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Causal Inference in Educational Research – Approaches, Assumptions and Limitations 
 
Abstract: 
The Working Paper gives an overview about the topic of causal inference, covered in the Institute on 
Statistical Analysis for Education Policy organized by the American Educational Research Association 
in spring 2013. Because randomized experiments are often difficult to implement into large-scale 
studies in educational research, inference on the causality of different treatments (e.g. different 
teaching approaches) is limited. This paper discusses the possibilities to draw causal inferences in 
non-randomized experiments, and provides an introduction to different analytical approaches, 
namely propensity score analysis, sensitivity analysis and the regression discontinuity approach. The 
main idea behind each procedure is explained, advantages and limitations are discussed. 
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Introduction 

In educational studies, researchers are often interested in drawing causal inferences, such as: “Does 
program A increase the student’s achievement in Mathematics more than program B?” However, the 
apparent success of a program might be caused by other factors than the elements of the program 
itself and it is simply not possible to account for all causes of observed effects and to identify the 
relation between these causes (Schneider, Carnoy, Kilpatrick, Schmidt, & Shavelson, 2007). Thus, it is 
impossible to definitely determine the effect that the programs had on participating students. 
Randomized experiments provide one possibility to overcome this problem. However, randomization 
is often not possible in educational settings. Instead, researchers often apply analytic approaches, 
e.g. propensity scores, regression discontinuity designs or sensitivity analyses to estimate causal 
effects. 
 
As causal inference is a central issue in educational research, the American Educational Research 
Association (AERA) organized a statistics institute about this topic in spring 2013. This paper gives an 
overview about the issues covered in the institute. First, the causal models of Campbell and Rubin 
will be introduced. We then give an overview of different methods for estimating causal effects. For 
deeper insights, we provide recommendations for further reading. 
 

1. Models of Causality 

Donald T. Campbell and Donald Rubin proposed different models of causal relationships and their 
magnitude. Both authors studied effects of known causes instead of the causes of known effects 
(Shadish, 2010). The models will be explained in the following chapters. 
 
Campbell’s causal model  
Campbell’s causal model starts with the identification of two categories of inferences that scientists 
make: 
 
1) Whether the stimulus caused an effect (internal validity) and  
2) to what extent the cause-effect relation can be generalized (external validity) (Shadish, 2010). 
 
Campbell later differentiated between statistical conclusion validity, internal validity, construct 
validity and external validity (Shadish, 2010). In order to enable correct inference from experiments, 
it is crucial that validity is asserted. Threats to validity, also called alternative explanations, have to be 
avoided, since they question drawn inference. For instance, it should be assured that an effect is 
caused by the treatment and not by confounding variables (Shadish, 2010). Table 1 provides 
exemplary threats to validity. 

Tab. 1: Exemplary threats to validity. 

 

exemplary threats to validity 

internal validity external validity 

participants mature during the period of the 
study 

differences between treatment and control 
group 

subjects drop out during the study pre-test influences the participants’ 
performance in the test 
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The design of any study should be analyzed with regards to validity and threats to validity, aiming to 
minimize threats to validity. Internal validity is most important since a) the effect of the treatment is 
crucial for the study and b) it is the basis for generalizations (Shadish, 2010). 
 
Rubin’s causal model  
The approach of Rubin is to look for effects of given causes. For instance, a researcher can study the 
effects different programs have on children’s achievement (Schneider et al., 2007). If the effects of 
the programs differ (e.g. one group reaches higher achievements) and the two groups of children are 
comparable in all respects, then the researcher can conclude that one program is more suitable to 
increase the achievement (Schneider et al., 2007). 
 
A first approach from Rubin and his colleagues to causal inference was to assume the ideal but 
impossible case: An individual receives a treatment A and the effects of the treatment are measured. 
Then time is turned back and the same individual receives treatment B (the control group 
treatment). The causal effect is the difference in the effects of the two treatments (Schneider et al., 
2007).  
 
In Rubin’s model, causal inference is explained as follows: A unit (u), for instance a person, gets one 
of two different treatments (t, c). Treatment variables in experiments are manipulated by the 
researcher; in that sense, given variables like race or gender cannot be treatment variables. Yt and Yc 
are the corresponding responses to the treatments. The causal effect is Yt-Yc. The problem of causal 
inference is that only Yt or Yc can be observed, since each unit can get one treatment only (Holland, 
1986; Shadish, 2010). As a consequence, it is important that the units are assigned randomly to the 
treatment.  
 
The “randomized controlled experiment is the most powerful design for detecting treatment effects” 
(Schneider at al., 2007). However, it is not always possible to conduct a randomized controlled 
experiment due to logistical, financial or ethical reasons. For instance, children cannot be assigned to 
schools randomly. A potential alternative solution is the creation of large-scale datasets that 
approximate a randomized experiment (Schneider et al., 2007). 
 
2. Methods for estimating causal effects 

When working with observational data, the following methods can be used to approximate 
randomized controlled experiments (Schneider et al. 2007, p. 42): 
 

• Propensity Score Modeling 
• Regression Discontinuity 
• Sensitivity Analysis 
• Fixed Effects Models 
• Instrumental Variables. 

 
In the following sections, we describe the first three methods in detail. This article, however, will not 
go into detail regarding fixed effects models and instrumental variables. 
 

2.1 Propensity Score Modeling 

Estimating the causal effect of a treatment is essentially a problem of missing data. As every subject 
in the study either does (treatment group) or does not receive the treatment (control group), but 
never both, we can only compare the outcome of the treatment group with the outcome of the 
control group. However, the effect a treatment would have had on a subject in the control group 
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remains unknown. The results of the two groups may be compared directly when randomized 
experiments are used, as the subjects in the two groups are then expected to be similar. In non-
randomized experiments, however, there is a high risk that the subjects in the treatment group are 
systematically different from the subjects in the control group and a direct comparison may yield 
misleading results. One way to overcome this problem and to make comparisons more meaningful is 
to group treated and non-treated subjects by using propensity scores (Rosenbaum & Rubin, 1983). 
 
Propensity scores quantify the probability that an individual is assigned to the treatment group when 
assignment is not randomized. The propensity score can be formally defined as  

 
e(x) = Pr(t= 1│x), 

 
where Pr(t= 1│x) is the conditional probability of receiving a treatment t, given covariates x 
(Rosenbaum & Rubin, 1983, p. 42). In contrast to randomized experiments, in which only one 
specification of the propensity score function e(x) exists, e(x) is unknown in nonrandomized trials but 
can be estimated from observed data, e.g. by using a logit model (Rosenbaum & Rubin, 1983). 
Thereby, the aim is to control for all variables that likely predict group membership and that are 
expected to be related to the outcome (Shadish, Cook, & Campbell, 2002). The necessary calculations 
can be carried out using statistical software, such as SPSS, SAS, or R. 
 
Approaches using propensity scores 
Propensity scores can be applied in different ways before the treatment effect is estimated. The 
most popular approaches are (Frank et al., 2008; Rosenbaum & Rubin, 1983): 
 

(1) Propensity score matching, 
(2) Propensity score stratification, and 
(3) Inverse-probability-of-treatment weighting. 

 
Propensity score matching aims to “produce a control group of modest size in which the distribution 
of covariates is similar to the distribution in the treated group” (Rosenbaum & Rubin, 1983, p. 48). In 
essence, one looks for twins in the data set, where one twin is in the control group and the other is in 
the treatment group. By calculating propensity scores, each subject’s set of covariates is reduced to a 
single score. Thus, when applying propensity score matching, one simultaneously accounts for 
multiple variables (Shadish, Cook, & Campbell, 2002). In a best-case scenario, subjects are exactly 
matched with regard to all covariates x. Then, an identical distribution of x would be obtained for 
both the treatment and control group. However, in reality we frequently have to use approximations 
as identical matches are rarely possible (Rosenbaum & Rubin, 1983). Since the distribution of x in the 
two groups is more similar in matched samples than in random samples, the variance of the 
estimated average effect of the treatment is lower when matching is applied than when the sample 
is randomized (Rosenbaum & Rubin, 1983). An example for this method is given in the next section. 
 
In the second standard approach, subjects are divided into strata or subclasses with similar 
characteristics. The matching process is based on an algorithm that minimizes “aggregate sample 
differences between treatment and control conditions on the propensity score” (Shadish, Cook, & 
Campbell, 2002, p. 162). Typically, the strata are formed according to quintiles; a total number of five 
subclasses is fairly common (Shadish, Cook, & Campbell, 2002). As each subject in a subclass has an 
equal probability of receiving the treatment, this approach approximates random sampling 
(Schneider et al., 2007). Therefore, stratification allows for direct comparison between the two 
groups within each stratum (Rosenbaum & Rubin, 1983).  
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In the third major approach, each subject is weighted by his or her propensity of being in the 
treatment group. Thus, different propensities of group assignments are adjusted for by using 
corresponding weights. We exemplify this method in the following section (Frank et al., 2008).  
 
Example 
Frank et al. (2008) use sociometric data to analyze whether the American teacher certification 
process by the National Board of Professional Teacher Standards (NBPTS) has an effect on teachers’ 
readiness to help their colleagues. As board certification happens on a voluntary basis, it is not 
possible to assign teachers randomly to the treatment and control groups. Thus, the authors use 
propensity scores to compare certified and non-certified teachers. Two different ways to use 
propensity scores are discussed.  
 
First, one could apply propensity score matching (Method 1) and assign each NBPTS certified teacher 
to another teacher that is not board certified but has a similar propensity of becoming certified. Then 
analyses regarding the differences in outcomes between the matched pairs could be made. The 
problem with this method is that a considerable amount of data is lost because it is only possible to 
analyze those teachers that received the treatment and their matches. All teachers that are not 
board certified and not matched would be removed from the data set. 
 
A second way to apply propensity scores in this example is to regress the outcome of interest on 
treatment, whereby teachers are weighted by their propensity scores. Teachers who receive the 
treatment are weighted by  1

e(x)
 , whereas teachers in the control group are weighted by  1

1−e(x)
.  

 
Thus, the statistical weight of certified teachers increases when the propensity of being certified is 
decreasing. Conversely, the statistical weight of non-certified teachers increases with an increasing 
propensity of being certified. Therefore, the analysis focuses on the comparison between those 
teachers who are certified but had a low propensity and those teachers who are not certified yet had 
a high propensity. Heckman (2005) refers to this estimate as “the effect of the treatment for people 
at the margin of indifference (EOTM)” (as cited in Frank et al., 2008, p. 20). 
 
In studies focusing on treatments that are relevant for policy decisions, the interpretation of this 
calculation is especially relevant. If policy makers are interested in changes in incentives for those 
who receive a treatment (e. g. to become board certified), then estimates of effects should 
concentrate on those subjects who are most likely to respond to policy changes. This corresponds to 
those who opted into the treatment group but have low propensity for doing so. Thus, they might 
not have received the treatment if there were fewer incentives (Frank et al., 2008, p. 19). One would 
also be interested in those subjects who are in the control group but have high propensity for being 
in the treatment group and therefore might respond to increases in incentives. 
 
Advantages and limitations 
Propensity scores are a useful tool for estimating the effect of a treatment when randomized 
experiments are not possible, or when subjects “self-selected themselves into treatment and control 
groups” (Schneider et al., 2007, p. 50). By applying propensity scores, one can correct for biases from 
observed characteristics. Essentially, propensity score approaches are “a version of regression or 
matching that allows researchers to focus on the observed covariates that “matter most’” (Schneider 
et al., 2007, p. 49). Rather than carrying out a regression analysis for the whole sample in non-
randomized studies, propensity scores are used to evaluate whether the covariates are balanced 
between the treatment and the control group. This balance, in turn, supports causal inference, 
because it allows for adjustment of potential bias attributed to the observed variables (Frank et al., 
2008). 
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Despite the advantages of propensity score methods, a number of limitations should be considered. 
First of all, many non-randomized experiments have small sample sizes, but propensity scores work 
best with large samples. Additionally, as the example above demonstrates, the sample sizes can be 
limited by matching or stratifying when the overlap between the groups is low (Shadish, Cook, & 
Campbell, 2002). Furthermore, propensity scores only control for biases from observed covariates, 
while other methods (e. g. instrumental variables, fixed effect models) can also correct for omitted 
variable bias. Hence, the method assumes that no other confounding variables exist that are related 
to the propensity of group selection and to the outcome. However, the cost of measuring some 
variables might be prohibitively high, and even in cases in which the propensity score is calculated 
very carefully, it is impossible to account for all conceivably related variables. Thus, a certain amount 
of hidden bias still remains (Schneider et al., 2007; Shadish, Cook, & Campbell, 2002). To evaluate if 
the effect would be robust to hidden biases, propensity score matching can be supplemented by 
sensitivity analyses (Shadish, Cook, & Campbell, 2002). 
 
Practical application 
Propensity score analyses can be conducted using recent statistical software. Stuart (2012) gives a 
helpful overview concerning available packages and documentations for R, Stata, SAS, and SPSS. In 
the following, we will describe propensity score matching using the R package MatchIt (Ho, Imai, 
King, & Stuart, 2011). Only a few commands are necessary to utilize several matching methods. 
Stratification and weighting are also possible, but not intended by the developers and therefore 
require more complex programming. However, for users that are experienced with logistic regression 
these approaches readily applicable. 
 
We assume a data frame  that contains the variable columns y (criterion), x (treatment), as well as a, 
b, and c (covariates). We want to match the subjects in the treatment group (x = 1) to the subjects in 
the control group (x = 0) regarding their covariates. Finally, we want to test if the matched groups 
differ in y. 
 
First, we match both groups using the “nearest neighbor” method: each subject in the treatment 
group is matched to the subject in the control group that has the most similar propensity score. 
 
match <- matchit(x ~ a + b + c, data=dat, method="nearest") 
 
The object match (that is no data frame yet) can descriptively be checked for balance of covariates 
in the matched groups either using one or both of 
 
summary(match) 
plot(match) 
 
To produce a new data frame consisting only of matched subjects and including the propensity score 
(in the column distance), we use the following command: 
 
dat.matched <- match.data(match) 
 
Now, we can estimate the treatment effect using standard methods, e. g. linear regression: 
 
lm(y ~ x, data = dat.matched) 
 
The regression weight can be interpreted as the causal treatment effect.  
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Recommendations for further reading 
For more information concerning other matching procedures or estimations of the causal effect, Ho 
et al. (2011) give a detailed overview. Examples for the application of propensity scores can be found 
in Becker, Lüdtke, Trautwein, Köller, and Baumert (2012); Frank et al. (2008) and Jackson, 
Thoemmes, Jonkmann, Lüdtke, and Trautwein (2012).  
 
2.2 Regression Discontinuity  

Regression discontinuity design (abbreviated RDD) is a method to estimate a treatment effect in a 
non-randomized study. The usual approach can be administered if there is  
 

- a single outcome or criterion,  
- two groups differing concerning their treatment and  
- a single predictor determining the group individuals are selected to.  

 
There has to be a predefined cut-off in the criterion determining the group membership. An example 
situation would be to test if vocabulary training improves low achieving students’ performance. The 
outcome is the performance in a vocabulary test at the end of a semester. The two groups are a 
treatment group receiving the training, and a control group (for example receiving mathematics 
training). The predictor for selecting the individuals is a vocabulary pretest. The cut-off could be a 
score of grade F in the pre-test. 
 
RDD is different from a randomized experiment in such as there is a predefined selection criterion 
that determines if an individual receives a treatment. The main idea of this approach is that 
individuals close to the cut-off are almost identical concerning the predictor. Therefore, the only 
difference between the two groups close to the cut-off is that one group receives the respective 
treatment. In RDD, the difference in the outcome between these two groups close to the cut-off is 
used as causal effect of the treatment. Accordingly, there is another difference to randomized 
experiments: While in randomized experiments an average treatment effect across the whole sample 
is estimated (by using t-tests or ANOVAs), in RDD this is not necessarily true. Without further 
assumptions, the average treatment effect at the cut-off is estimated and used as causal effect 
(Bloom, 2009). 
 
The general procedure is to estimate a regression that differs with regard to the treatment, and then 
to calculate the difference in the predicted score for the criterion at the cut-off. Therefore, the 
procedure is called regression discontinuity. This general procedure is illustrated in Figure 1. 
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Figure 1: Hypothetical example of a regression discontinuity: estimated regression with and without treatment. 
Solid lines are “real” regressions; dashed lines are the counterfactual regressions. 
 
On the left side, the relation between the vocabulary pretest and the following performance in the 
vocabulary test is shown. This would be the relation if no intervention would take place. The dashed 
line in the middle marks the cut-off, the solid line is the estimated linear regression. On the right the 
relation between the vocabulary pretest and the vocabulary test at the end of the semester is shown. 
The difference is that the individuals below the cut-off received the vocabulary training. Apparently, 
the vocabulary training improved the students’ performance. The dashed lines represent the 
hypothetical (or, as it is usually called, counterfactual) performance of the students if they had been 
in the respective other group. 
 
Different Regression methods for RDD 
To ensure that a RDD yields a precise causal effect, it is necessary to correctly specify the relationship 
between the predictor and the criterion. If this estimation is specified correctly, a RDD can produce a 
good estimate of a causal effect. There are several approaches to specify this relationship: 
 

- Parametric regression (with linear regression as shown in Figure 1 as a special case) 
- Non-parametric regression 
- Semi-parametric regression 

 
Parametric regressions are the most straightforward procedures, as they are relatively well known. 
They comprise linear, quadratic, or cubic relations between predictor and criterion.  
 
Non-parametric regressions are mainly driven by the data. There are several approaches to estimate 
a smooth function based on the observations, which is not restricted by a parametric form. One 
approach is kernel regression. In a kernel regression, the predicted values are based on a linear 
combination of nearest-neighbor data points. Two decisions have to be made: how many neighbors 
are included (i. e. the bandwidth) and how the neighbors are weighted (i. e. the kernel function).  
 
Semi-parametric models combine both approaches. A semi-parametric function contains parametric 
(for example: linear) and non-parametric elements.  
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In contrast to a standard regression analysis, the elements of the regression function are not of 
interest. It is important to specify the relation between the predictor and criterion correctly to obtain 
a valid estimate of the treatment’s causal effect.  
 
Evaluation of the method 
The major advantage of RDD is that causal inference can be drawn in a non-experimental setting. To 
test if a RDD and a randomized experiment would be comparable concerning their results, Shadish, 
Galindo, Wong, Steiner, and Cook (2011) compared the two selection methods in a randomized 
experiment. In general, randomized experiments and RDD led to similar results concerning the 
direction of the effect. Nevertheless, the effect sizes were significantly higher in the RDD design than 
in the randomized experiment. However, the interpretation of this finding is not straightforward as 
both methods estimate different causal effects: a randomized experiment measures the average 
causal effect in the whole sample and the RDD measures the average causal effect at the cut-off.  
 
Shadish (2011) proposed the following guidelines on how to apply an RDD to obtain unbiased 
estimates: (1) reduce self-selection of participants as much as possible, (2) obtain as much potential 
confounding variables as possible to control for their influence, and (3) use large samples. 
 
Practical Application 
In general, RDDs can be performed using diverse statistical software including Stata or R. We 
describe the basic procedure to perform an RDD in R. Understanding of the commands and the 
output requires a basic knowledge of R, the familiarity with the term bandwidth, and the knowledge 
of different types of kernel functions available. 
 
An RDD can be performed using the package rdd (Dimmery, 2013). Under the assumption that the 
data frame dat has the column x containing the predictor variable and the column y containing the 
criterion, the function  
 
rd <- RDestimate(y ~ x ,data=dat) 
 
estimates a RDD and saves it in the object rd. The output appears as follows: 
 
Call: 
RDestimate(formula = y ~ x, data = dat) 
 
Coefficients: 
     LATE    Half-BW  Double-BW   
-0.071228  -0.001703  -0.046338 
 
The function RDestimate() fits a kernel regression model with a triangular kernel function and an 
automatically estimated bandwidth. Based on this model estimation, a causal effect is computed. 
The important part is the LATE, which is the estimation of the local average treatment effect (i. e. 
the causal effect). With summary(rd) a test for significance can be obtained. The user can specify 
the kernel function and the bandwidth using the arguments bw = bandwidth and kernel = 
"kernel function", whereas bandwidth is a number and kernel function is a string 
specifying the kernel function. Finally, a RDD can be visualized using the plot(rd) function.  
 
Note that using the rdd package, only kernel regressions can be fitted. Fitting of other parametric, 
semi-parametric or non-parametric models is not supported. A complete example (using historical 
data) can be found in Dimmery (2012). 
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Recommendations for further reading 
The basic procedure on how to estimate a RDD is described in Bloom (2009). Teknomo (2007) 
describes kernel regression in a hands-on tutorial using an excel sheet. In Fahrmeier, Kneib, and Lang 
(2007), regression models are described, including non- and semi-parametric regression. This 
approach for kernel regression can be found under the (German) headline “Lokale 
Glättungsverfahren” (p. 333). Shadish (2011) gives general helpful advice for estimating causal 
effects under the condition of non-randomization. 
 
2.3 Sensitivity Analysis 

A different approach of dealing with causal inference in studies, in which random design is 
impractical or impossible, is sensitivity analysis (Frank, 2000). Not to be confused with sensitivity 
power analysis (Faul, Erdfelder, Lang, & Buchner, 2004), sensitivity analysis is a method to answer the 
question how robust a certain causal inference is to (unknown) confounding effects. In other words, 
sensitivity analysis assists a researcher in estimating how large a confounding effect would have to 
be to falsify causal inference from an analysis. 
 
Confounding effects 
Confounding variables are variables that correlate with both the predictor (x) and the outcome (y) of 
an analysis. This correlation can affect the results of the analysis and therefore bias the resulting 
(causal) interpretation. For example, a strong relation between migration background and test 
performance can be found in many educational studies. Students with a migration background score 
lower than students whose parents are natives (Stanat & Christensen, 2006). If we assume that the 
“student’s test score is an accurate reflection of his or her mastery of a particular content area” 
(Martiniello, 2009, p. 161), we could draw a causal inference between descent (x) and competency in 
the tested content area (y) from this result, and conclude that migrants are less competent than 
natives. But of course, there are other variables to explain this phenomenon: For example, in any 
text-based assessments, reading abilities are needed to understand the test questions. This simple 
fact can constitute a language barrier for migrant students (National Research Council, 2000) and 
therefore bias test results (Hartmann, 2013). 
 
As long as we know how much a certain confounding variable (like reading ability in our example) is 
statistically related to the predictor of interest (migration background) and to the outcome variable 
(test score), we can easily control for the confounding effect by including the confounding variable(s) 
as covariate(s) in the quantitative model. However, in scientific practice we often deal with 
“circumstances under which it is not possible to measure or control for the potentially confounding 
variable” (Frank, 2000, p. 147). Possible reasons are that the confounding variables are not accessible 
to the researcher, or that it is impossible or unethical to assign people randomly to these variables. 
However, it is possible to assess the robustness of a causal inference to the impact of any unknown 
or unmeasured confounding variable(s). Knowing about the robustness of the inference helps to 
defend the conclusion: The more robust the inference is, the more reasonable it is to interpret the 
predictor (x) as a true indicative of the causal effect. 
 
Calculation  
Assume a standard linear model for a dependent variable (y), a predictor variable (x), and an error 
(e): 
 
 

 (equation 1) 
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If the estimate of β1 is statistically significant in equation 1 (i.e., the t ratio is larger than the critical t 
value for a given level of significance and degrees of freedom), we interpret it as indicative of an 
effect of x on y. 
 
 

 (equation 2) 

 
 
Equation 2 takes a confounding variable (cv) into consideration, which is correlated to both x and y. 
To assess the impact of cv on the inference of β1, we ask “how large must the correlations be 
between cv and y and between cv and x such that β1 is not statistically significant” (Frank, 2000, 
p. 152). To answer that question, Frank provides a statistical framework that boils down to three 
simple steps:  
 
The first step is to calculate the correlation (rx,y) between the predictor of interest (x) and the 
outcome (y) by partialling out all known covariates. We can perform this calculation with any 
statistical software, like SPSS, SAS, or R. 
 
In the second step, a threshold value (r#) for r is defined such that r is statistically significant: 
 

 

(equation 3) 

 
 
n = sample size 
q = number of parameters estimated 
 
In the third step, the impact (k) of any possible confounding variable is defined as the product of 
correlations rx,cv and ry,cv (assuming that rx,cv = ry,cv to maximize the impact). Equation 4 illustrates the 
impact of k on the initial correlation. 
 

 
(equation 4) 

 
 
Finally, rx,y|cv is set to r# and the equation is solved for k. We obtain the threshold of the impact of a 
confounding variable (ITCV) that would invalidate the inference: 
 
 

 
(equation 5) 

Even if we have no knowledge of the identity of the confounding variable, knowing the threshold 
enables discussion of the robustness of the initial effect of the known predictor (x) on the outcome 
(y). We can do so by simply putting the value for ITCV into relation to the strongest impact of all 
known covariates. In discussions, we can ask if theory provides any suggestions for variables that may 
have an impact equal or larger than the value for ITCV. 
 
Recommendations for further reading 
On his website, professor Kenneth Frank provides a Microsoft Excel spreadsheet which automatically 
calculates ITCV for any given tcrit, n, and observed t (Frank, 2013). 
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3. Summary  

The methods presented in this working paper can be used to draw causal inferences in non-
randomized studies. Table 2 shows an overview of the methods presented above. 
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Tab. 2: Methods for estimating causal effects. 

 Propensity Score 
Matching 

Propensity score  
Stratification 

Inverse-probability-
of-treatment 

Weighting 

Regression Discontinuity Sensitivity Analysis 

Basic problem 

 

Non-randomized samples 

When to use 
- to achieve comparability between the treatment and the control group by 
accounting for each person’s probability to be in one of those groups 

- a single outcome or criterion 
- two groups differing concerning their 
treatment 
- a single predictor determining the group 
individuals are selected to 

- to evaluate how robust an effect 
is against hidden biases 
 

Advantages/ 
Disadvantages 

- loss of data because non-matched persons are no longer viewed 
- propensity scores only control for bias from observed covariates 
- certain amount of hidden bias still remains 
- large samples required 

- RDD is considered to have the highest 
internal validity (the ability to identify causal 
relationships in this research setting) 
- external validity may be lower, as the 
estimated treatment effect is local to the 
discontinuity 
- large samples required 
 

 

Procedure 
- producing a control 
group of modest size 
that has (nearly) the 
same distribution of 
characteristics/ 
covariates than the 
treated group 

- dividing persons with 
similar characteristics  into 
strata or subclasses 
(typically into quintiles) 
- each subject in one 
subclass has an equal 
probability of receiving the 
treatment 
- comparison between the 
two groups within each 
stratum is possible 

- each person is 
weighted by his or 
her propensity of 
being in the 
treatment group 

- pretest-posttest two group design 
- pretest is used to assign persons to the 
treatment group (The main idea of this 
approach is, that individuals close to the 
cut-off are almost identical concerning the 
predictor) 
-the choice of cut-off value is usually based 
on one of two factors 
 

- calculating the correlation 
between the predictor of interest 
and the outcome, by partialling 
out all known covariates 
- defining a threshold value 
- defining the impact of any 
possible confounding variable as a 
product of the correlations 
- helps to discuss the robustness of 
the initial effect of the known 
predictor on the outcome 
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