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A Large Trader’s Impact on Price Processes

Abstract

The purpose of this paper is to study a large trader’s impact on the price process.
Maintaining the usual assumptions of complete and frictionless markets, we model
a pure exchange economy where two types of symmetrically informed agents exist:
the large trader, interacting with the other type of agent, so-called reference
traders. The large trader chooses his policy such that his expected utility from

terminal wealth is maximized.

It turns out that drift and volatility of the risky asset’s return change stochas-
tically according to the large trader’s trading strategy while these coefficients
remain constant in the same economy without a large trader. We show how the
stock’s drift and volatility depend on the large trader’s trading strategy which
in turn depends largely on his risk aversion. Furthermore, we present upper und
lower bounds for the stochastic drift and volatility coefficients. Surprisingly the
large trader’s wealth process is independent of his impact on the price process.

(JEL-Classification: C60, D40, D51, D90, G11, G12)
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1 Introduction

A non-price-taking investor influences market prices since his order volume is large
compared to the order volume of price-taking market participants. Therefore
a non-price-taking investor is often called large trader or large investor. The
purpose of this paper is to study a large trader’s impact on the price process.
We are interested in the large investor’s optimal terminal wealth, his optimal
investment policy as well as in the effects of this policy on the price process.

Up to now, almost all models describing stock markets assume price-taking in-
vestors. However, an observation of today’s security markets reveal the everin-
creasing importance of financial institutions in the market-place. Large investors,
i.e. agents wealthy enough to make it worthwile taking account of the effect of
their tradings on the market, are particularly prevalent in smaller security mar-
kets. A large investor may have a significant effect on prices and hence may
prefer to choose a strategy taking the price impact of his own behavior into
account. Therefore it is reasonable to develop a model describing stock markets
containing a large trader and to analyze the consequences of his actions on prices.

Our approach to this problem is to model a pure exchange economy, maintain-
ing the usual assumptions of complete and frictionless markets and symmetric
information. The economy considered is based on two types of agents: the large
trader, interacting with the other type of agents, so-called reference traders, such
as uninformed speculators. The effect of the large investor’s presence in the mar-
ket is then studied by comparing equilibrium prices in the reference economy,
i.e. the economy without the large trader, to the prices in an economy where
the large trader is active on the market. We assume, the large trader chooses
his policy such that his expected utility from terminal wealth is maximized. We
switch to a dual optimization problem and adopt martingale methods ( Pliska
(1986), Karatzas, Lehoczky and Shreve (1987), Cox und Huang (1989, 1991))
making the analysis highly tractable.



Rational expectation models, like the one of Brennan and Schwartz (1989), as-
sume that reference traders are only concerned about the long-term prospects of
the risky asset. Since the risky asset’s terminal value is entirely determined by
an exogenously given random variable which is interpreted as the fundamental
value of the asset, agents’ expectations are solely driven by the gradually revealed
information about the value of this state variable. In particular agents do not
alter their expectations in reaction to changes in the current price. Empirical evi-
dence contrasts, however, with this demanding assumption on agents’ rationality
in this Radner-type equilibrium approach. When making trading decisions for
very short periods, like in intraday dealing, investors seem to rely more on the
information conveyed by current price movements than on the long-term funda-
mental prospects of the assets. In fact there seems to be a positive feedback effect
of current price changes on expectations, theoretically justified for instance by
De Long, Shleifer, Summers, and Waldmann (1990). This eztrapolative way of
expectation formation is a central ingredient of the Frey/Stremme (1997) model
which serves as basis of the reference model of this paper.

Recent studies, modeling the large trader in a continuous-time setting are those of
Cuoco and Cvitanic (1996), Cvitanic (1997a,b) and El Karoui, Peng and Quenez
(1997). These models exogenously specify a price dependence on the large in-
vestor’s policy and do not require market clearing. Cvitanic solves the large
trader’s optimal investment problem while Cuoco and Cvitanic analyze the large
trader’s optimal consumption problem. But both papers only allow the large
traders policy to affect the instantaneous drift but not the instantaneous volatil-
ity of the security price. Cvitanic and Ma (1996) assume that the drift and
volatility functions can both be nonlinear in the price process and also depend
on the wealth process and the portfolio process of the large investor and consider
the problem of hedging contingent claims but without imposing any equilibrium
conditions. They use the theory of forward-backward stochastic differential equa-
tions and have to impose quite hard conditions on the drift and diffusion terms.

Lindenberg (1979) was perhaps the first in analyzing the large investor’s optimal
consumption problem in a discrete two period equilibrium model. Basak (1997)
considers in a discrete time model the optimal consumption choice of a large
investor and the implications on asset prices in a price-leadership model that



is consistent with rational expectations. Working also in discrete time, Jarrow
(1992, 1994) exogenously specifies a dependence of asset prices on the non-price-
taker’s trading strategy, and focuses on market manipulation strategies which
generate arbitrage opportunities for the non-price-taker.

The present paper is organized as follows: In section 2 we explain the economy.
Section 3 contains the large investor’s optimal investment policy in a general
setting which is then, in section 4, applied to the model of section 2 to analyze
the impact of the large trader’s optimal investment policy on the price process.
Section 5 concludes the paper. Appendix A contains the theory of dynamic
replication of attainable contingent claims in an economy where asset prices are
influenced by the large trader’s wealth and policy, which is used in section 3.
Proofs can be found in Appendix B.



2 The Economy

2.1 Discrete Reference Economy

Consider a pure exchange economy with an infinite number of trading dates
t=0,1,2,..., where a risky asset (stock) and a riskless asset (bond) are traded.
The price of the risky asset, S, is expressed in units of the price of the safe asset.
That is, the price of the safe asset serves as a numeraire for the price of the
risky asset. Moreover, idealizing the fact that the bond market is far more liquid
than that for the risky asset, we suppose the market for the riskless asset to be
perfectly elastic.

For every t there is a generation of agents born, living for two periods. The
young agents born at time ¢ receive an exogenously given stochastic wealth Y;
and determine their demand for stock and money market account by maximizing
the expected utility of next periods wealth. At time ¢, every agent a € A forms his
demand for the risky asset as a function of wealth Y;* and the proposed Walrasian

price s:
DYy, s) = argr(rilzach [u (Y;“ +d-(Spyr — s))] , (1)

where §t+1 denotes the expected next periods price. Their holdings of the money
market account are determined by the budget identity. The equilibrium asset
price S; at time ¢ is then defined by the market clearing equation:

ZDt(Y?,SO =1, (2)

acA
where we have normalised the total supply of stock to unity. Old agents living
already one period at time £, simply consume and disappear from the market.
That is, we are working in an overlapping generations model without bequest and
without first period consumption. It is a stylized model of a market where agent’s
investment decisions are made sequentially over time and where each decision is
determined mainly by short-term considerations. Market participants might be
managers from investment funds who are managing a fluctuating, exogenously
given amount of assets. Typically these investors are (at least partly) compen-
sated according to the performance of their portfolio. This performance is usually
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evaluated at certain dates such that the investment decisions of these agents are
often aimed at the next evaluation date.

Tastes of Agents
Now we introduce our assumptions on utility functions and expectations of our
reference traders. Since our focus is not on aggregation problems, we simply

assume the existence of a representative reference trader (in the following called

reference trader). His utility function u exhibits constant relative risk aversion

v, l.e.

ﬁslﬂ with v > 0,7 # 1

u(s) = (3)

In(s) fory=1

and

Beliefs of Agents

We assume that the reference trader takes the proposed price s as a signal and
determines the expected next periods price §t+1 as

§t+1 =8 &1, (5)

where {£;}:cv is a sequence of independent and identically distributed positive
random variables with F(g;) > 1. Note that there is a positive feedback from the
proposed price into agents expectations: after a rise of s, the reference trader
anticipates a rise of the future price and in the case of a price decline he expects
the future price to go down.

Equilibrium
With (1) the reference trader’s demand for stock is now given by

Di(y,s) = argmaxE [u (y+ d- (Spp1 — S))]
= argr(rilZach[u (y+d-s- (e —1))]. (6)
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Since {&;}s v are identically distributed, the demand function is independent of
time. The first order condition for this portfolio problem,

Elly+d-s-(ee1=1))7" s (601 = 1)] =0,

implies that the demand function D is homogenous of degree one w.r.t. the
wealth y :

D(a-y,s)=a-D(y,s) forall a>0.
It is also homogenous of degree zero w.r.t. the wealth and stock price (y, s):

D(a-y,a-s)=D(y,s) forall a>0.
It follows that D is of the form:

Y
D(y,5)="2-D(1,1) (7)

where D* := D(1,1) is the reference trader’s demand of stock if his wealth and
current stock price both are one. Since D* > 0 the reference trader’s demand
function is decreasing in the stock price s and increasing in wealth .

We further assume that the process of the reference trader’s wealth is of the form
1
Yoy = Y- exp{(ozy - §0§)At+ayvAt §t+1} (8)

where {&}icv is an ii.d. sequence of standard-normally distributed random
variables.

Since in equilibrium s% - D* = 1 must hold, the equilibrium stock price process
fulfills

1 —
Sepr = D*-Yiy = D*-Y;-exp {(ay - §U§>At + oy, VAL §t+1}
1

That is, the equilibrium stock price process is driven by the same process as the
wealth process.

Note that reference trader’s expectations are rational if and only if

1
£r = exp {(ay — §0§)At + oy, VAL §t+1} for all t € IN.



We now take a non-price taking investor into consideration.

Equilibrium with a large investor

If we denote the large investor’s wealth with X and the proportion of his wealth
invested in the stock with 7, then the function of total demand for the risky asset
has the following representation:

T
G(t,y,s, 7, x) =D*-g+—
s s

Market clearing requires then that

G(t, }/;,St,’ﬂ't,XO = D* e =1. (10)

2.2 Continuous Time Economy

In order to get a clearer picture of the effect the large trader’s action has on the
equilibrium stock price, we will now reduce the intervalls between subsequent
trading dates and pass to the continuous time model. This brings us closer to
continuous time optimization models. The details of this transition to the limit
can be found in Frey and Stremme (1997, p.360).

In the following we assume that the process of the reference trader’s wealth fulfills
ay; = Yia,dt + Y;0,dW,, 0<t<T, (11)

that is for ¢ € [0,T] we have Y; = Yyexp{(e, — 30,)t + 0,W;}. The equilibrium
stock price of the reference model is then given by

dSt = St()[ydt + Sto-yth, 0 S 13 S T, (12)

which is equivalent to

1
S; = Spexp {(ay — §U§>t + ath} , 0<t<T.
The large trader’s wealth process is the solution of the stochastic differential
equation

1
dXt = WtthdSt (13)
t



with Xy = .

For simplicity we assume that the large trader’s strategy is constant. Since (10)
is equivalent to S; = D*Y; + 1, X; we get with (11) and (13)

1
(1-n7 X, §> dS; = D*Y,a,dt + D*Y,a,dW;, 0<t<T.
t

The division by 1 — 72X, s% yields an representation of the form

dSt = St()étdt + StUtth

with
__Dv,
@ = St — W?Xtay
and
D*Y,
Oy =

S =X,V

So by using again the market clearing equation to replace the stock price in
the denominator we get that the equilibrium stock price process satisfies the
stochastic differential equation

dSt = St()[(t,w,ﬂ—t,Xt>dt -+ Sto-(t,w,’/rt,Xt>th, 0 S 3 S T, (14)

with Sy = D*Y, 4+ my X, and the drift and diffusion parameters being defined as

(

Qy, X:<0
* X:>0, D*Yi+m (I—Wt)Xt7’-‘0
D*Y; t>0, t+7e )
alt,w,m, Xe) = DVEm(—m% % (15)
wm{l=m) X Ty 7 Xe+ D3>0
L 0, else.
4
Ty, X:<0
* X:>0 D*Yt—l—ﬂ't(l—ﬂ't)Xt#-‘O
— D*Y; =Y, »
O-(t7w77rt7Xt> = 9 D Vitmll—mX: (16)
D Yt—l—ﬂ't(l Wt)Xt Yy T Xs - D*Y3>0
L 0, else.

So we have an explicit expression for the influence of the large trader’s portfolio
process and wealth process on the drift and diffusion coefficient of the price
process. If the portfolio process is constant, then the solution of the differential
equation (14) with the drift and diffusion coefficients (15) and (16), respectively,
is the stock price of an equilibrium model.



3 Investment Policy of a Large Trader

We now determine the large investor’s optimal trading strategy, i.e. that policy
7 which maximizes his expected utility from terminal wealth X7 :

(PP) max EU(X7T) (17)
wEA(x)

The optimal policy is calculated for diffusion price processes with arbitrary drift

and diffusion coefficients and then specialized to the situation where these coef-

ficients are given by equations (15) and (16).

3.1 Arbitrary diffusion price processes

As before, we consider a continuous time economy with finite time horizon T
where two assets, a riskless asset (bond, serving as the numeraire) and a risky
asset (stock), are traded. The stock price process is given by the stochastic
differential equation

dSt = St()[tdt + Sto-tth, 0 S 13 S T, SO given, (18)

where {W,}icjo.7] is a standard Brownian motion on a complete probability space
(Q, F, P) with the augmentation under P of the filtration 7 = {F};cjo.r] gener-
ated by the Brownian motion W. All stochastic processes encountered throughout
this paper are progressively measurable with respect to F. The drift and diffusion
parameters «; and oy, respectively, of the stock price are of the form

ay = a(t7w77rt7Xt>7 (19)
Oy = O-(t7w77rt7Xt>7 (20)

where as before X; and 7; denote the large investor’s wealth and the proportion of
wealth invested in the stock at time ¢,  respectively, and
a:[0,T] x Q2 x IR* - IR and ¢ : [0,T] x Q x IR — IR are arbitrary func-
tions. Furthermore, we set @; := a(t,w,0,0) and 7; := o(t,w,0,0). We assume
that the large trader is endowed with initial wealth z > 0 and no holdings in the
stock.



Definition 1

A trading strategy or portfolio process is any progressivly measurable, IR— valued
process m with

T T
/ |7rtXtO[t | dt + / (ﬂ—tXto-t>2 dt < 00. (21)
0 0

Using a trading strategy m, the large investor’s wealth process X = X®" then
satisfies the stochastic differential equation

dXt = ’ﬂ'tXtOétdt -+ ’ﬂ'tXtO'tth, 0 S 3 S T, XO =x. (22)

Definition 2

A trading strategy is called admissible for initial wealth > 0 if X;”" > 0 holds
for all ¢ € [0,7] almost surely. For initial wealth z > 0 we denote the set of
admissible trading strategies by A(z).

Assumption 1

The large trader’s utility function U 1is a strictly increasing, strictly concave,
continuously differentiable function U : (0,00) = IR with

lim U'(z) = oo, lim U'(z) =0.

z—0 T—00

If the large trader’s utility function U is of the HARA class with coefficient v > 0,
then U satisfies this assumption. The conditions of the assumption guarantee
that the marginal utility function U’ has a continuous, strictly decreasing inverse
I:(0,00) = (0,00). We introduce the function

Uly) == max{U(z) — ay} = U(I(y)) — yI(y). (23)

>0

As a direct consequence we get the useful inequality

U(I(y)) 2 U(z) +y(I(y) — ), 2,y >0 (24)

We generalize the definition of the risk premium process and define the process
Q,
ra(t) == = +A'), (25)

Ot
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where A = (A%, \!) € IR? is a bounded, twodimensional process. This definition
takes into account that the risk premium depends on the large trader’s portfolio
process and wealth process and therefore can be different from the risk premium
g—: of the reference model without a large trader.

Furthermore, we define

Z0(t) = exp{— /0 e (8) AW, — : /0 tﬁ;i(s)ds}, (26)

the discount processes

Ba(u,t) = exp{ t)\o(s)ds} (27)
BA(t) = Bx(0,1) (28)

and the stochastic deflator process

Hy(t) = Zx(t)BA(1). (29)

for bounded processes A = (A%, A\!).

By Ito’s lemma we get
T
H)\(T>XT = x4+ / HA(t)Xt (71—1;0[1; — )\0(t> — K;)\(t>7rt0-t)dt
TO
+/ HA(t)Xt(’ﬂ—tO-t — KZA(t))th
0

If we define the nonnegative function g(t,w,r,z) : [0,7] x Q x IR* — IR as

Gg(t,w,A) = sup [mcoz(t,w,w,x) — N2 — kymwo(t, w, T, x)]
(m,z)ER?
0 a0
= sup [mcozt —xX — oy (r +A ) ], (30)
(m,z)R? It

then g gives the supremum of the drift of HX and will be useful for further
calculations.

Assumption 2

The function §(t,-) is convez.

11



Under this assumption, the effective domain Ny == {A € R? : §(t,\) < oo}

of §(t,-) is bounded and convex.! The family of twodimensional processes A,

satisfying A\, € NV; for all ¢ > 0, is denoted by N.

We impose the following assumption:

Assumption 3

The function §(t,-) is bounded on its effective domain, uniformly in t. The sets

N are bounded uniformly. Further, the set N is not empty.

Since A is bounded, the process Z, is a martingale for any A € N. Therefore by
P)A) := E[Z\(T)14) = E)A], AcFr

a probability measure is defined and due to the Girsanov theorem the process
t
Wi(t) .= W, —/ Ka(s)ds
0

is a P* -Brownian motion.

Now we are able to formulate the following proposition about the relation between
the primal optimization problem (17) and the dual optimization problem

(DP) &P [ff )+ [ AT A»dt] (31)

where y is a positive real constant.

Proposition 1

(a) Lety be a positive, real constant and m € A(x) be an admissible strategy for
a large trader with initial wealth © > 0. Then the following inequality holds
for all processes A € N':

BUCKH) <o+ B [0 T) + | " 05, . @)

(b) If for the pair (7,2) € A(z) x N inequality (32) holds as an equality, then
the strategy T is a solution of the primal optimization problem (17) and h)

is a solution of the dual optimization problem (81).

1See Rockafellar (1974).

12



(¢) Relation (32) holds as an equality if and only if the following three conditions

are satisfied:

Xr = I(yH;(T)) (33)
9t ) = ﬁt)ztat+)2ti°(>+frtf(tam(t> (34)
E[H;(T)Xy] = x—i—E[ / H; ()3t M) dt] (35)

PROOF: see Appendix B.

This proposition suggests the following procedure for solving the primal opti-

mization problem:

STEP 1: For any y > 0 determine a solution /):y of the dual problem.

STEP 2: (a) For any y > 0 and the contingent claim B = I(yH; (T)) de-
termine the arbitrage-free price h(0) = h,(0) and a replication
strategy m € A(h,(0)).

(b) For the initial wealth = determine y = y, such that = = h,(0).

So we divide our problem mainly into two parts. First, we determine the optimal
terminal wealth and then we determine a strategy which replicates this terminal
wealth.

All results concerning the theory of replicating a contingent claim in an economy
where the stock price is effected by a non-price-taking-agent’s wealth and policy
can be found in Appendix A.

Proposition 2

Let X = /)\\y be a solution of the dual optimization problem (31) and let y = y(z)
be such that

= h,(0) = B> [@ / Bx ()G (t, A dt]

(a) The large investor’s optimal terminal wealth is given by Xr = I(yH;(T)).
For the optimal wealth process the following holds:

X, = B> [XTﬁA / B5(s) s,Xs>ds\ft]

13



(b) The portfolio process &, satisfying
ﬁ—tXt O-(t,’ﬁ—t,Xt> = ¢X(t>6§1(t>,

is a solution of the primal optimization problem (17). The process 15 de-
notes the integmnd wn the representation of the Px—martingale M;(t) =
ViBs (1) fo B5(s) ( ))ds as a stochastic integral dM5 = )5dW5 with
V; = esssup,c v B [XTﬁ)\tT ft Bx(t,8)g s)\)dsﬂ].

3.2 A specific diffusion price processes

We now return to the model of section 2 and apply the results of the previous
subsection. First, we compute the function §. It is easy to show that

gt,)) = sup [mza(t,m,z) — 2" —12o(t, T, ) (@ + )\1>]
(W,:E)ER2 Uy

{o A =0 =0

oo , otherwise
for all t € [0, T]. So the effective domain of §(¢,-) is a singleton for all ¢ € [0, T]
N, = {(A% AN e IR?: §; < o0}
= {(0,0)}.

Hence, the set A only consists of the two-dimensional process A with A, = (0,0)
for all ¢ € [0, T]. For any y > 0 the dual optimization problem

inf B [U(yHA(T)) [ "m0t )\t)dt]

has the unique solution . Then the large investor’s optimal terminal wealth is
again given by equation (33) and we simply have to compute that y for which
the arbitrage-free price of the claim I(yH5(T')) equals the initial wealth x. That
is y has to satisfy the condition

© = hy(0) = B | 85(T) I (yHy(T / B (1) ]

which reduces to

o = hy(0) = B> [83(T)I(yH5(T))]

14



since §(t, /)\\) = 0. If the large trader’s utility function U is of the HARA class with
coefficient v > 0, then U satisfies the conditions imposed on the utility function
in section 3 and for any initial wealth x > 0 the equation above has a unique
solution y. Further, for these utility functions, the inverse I of U’ is given by

Iy) =y 7. (36)
The following proposition describes the large trader’s optimal trading strategy.

Proposition 3 (Optimal investment policies)

Let the large trader’s utility function U be from the HARA class. Then the fol-

lowing two statements hold:
(a) There exists an optimal trading strategy given by
L 1 oY, 1 o2Y; _\? Y;
2 Qy Xy 2 Qy Xy Xt

for allt € [0,T). Fory > a,/o; we have 0 < #f' <1 and for v < o, /0. we

have 7l > 1. Hence, he holds a long position in the risky asset.

(b) There exists a second optimal investment strategy given by

1 02 Y, 1 02 Y, 2 Y,
a0 = Z(1—-y2EDY) - Z4f{1-y2ED) 44D
2 ay X, 2 ay X, X,

if v < ozy/crj. Since 77 < 0, he holds a short position in the risky asset.

PROOF: see Appendix B.

Figures 1 illustrates the large trader’s optimal strategy for different risk aversion
parameters . Panel A contains a sample path of the large trader’s investment
strategy when his risk aversion is relatively strong with v = 2. It is easy to see
that the fraction of wealth invested in the risky asset at time ¢, 77, is always
above 100% and always below 125%. The trading strategy’s upper bound of
125% corresponds to the optimal trading strategy in the reference model. Panel
B depicts a possible sample path of the optimal investment strategy when the
large trader exhibits risk aversion with v = 1 (log-utility). The strategy #'

15



oscillates quite heavily between the lower bound of 100% and the upper bound
of 250%.

Now we compare the large trader’s optimal terminal wealth with the terminal
wealth he could reach in the reference economy where his trades have no effect
on the stock price. In the latter case the stock price process is a geometric

Brownian motion satisfying
dSt = St()[ydt -+ Sto-yth, 0 S 3 S T.
In this case we find

i(t,\) = sup[rza, —z)° — 120, (% + )\1>]
T,T Y
B {o A =0 =0

oo , otherwise.

that is the function ¢ is the same as in the case studied before. Therefore the
sets V; and N also are the same and the dual optimization problem has also the
same solution A. The large trader’s optimal policy now is given as

. 1 o

Ty = — _g

Y Oy

for all ¢ € [0,T]. From equation (50) of the proof of Proposition 3 it follows that
7, > #f > 1if vy < a/o? and that 7, < 7 < 1if y > /0.

16



Figure 1: Optimal investment strategy #” and its boundaries

Parameters: X,=10 Y; =100 D*=1 o, =0.1 0,=0.2

Panel A: v = 2 (the large trader’s relative risk aversion)

0.5}
0 0.1 0.2 0.3 0.4 0.5 lime
Panel B: v =1 (the large trader’s relative risk aversion)
2.
1.
1
0.5}
0 0.1 0.2 0.3 0.4 0.5 lime
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The next result follows immediately from the fact that the dual problem has the
same solution in both economies.

Proposition 4

The large trader’s wealth process is unique and independent of his impact on the
Price process.

PROOF: Since #,0(t, 7y, X;) = % = 7o, and a; = ‘;‘—zat (the last relation will

1
Y Ty
be shown in the next section) the stochastic differential equations

dXt = Xt’ﬁ't()[(t, ’ﬁ't, Xt>dt + Xtﬁ'ta(t, ’ﬁ't, Xt>th
and
dXt = Xtﬁto[ydt + Xtﬁ—to-yth
have the same solution. O

So we have found that the large trader has neither an advantage nor a disadvan-
tage from the fact that his trades influence the stock price. This result holds for
any utility function that satisfies the conditions imposed on the utility function
in section 3.

18



4 A Large Trader’s Impact on Price Processes

In this section we analyze the impact of the large trader’s optimal investment
policy, which we have deduced in the previous section, on price processes. First,
we compare the risk premium of the stock price in the model where the large
trader is active, with the risk premium of the stock price in the reference economy.

Proposition 5 (Risk premium)
The risk premium equals that in the reference economy, that is we have:

MW g<t<T

oy Oy

Proof: The statement is true since in equilibrium the drift and diffusion parame-

ters a and o satisfy

PR D*Y;
at,w, 7y, Xy) = - ———y,
D*}/; + ’ﬂ't(l - 7Tt>Xt
PR D*Y;
o(t,w, s, X) = —0y.

D*Y, + #,(1 — #,) X,
O

Now we consider the drift and diffusion terms of the resulting stock price in detail.

Proposition 6 (Drift and diffusion coefficients)

The drift and diffusion coefficients o and o, respectively, are of the form

A 1l o, 1
a(t,w, 71y, Xy) = — —g —

Y Uy Ty

A 1l g, 1
O-(t7w7ﬁ-t7Xt> = _g =~ Oy

Y Uy Ty

for allt € [0,T].
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Proposition 7 (Bounds for drift and diffusion coefficients)

(a) If the proportion of wealth that the large trader invests in the risky asset
is is greater than one (#F > 1), upper and lower bounds for the drift and

diffuston coefficients are given as follows:

- 1l «

a, < alt,,X;) < ——=a, 0<t<T,
Y Oy
S 1 a

oy < o(t, 7, Xy) < — =0, 0ZtLT
Y Oy

(b) If the proportion of wealth that the large trader invests in the risky asset is
between zero and one (0 < #f < 1), upper and lower bounds for the drift

and diffusion coefficients are given as follows:

S 1 a

Qy > a(t77rt7Xt> > — Ty Qy, 0<t<T7
T Oy
S 1 a

Uy Z O-(t77rt7Xt> Z __20y7 OSt<T
T Oy

(c) If the large trader has a short position in the risky asset (77 < 0), upper
and lower bounds for the drift and diffusion coefficients are given as follows:
1 Xt O[y

—; D*Y g O[y < O[(t,’ﬁ—t,Xt> < 0
t

1 Xt Qy
v D*Y; o2

Especially, the expected stock return is negative in the case that the large

Uy < U(t, ’ﬁ—bXt) <0

trader is short in the risky asset.

PROOF OF PROPOSITIONS 6 AND 7: If we use equation (50) then we get

D*Y, +#,(1 — 7)) X, X, o2
— 1 A~ 1 A — Y o
DY, TR =T By = 7 g,
and the bounds follow. O

If the large trader’s initial wealth tends to zero in comparision to the reference
trader’s wealth, then the volatility of the model with the large trader tends to
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the volatility of the reference model. If the large trader’s initial wealth tends to
infinity in comparision to the refernce trader’s wealth, then the large trader holds
all risky assets and the volatility is zero.

Figures 2 shows two possible sample pathes of stock volatility. The sample path
in Panel A corresponds to the situation where the large trader is again relatively
risk averse with v = 2 and does not deviate to much from its lower bound, namely
the volatility of o, = 0.2 in the reference economy. In contrast, the sample path
in Panel B oscillates again quite wildly corresponding to the oscillations of the
large trader’s investment strategy in Panel B of figure 1.

In the previous section, we have seen, that the large trader’s wealth process is
independent of his impact on stock prices. The stock price processes are not the
same. This may be confusing at first glance. The reason for this observation
is, that the wealth processes are identical but not his portfolio processes. In
the economy where he influences the stock price, his optimal strategy is always
smaller than that in the other economy. So on the one hand, the fraction of wealth
invested in the risky asset is smaller, but on the other hand the equilibrium stock
price and the expected return is higher than in the economy where he does not
influence the stock price. These two effects compensate each other so that the
wealth processes are the same.
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Figure 2: Stock volatility o(-,#”, X) and its boundaries

Parameters: X, =10 Y¥; =100 D*=1 «, =0.1 0,=0.2

Panel A: v = 2 (the large trader’s relative risk aversion)

0.1F
. Time
0 0.1 0.2 0.3 0.4 0.5
Panel B: v =1 (the large trader’s relative risk aversion)
0.5
0.
0.
0.
0.1}
. Time
0 0.1 0.2 0.3 0.4 0.5
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5 Conclusion

In this paper we analyzed the impact of a large trader’s optimal investment policy
on the stock price process in an economy with finite price elasticity of market
demand. The latter property is mainly due to the extrapolative (instead of ratio-
nal) ezpectation formation proposed by Frey and Stremme (1997). The finiteness
of the price elasticity induces a feedback effect on drift and volatility of the stock.

We have shown that the drift and the volatility are higher than in the reference
economy where no large trader is in the market. Furthermore, the risk premium
remains unchanged and the large investor’s optimal final wealth is exactly the
same as in an economy where his action has no price impact. Hence, the large
trader has neither an advantage nor an disadvantage from the fact that his trades
affect the stock price. Obviously, small investors do not have any disadvantage
from the presence of the large trader since the stock’s risk premium is independent
of the large trader’s impact on the stock prices. But on the other hand, if the large
trader is in the market, drift and volatility of the stock become stochastic and as
a consequence, from a small trader’s view, the market appears to be incomplete
so that he is not able to hedge options written on this stock.
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A Replication of Contingent Claims

In this appendix we give a short overview of the theory of replicating a contin-
gent claim in an economy where the stock price depends on the large investor’s

investment.

For some technical reasons, we have to enlarge the set of wealth processes by also
admitting consumption. A (cumulative) consumption process is a nonnegative,
nondecreasing process ¢ with ¢g = 0 and ¢y < oco. The wealth process X*™°
corresponding to a trading strategy 7 and a (cumulative) consumption process ¢
then is the solution of the stochastic differential equation

dXt = Xt’frt()[t(’/rt,Xt>dt -+ ’ﬂ'tXtO't(’ﬂ't,Xt)th — dCt, 0 S 3 S T, XO =x.

We call a pair (7, c) of a trading strategy and a consumption process admissible
for the initial wealth z > 0 if X;”™° > 0 holds for all ¢ € [0, T] almost surely. The
set of admissible pairs of trading strategies and consumption processes is denoted

by A.(z).

Note that the theory presented in this appendix represents the large trader’s
view. Since the stock price is influenced by the large trader’s policy, the market
is incomplete from the view of a small investor (who does not know this strategy).
So a small investor is not able to replicate a contingent claim. Since we only are
interested in a replication strategy for the large trader, this does not bother us.

Definition A.1

(a) A contingent claim is any Fr— measurable, nonnegative random variable
B with EB? < cc.

(b) The arbitrage-free price of a contingent claim B is defined as

h(0) :=inf{x > 0:3(mc) € A(z) with X7"° > B}

(c) A replication process is any wealth process X with X7 > B and X, = h(0).

(d) A contingent claim B is called attainable, if an admissible portfoliow € A(z)
exists with X7™ = B a.s.
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For a contingent claim B we introduce a stochastic value process V by setting

T
V(t) := ess sup E* [Bﬁ)\(t,T) —/ Bir(t,$)G(s, As)ds
AeN t

I
We now give some lemmata which will be needed for the proof of Proposition A.1.

Lemma A.1

For any contingent claim B the value process {Vi}icor satisfies the dynamic

3

programming equation

V(1) = essup B [v<9>m<t,9> - [ Bit.s)ats 0 )as

for all 0 € [t,T).

PROOF: The proof is analogous to the proof of proposition 6.2 in Cvitanic (1997a)
if the random variable J,(6) is defined as

1,(60) == B> [VTﬁA(Q,T) - /9 " 56,935, )\s)ds‘Fe]

fort € [0, 7] and 0 € [t,T). O

Lemma A.2

Let us consider the process V' in its cadlag modification. Then for every A € N
the stochastic process @y defined by

Qx(t) = V(£)Bs(2) — /0 ()5, 0)ds, 0<t<T

is a P*— supermartingale with cadlag paths.

PROOF: The proof of lemma 6.3 in Cvitanic (1997a) for the economy without a
non-price-taking-agent can be repeated using the modified definition of @), and
V. O

We are now able to proof the following Proposition.
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Proposition A.1

For any contingent claim B we have h(0) = Vy. Furthermore, there exists a pair
(#,¢) € Ay(z) with XV ™ =V,

PROOF: (following the proof of theorem 3.5 in Cvitanic (1997b))

First, we show V > h(0). We therefore look for (7,¢) € Ay(Vy) which satisfies
V = X"%¢ Due to Lemma A.2

Qx(t) = ViBi (1) /@\ Yds, 0<t<T

is a P*— supermartingale for any A € N. So we get from the Doob-Meyer-
decomposition and the martingale representation theorem that for any A €
there exist processes 1, and A, so that

) =vo+ [ U (8)dWh(s) — An(t), 0<E<T, (39)

¥ is quadratic integrable and A, is nondecreasing with A4,(0) =0 and A,(T) <
oo almost surely. Further, for any v € A/ we have

Q) = A0 [ /ﬁy svds]—/ﬁy

So by Ito’s lemma we get

dQ,(t) = BB (O[a(t)dW, () — () (sa(t) — K, ())dt — dAL(D)]
+ViB, (6)[V°(8) = A"(@)]dt + B, (£)[3(t, M) — G(t, ve)]dt (39)

Comparing this with the decomposition

it follows that
by (t) = Br() 85 (£)a(t)-

That is the process 1,3, "' is independent of A € A" and since we have assumed
that 7 — 7o (¢, 7, x) is invertible for all ¢ € [0,7] and all = > 0, there exists a
process 7 which satisfies

¢>\(t>5§1(t> = M Viou (7, V), 0<t<T.
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The comparision of (39) and (40) now also yields

BoHOdAL () = B OUOVilkat) — mu(B)dt + By (£)dAN()
—Vilv'(t) = A(O]dt = [3(t, o) = g(t, vy)]dt

or

51/_1(t>d14u(t> + 71 Viou (7 V3 (8)dE + Viv ( )dt — §(t, v )dt
= By ()dAN(t) + 7, Viou (7, Vi) kA (£)dt + VXY () dt — §(t, M) dt

so that the process ¢ defined by
t
ét = / [‘/;)\O(S> - §(37 )‘s> + ﬁs‘/so-s(ﬁ—m V;,)fi)\(8> + ﬁs‘/sasﬂds
0
t
+ / B-1(s)dAy(s), 0<t<T (41)
0

is also independent of A € A. Since there exists a process X €N with

o~

3(t, M) — AVeay — Vido(t) — #Vioyrs(t) =0, 0<t < T, a.s.

equation (41) with X yields & = fo ﬁA As(s). So ¢ is nondecreasing, adapted,
cadlag with ¢, = 0 and é7 < oo almost surely That is ¢ is a consumption process.

Furthermore we have

(B0 - Ux@g@Agw)

)
(1) = Va(O)dWi(t) — dAL(D)

= B 7 Vo dW, — Br(£)é + Br(E) A (£)Vidt
+0: ()7 Veoudt — Br(1)G (8, Ar)dt

that is 8,V and £, XY™ satisfy the same stochastic differential equation with
the same initial values. So it follows V = X"*™¢ and h(0) < V; holds.

We now show the inequality h(0) > V4, and w.l.o.g. assume h(0) < oc. Then
there exists a x € (0,00) and some (7,c) € Ayg(z) with X7° > B. For A € N the

process
M, = &+/m Jde, - /m ([my0 + Aols) + 70,0 (5)]
= x-l—/ B (8)ms X0, dWy(s)
0
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is a P*— supermartingale. So we get from the inequality
z > EMM7]>E* [m(T)XT — / t Br(s)d(s, )\s)ds]
> B 518 / Bu(6)3(s )|
that Vj < z and consequently Vj < h(0). O
We even get the stronger result

Proposition A.2

Any contingent claim B is attainable because the process ¢ of Proposition A.1 is

tdentically zero.

PROOF: The proof of this lemma follows that of Theorem 3.7 in Cvitanic (1997b).
O

The following Proposition summarizes some equivalent statements.

Proposition A.3

(a) For any contingent claim B with Vy < oo and any A € N the following
statements are equivalent:

(i) Q,(t) = fo Bx(8)d(s, A\y)ds is a P*— martingale.

(i) Vo = E* | BGA(T f Br(s A, )ds
0
(i1i) B is attainable by a tmdzng strategy © and

ey / Bi(s

is a P*— martingale.
(b) Each of the statements (i) - (i11) of (a) implies ¢ =0 and
Ge(A) = X A%(t) — 7, Xy0uk0 (1) — 7 Xy =0 a.s. (42)
with (7,¢) of Proposition A.1.

Proof: Repeat the proof of Theory 6.6 of Cvitanic (1997a). O
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B Proofs of Propositions

Proof of Proposition 1: We first proof the assertion (a). Due to the definition
of U we have

U(Xr)

IA

U(yHA(T)) + yHA\(T) X1 (43)
= U(yHA(T)) +yz

+y /0 L0 X, — Dolt) — i (E)mycdt

+y /OT H,(t) X[m0y — Ky ()]dW;

IA

OHAT)) + o+ | " H(03(t 2t
+y /T Hy\(t) Xy[mi00 + K2 (2)]dW;. (44)

So we get

B (X)) < B [0m(m) +y | " H05t, ] +ux (49

The assertion of (b) is obvious. For the proof of (c) note that equality holds
in (45) if and only if equality holds in (43) and (44). Since equality in (43) is
equivalent to

Xr = I(yH\(T))

and equality in (44) is equivalent to equality in equation (34), the statement (c)
follows. =

To proof Proposition 2 we need the following Lemma.

Lemma B.1

Let y > 0 and A= /):y be a solution of the dual optimization problem (31). If

E[HA( I(yHy(T / Hy(s ))ds]<oo

holds for all X € N, then we have for B = I(yH5(T))

o o [[scomen] = s [[sionosn]
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PROOF: (following the proof of Lemma 5.12 in Cvitanic (1997b))
For € € (0,1) and A € NV define processes

G. = (1—-¢€H;+eH,
A= ((1— ) HsA + eHy\) /G,
where A\° € N since N is convex. We then have
dG(t) = G (t)A(t)dt + G(t)k e (1)dW;
and since G.(0) =1 = H)(0) we get G, = H). a.s.

From the optimality of 2 it follows

Blowmm+u [ maeha| < 2 [o6em) o [ e

or 1
EEVE <0

where we define the random variable V, as
T
V. = O(yHy(T)) - )4y / L (0)§(, R dt — / G(1)(t, X)dt.
0

Using the inequality U(I(y)) > U(x) +y[I(y) —z], which holds for any z > 0 and
for any y > 0, we derive

NOWH@) - DWGT)] > yI(GAT)IC.T) - Hy(T))
|

= yf(yG (T)HAT) - H3(T)]
]

= I(yHy)[HA(T) - Hy(T)). (46)

Further, it follows from the convexity of ¢ that
T N T
| Hsyae Rt - / G (1)3(t, Xt
0

Z / HA t)\tdt— 1—6/ HA gt)\t



The inequalities (46) and (47) yield
1
liminf —V, > I(yH;(T))[H\(T) - Hy(T)
€—>

o[ ot~ [ oo ]

Application of Fatou’s lemma provides the upper bound

E(I(yHX(T))[H (T) — Hy(T +y/ Hy(8)§(t, Ae)dt — y /HA t)\tdt>

< FEliminf — V
€—>0
< liminf - EV
e—0
< 0. (48)

The application of Fatou’s lemma is justified by an argument of Cvitanic (1997b,
p. 242). By recognizing that

[ / H(t) dt] [ZA(T) /0 TﬁA(t)g(t,)\t)dt]

the assertion follows from inequality (48). O

Proof of Proposition 2: Due to Proposition A.1 and Lemma B.1 we have

hy(0) =Vy = sup B [Bm / Bis ]

AEN

= E[BHX(T)—ZA(T) /0 ﬁx(s)g(s,/):s)ds].

Furthermore, due to Proposition A.2 and Proposition A.3 the triplet (7, 2, ¢) in
the proof of Proposition A.1 satisfies equation (34) and ¢ = 0. Since Xy =V}, and
X% = V; = B the portfolio process 7 is a replication strategy for the claim B
with initial wealth h,(0). O

Proof of Proposition 3: First we look for the process 15 which determines the
optimal portfolio process #. Due to Proposition A.1 the process 15 must satisfy

dQ5(t) = ¥5(t)dWz(t), 0<t<T,

where

Q5(t) = X,55(t) = EMNI(yH;(T)) 65(T)| Fl.
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From equation (36) it follows

Qs(t) = E(yHy(T)) 7 B3(D)|F)
=y (B(D) T BN(Z(T)) TR
= v G B T) R

Since Zs is a martingale it follows

E[(Z5(T))' 3| F} ) )
- [exp{—(l—%)/o f@x(s)dWs—%(l—l)/o (K;X(s))st}

= oo {-0-1) [seav.— 5 [ Deera-gha- D [esers)

So we get

Q5(#) = Ly exp {% /0 s ()W, — %% /0 t(mx(s))st}

with a random variable Ly and it follows

AQ5) = 3B

and hence the process 1)5 is given by

1
) =m0 X, 0<t<T

To determine the optimal portfolio process © we solve the equation

. . 1
o (t, Ty, X)) = ;sz(t). (49)

Recalling the definition of (¢, 7, z) in equation (16), equation (49) is equivalent
to

R D*Y, 1 (t) 1 ay
T ~ = g, = —k3(l)=—"
tD*Y;:‘i‘ﬂ't(l — 7)) X Y v Y Oy

which is equivalent to

A2 ~ 0-2 Y }/t *
Ty — T 1—’)/—ZD _ZD =0 (50)

and we derive the two possible portfolio processes given in the Proposition. O
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C Notation

D*

Vi

Qx(1)

reference investor’s wealth process with  dY; = Y, dt + Y,0,dW,
reference trader’s stock demand if his wealth and the stock price are 1
reference trader’s utility function
large investor’s wealth process with

dX; = Xympau(t, me, X3)dt + Xympo(t, g, Xy )dt
proportion of large investor’s wealth invested in the stock
large investor’s utility function
inverse of U’
stock price process with  dS; = S;a(t, 7y, X;)dt + S;o(t, 74, X;)dt
standard Brownian motion

t
standard Brownian motion w.r.t P*: W, (t) = W, +/ Ka(s)ds
0

contingent claim
arbitrage-free price of a contingent claim
convex conjugate with
G(t, Ay) = sup[rzas + (1 — woy) - A°(t) + mao, - A(2)]
effective domain with N, = {A € IR* : §(¢, \;) < oo}
@&
=—+A(
S

t 1 t
exponential martingale with Z,(t) = exp{—/ Kx(s)dW, — 5/ K3 (s)ds}
0 0

t
discount factor with 3y (u,t) = exp{/ A(s)ds} and B,(t) = B5,(0,1)
stochastic deflator process with H,(t) = Z,(t)5\(t)

T
— ess sup B [Bm(t,ﬂ— / Byt s)g(s,)\s)ds]

AEN

= ViB\(t) - /Ot Br(s)3(s, A(s))ds
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