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ABSTRACT

In their 1994 paper Schulz and Trautmann present a special firm value model, where the
unobserved parameters of the asset value V and its volatility ¢ are calculated from the
observable current stock price S and its volatility og with respect to a system of two
nonlinear equations. Unfortunately, the proof of a unique solution (V, o) is not provided.
To complete the considerations in the paper of Schulz and Trautmann a detailed analysis
of the underlying nonlinear equations and their unique solution is presented in this note.
For the proof only elementary calculus is used.

KEYy WoORDS. Black&Scholes option pricing, firm value model, system of nonlinear equa-
tions.

1. INTRODUCTION AND DESCRIPTION OF THE PROBLEM

Schulz and Trautmann (1994) consider a firm value model, where for the financing of the
company only shares of outstanding common stock and warrants are used. Each warrant
entitles the owner to receive one share of stock upon the payment of a certain exercise
price. For our purposes we will use the same notation.

exercise price of the warrants at time T

number of outstanding warrants
n

= dilution factor (A = )

ilution factor N

standardized cumulative normal distribution function

V = current value of the firm at time ¢

Vr = value of the firm at time T

o = asset volatility

S = price per share of common stock at time ¢

St = price per share of common stock at time T

Og = stock volatility

ESV = elasticity of the stock price with respect to the value of the firm
N = number of outstanding shares of common stock

T = time until maturity of the outstanding warrants 7 =7 — ¢
r = riskless interest rate

W (V,0) = price per warrant at time ¢

W = price per warrant at time 7T’

= > 3 x
I
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Hence, the current value V' of the company is given by
V=NS+nW

It is known that the warrants have the familiar payoff profile Wy = (Sr — K)* at time
T. Evidently the condition Sy > K is eqivalent to Vo > N K, such that the payoff profile
can be immediately rewritten by

1 (Vr +
WT—H—A(W‘K> :

Since Schulz and Trautmann (1994) assume that the value of the firm follows a constant
variance diffusion process the price of the warrant with payoff profile Wz can be calculated
by applying the familiar pricing formula of Black and Scholes [cf. Black and Scholes (1973),
Merton (1973)].

With respect to fact that the current stock price S may be observable and the current
stock volatility g may be estimated, Schulz and Trautmann arrive at the following system
of two nonlinear equations dependent on the unknown variables V and o,

V n
S:N_NW(V7O->7 (1>
O0s =0 €5y, (2)

where the value of a warrant W (V, o) and the elasticity egy are given by

W (Vo) = — k) 0mr) (3)
( 70->_1+)\7TBS N_ y O, T, T
and by
oSV 1 n 0 14
== —. 4
SVE VS (N NOVW(V’U>> S (4)
. Vr * s . . .
With 7pg ~ K| (V,o,7,r) we denote the familiar price of a call with strike K and
time 7 until maturity in the well-known Black&Scholes option pricing model, i.e.
Vi + 1%
TBS (—T - K) (V,o,m,r) = =N (d)—Ke "N (dy), (5)
N N
v
i log vt (r+30°)7
o\/T ’
d2 = d1 - 0'\/7_'.

For observed value S and estimated volatility og the corresponding unknown underlying
firm value V and its volatility ¢ are computed by a numerical routine in the paper of
Schulz and Trautmann (1994). However, the proof of the non-trivial fact that there
always exists a unique solution (V, o) for each given pair (S, og) is missing.
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2. PROOF OF EXISTENCE OF A UNIQUE SOLUTION

Using eq. (5) and the relation we obtain the following representation of

14+ A - N+n
eq. (3),
W (Vo) = NLM (%N (d)) = Ke™™ N (d2)> | (6)

Since eq. (6) is only a slight modification of the classical Black&Scholes formula, the
following relation holds,

0 N 1

oy W (Vo) = mﬁf\f (d1)- (7)
Egs. (6) and (7) enable us to rewrite eq. (1) by
V n V r
— 3~ 7o (N ) - Ke TN @) ®)
and eq. (2) by
V n V
0'55 =0 (N - N+ TLNN (d1>> (9>
From eq. (8) we notice
V n V n r
N NaanV () =S g Ke TN (d)
and thus we arrive at
n —rT
USSZU(S_N+nK€ N(dQ)). (10)
Evidently eq. (10) provides the characteristic inequality
og < 0. (11)

Moreover we obtain directly from eq. (10) a representation of V as a function of ¢ as our
first main result in this proof,
2

N S
V =NKe " exp {a\/?/\f_l ( s (1 — E) —e”) + U—T} . (12)
n o/ K 2
Here, N™! denotes the inverse function of A" and for convenience we define
N+n osv/T\ S
o -1 _ S Mot
w(oVT) =N ( " (1 aﬁ)Ke >

Replacing V' in eq. (8) by the representation provided in eq. (12) leads to one remaining
equation in ¢ of which we have to prove unique solvability,

05\/7_'%6” = o+/Texp {0\/7_'10 (ov/T) + %27'} (1 - N (w (ov/T) + 0\/7_')(>13)

Since eq. (13) is not very comfortable to investigate, we will use the substitutions

n S .. N+nS
N+n’m'_05ﬁfe , 0= K

w(yc)=./\f_1(ﬁ—i),yi<oc<L

n
N+n

e’” and obtain with

T =0T,V =
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the following identical equation in z,

K = T exp {xw (96)—1—%2}(1—1/./\/(10(95)—1—95)). (14)
Now, eq. (14) is equivalent to
M(z) =0, (15)
. R K .
where the function M : (yﬁ’ TS (G- 1>+> — R is defined by
M(z)=1—-vN (w(z)+z)— gexp {—% (z® + 2xw(9c))} : (16)

To complete our proof it is sufficient to demonstrate that there exists exactly one zero of

M. Since M is a continuous function, the existence of at least one zero of M is easy to
K
prove. With w(z) — —oo we obtain M (z) — —oo for z — ok and with w(z) — N~ (min {3;1})
we obtain M(z) - 1—v(> 0) for z — ﬁ Thus at least one zero of M exists.
Ij —

With respect to the first derivative %M (x) of M we use the well-known relation

d ,_ 1

@f 1(y> = ﬁ
(W)

for the derivative of the inverse function f~! of a certain function f. Thus we obtain with

o i) = Vo s exp { L)}

the relation

d 1, ., K K
%M(CL') —p(x) exp {—5 (CL‘ + 215’(1}(1}))} R ﬁ <zr< W,
with
v 1, K K 1,
p(x) = v exp {—§w (x)} + K+ Ew(m) + \/27ry—gc2 exp {Ew (x)} . (17
d
When investigating the properties of — M (z) and respectively of p(x), we pay attention

dz

d
to the first derivative %p(x) of p,

b () )

K v 1
z

wle) = e {50} (18)

d
For local extrema z € ( > of p the necessary condition —xp(z) =0, ie.

d

must hold.
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. . K
Now we can close our considerations. For § > 1 we have p(z) — oo as for x - — as for
14

K
(G-1)F
Zp eq. (18) holds and we notice that

K 1
p(2) =k + V2r—5 exp {—wQ(zo)} > 0.
Vg 2

K K

ﬁ;iu(ﬁ—lfr)' For

T — (< 00). Evidently, p has a global minimum 2z, € (

d K K
Thus p and — M are functions with positive values on (—; —

d vB' v (6~ 1)
increasing. As a strictly increasing continuous function there exists exactly one zero x4 of

K v 1 -1 2
M. For 8 < lmwe have p(z) — oo for x — ok but p(z) = k — \/—2_7rexp {—5 WVTH(B) }

for z — W(: 00). If lim p(z) > 0 we obtain by a similar argument as before that
vV —_ —ro0

>, i.e. M isstrictly

d
p and %M are strictly positive, and thus the existence of exactly one zero z, of M is

proved. However, if lim p(x) < 0, then there exists at least one zero v, € (i; %)
T—00 I//B v (/8 - 1)

of p. Moreover vy must be the single zero of p, for otherwise we would find a local mini-

mum zy of p with p(z¢) < 0, which is impossible by eq. (18). Since vy is a single zero with

change of sign of p, vy is the single local maximum of M and thus its global maximum

K
with M (vy) > 1 —v. Then M is strictly increasing on (ﬁ’ vo> and strictly decreasing

K
and positive on (vo; _
v (B-1)F

relation z, € (i;v()) holds.

>. Thus there exists exactly one zero x, of M, and the

vp
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