = (q(P ), c̃(P )), where q(P ) is restricted to integer values
0, 1, . . . , C (C is the capacity of the vehicle) and c̃(P ) is the accumulated reduced costs.

The outline of a generic labeling approach for solving SPPRC is presented in Algorithm 1. Herein, each
path P is represented by a label L(P ), i.e., a data structure that allows the reconstruction of the associated
path via labels of the predecessor path, provides additional information such as the resource consumption
r(P ), and allows to invoke a dominance algorithm. The set U is the set of unprocessed labels L(P ), i.e.,
paths P that are not extended along all arcs (v(P ), j) ∈ A of the forward star of node v(P ). The set L
contains those labels that need to be kept.

Algorithm 1: Generic SPPRC Dynamic Programming Labeling Algorithm
SET U := {L(s)}, L := ∅
while U 6= ∅ do

// Path Extension Step
SELECT L(P ) ∈ U , REMOVE L(P ) from U , and ADD L(P ) to L
for (v(P ), j) ∈ A do

if path (P, j) is feasible then
ADD L(P, j) to U

// Dominance Step
if /* any condition */ then

APPLY dominance algorithm to labels U ∪ L

// Filtering Step
IDENTIFY solutions S ⊆ L

Depending on the path selection rule in the path extension step, different label processing procedures
result such as label setting and label correcting algorithms. The invocation of a dominance algorithm
is optional in the sense that otherwise the algorithm enumerates all feasible paths starting at node s.
Dominance is however crucial in the design of efficient labeling algorithms, and we devote Section 2.3 for
the detailed presentation of this basic component. In general, the intension of the dominance algorithm
is to identify those paths that do not necessarily be extended, i.e., one or several other paths still allow
finding (Pareto-)optimal paths. It can be applied at any time in the course of the algorithm and might
be delayed to a point where several new paths with identical end node have been generated and stored in
U . Any reasonable strategy for invoking the dominance algorithm will optimize the tradeoff between the
computational effort and the risk that a path is extended before one finds out that it is dominated.

In the presence of additional path-structural constraints (such as cycle- or loop-elimination constraints
discussed in Section 2.2, see also Section 2.2 of (Irnich and Desaulniers, 2005)), the set L must generally
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include additional labels for paths that are not necessarily Pareto-optimal. It this case, a final filtering
step is needed to identify an Pareto-optimal subset. Efficient algorithms for that purpose can be found in
(Bentley, 1980).

2.2. Task-Loops and Loop Elimination
In the column-generation context, a task is something (such as visiting a node, edge or arc) that needs

to be performed by a column (a vehicle route or a schedule etc.). Generally, a task is associated with a set-
partitioning or covering constraint of the master program, and it can be found at one or several nodes and
arcs of the network. The work by Irnich and Villeneuve (2006) mainly addresses k-cycle elimination where
every node of the subproblem’s network represents an individual task (implied by standard node-elementarity
constraints).

The paper at hand, however, addresses the more general case that an arbitrary sequence Tij of tasks
(including empty sequences) is associated with every arc (i, j) ∈ A. Then, feasible paths P = (v0, v1, . . . , vp)
are those where the joint task sequence T (P ) := (Tv0,v1 , Tv1v2 , . . . , Tvp−1vp) does not contain a task-k loop.
It is important to highlight that the literature distinguishes between k-cycles and k-loops. The term k-cycle
is traditionally used in the context of unique tasks associated with nodes. A 2-cycle is a cycle of length two
such as (i, j, i), and a k-cycle is any cycle of length k or smaller. In contrast, a 2-loop is a repeated task
(a, a) for any task a ∈ T . A 2-loop can result from a subpath (i, j, i) where both arcs (i, j) and (j, i) (or an
edge {i, j} in the undirected case) have the task sequence Tij = Tji = (a). However, the same task-2-loop
results for (sub)path P = (v0, v1, . . . , vp) if arc (v0, v1) has a task sequence (. . . , a) ending with task a, arcs
(v1, v2), . . . , (vp−2, vp−1) have an empty task sequence (also called deadheading), and arc (vp−1, vp) has a
task sequence (a, . . .) starting with task a. In general, for k > 2 a task-k-loop is task-cycle of length k − 1
or smaller.

The rationale behind these seeming confusing definitions is that 2-cycle elimination and task-2-loop
elimination can be handled with almost identical algorithmic approaches: Dominance rules require that
only a best and a second-best path with different last task need to be kept in L (see Algorihm 1). The
dominance rules were first presented by (Houck et al., 1980) for 2-cycle elimination in the node-routing
context and by (Benavent et al., 1992) for task-2-loop elimination and the CARP.

2.3. Dominance Rules in Combined (k1, k2)-loop Elimination
This section contains new theoretical results for labeling procedures that simultaneously consider two

sets of tasks for which loop freeness must be guaranteed. In our CARP application, paths are desired to be
k-loop-free w.r.t. tasks T E induced by route’s elementarity constraints. Here, we would like k > 2 to be as
large as possible (of course there is the trade-off between strength of the relaxation and effort for pricing).
Moreover, one needs paths to be exactly 2-loop-free w.r.t. the tasks T B induced by non-follower constraints
resulting from branching.

Generalizing, we will derive results for a combined (k1, k2)-loop elimination for the tasks sets T 1 and
T 2. For simplicity, we abbreviate paths feasible w.r.t. both tasks sets T 1 and T 2 as (k1, k2)-loop-free paths.
In particular, we suppress the prefix ‘task-’.

It is rather simple to define attribute updates and extension rules for (k1, k2)-loop elimination. The crucial
part for an effective labeling algorithm is however the definition of a dominance relation. Straightforward
approaches allow dominance only between paths that have identical sequences of the last k1− 1 tasks of T 1

and the last k2− 1 tasks of T 2. This is rather easy, but turns out to be ineffective due a possible number of
O (|T 1|k1−1 · |T 2|k2−1) labels at the same node and otherwise identical state (all resources except for cost;
identical load in the CARP case). Irnich and Villeneuve (2006) discuss this point for node-k-cycle elimination
in detail. Therefore, the decisive point is the development of effective dominance rules guaranteeing a small
number of labels.

Such an effective dominance rule, based on the one for node-k-cycle elimination proposed by Irnich and
Villeneuve (2006), does not only compare pairs of paths. Instead, several paths together may be needed to
dominate another path. In the following, we will distinguish between paths and labels. Paths are represented
by labels, but labels contain additional attributes needed to efficiently test for domination. Moreover, paths
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can mutually dominate each other, while we will make sure that dominance is uni-directional among labels.
This can be achieved using a unique identifier (an ID) for each label, which breaks ties whenever two labels
with identical resources are compared (for a more detailed discussion of that point see (Irnich and Villeneuve,
2006, p. 393f)).

The dominance principle says that labels L(P1), . . . , L(Pg) (g ≥ 1) representing paths P1, . . . , Pg domi-
nate a label L(P ) representing path P if

1. P1, . . . , Pg and P share the same end node v(P1) = . . . = v(Pg) = v(P ).
2. Every feasible completion Q of P , i.e., (P,Q) is a feasible path, must also result in a feasible path

(Pj , Q) for at least one path Pj , j ∈ {1, . . . , g}.
3. The cost of (Pj , Q) must not exceed the cost of (P,Q) for all j ∈ {1, . . . , g}.

As a consequence, the label L(P ) does not need to be considered in a labeling algorithm because it can
never produce a better feasible extension to the destination node than possible with at least one extension
of the labels L(P1), . . . , L(Pg). It is however crucial that the labels L(P1), . . . , L(Pg) are kept.

The second condition (2.) is typically replaced by a (sufficient) condition that is easier to check, involving
resource consumptions and task loops. In fact, all paths P1, . . . , Pg must have resources not larger than the
resources of P , i.e.,

r(P1), . . . , r(Pg) ≤ r(P ), (1)

which is in the CARP case equivalent to q(P1), . . . , q(Pg) ≤ q(P ) and c̃(P1), . . . , c̃(Pg) ≤ c̃(P ), while feasi-
bility regarding tasks loops is not checked via resources.

The fundamental idea for (k1, k2)-loop elimination is to efficiently encode the set of possible extensions of
a path. For this purpose, let E(P ) denote the set of loop-free extensions of the path P . E(P ) solely considers
task loops and not resource consumptions. The second condition (2.) above is fulfilled for P1, . . . , Pg and P
if (1) and

g⋃
i=1

E(Pi) ⊇ E(P ) (2)

holds. We will now describe how to encode this condition in order to handle two sets of tasks efficiently.

Encoding the Possible Extensions by Self-Hole Sets. Recall that there are two sets of tasks T 1 and T 2 for
which loop freeness has to be ensured. Let S be the set of all (k1, k2)-loop-free paths, i.e., k1-loop-free w.r.t.
tasks in T 1 and k2-loop-free with respect to tasks in T 2. Let P,Q ∈ S be two feasible paths, where the end
node v(P ) of P is identical with the start node of Q. Then, the concatenation (P,Q) is also a path in S if
and only if both (T 1(P ), T 1(Q)) is k1-loop-free and (T 2(P ), T 2(Q)) is k2-loop-free. This condition holds if

(T 1(P ), T 1(Q)) = (. . . , t1k1−1, . . . , t
1
2, t

1
1, s

1
1, s

1
2, . . . , s

1
k1−1, . . .) fulfills t1p 6= s1

q for all p+ q ≤ k1

and

(T 2(P ), T 2(Q)) = (. . . , t2k2−1, . . . , t
2
2, t

2
1, s

2
1, s

2
2, . . . , s

2
k2−1, . . .) fulfills t2p 6= s2

q for all p+ q ≤ k2.

The relevant entries of T 1(Q) and T 2(Q) are the first k1 − 1 and k2 − 1 entries, and we denote these by
T 1
k1

(Q) and T 2
k2

(Q), respectively. We assume in the following that both sequences T 1
k1

(Q) and T 2
k2

(Q) always
contain exactly k1 − 1 and k2 − 1 elements, respectively, where missing tasks are represented by a ‘·’. (Here
we remind the reader about the notation that for h = 1 or h = 2 the term T h (without subscript) refers
to the set of all tasks, T h

ij is the task sequence associated to an arc (i, j), and T h
k (Q) is the (k − 1)-tuple

describing the sequence of the first k − 1 tasks in a path Q possibly extended with succeeding ·.)
We are able to express the above condition as

T 1
k1

(Q) 6= (·, . . . , ·, t1p,i, ·, . . . , ·) for all p with 1 ≤ p+ i ≤ k1

and
T 2
k2

(Q) 6= (·, . . . , ·, t2p,i, ·, . . . , ·) for all p with 1 ≤ p+ i ≤ k2,
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where i refers to the ith position in the right-hand-side vector, and t1p,i and t2p,i have the value t1p and t2p,
respectively. The last k1 − 1 entries of T 1(P ), i.e., t1p with p ∈ {1, . . . , k1}, and the last k2 − 1 entries of
T 2(P ), i.e., t2p with p ∈ {1, . . . , k2} have to be compared with T 1

k1
(Q) and T 2

k2
(Q), respectively. It follows

that any extension Q of path P is infeasible if T 1
k1

(Q) or T 2
k2

(Q) matches with the respective tuple (still ‘·’
refers to an unspecified entry).

These infeasible extensions can be represented by set forms, a concept introduced first in (Irnich and
Villeneuve, 2006): The tuples on the right hand side of the above inequality are in fact set forms. The finite
union of such set forms defines the self-hole set H(P ) of a path P .

Example 1. For (4, 2)-loop elimination in the CARP context, i.e., k1 = 4, k2 = 2 and T 1 = T E, T 2 = T B,
let path P have T E(P ) = (. . . , a, b, c) and T B(P ) = (. . . , α). It means that the last three required edges
serviced were the edges a, b, and c. In addition, we are in a branch of the branch-and-price search tree where
a non-follower constraint is active, e.g., say for the edges c and f , imposing that they have the new identical
task α assigned in order to prevent c and f being serviced consecutively.

Then, any extension Q produces a feasible path w.r.t. loop elimination if

(T E
4 (Q), T B

2 (Q)) 6= (·, ·, ·)(α), (a, ·, ·)(·), (b, ·, ·)(·), (·, b, ·)(·), (c, ·, ·)(·), (·, c, ·)(·), (·, ·, c)(·).

Equivalently, the self-hole set of P is

H(P ) = (·, ·, ·)(α) ∪ (a, ·, ·)(·) ∪ (b, ·, ·)(·) ∪ (·, b, ·)(·) ∪ (c, ·, ·)(·) ∪ (·, c, ·)(·) ∪ (·, ·, c)(·),

where each set form encodes the set of task sequences matching the respective pattern.
For example, if a path Q1 produces the task sequence T E

4 (Q1) = (d, a, b) and T B
2 (Q1) = (β) then there

is no match with H(P ), and the extension (P,Q1) is feasible w.r.t. loop elimination. In contrast, for a path
Q2 with task sequence T E

4 (Q2) = (d, e, c) there is a match with (·, ·, c)(·) so that (P,Q2) is infeasible.

The representation of H(P ) as the union of set forms is quadratic in k1 and k2, i.e., up to k1(k1−1)
2 +

k2(k2−1)
2 different set forms are necessary to describe all infeasible extensions of path P .
Now we consider a dominance situation where (1) and (2) are fulfilled for dominating paths P1, . . . , Pg

and a dominated path P . By de Morgan’s law, we get

g⋃
i=1

E(Pi) ⊇ E(P ) ⇐⇒
g⋂

i=1

H(Pi) ⊆ H(P ) (3)

so that the condition (2) for loop-free extensions can be equivalently stated with the help of self-hole sets.
The point is now that any intersection of the self-hole sets, resulting on the right hand side, can be calculated
and represented as a union of set forms again.

Example 2 (Example 1 continued). Let P ′ be another path with T E(P ′) = (a, d) (just two edges serviced
along P ′) and T B(P ′) = (β). The self-hole set of P ′ is

H(P ′) = (·, ·, ·)(β) ∪ (a, ·, ·)(·) ∪ (·, a, ·)(·) ∪ (d, ·, ·)(·) ∪ (·, d, ·)(·) ∪ (·, ·, d)(·)

Then, the intersection of the self-hole sets is

H(P ) ∩H(P ′) =(a, ·, ·)(α) ∪ (·, a, ·)(α) ∪ (d, ·, ·)(α) ∪ (·, d, ·)(α) ∪ (·, ·, d)(α)∪
(a, ·, ·)(β) ∪ (b, ·, ·)(β) ∪ (·, b, ·)(β) ∪ (c, ·, ·)(β) ∪ (·, c, ·)(β) ∪ (·, ·, c)(β)∪
(a, d, ·)(·) ∪ (a, ·, d)(·) ∪ (b, a, ·)(·) ∪ (b, d, ·)(·) ∪ (b, ·, d)(·) ∪ (a, b, ·)(·) ∪ (d, b, ·)(·)∪
(·, b, d)(·) ∪ (c, a, ·)(·) ∪ (c, d, ·)(·) ∪ (c, ·, d)(·) ∪ (a, c, ·)(·) ∪ (d, c, ·)(·) ∪ (·, c, d)(·)∪
(a, ·, c)(·) ∪ (·, a, c)(·) ∪ (d, ·, c)(·) ∪ (·, d, c)(·)

6



The computation of the intersection of two unions of set forms, as in the above example, requires two
algorithmic components: First, set forms need to be tested for inclusion. For example, (a, ·, b, e)(α) is
included in (·, ·, b, ·)(α), while (a, e, b)(·) is not included in (a, ·, c)(·). It can be shown similarly as for node-
k-cycle elimination that this test requires only O (k1 + k2) time and space (Irnich and Villeneuve, 2006,
p. 398).

Second, proper intersections of set forms need to be computed. For two set forms s and t, the intersection
s ∩ t is empty if different entries are specified at the same position. For example, s = (a, b, ·)(α) and
t = (a, c, b)(α) result in s ∩ t = ∅. Moreover, by definition, the intersection is empty if an infeasible loop is
created, e.g., the intersection of (a, b, ·)(α) and (·, b, a)(·) is empty because it induces the 3-loop (a, b, a) w.r.t.
tasks T 1. In contrast, the set forms (a, b, ·)(α, ·) and (·, b, d)(·, ·) have non-empty intersection (a, b, d)(α, ·).
Here again, the computation including loop detection requires only O (k1 + k2) amortized time and space.
As a result, the computation of the intersection of two self-hole sets, say with p and q set forms each, requires
O ((k1 + k2)pq) amortized time and space; see (Irnich and Villeneuve, 2006, p. 398) for details.

In order to know the overall time complexity, it is important to quantify the maximum number of
elements present in an intersection of two collections of set forms. The next paragraph will give an answer.

Upper Bound on the Number of Set Forms in an Intersection of Self-Hole Sets. For node-k-cycle elimination,
any collection of set forms resulting from the intersection of self-hole sets does not contain more than
(k − 1)!2 different set forms. This result is stated in (Irnich and Villeneuve, 2006, p. 399) for node-k-cycle
elimination. Notice that in node-k-cycle elimination all paths ending at the same node share an identical
last task (corresponding to that node), which therefore can be omitted. Task-k-loop elimination, however,
must ensure that there are at least k − 1 other tasks before a task is repeated. Therefore, in both cases,
recording only k− 1 elements is sufficient to encode all relevant dominance information, which results in the
stated complexity.

The result for combined (k1, k2)-loop elimination in SPPRC is the following:

Theorem 1. For combined (k1, k2)-loop elimination, the maximum number of different set forms needed to
represent any intersection of self-hole sets H(P1) ∩H(P2) ∩ · · · ∩H(Pl) of any set of l paths is ω(k1, k2) :=

(k1 − 1)!2 · (k2 − 1)!2 ·
(

(k1−1)+(k2−1)
k1−1

)
. This bound ω(k1, k2) is tight.

A proof of this theorem and all other theoretical results is included in the Appendix. The following
example shows how to construct instances where the bound is indeed tight.

Example 3. Consider a combined (3, 2)-loop elimination. Moreover, let P1, P2, and P3 be three paths with
no tasks in common. Thus,

H(P1) = (·, ·)(α) ∪ (a, ·)(·) ∪ (b, ·)(·) ∪ (·, b)(·)
H(P2) = (·, ·)(β) ∪ (c, ·)(·) ∪ (d, ·)(·) ∪ (·, d)(·)
H(P3) = (·, ·)(γ) ∪ (e, ·)(·) ∪ (f, ·)(·) ∪ (·, f)(·)

giving rise to

H(P1) ∩H(P2) ∩H(P3) = (a, d)(γ) ∪ (b, d)(γ) ∪ (c, b)(γ) ∪ (d, b)(γ) ∪ (c, f)(α) ∪ (d, f)(α)

∪(e, d)(α) ∪ (f, d)(α) ∪ (a, f)(β) ∪ (b, f)(β) ∪ (e, b)(β) ∪ (f, b)(β).

These are twelve set forms which is the maximum number (k1 − 1)!2 · (k2 − 1)!2 ·
(
k1−1+k2−1

k1−1

)
= (3 − 1)!2 ·

(2− 1)!2 ·
(

(3−1)+(2−1)
3−1

)
= 4 · 1 · 3 = 12.

Upper Bound on the Number of Paths with Identical State. The paragraph above presented results on the
number of set forms in an intersection of an arbitrary number of paths. The question considered in this
paragraph is about the maximum number of paths P with identical state (resource vector except for cost;
for the CARP, with identical load q(P )). Let a collection of g paths P1, . . . , Pg with identical state ending
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at a node i = v(P1) = . . . = v(Pg) be given. The corresponding labels can be sorted in a unique way using
the IDs of the labels so that the following ordering is given:

L(P1) ≺dom L(P2) ≺dom . . . ≺dom L(Pg),

meaning that, e.g., L(Pg) is dominated by all other labels L(P1), L(P2), . . . , L(Pg−1). It follows for the
intersections of the self-hole sets of the dominating labels (L(P1) dominates L(P2), L(P1) and L(P2) dominate
L(P3) etc.) that

I1 := H(P1) ⊇ I2 := H(P1) ∩H(P2) ⊇ . . . ⊇ Ig :=

g⋂
i=1

H(Pi).

holds. Irnich and Villeneuve (2006) have shown that a path Pt can be discarded if It = It−1 holds. The
reason is that It = It−1 implies H(P1) ∩ . . . ∩H(Pt−1) ⊆ H(Pt) so that conditions (3) hold. Therefore, the
maximum length of a properly decreasing chain of intersections of self-hole sets is a bound on the maximum
number of labels to consider with identical state.

Theorem 2. A collection of g dominating paths P1 ≺dom P2 ≺dom . . . ≺dom Pg ending at the same node
is given. Let the intersections of the corresponding self-hole sets H(P1), H(P2), . . . , H(Pg) form a properly
decreasing chain, i.e., H(P1) ) H(P1) ∩ H(P2) ) · · · )

⋂g
i=1H(Pi). Then, the length g of the properly

decreasing chain is bounded by γ(k1, k2) = [k1 + k2 − 1] · (k1 − 1)!2 · (k2 − 1)!2 ·
(

(k1−1)+(k2−1)
k1−1

)
.

Note that the bound γ(k1, k2) is generally not tight as already shown for node-k-cycle elimination (Irnich
and Villeneuve, 2006, p. 400f).

For the special case of a combined (k, 2)-loop elimination, the bound is γ(k, 2) = (k + 1) · (k − 1)!2 · k =
(k − 1)! · (k + 1)!. In particular, we get the bounds γ(3, 2) = 2 · 24 = 48 and γ(4, 2) = 6 · 120 = 720.
For the CARP, it follows that the maximum number of labels to be kept at a node v ∈ V is bounded by
(C + 1)γ(k, 2)).

As in (Irnich and Villeneuve, 2006), the new labeling approach will store the intersection of the self-hole
sets of all dominating labels as the so-called running-hole set, i.e.,

Hrun(P ) :=

g⋂
i=1

H(Pi)

whenever L(P ) is dominated by L(P1), . . . , L(Pg). The label L(P ) can be discarded if Hrun(P ) ⊆ H(P )
because this is equivalent to Ig =

⋂g
i=1H(Pi) = H(P )∩Ig =: Ig+1. Additional algorithmic tricks for storing

the intersection and checking the above condition were discussed in (Irnich and Villeneuve, 2006, p. 399).

2.4. Specifics and Complexity of the CARP Pricing Problem
As mentioned before, in the CARP case the only resources are load and cost. The number of possible

states associated with any node i ∈ V is always bounded by the capacity (C + 1 states 0, 1, . . . , C).
Letchford and Oukil (2009) developed a tailored SPPRC labeling algorithm for the CARP that has a

very attractive worst-case time complexity of O (CD(n,m)), where D(n,m) is the complexity of Dijkstra’s
algorithm on a digraph with n nodes and m edges. Using the Fibonacci-heap data structure, the best known
bound is D(n,m) = m+ n log(n) (Ahuja et al., 1993).

Letchford and Oukil (2009) modify the label selection rule (for choosing the next path P to be extended)
in the following way:

1. In an outer loop over possible values q = 0, 1, 2, . . . , C of the load resource paths P with q(P ) = q are
extended.

2. The extension is split into two parts, the extension along all deadheading arcs first and the extensions
along all service arcs second.
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3. The first extension (deadheading) produces only labels with identical load q. All extensions can be
handled together using a Dijkstra-type of labeling. Note that for the CARP, the only relevant resource
is cost whenever load is fixed. By pre-assigning minimum-cost labels at all nodes, the time complexity
D(n,m) can be reached.

4. The latter extensions (service) produce not more than O (2m) new labels L(P ), all with load q(P ) > q.
5. The overall complexity of all extensions is therefore dominated by the complexity of the Dijkstra

algorithm. Taking the outer loop over all load values into account implies an overall complexity of
O (CD(n,m).

In the presence of loop-elimination constraints, up to γ(k1, k2) labels L(P ) with identical load q(P ) = q
might exist as a consequence of Theorem 2. Therefore, the number of labels to extend can also grow by
factor γ(k1, k2).

Whenever a newly created label dominates another one w.r.t. resources, the update of the running-hole
sets of the latter requires only O ((k1 + k2)ω(k1, k2)) time. Note that dominance compares pairs of labels so
that the overall factor is bounded by O ((k1 + k2)ω(k1, k2)γ(k1, k2)2). This is a constant whenever k1 and
k2 are fixed.

We have the following final result:

Theorem 3. For fixed k, labeling for the CARP with combined (k, 2)-loop elimination can be performed
in O (CD(n,m)) time, where C is the vehicle capacity and D(n,m) the time of performing the Dijkstra
algorithm.

3. Computational Results

This section reports computational results of the branch-and-price algorithm for the CARP first presented
in (Bode and Irnich, 2012) when (k, 2)-loop free relaxations for k ∈ {2, 3, 4} are used. We quantify the impact
of the different (k, 2)-loop free relaxations on the computation time and the overall best lower bound achieved
at the end of the branch-and-price. The branching scheme presented in (Bode and Irnich, 2012) consists
of three levels of branching decisions: First branching on non-even node degrees, and second branching on
edges with fractional edge flow. Both decisions have no impact on the structure of the pricing problem.
The third decision is branching on follower information, whenever the information if two edges are serviced
consecutive is fractional. This branching rule, however, modifies the network of the underlying graph of the
pricing problem. In particular, it requires a second task set to be handled in the SPPRC labeling algorithm
that solves the pricing subproblem.

For the branch-and-price, no initial upper bound is given and the node selection rule in branch-and-
bound is best-bound first. Note that the same formulation of the (restricted) master problem is used as in
(Bode and Irnich, 2012), while for the pricing subproblem the following modifications are made: Whenever
possible, the simple k-loop elimination pricing is used. If, however, any non-follower constraints is active, the
simple k-loop elimination pricing is replaced by (k, 2)-loop elimination pricing. Moreover, we use standard
heuristic pricing procedures and acceleration techniques for exact pricing as presented in the companion
paper (Bode and Irnich, 2013). The two acceleration techniques applied are bounding with the 2-loop
elimination relaxation and bi-direction labeling; for details we refer to (Mingozzi et al., 1997; Baldacci et al.,
2011b,a; Righini and Salani, 2006).

The computational study uses two standard benchmark sets from the literature: The first benchmark set
egl was introduced by Eglese and Li (1992) and can be downloaded from http://www.uv.es/~belengue/
carp/. This set consists of 24 instances based on the road network of Cumbria. The first 12 instances have
77 nodes and 98 edges, whereas the remaining 12 instances are larger and have 140 nodes and 190 edges.
Instances with the same graph size further differ in the number of required edges and the vehicle capacity.
The second benchmark set bmcv consisting of 100 instances is obtained from the road network of Flanders,
Belgium (Beullens et al., 2003). These instances range from 26 to 97 nodes and 35 to 142 edges, where
only a subset of the edges is required. The instances were kindly provided by Muyldermans (2012) and the
transformed instances into the standard format can be downloaded from http://logistik.bwl.uni-mainz.
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de/Dateien/bmcv.zip. These instances comprise four subsets, where the underlying graph for individual
instances of subset C and E is identical, but the vehicle capacity is 300 for the C set and 600 for the E set.
The same holds for the subsets of instances named D and F.

All computations were performed on a standard PC with an Intel c©CoreTM i7-2600 at 3.4 GHz processor
with 16 GB of main memory. The algorithm was coded in C++ (MS-Visual Studio, 2010) and the callable
library of CPLEX 12.2 was used to iteratively reoptimize the RMP. A hard time limit of four hours for
computation has been set for the column-generation and branch-and-price algorithms.

To shorten the notation, we will skip the second entry in (k, 2) so that, in the following, k-loop is a shortcut
for (k, 2)-loop-free. Since a comprehensive study of linear relaxation results for k-loop elimination with and
without activated acceleration techniques are presented in (Bode and Irnich, 2012, 2013), this section focuses
on integer results obtained when the branch-and-bound ends (either with an optimal solution or when the
given time limit is reached). Tables 3–7 present the integer results for the egl and bmcv instances. The
header entries in all tables have the following meaning:

instance name of the instance
(for egl instances the prefix egl- is omitted for the sake of brevity)

ubbest or opt the best known upper bound (not underlined) or the optimum (underlined) reported
in Beullens et al. (2003) or Bartolini et al. (2012)

lbtree lower bound provided by the branch-and-price algorithm within the time limit of four
hours; (rounded up to the next integer)
‘OPT’ indicates that the instance is solved to proven optimality within four hours
if the value of lbtree matches the best known upper bound the gap was closed, but no
integer optimal solution was computed within the time limit

time computation time in seconds; if the time limit is reached it is indicated by 4h
B&B nodes report the number of solved branch-and-bound nodes
lbbestown best lower bound over all relaxations tested here
lbbestknown best lower bounds round to a multiple of five reported in Beullens et al. (2003) or

Bartolini et al. (2012)

The following additional information is given for the respective relaxation:

Num lbbestown number of instances for which the best lower bound lbbestown was reached
Num opt number of integer optimal solutions
ave time average time for branch-and-price (with maximum time 4h)
ave %gap average gap computed as (ubbest−lbtree)

ubbest
× 100

Lower bounds written in bold indicate that this bound is a new best bound exceeding the best known lower
bounds from the literature. The upper bounds ub = 11529 for the instance egl-e4-c and ub = 4650 for the
bmcv instance E11 (written in bold also) result from new best integer solutions found with branch-and-price.

For the egl-instances, average lower bound values increases with increasing k: The average gap for 2-loop
relaxation is 0.54, while it is 0.46 and 0.43 for 3-loop and 4-loop, respectively. There are four exceptions
(e4-a, s3-a, s3-b and s4-a) where 2-loop relaxation results in better lower bound when the time limit of
four hours is reached. Regarding the computation time, 2-loop relaxation performs better for the group of
smaller instances (egl-e), while the two optimal solutions in the second group (egl-s) are computed fastest
with 4-loop relaxation. Overall, four new best lower bounds are obtained for e2-b, e3-b, e4-c and s4-b
with 3-loop and 4-loop relaxation.

For the subsets D and F of bmcv instances, 2-loop relaxation gives the best results both regarding bounds
10



and computation times, meaning that the number of best lower bounds and optimal integer solutions is
the highest. Moreover, on average the computation times and the gap is also smaller compared to 3-loop
or 4-loop. However, for the subsets C and E with smaller vehicle capacity, results are different: While the
number of best lower bounds is still highest with 2-loop relaxation, 3-loop produces for the subset C the same
number of integer solutions and the same average gap. Moreover, the average computation time decreases
for 3-loop. Within the subset E, 4-loop relaxation results in more best lower bounds and obtains more integer
solutions than 2-loop. Moreover, the average computation time and gap are also smaller for 4-loop than for
2-loop.

Overall, we are able to obtain 30 new best lower bounds out of 33 previously unsolved bmcv-instances (10
for subset C, 6 for subset D, 9 for subset E and 5 for subset F). Thereof, 15 instances (C04, C19, C21, C24, D08,
D14, D19, E11, E16, E19, E20, E24, F04, F08 and F12) are solved to optimality for the first time. Bartolini
et al. (2012) mentioned that the objective value is always a multiple of five. Using this fact, optimality can
be proven also for instances D23 and F23. At the end, 12 egl-instances and 16 bmcv-instances remain open.
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e1-a 3548 OPT 176 23 OPT 516 19 OPT 589 11 3548 3548
e1-b 4498 OPT 1343 659 OPT 1512 374 OPT 3827 311 4498 4498
e1-c 5595 5545 4h 3326 5551 4h 3057 5555 4h 2271 5555 5595
e2-a 5018 OPT 892 340 OPT 2955 227 OPT 6345 102 5018 5018
e2-b 6317 6301 4h 3293 6301 4h 1376 6306 4h 779 6306 6301
e2-c 8335 8242 4h 5601 8269 4h 5104 8303 4h 3907 8303 8335
e3-a 5898 OPT 106 26 OPT 562 22 OPT 761 19 5898 5898
e3-b 7775 7730 4h 3431 7735 4h 1519 7732 4h 607 7735 7728
e3-c 10292 10191 4h 5396 10220 4h 4490 10226 4h 3479 10226 10244
e4-a 6444 6408 4h 3361 6405 4h 280 6399 4h 66 6408 6408
e4-b 8961 8892 4h 4392 8899 4h 1627 8900 4h 1096 8900 8935
e4-c 11529 11456 4h 5924 11488 4h 5045 11502 4h 4316 11502 11493
s1-a 5018 OPT 11683 97 OPT 7762 43 OPT 4312 14 5018 5018
s1-b 6388 6386 4h 210 OPT 13072 130 OPT 12250 49 6388 6388
s1-c 8518 8440 4h 354 8476 4h 314 8500 4h 310 8500 8518
s2-a 9884 9805 4h 847 9806 4h 257 9804 4h 114 9806 9825
s2-b 13100 12970 4h 2320 12978 4h 1548 12982 4h 1054 12982 13017
s2-c 16425 16351 4h 2041 16377 4h 2189 16380 4h 1949 16380 16425
s3-a 10220 10160 4h 547 10154 4h 66 10150 4h 13 10160 10160
s3-b 13682 13630 4h 1515 13629 4h 800 13627 4h 274 13630 13648
s3-c 17188 17096 4h 3102 17122 4h 2505 17125 4h 2217 17125 17188
s4-a 12268 12149 4h 1617 12147 4h 271 12142 4h 62 12149 12149
s4-b 16283 16104 4h 2366 16106 4h 1449 16105 4h 473 16106 16105
s4-c 20481 20374 4h 2797 20397 4h 3556 20406 4h 3157 20406 20430

Num lbbestown 9 9 17
Num opt 5 6 6
ave %gap 0.54 0.46 0.43

Table 3: Integer Results for egl Instances

4. Conclusions

We have presented a new dynamic programming labeling algorithm for handling combined task-(k1, k2)-
loop elimination (with k1, k2 ≥ 2) in SPPRC for situations where loops with respect to two different task
sets must be avoided. Compared to standard SRRRC without loop elimination, the proposed dominance
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lbown
best lbknown
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C01 4150 4144 4h 2834 4140 4h 1435 4140 4h 862 4144 4105
C02 3135 OPT 6 5 OPT 28 10 OPT 60 6 3135 3135
C03 2575 OPT 6494 3746 OPT 171 115 OPT 252 120 2575 2575
C04 3510 OPT 2163 1317 OPT 2678 773 OPT 4403 532 3510 3480
C05 5365 OPT 59 81 OPT 169 103 OPT 272 81 5365 5365
C06 2535 OPT 163 310 OPT 314 157 OPT 196 53 2535 2535
C07 4075 OPT 278 456 OPT 561 465 OPT 724 401 4075 4075
C08 4090 OPT 751 474 OPT 778 347 OPT 634 178 4090 4090
C09 5260 5244 4h 2989 5242 4h 1922 5242 4h 1454 5244 5235
C10 4700 OPT 1363 1604 OPT 1344 1087 OPT 1493 810 4700 4700
C11 4635 4608 4h 2564 4608 4h 1332 4607 4h 612 4608 4585
C12 4240 4234 4h 4356 4231 4h 2072 4226 4h 1211 4234 4210
C13 2955 OPT 288 612 OPT 456 411 OPT 589 356 2955 2955
C14 4030 4010 4h 5189 4021 4h 2810 4024 4h 1610 4024 4030
C15 4940 4918 4h 1620 4915 4h 977 4916 4h 670 4918 4910
C16 1475 OPT 6 13 OPT 42 13 OPT 196 13 1475 1475
C17 3555 OPT 17 26 OPT 20 16 OPT 23 11 3555 3555
C18 5620 5570 4h 1958 5568 4h 691 5563 4h 292 5570 5575
C19 3115 OPT 2311 1324 OPT 3204 902 OPT 6706 978 3115 3095
C20 2120 OPT 12 20 OPT 136 26 OPT 392 9 2120 2120
C21 3970 OPT 9947 3113 OPT 1007 130 OPT 3284 117 3970 3960
C22 2245 OPT 32 16 OPT 60 11 OPT 256 13 2245 2245
C23 4085 4073 4h 2752 4072 4h 1078 4069 4h 400 4073 4030
C24 3400 OPT 1358 454 OPT 975 124 OPT 2325 130 3400 3385
C25 2310 OPT 6 10 OPT 10 9 OPT 20 4 2310 2310

Num lbbestown 24 18 18
Num opt 17 17 17
ave time 5619 5086 5481

ave %gap 0.13 0.13 0.14

Table 4: Integer Results for bmcv Instances, Subset C

relation is still efficient in the following sense: Labels need to be extended by additional attributes (the
so-called set forms), where each set form has k1 + k2 entries and not more than ω(k1, k2) = (k1 − 1)!2 ·
(k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
different set forms need to be stored. While in standard SPPRC there is at

most one label per state, the maximum number of labels with identical state cannot exceed γ(k1, k2) =

[k1 +k2−1] · (k1−1)!2 · (k2−1)!2 ·
(

(k1−1)+(k2−1)
k1−1

)
. Even if these values grow fast with k1 and k2, for fixed k1

and k2, the bounds ω(k1, k2) and γ(k1, k2) are constants. Together with the presented update procedures for
the attributes these constants guarantee that, for fixed k1 and k2, the worst-case computational complexity
for solving standard SPPRC and SPPRC with combined task-(k1, k2)-loop elimination is identical.

We have applied the new labeling algorithm for SPPRC with combined task-(k, 2)-loop elimination for
solving pricing subproblems in a branch-and-price algorithm for the CARP. It was known from the work of
Bode and Irnich (2012) that task-k-loop elimination can significantly improve bounds of the linear relaxation
of the column-generation master program. However, branching, i.e., a genuine branch-and-price was not
possible due to the branching rule implying 2-loop elimination constraints on a new task set. The new
results using the SPPRC subproblem relaxation with task-(k, 2)-loop elimination allow for a comparison
of overall computation times and lower bounds when the branch-and-price algorithm terminates. Using
standard benchmark set, we have shown that the approach is competitive: Several new best lower bounds
were presented and some knowingly hard instances were solved to proven optimality for the first time.
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E01 4910 4898 4h 3269 4896 4h 2064 4896 4h 1517 4898 4885
E02 3990 3971 4h 4363 3985 4h 1835 OPT 862 126 3990 3990
E03 2015 OPT 3 1 OPT 19 3 OPT 23 2 2015 2015
E04 4155 OPT 1593 914 OPT 2584 707 OPT 2789 449 4155 4155
E05 4585 OPT 506 448 OPT 128 61 OPT 68 17 4585 4585
E06 2055 OPT 5 7 OPT 25 13 OPT 54 10 2055 2055
E07 4155 4137 4h 4508 4149 4h 4079 OPT 6684 2053 4155 4155
E08 4710 OPT 208 131 OPT 160 55 OPT 198 53 4710 4710
E09 5820 5802 4h 1028 5800 4h 935 5798 4h 642 5802 5780
E10 3605 OPT 9 9 OPT 21 6 OPT 48 5 3605 3605
E11 4650 4650 4h 2218 OPT 4244 279 4650 4h 363 4650 4635
E12 4180 4167 4h 3623 4169 4h 2435 4170 4h 1653 4170 4180
E13 3345 OPT 155 220 OPT 264 240 OPT 437 249 3345 3345
E14 4115 4108 4h 5195 OPT 1996 1453 OPT 2089 1052 4115 4115
E15 4205 4199 4h 1819 4196 4h 712 4194 4h 292 4199 4190
E16 3775 OPT 1287 793 OPT 246 103 OPT 380 82 3775 3755
E17 2740 OPT 4 3 OPT 8 2 OPT 10 2 2740 2740
E18 3835 3825 4h 1245 3825 4h 446 3825 4h 146 3825 3825
E19 3235 OPT 7855 993 OPT 5905 591 OPT 13935 639 3235 3220
E20 2825 2815 4h 5261 2820 4h 2175 OPT 3112 464 2825 2800
E21 3730 3730 4h 5396 3730 4h 1434 3730 4h 263 3730 3730
E22 2470 OPT 32 24 OPT 74 33 OPT 74 17 2470 2470
E23 3710 3704 4h 548 3703 4h 385 3699 4h 223 3704 3685
E24 4020 OPT 9489 2123 4020 4h 1933 OPT 13135 1130 4020 4000
E25 1615 OPT 1 4 OPT 3 1 OPT 2 1 1615 1615

Num lbbestown 20 17 21
Num opt 14 15 18
ave time 7758 6963 6364

ave %gap 0.12 0.08 0.07

Table 5: Integer Results for bmcv Instances, Subset E
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D01 3215 OPT 50 13 OPT 992 17 OPT 4117 16 3215 3215
D02 2520 OPT 26 22 OPT 86 14 OPT 286 15 2520 2520
D03 2065 OPT 43 15 OPT 172 9 OPT 1472 9 2065 2065
D04 2785 OPT 105 33 OPT 600 33 OPT 9022 26 2785 2785
D05 3935 OPT 24 15 OPT 145 19 OPT 166 17 3935 3935
D06 2125 OPT 20 18 OPT 97 5 OPT 1615 15 2125 2125
D07 3115 3108 4h 3069 3102 4h 893 3098 4h 403 3108 3115
D08 3045 OPT 3730 736 3041 4h 411 3027 4h 113 3045 2995
D09 4120 OPT 106 36 OPT 929 47 OPT 1654 36 4120 4120
D10 3340 OPT 33 21 OPT 195 23 OPT 493 17 3340 3340
D11 3745 3745 4h 1061 OPT 1945 21 OPT 11009 28 3745 3745
D12 3310 OPT 123 17 OPT 539 21 OPT 198 4 3310 3310
D13 2535 OPT 997 741 OPT 61 15 OPT 605 15 2535 2535
D14 3280 3280 4h 3513 OPT 564 35 OPT 1804 30 3280 3270
D15 3990 OPT 602 41 OPT 3347 17 - - - 3990 3990
D16 1060 OPT 7 7 OPT 66 8 OPT 677 10 1060 1060
D17 2620 OPT 11 18 OPT 31 14 OPT 42 8 2620 2620
D18 4165 OPT 2951 48 - - - 4165 4h 2 4165 4165
D19 2400 OPT 552 225 OPT 3174 186 OPT 13090 195 2400 2395
D20 1870 OPT 15 22 OPT 149 21 OPT 2004 20 1870 1870
D21 3050 3005 4h 2615 2988 4h 261 2982 4h 75 3005 2985
D22 1865 OPT 36 15 OPT 251 11 OPT 3200 15 1865 1865
D23 3130 3126 4h 341 3114 4h 13 3111 4h 1 3126 3115
D24 2710 2704 4h 884 2691 4h 132 2679 4h 45 2704 2675
D25 1815 OPT 10 13 OPT 25 4 OPT 155 8 1815 1815

Num lbbestown 25 20 20
Num opt 19 19 18
ave time 3834 4567 6673

ave %gap 0.08 0.15 0.20

Table 6: Integer Results for bmcv Instances, Subset D
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F01 4040 OPT 10942 1103 OPT 988 26 OPT 2170 27 4040 4040
F02 3300 OPT 40 27 OPT 166 13 OPT 1957 77 3300 3300
F03 1665 OPT 14 17 OPT 124 14 OPT 507 11 1665 1665
F04 3485 OPT 198 48 OPT 6933 160 OPT 9654 39 3485 3475
F05 3605 OPT 61 25 OPT 220 19 OPT 1023 27 3605 3605
F06 1875 OPT 16 18 OPT 73 19 OPT 350 13 1875 1875
F07 3335 OPT 46 15 OPT 190 15 OPT 226 11 3335 3335
F08 3705 OPT 174 62 OPT 531 40 OPT 1927 46 3705 3690
F09 4730 OPT 526 38 OPT 1533 34 4730 4h 42 4730 4730
F10 2925 OPT 10 13 OPT 58 11 OPT 373 15 2925 2925
F11 3835 OPT 209 33 OPT 1473 30 OPT 4889 26 3835 3835
F12 3395 OPT 2341 289 3395 4h 255 3392 4h 107 3395 3390
F13 2855 OPT 19 28 OPT 86 27 OPT 306 20 2855 2855
F14 3330 OPT 23 9 OPT 130 14 OPT 822 13 3330 3330
F15 3560 OPT 277 41 3560 4h 169 3560 4h 95 3560 3560
F16 2725 OPT 44 18 OPT 147 10 OPT 543 9 2725 2725
F17 2055 OPT 6 7 OPT 26 10 OPT 90 7 2055 2055
F18 3075 3065 4h 962 3065 4h 72 3065 4h 36 3065 3065
F19 2525 2515 4h 804 2515 4h 164 2514 4h 124 2515 2500
F20 2445 OPT 56 21 OPT 820 27 OPT 2210 22 2445 2445
F21 2930 OPT 112 33 OPT 1213 29 OPT 3582 37 2930 2930
F22 2075 OPT 25 17 OPT 70 16 OPT 141 19 2075 2075
F23 3005 3003 4h 140 2998 4h 53 2994 4h 26 3003 2995
F24 3210 OPT 251 29 OPT 2575 32 OPT 10106 33 3210 3210
F25 1390 OPT 4 15 OPT 20 10 OPT 89 10 1390 1390

Num lbbestown 25 24 22
Num opt 22 20 19
ave time 2344 3575 5095

ave %gap 0.03 0.04 0.05

Table 7: Integer Results for bmcv Instances, Subset F
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A. Proofs

This section contains proofs of the worst-case complexity results for combined (k1, k2)-loop elimination as
introduced in Section 2.3. Note that the proofs follow similar ideas as discussed in the first article on k-cycle
elimination (focused on node-routing applications) and we refer the reader to this (Irnich and Villeneuve,
2006) for a more detailed motivation.

A.1. Proof of Theorem on Maximum Number of Set Forms
Theorem 1. For combined (k1, k2)-loop elimination, the maximum number of different set forms needed to
represent any intersection of self-hole sets H(P1) ∩H(P2) ∩ · · · ∩H(Pl) of any set of l paths is ω(k1, k2) :=

(k1 − 1)!2 · (k2 − 1)!2 ·
(

(k1−1)+(k2−1)
k1−1

)
. This bound ω(k1, k2) is tight.

Proof. Define I1(s), I2(s) of an arbitrary set forms s = (s1
1, . . . , s

1
k1−1)(s2

1, . . . , s
2
k2−1) with s1

i ∈ T 1 ∪ {·}
and s2

j ∈ T 2 ∪ {·} as

I1(s) := {i ∈ {1, . . . , k1 − 1}|s1
i = ·} and I2(s) := {j ∈ {1, . . . , k2 − 1}|s2

j = ·}

Let the I(s) = (I1(s), I2(s)) be the type of an arbitrary set form s. To shorten the notation we will write
I = (I1, I2) instead of I(s) = (I1(s), I2(s)). We denote by nk1,k2

(I) the maximum number of different set
forms that can be generated from a set form of type I by intersection with arbitrarily chosen self-hole sets.
nk1,k2

is defined on all subsets I = (I1, I2) ⊆ ({1, . . . , k1− 1}, {1, . . . , k2− 1}). The following recurrences are
valid for nk1,k2 :

nk1,k2
(∅, ∅) = 1

nk1,k2(I) =
∑
i∈I1

(k1 − i)nk1,k2(I1 \ {i}, I2) +
∑
j∈I2

(k2 − j)nk1,k2(I1, I2 \ {j})

∀I1 ⊆ {1, . . . , k1 − 1} and I2 ⊆ {1, . . . , k2 − 1} and I 6= (∅, ∅)

The first equation is clear. The second equation is implied by the intersection operation. For each position l
there are either k1− l or k2− l different possibilities to place an element of the self-hole set at this position.
This recurrence is solved by

nk1,k2(I) =

[
|I1|!

∏
i∈I1

(k1 − i)

][
|I2|!

∏
j∈I2

(k2 − j)

][(
|I1|+ |I2|
|I1|

)]
.

This can be seen by induction on the cardinality of I. For I = (∅, ∅) this gives nk1,k2
(∅, ∅) = 1, which is

correct. Now assume, that the above equality is true for all subsets with cardinality |I| − 1.

nk1,k2(I) =
∑
i∈I1

(k1 − i)nk1,k2(I1 \ {i}, I2) +
∑
j∈I2

(k2 − j)nk1,k2(I1, I2 \ {j})

=
∑
i∈I1

(k1 − i)(|I1| − 1)!
∏

l∈I1\{i}

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2| − 1

|I1| − 1

)
+

∑
j∈I2

(k2 − j)|I1|!
∏
l∈I1

(k1 − l)(|I2| − 1)!
∏

m∈I2\{j}

(k2 −m)

(
|I1|+ |I2| − 1

|I1|

)

=
∑
i∈I1

(|I1| − 1)!(k1 − i)
∏

l∈I1\{i}

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2| − 1

|I1| − 1

)
+

∑
j∈I2

|I1|!
∏
l∈I1

(k1 − l)(|I2| − 1)!(k2 − j)
∏

m∈I2\{j}

(k2 −m)

(
|I1|+ |I2| − 1

|I1|

)
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=
∑
i∈I1

(|I1| − 1)!
∏
l∈I1

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2| − 1

|I1| − 1

)
+

∑
j∈I2

|I1|!
∏
l∈I1

(k1 − l)(|I2| − 1)!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2| − 1

|I1|

)

=
∏
l∈I1

(k1 − l)
∏

m∈I2

(k2 −m)

∑
i∈I1

(|I1| − 1)!|I2|!
(
|I1|+ |I2| − 1

|I1| − 1

)
+
∑
j∈I2

|I1|!(|I2| − 1)!

(
|I1|+ |I2| − 1

|I1|

)
= |I1|!

∏
l∈I1

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

[(
|I1|+ |I2| − 1

|I1| − 1

)
+

(
|I1|+ |I2| − 1

|I1|

)]
= |I1|!

∏
l∈I1

(k1 − l)|I2|!
∏

m∈I2

(k2 −m)

(
|I1|+ |I2|
|I1|

)

The above expression proves that we can get at most (k1−1)!2 · (k2−1)!2 ·
(

(k1−1)+(k2−1)
k1−1

)
different elements

in the intersection. To show that this bound is tight we choose any k̄ = k1 + k2 different paths P1, . . . , Pk̄

with disjoint predecessor tasks on both task-sets. Then the intersection of the corresponding self-hole sets
consists of exactly (k1 − 1)!2 · (k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
elements.

A.2. Proof of Theorem on Maximum Number of Labels in Chain of Inter
Theorem 2. A collection of g dominating paths P1 ≺dom P2 ≺dom . . . ≺dom Pg ending at the same node
is given. Let the intersections of the corresponding self-hole sets H(P1), H(P2), . . . , H(Pg) form a properly
decreasing chain, i.e., H(P1) ) H(P1) ∩ H(P2) ) · · · )

⋂g
i=1H(Pi). Then, the length g of the properly

decreasing chain is bounded by γ(k1, k2) = [k1 + k2 − 1] · (k1 − 1)!2 · (k2 − 1)!2 ·
(

(k1−1)+(k2−1)
k1−1

)
.

Proof. Every new element of the chain is a result of the intersections made before with one new intersection
with a self-hole set H(Pi). From Theorem 1 we know that there are at maximum (k1 − 1)!2 · (k2 − 1)!2 ·(

(k1−1)+(k2−1)
k1−1

)
different set forms in such an intersection. Every set form has (k1 − 1) + (k2 − 1) entries

which results in [(k1 − 1) + (k2 − 1)](k1 − 1)!2 · (k2 − 1)!2 ·
(

(k1−1)+(k2−1)
k1−1

)
different entries in total. For the

computation of the intersection there are two possible operations:

1. A new set form is generated, where a previously free entry · is specified by an element t1 ∈ T 1 or
t2 ∈ T 2. There exists at most [(k1−1)+(k2−1)] · (k1−1)!2 · (k2−1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
possible entries

to specify.
2. On the other hand, a set form can be deleted. This can happen at most (k1 − 1)!2 · (k2 − 1)!2 ·(

(k1−1)+(k2−1)
k1−1

)
times.

Since each intersection performs at least one of the above operations, this yields to an upper bound of
[(k1 − 1) + (k2 − 1) + 1](k1 − 1)!2 · (k2 − 1)!2 ·

(
(k1−1)+(k2−1)

k1−1

)
.
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