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1. Introduction

Hedging Object: Short position of a European call with exercise price K, expiration
date T', terminal value Fr = (Sp — K)T, and present value Fj,.
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Hedging Instruments: Underlying stock with value S; and money market account
with value A, = exp(rt). To be hedged partially or perfectly, the hedger
chooses a predictable strategy H = (h,h?) where h denotes the number of
stocks and h? denotes the the number of money market accounts. If H is self-
financing we have V; = Vj + [ h,dS, + [ hdA, or in discrete-time models,
Vi = Vot Youei(hy - AS, + bl - AA,).

Hedging Error: In incomplete markets there does in general not exist a self-
financing strategy H with V; = Fp. When implementing a hedging strategy the
increment of the hedging error (additional cash inflows or cash withdrawals)
is defined as follows: dC, = dF, — dV, = dFy — h,dS, — hdA,. (If incremental
values are due to ,price jumps“then d.X is replaced by AX).

Even in complete markets there does not exist a self-financing strategy
H = (h,h%) with V = F, if the hedger is only willing to invest V, < Fj
at time zero.

Hedging Shortfall: (F; — V3)*, that is, the additional cash inflow necessary at
terminal date ¢ =T to replicate the written claim.
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2. Hedging without Shortfall-Risk in Complete Markets:
Continuous-time model of Black/Scholes/Merton (1973)

BSM-value of a Call F2°

\

Tangent slope equals
optimal hedge ratio

h‘t — aFfBS/aSt

Sy

\ Value of hedging portfolio
(as a function of S;)
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Perfect Hedges in Complete Markets:
Discrete-time Model of Cox/Ross/Rubinstein (1979)

Value of hedging
portfolio
F Vi=hy- Sp+hi - A

Slope of ,regression line“
equals the risk minimizing
\ \ hedge ratio
F'—Ff
=
installed at time ¢ — 1 at
Jtime ¢ — 1%-prices

Ftd il

st S S St



s. trautmann hedging in complete & incomplete markets

Fundamental Theorems of Asset Pricing

(under mild conditions, even for infinitely many securities)

Theorem 1: Asset prices F} do not admit profitable arbitrage if and only if there
is a probability measure @) on (€, F) equivalent to the physical measure P for
which for each asset ¢ the process of relative prices

Zl = F}//A, is a Q-martingale
where A, specifies the price of the money market account at ¢.
Theorem 2: If the market is complete (that is there is a trading strategy with traded

assets which replicates arbitrary claims) then there exists at most one equivalent
martingale measure ().
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Example 1(Perfect hedge in a binomial model)

Process parameters U = 1.1, D=0.9, interest rate r = 0%, martingale probability
q=(1-D)/(U-D) = 0.5.

Replicating strategy for a European Call with strike price K=45, maturity date T=2
and fair value F, = Eq(Fp | F):

1
15,54 4,5 =10

t=1: hi(55) = gz =1 Fi(55) =

hy(45) = 4925_;%’5 —0,5 F(45) =

4.5=225

N |~ DO

1 1

—0- _10-2,25 __ _ _
t=0: hy=52E =0T Fy=_-10+-:2,25=6,125
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Approaches to hedge a short position in a Contingent Claim

Complete Markets

Incomplete Markets

No
Restriction
on Initial
Hedging
Capital

No Delta-Hedging;: Superhedging:
Shortfall | Black/Merton /Scholes (1973) | El Karoui/Quenez (1995)
Risk Cox/Ross/Rubinstein (1979) | Naik/Uppal (1992)
Local Risk-Hedging:
Follmer/Schweizer (1991)
Schweizer (1992)
Griinewald /Trautmann (1997)
Shortfall | Global Variance-Hedging: Schweizer (1996)
Risk Shortfall Probability-Hedging:

Follmer/Leukert (1999)
Expected Shortfall-Hedging:
Follmer/Leukert (1998), Cvitani¢/Karatzas (1998)
Cvitani¢ (1998), Schulmerich/Trautmann (1999)

Restriction
on Initial
Hedging
Capital
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3. No Shortfall-Risk in Incomplete Markets: Superhedging

A strategy H € H is called a superhedging strategy if Vp(H) > Fr P-as.
The time ¢ cost of carrying out the cheapest superhedging strategy is given by the
supremum of the expected terminal value over all Equivalent Martingale Measures

Q € 9:

}'}nf {Vi(H) | Vp(H) = Fr P-as.} = sup Eo(Fr | Fy) /A
€t Qe

Example 2 (Superhedging in a trinomial one-period model)

Fr
10 ¢
Slope of line, connecting
Lextreme” pairs of values,
51 equals hedge ratio
RSH — F%—F%
N SY—S7,
40 K 50 55 St
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4. Risk- and Variance-Minimizing Hedging Strategies
in Incomplete Markets

The strategy minimizing Local Risk (LR) was introduced by Schweizer (1991) and
Follmer/Schweizer (1991). The LR-definition is very technical. Intuitively we can
characterize it in the following way:

Minimize for each t in time the expected quadratic hedging error for the next instant:
E((dC)?) = E((dF — hdS — h’dA)?).

This is tantamount to minimizing for each instant the variance of the hedging error
conditional on the mean hedging error being zero:

min d(C') conditional on E(dC') =0.

10
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4.2 Local Risk-Hedging in the Trinomial Model
Example 3 (One-period trinomial Model)
Process parameters U = 1,1, D=1, J=0.8, interest rate r=0%.

With two traded assets (stock and money market account) we get the following
Equivalent Martingale Measures (EMMs):

Stock  Call &hysm EMMs
easure
St Fr P Q
55 10 0,57 2q(w;)
S =50 50 5 0,42 1 —3q(w;)

40 0 0,01 0 < g(w;) < 1/3

11
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Local Risk-Hedging in the Trinomial Model: A graphical illustration

oy

10 +

Value of LR-minimizing
hedge portfolio

VT:hT'ST_'_h%'AT

Slope of regression
line equals hedge ratio

hLR - COU(AFT,AST)
r - Var(AST)

Where AST = ST — ST—I

40 45 50 59 St
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4.3 Local Risk-Hedging in the Jump-Diffusion Model

Stock Price Dynamics:

where

~

~.

5

H= =R

dS, = aS,-dt + 0, S,-dW, + S,-(I,dN, — \kdt)

1 al
Sy = Spexp {(oz — 5012) — M)t +opW, + ZIH(l + LZ)} .

1=1

the constant instantaneous drift of the total process,

a standard Brownian Motion, o is the constant volatility of the diffusion,
Poisson Process with parameter A,

arrival time of jump ¢, 1 =1,2,... N,

percentage size of jump i, ¢ = 1,2,... N, where I, = L;. The jump in

the return, In(1 + L;), is normally distributed with mean a; — 105 and
variance o7. (It follows L; > —1.)

E(L;) expected percentage jump size.

13
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Theorem (GRUNEWALD/TRAUTMANN (1996))In the Poisson jump diffusion mo-
del with lognormally distributed jump sizes in the stock price the locally risk-
minimizing hedge ratio equals

E;(ASAFLR)
W = (1= ) P 4y
EL((AS)?)
FBS<S K rnla )
= (1-v ZZ a,;N(di(n,1)) ZZ a, { —k 5
n=0 [=0 Jump n=0 [=0

This hedge ratio has a nice interpretation as a local Beta-coefficient:

. A(FLR.S)  Cov(dFLR, dS|F.)

d(S,S) Var(dS|F_)

14
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Numerical Analysis of LR-Hedging in a Jump-Diffusion Model
Griinewald /Trautmann (1996) find

— that the LR-minimizing and LV-minimizing strategies show the lowest sensitivity of
the hedge ratios with respect to a change in the stock price. Consequently discrete
rebalancing of the portfolio and transaction costs matter less with these strategies.

— that if the expected jump size, k, is upward (downward), the LR-minimizing and
LV-minimizing hedge ratios are higher (lower) thus anticipating the expected jump
size.

— that the LR-minimizing and LV-minimizing strategies show superior worst case
behaviour: extremely high hedging costs are less likely! According to a Monte Carlo
Simulation with 10,000 sample paths to determine the frequency distribution of the
total hedging costs based on the parameters: S = 100, K = 100, A =1, k = —0.1,
O = 0.3, v=08, T =1 a=0.15 r =0.05, R= 1. The portfolio is rebalanced
once a week.

15
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Hedge Ratios as a Function of the Stock Price

Parameters: K =100, r =0.1, T =1/12, a =0.15, A =1, 4oy = 0.3, 7= 0.8, R = 1.

Phi
1.0 1

0.8 -
0.6
/C = —0.1: 0.4;
0.2 | ——
0.0 -

Phi

90 95 100 105 110
S
LRM
******* Merton
— — — - Black/Scholes (sigma_D)

———————————— Black/SChOl@S §Sigma—t0t)
— — Bates Delta)
- — - — Bates LVM)

16



. trautmann

hedging in complete & incomplete markets

Simulated distribution of total discounted hedging costs

(Parameters: S =100, K =100, A\=1,k=—-0,1, 04t =0,3,7y=08,7T=1,a=0,1, 7= 0,05, R=1)

Total LR GV Bates | Bates Merton B/S  B/S | Super-  No
costs (LVM) | (Delta) (07,) (0%) | hedge hedge
(Initial costs) | (14,00) (14,90) (16,55) | (16,55) (14,23) (14,23) (8,01)] (100,00)  (0,0)
Mean 1493 1493  1488| 1422 1424 1448 1423 | 1281 17,94
Std. deviation | 7.05  7.04  7.07| 888 88 806 950| 1460 2321
Skewness 145 166 139 162 171 175 186| 202 240
Kurtosis 424 683  370| 247 299 358 380| 352 10,05
99% Quantile | 37,48 37,75 37,22 | 4263 4347 4187 4593| 64.87 104,96
95% Quantile | 28,57 28,29 28,66 | 3310 3343 3151 3476| 46,78 5896
90% Quantile | 24,34 24,12 24,48 | 2795 2781 2634 28.65| 3542 4521
75% Quantile | 17,91 17,70  18,06| 1817 18,08 17.83 17.88| 1539 2830
50% Quantile | 13,67 13,79 1353 | 1022 995 11,13 864| 488 10,93
25% Quantile | 1020 1034  10,06| 812 823 932 804| 488 0,00
10% Quantile | 721 729  719| 699 738 775 791|488 0,00
5% Quantile | 598 595  595| 657 707 685 781| 48 0,00
1% Quantile | 459 445  457| 6,16 670 585 7.59| 488 0,00

17



s. trautmann hedging in complete & incomplete markets

Frequency Distribution of Total Hedging Costs
(Parameters: S =100, K =100, A\=1, k = —0.1, 04y = 0.3,y =08, T =1, =0.1, r = 0.05, R =1)

Panel A: Locally Risk-minimizing strategy

18 |
16;
14%
12%

10 4

o] ]
01234567839 2 3 4 4
1 1 01

11111111112 222222223 33333333
01234567890 2345678290 23456789

18



s. trautmann

hedging in complete & incomplete markets

(Parameters: S =100, K =100, A\=1, k = —0.1, 04y = 0.3,y =08, T =1, =0.1, r = 0.05, R =1)

18 |
16;
14%
12%

10 4

Frequency Distribution of Total Hedging Costs

Panel G: Black/Scholes strategy (op)
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Frequency Distribution of Total Hedging Costs
(Parameters: S =100, K =100, A\=1, k = —0.1, 04y = 0.3,y =08, T =1, =0.1, r = 0.05, R =1)

Panel H: Superhedging strategy

18 —
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10 4
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5. Shortfall Risk-Minimizing Hedge Strategies

Motivation:

e In complete markets: hedger is not willing to invest completely the proceeds from
writing the option.

e In incomplete markets: hedger is not willing or able to finance a superhedging
strategy.

Measures of Shortfall Risk:

e Shortfall Probability (not a coherent risk measure, — Quantile Hedging)
e Expected Shortfall (coherent risk measure)

5.1 Two-Step Procedure

In accordance with the martingale approach to portfolio optimization the following
two-step procedure is suitable:

(1) Calculation of a modified contingent claim which is attainable given that the
initial hedging capital V} is less than Fj,.

(2) Superhedging of the modified contingent claim

21
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5.2 Quantile-Hedging: Minimizing the Shortfall Probability

e Modification factor ¢(-) of the written call to be hedged corresponds to the opti-
mal test (function) according to the Neyman-Pearson-Lemma.

e Modified contingent claim of a call in a jump-diffusion model:
Relative Risk Aversion R<1 Relative Risk Aversion R>1

Truncated Option Truncated + Gap Option

22
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Warning: In the discrete analogon (multinomial setting) the optimal modified con-
tingent claim cannot be found via the Neyman-Pearson-Lemma.

Shortfall
Probability

23
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5.3 Expected Shortfall-Hedging

Theorem (FOLLMER/LEUKERT (1998)) If Q is a singleton then the optimal modi-

fied contingent claim has the following representation:
X = P = (Ugpocee) 7 ghoces))
where
cpg = inf {C|EQ <1 %>C}FT> < VOAT}
and
7= (4% = B (1 gpocsyr) ) / (B (g5} 7))

Replicating the modified contingent claim with strategy (V, H*) solves the problem
of minimizing the expected shortfall under the constraints
Vo <V, and P(Vp(H) > 0) = 1.

Remark: If Q is not a singleton, the approach of Follmer/Leukert provides only a
sufficient condition for the optimality of the modified contingent claim.

24
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Expected Shortfall Hedging in a Black/Scholes/Merton-world:
Modified Claim (Gap option with strike Kg) to be hedged perfectly.

X7(57)

25
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5.4 Expected Shortfall-Hedging: Relaxing the constraint P(V;(H) > 0) =1

Theorem (SCHULMERICH/TRAUTMANN (1999)) If Q is a singleton and €2 is finite
then the optimal modified contingent claim X7 has the following representation:

A= I g} T tes)
where dP
Cps = Iin {dQ( )}
and

V= <ATV0 EQ< & >cps }FT>> / <EQ<1{%ZCES}>> :
Replicating the modified contingent claim X with strategy (V, H*) solves the pro-
blem of minimizing the expected shortfall under the constraint Vi < V.

Remarks:

e Expected Shortfall-Hedging without the constraint P(V;(H) > 0) = 1 on the
terminal hedging portfolio value might result in a lower expected shortfall (Schul-
merich /Trautmann, 1999).

e Even LR-Hedging, ignoring such a constraint, often leads to a lower expected
shortfall compared to Follmer/Leukert’s approach.

26
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Example 4 (Expected Shortfall Hedging in the Binomial Model)

Process parameters U = 1.1, D=0,9, p* = 0,58, p¢ = 0,42, interest rate r = 0%, strike
price K=45 and initial hedging capital V = 4.

St

60.95

55 <
S =50 < 49.5
45 <

405

Expected Shortfall:

Vr(H*) according to

P Q | B/ s/
|
03364 025 | 155 155

04872 05 | 025 45

|
0.1764 0.25‘ 0 -8.5

ESF(F/L): 0.3364 -0+ 0.4872-4.25 + 0.1764 - 0 = 2.07 (F6llmer/Leukert, 1998)

ESF(S/T): 0.3364-0+0.4872-0+0.1764-8.5 = 1.5

(Schulmerich /Trautmann, 1999)

27
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Example 5 (Expected shortfall-hedging in the trinomial model)

Process parameters U = 1.1, D=1, J=0.8, strike price K=45, interest rate r = 0%,
initial hedging capital V, = 5.275.

Terminal value V7 of optimal

hedging strategy according to

F/IL S/T LR

|
|
|
|
|
|
|
y 55 01 79 10 9.86
|
S — 50 <2022 50 5 : 5 5 5.975
|
|
|

0 -4.175 -39

Expected Shortfall:

ESF(F/L): 0.57- (10 —791)4+0.42-0+0.01-0=1,19  (Follmer/Leukert, 1998)
ESF(S/T): 0.57-040.42-040.01-(04+4.175) = 0.04  (Schulmerich/Trautmann, 1999)
LR: 0.57 - (10 — 9.86) + 0.42- 0+ 0.01-3.9 = 0.12 (Schweizer, 1992)

28
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IMustration:
F, Slope of limis correspond to hedging
strategies (V{), H) such that P(Vy(H) > 0) =1
10 1
Yo 5
N 40 50 5& St

Slope of lines correspond to hedging
strategies (Vp, H) with P(Vp(H) < 0) >0

29
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Recent approaches to Shortfall Hedging

(i.e., Shortfall Probability-Hedging, Expected Shortfall-Hedging, Shortfall-Variance-

Hedging)

Expected | Incomplete | Modified | Existence of
shortfall- markets claim optimality of
hedging setting allowed (signed) NP-
considered? | included? |to take on | structure
negative | proven?
values?
Follmer/Leukert (1998) Yes Yes No Yes
Cvitani¢/Karatzas (1998) Yes No Yes Yes
Cvitani¢ (1998) Yes Yes No Yes
Cvitani¢/Karatzas (1999) Yes Yes No Yes
Pham (1999) No Yes Yes Yes
Schulmerich/Trautmann (1999) | Yes Yes Yes No
?/7/7 Yes Yes Yes Yes
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