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Abstract. This paper proposes a self-financing trading strategy that minimizes the expected shortfall
locally when hedging a European contingent claim. A positive shortfall occurs if the hedger is not
willing to follow a perfect hedging or a superhedging strategy. In contrast to the classical variance
criterion, the expected shortfall criterion depends only on undesirable outcomes where the terminal
value of the written option exceeds the terminal value of the hedge portfolio. Searching a strategy
which minimizes the expected shortfall is equivalent to the iterative solution of linear programs
whose number increases exponentially with respect to the number of trading dates. Therefore, we
partition this complex overall problem into several one-period problems and minimize the expected
shortfall only locally, i.e., only over the next trading period. This approximation is quite accurate
and the number of linear programs to be solved increases only linearly with respect to the number of
trading dates.
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1. Introduction

In recent years, there was an unprecedented surge in the usage of risk management
tools based on the Value-at-Risk (VaR). Loosely speaking, VaR can be interpreted
as the worst loss over a given time interval under “normal market conditions”.
Obviously the shortcomings of the VaR measure stem from its focus on the prob-
ability of loss regardless of its magnitude. In contrast to the VaR, the expected
shortfall takes into account the size of the shortfall and not only the probability of
its occurrence. Artzner et al. (1999) state four axioms which should be fulfilled by
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(the editor), Nicole Branger, Kay Giesecke, Andreas Pfingsten, and participants at the Annual Meet-
ing of the European Financial Management Association (Lugano, 2001), at the Annual Meeting of
the German Finance Association (Vienna, 2001), and the Annual Meeting of the European Finance
Association (Berlin, 2002).
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reasonable risk measures. These axioms rule out VaR-based as well as variance-
based risk measures. Although the expected shortfall fulfils only three of the four
axioms given by Artzner et al. (1999) it is a reasonable risk measure when hedging
contingent claims.

Traditional hedging concepts for incomplete markets either minimize the
variance of hedging costs or superhedge the written contingent claim. The super-
hedging approach was introduced by Bensaid et al. (1992) in discrete time and El
Karoui and Quenez (1995) in continuous time. Recently, Cvitanić and Karatzas
(1999) and Föllmer and Leukert (2000) pioneered the expected shortfall-hedging
approach. While Cvitanić and Karatzas (1999) deals only with complete markets
in continuous time, Cvitanić (1998) and Föllmer and Leukert (2000) also examine
incomplete markets. But they only show that an optimal solution exists. An explicit
solution is not provided.

The purpose of this paper is twofold: First, based on superhedging strategies, we
show that searching a strategy which minimizes the expected shortfall is equivalent
to the iterative solution of linear programs. Second, after finding that the latter
algorithm is very time-consuming, we propose a strategy which minimizes the ex-
pected shortfall locally. This approximation is quite accurate and its computational
time drops significantly compared to the original expected shortfall strategy. We
examine the quality of the local expected shortfall strategies and their effects on
the total hedging costs.

The paper is organized as follows. Section 2 provides the model framework,
recalls the concept of superhedging, and motivates why the expected shortfall is
a reasonable risk measure. Section 3 presents a two-step procedure for solving
the overall problem of expected shortfall-hedging. Furthermore, this section pro-
poses a numerically efficient algorithm for calculating the corresponding strategies.
Section 4 presents the key contribution of the paper, namely the concept of local
expected shortfall-hedging and some special cases when it coincides with the cor-
responding global strategy. A numerical example in Section 5 confirms the quality
of this approximation and their influence on the total hedging costs. Section 6
concludes the paper.

2. Model Framework and Reasonable Risk Measures

The model used in this paper is essentially the same as that in Harrison and Pliska
(1981). We consider a frictionless market with one stock and one riskless money
market account. For a specified time horizon τ , we assume that securities are traded
at n+ 1 trading dates s = 0, τ/n, 2τ/n, . . . , τ . For simplicity, we use the conven-
tions t ≡ n · s/τ and T ≡ n. The uncertainty about the development of the stock
price is described by a fixed probability space (	,F , P ) with |	| = N < ∞ and
P(ω) > 0 for all ω ∈ 	. The probability measure P reflects the individual view-
point of an investor concerning the market. The stock price movement is modelled
by a stochastic process S = (S0, S1, . . . , ST )with a constant S0. The money market
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account price process B = (B0, B1, . . . , BT ) is defined through the riskless interest
rate r by Bt = (1 + r)t . The stock price process S induces the natural filtration
(Ft , t = 0, 1, . . . , T ) which means that Ft is the σ -algebra generated by S0, . . . , St .
Without loss of generality we assume F0 = {∅,	} and FT = F = 2	, i.e., FT is
the σ -algebra of all subsets of 	. The filtration has the well-known interpretation
of the information that becomes available when securities are traded, i.e., Ft is the
set of information which is known up to time t . Furthermore, each Ft corresponds
to a unique partition Pt of 	 and at time t the investors know which cell of this
partition contains the true state of the world. We denote the cells which form the
partition Pt by A(i, t), i = 1, . . . , N(t) where N(t) ≡ |Pt |. From the fact that
the filtration is induced by the stock price process we know that, if we choose an
arbitrary trading date t = 0, 1, . . . , T , then the set {St(ω) | ω ∈ A(i, t)} is a
singleton for all i = 1, . . . , N(t). Therefore, we define

St(i) ≡ St(ω) with ω ∈ A(i, t). (1)

Moreover, each cell A(i, t + 1) ∈ Pt+1 belongs to exactly one cell A(i, t) ∈ Pt .
Therefore, we define for t = 0, 1, . . . , T − 1 and i = 1, . . . , N(t)

Succ(A(i, t)) ≡ {A(j, t + 1) | A(j, t + 1) ⊆ A(i, t)}.
For simplicity, we assume in the following that |Succ(A(·, ·))| is constant (>1) and
call M ≡ |Succ(A(·, ·))| the level of uncertainty or the constant splitting-index.
In terms of possible stock prices this means that each possible stock price at time
t = 0, . . . , T − 1 is followed by M possible stock prices at t + 1 and therefore
N(t) = Mt for all t = 0, 1, . . . , T . Typical examples for such stock price models
are the binomial model (M = 2) and the trinomial model (M = 3).

2.1. HEDGING STRATEGIES AND HEDGING COSTS

A trading (or hedging) strategy is a predictable two-dimensional stochastic process.
We denote a hedging strategy by H = {Ht = (ht , h

0
t ), t = 1, . . . , T } where ht

(h0
t ) represents the quantity of stocks (money market accounts) held in the hedging

portfolio at time t . Predictable means that the components ht , h0
t of a hedging

strategy are Ft−1 measurable, i.e., the hedger selects his strategy (ht, h0
t ) after the

prices St−1 are observed and holds it until after the announcement of the prices
St . Because the components ht and h0

t are Ft−1-measurable, they must coincide in
every cell A(i, t−1) of Pt−1, i.e., for t ∈ {1, . . . , T }, i ∈ {1, . . . , N(t−1)} and ω1,
ω2 ∈ A(i, t − 1) we have ht(ω1) = ht(ω2) as well as h0

t (ω1) = h0
t (ω2). Therefore

we define in analogy to (1)

ht(i) ≡ ht(ω) and h0
t (i) ≡ h0

t (ω) with ω ∈ A(i, t − 1).

The value process of a hedging portfolio corresponding to a hedging strategy H is

Vt(H) = ht · St + h0
t · Bt t = 1, . . . , T (2)
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and V0(H) = h1 · S0 + h0
1 · B0. The gains process of a hedging strategy H is

Gt(H) =
t∑

i=1

hi ·�Si + h0
i ·�Bi t = 1, . . . , T

where �St ≡ St − St−1 and �Bt ≡ Bt − Bt−1 are the price changes of the
assets. The gains process has the interpretation of the cumulative gains or losses
that result from following the trading strategy H up to time t . We call a strategy
self-financing if the value of the according hedging portfolio only changes due to
gains or losses from trading, i.e., there are no additional cash-flows to or from the
hedging portfolio except the initial hedging capital V0(H) in t = 0, i.e,

ht · St + h0
t · Bt = ht+1 · St + h0

t+1 · Bt t = 1, . . . , T − 1.

Hence, the value of a self-financing strategy H is

Vt(H) = V0(H)+Gt(H) t = 1, . . . , T .

For the remainder of the paper we restrict our attention to self-financing strategies
and denote the set of all self-financing strategies by S.

We assume a situation where an investor has written a European contingent
claim FT with maturity date T and wants to hedge himself against the occurring
risk. A European contingent claim is a (bounded) random variable on (	,F , P )
whose values are not restricted to be nonnegative. If a contingent claim depends
only on the terminal stock price ST , then we call it a path-independent contingent
claim, otherwise we call it a path-dependent contingent claim. Moreover, a contin-
gent claim is called attainable, if it can be replicated, i.e., if there is a self- financing
strategy H with VT (H) = FT . A financial market is called a complete market
if every contingent claim is attainable.1 Hence, for no-arbitrage reasons the time
t = 0 value F0 of the claim must be V0(H). Thus, in complete markets there is al-
ways a strategy such that the total hedging costs C0 = V0(H)+(FT −VT (H))·B−1

T

are constant. Because we only consider self-financing strategies, the total hedging
costs consist of only two terms where V0(H) represents the initial costs or the
initial hedging capital and the second term (FT − VT (H)) · B−1

T represents the
discounted costs accruing at maturity of the contingent claim (terminal costs).
Particularly, even if one is not willing or able to invest the initial hedging costs
required by the replicating strategy, it is still possible to construct a strategy which
leads to constant total hedging costs.

A basic result in discrete market models is that for a stochastic stock price pro-
cess absence of profitable arbitrage opportunities is equivalent to the existence of
an equivalent martingale measure Q such that the discounted price process S ·B−1

1 Harrison and Pliska (1981) show that in our setting completeness of the market is equivalent to
M = 2, i.e., the binomial model is the only complete market model.
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becomes a martingale under the measure Q. A martingale measure Q is equivalent
to the physical measure P if P(A) = 0 ⇔ Q(A) = 0 for all A ∈ FT . Harrison
and Pliska (1983) show that a market is complete if and only if there exists a
unique equivalent martingale measure. Moreover, in an arbitrage-free market every
arbitrage-free price of a contingent claim FT at time t lies in the set (see, e.g., Pliska
(1997, p. 27)) {EQ(FT /BT−t | Ft ) | Q ∈ Q} where Q is the set of all equivalent
martingale measures. Since Q is not a closed set we also introduce the closure Q̄
which is the smallest closed set containing Q.

In incomplete markets it is not possible to replicate every contingent claim.
Nevertheless, given a contingent claim one can avoid any shortfall risk by follow-
ing a so-called superhedging strategy, i.e., a strategy H with VT (H) ≥ FT . To the
best of our knowledge Bensaid et al. (1992) were the first using the insights of the
following proposition when they extended the results of Boyle and Vorst (1991) on
optimal hedging strategies with trading frictions.

PROPOSITION 1 (Superhedging). For every contingent claim FT there exists a
superhedging strategy HSH = arg min{H∈S|VT (H)≥FT }V0(H) with initial hedging
capital V0(H

SH) = supQ∈QEQ(FT /BT ).

The last equality says that the initial price of the superhedging strategy equals the
lowest upper price bound for the original contingent claim FT . When proving the
proposition by using linear programming2 one can also show that the strategy HSH

can be determined recursively. The proof uses the (strong) duality relation

min
{H∈S|VT (H)≥FT }

V0(H) = max
Q∈Q̄

EQ(FT /BT ). (3)

The recursive procedure starts with defining ZT ≡ FT and proceeds with solv-
ing the following one-period linear programs for all t ∈ {1, . . . , T − 1} and
j ∈ {1, . . . , N(t − 1)}:

ht(j) · St−1(j)+ h0
t (j) · Bt−1 −→ min (≡ Zt−1(j)). (4)

under the constraints

ht(j) · St(i)+ h0
t (j) · Bt ≥ Zt(i) (5)

for all i such that A(i, t) ∈ Succ(A(j, t − 1)). We call the optimal objective values
Zt−1(j) of these one-period problems the superhedging values of FT .

2 A detailed proof of the proposition can be received on request from the authors.
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2.2. EXPECTED SHORTFALL AS A QUASI-COHERENT RISK MEASURE

In contrast to local risk management where the risk of only one individual position
is considered, the goal of global risk management is to control the total risk of
a firm or a division and therefore also combinations of risky positions must be
considered. Artzner et al. (1999) require four axioms to hold by a reasonable risk
measure for local as well as global risk management. They consider a very simple
one-period model in a discrete probability space.3 In multiperiod models an in-
vestor must additionally pay attention to market values and risk at each monitoring
time. However, for simplicity we measure and monitor risk at only one future date
namely the maturity date of the option. Because of our restriction to self-financing
strategies this time point is also the only future date where a cash-flow occurs. To
be consistent with the notation of Artzner et al. (1999) we denote a risky position
by an integrable random variable on (	,F , P ) and a risk measure by ρ. In our case
a risky position might be for example the negative total hedging costs or just the
negative terminal costs when the initial hedging capital is fixed. With this notation
we define the discounted expected shortfall (ESD) of a risky position X through

ρ(X) = ESD(X) ≡ EP (max(−X/BT ; 0)) ≡ EP (X
−/BT ). (6)

We now recall the four axioms for risk measures given by Artzner et al. (1999). For
all risky positions X, Y and real numbers α the following relations hold:

AXIOM T (Translation invariance). ρ(X + α · BT ) = ρ(X)− α.

AXIOM S (Subadditivity). ρ(X + Y ) ≤ ρ(X)+ ρ(Y ).

AXIOM PH (Positive homogeneity). ρ(α ·X) = α · ρ(X) when α ≥ 0.

AXIOM M (Monotonicity). ρ(Y ) ≤ ρ(X) when X ≤ Y .

These axioms are not only reasonable for the context of hedging derivatives but are
much more general and can therefore be used by insurance companies, banks, regu-
lators, clearing firms, etc. Nevertheless, Artzner et al. (1999) use these axioms only
as auxiliary tools, because their fundamental objects are so-called acceptance sets.
These sets contain all risky positions which are accepted by the management board,
supervisor, etc. Artzner et al. (1999) state four axioms for acceptance sets which
they consider as more important than the (auxiliary) axioms for risk measures.
These axioms are4:

AXIOM A1. The acceptance set A contains the set {X | X(ω) ≥ 0∀ω ∈ 	}.
3 Artzner et al. (2002) recently extended their work to a multiperiod setting.
4 For a detailed discussion of these axioms, see Artzner et al. (1999, pp. 206–208).
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AXIOM A2. The acceptance set A does not intersect the set {X | X(ω) < 0∀ω ∈
	}.
AXIOM A3. The acceptance set A is convex.

AXIOM A4. The acceptance set is a positively homogeneous cone.

The convexity of an acceptance set is very important, particularly for a global
risk management, because it ensures that the combination of two acceptable risky
positions is again acceptable. To get a better interpretation of the three other ax-
ioms, Artzner et al. (1999) present a direct relationship between the axioms for
acceptance sets and the axioms of risk measures. For that reason they define for
each risk measure ρ a corresponding acceptance set through

A(ρ) ≡ {X | ρ(X) ≤ 0}. (7)

The key result of Artzner et al. (1999) is that if a risk measure fulfils Axioms
T, S, PH, M, then the corresponding acceptance set fulfils the Axioms A1–A4.
Therefore they call a risk measure fulfilling Axioms T, S, PH, M a coherent risk
measure. Using convention (7) the interpretation of the Axioms T, S, PH, M is
much more easier.5 Axiom T states that adding an amount of α to the original
position and investing it into the riskless money market account reduces the risk by
α. This particularly ensures the relation ρ(X + ρ(X) · BT ) = 0 which means that
adding the risk ρ(X) to an unacceptable position X makes the position acceptable.
Therefore ρ(X) can be interpreted as an extra capital or risk capital. Axiom S
reflects risk aversion, because the extra capital of two individual positions is larger
than that of the combined position. Hence, it is possible to decentralize risk man-
agement. Axiom PH states that risk does not depend directly on position size and
at last Axiom M ensures the reasonable property that a position Y which is in every
possible outcome better than a position X should have a lower risk.

There are undesirable consequences for global risk management if especially
Axiom S or Axiom M is violated.6 Artzner et al. (1999) mention that quantile-based
risk measures like the Value-at-Risk fail to satisfy Axiom S and variance-based
risk measures fail to satisfy Axiom M. They also show that a risk measure ρ is
coherent if and only if there exists a family of probability measures (generalised
scenarios) P such that ρ(X) = sup{−EP [X/BT ] | P ∈ P }.7 However, to
determine such a suitable family of probability measures seems to be no easy
task and the according risk measure is not very tractable if we cannot find an
easier analytical expression for it. Therefore, we now turn to the expected shortfall
which is a well-known classical risk-measure. It is easy to verify that the expected
shortfall satisfies Axioms S, PH, M but fails to satisfy Axiom T. Nevertheless, the

5 A more detailed interpretation can be found in Artzner et al. (1999, pp. 208–210).
6 See Artzner et al. (1999, pp. 209, 216–218) for examples concerning this point.
7 Artzner et al. (1999), Proposition 4.1.
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acceptance set according to the expected shortfall fulfils Axioms A1–A4, because
it equals {X | X(ω) ≥ 0∀ω ∈ 	}.8 This is the main reason for using the expected
shortfall criterion. Another reason is that the expected shortfall criterion fulfils
Axioms S, PH, and M which have an intuitive interpretation. While this criterion
violates Axiom T, i.e., ρ(X + α · BT ) = ρ(X) − α, it satisfies the inequality
−B−1

T ·EP (X+α ·BT ) ≤ ESD(X)−α. This leads to EP (X+ESD(X) ·BT ) ≥ 0
such that adding the amount ESD(X) to a risky position and investing it into the
riskless money market account leads to a total position which has a positive mean.
In contrast, a coherent risk measure would lead to an acceptable position, i.e., a
total position with non-positive risk. However, the risk measure ρ(X) = ESD(X)

fulfils a slightly modified version of Axiom T:

AXIOM T′. For all risky positions X and all real numbers α we have the inequality
−B−1

T · EP (X + α · BT ) ≤ ρ(X)− α.

The following example motivates why this modification of Axiom T might be
acceptable in the context of global risk management of, e.g., a bank: Suppose a
trading room with one supervisor and a lot of (independent) trading desks. Every
trading desk reports the expected shortfall to the supervisor. The supervisor now
calculates his extra capital by summing all this values and holds back this total
sum for potential losses. Because of the assumed large number of trading desks for
which the relation EP (X+ESD(X)) ≥ 0 holds, the law of large numbers ensures
that the total position of the trading room will be essentially positive. Hence, the
extra capital hold by the supervisor will essentially compensate the potential losses
and therefore there is almost no remaining risk.

In sum, we use the expected shortfall criterion for three main reasons. First,
the corresponding acceptance set fulfils Axioms A1–A4. Second, the expected
shortfall fulfils Axioms S, PH, M which have a self-contained interpretation in-
dependent of acceptance sets. Finally, the expected shortfall fulfils a modification
of Axiom T, i.e., Axiom T′, which still allows to implement a reasonable global
risk management.

3. Expected Shortfall-Hedging

Hedging the expected shortfall dynamically was first proposed by Cvitanić and
Karatzas (1999) and Föllmer and Leukert (2000). Both articles mainly deal with
complete markets in continuous time where they find explicit solutions. In incom-
plete markets this is much more difficult. However, in discrete markets explicit
solutions exist even in incomplete markets and can be calculated by solving linear
programs.

8 More generally, for all risk measures ρ(X) = −EP (u(X−)) with a function u : IR+ → IR+,
the set A(ρ) equals {X | X(ω) ≥ 0∀ω ∈ 	} and fulfils the Axioms A1–A4.
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3.1. THE PROBLEM

Hedging the short position in the contingent claim with an arbitrary hedging
strategy H leads to a final wealth of VT (H)−FT −V0(H) ·BT . If we fix the initial
hedging capital V0(H) to an arbitrary positive constant V̄0, then for risk purposes
it suffices to consider only the risky position VT (H)− FT . The expected shortfall
(ES) of this position is EP (VT (H) − FT )

− = EP (FT − VT (H))
+. Denoting the

set of all self-financing strategies starting with V0(H) = V̄0 and FT − VT (H) ≤ b,
b ∈ IR+ ∪ {∞}, by Sb0 we can now formulate the main problem of this paper:9

PROBLEM 1(Expected Shortfall-Hedging). Find a self-financing strategy HES

with V0(H
ES) = V̄0 which minimizes the expected shortfall of the hedging

strategy, i.e., find the ES-strategy HES = arg minH∈Sb0
EP [(FT − VT (H)]+.

Note that the expected shortfall is zero for replicating and superhedging strategies.
Furthermore, the probability measure P now appears explicitly in the formula
whereas in the case of superhedging we could use every probability measure which
is equivalent to P .

3.2. THE TWO-STEP PROCEDURE

Solving Problem 1 is tantamount to find a dynamic self-financing trading strategy
which solves a static optimization problem. The optimization problem is static in
the sense that we want to minimize risk which is measured at only one point in time.
Therefore it seems natural to decompose Problem 1 in a static and a dynamic part.
This two-step procedure was already used in our hedging context by Cvitanić and
Karatzas (1999), Pham (1999) and Föllmer and Leukert (2000) and is very similar
to the martingale approach of portfolio optimization in continuous time (see, e.g.,
Pliska (1986), Cox and Huang (1989), Karatzas et al. (1991) and Korn (1997, p.
60)). The following proposition shows that in the objective function of Problem 1
it is possible to replace the terminal value of the (dynamic) trading strategy by
an appropriate (static) random variable. However, before we can formulate the
proposition, we have to define a feasible set for these random variables.

DEFINITION 1. Let X∞ ≡ {X | X ≤ FT and EQ(X/BT ) ≤ V̄0 for all Q ∈ Q̄}
denote the set of all modified contingent claims for which the price of their super-
hedging strategy is lower or equal than the initial hedging capital V̄0. Furthermore,
for all b ∈ IR+ we denote by Xb ≡ {XFT −b ≤ X ≤ FT and EQ(X/BT ) ≤ V̄0 for
all Q ∈ Q̄} the set of all modified contingent claims for which b is an upper bound
for the shortfall (VT (H)− FT )

− = (FT − VT (H))
+ when H is the superhedging

strategy of X.

9 For simplicity we use the relation X ≤ ∞ to express that X is an unbounded random variable.
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PROPOSITION 2. Let X∗ ∈ Xb denote a modified contingent claim which is
optimal in the sense that X∗ = arg minX∈Xb

EP (FT − X). Then the ES-strategy
HES is the superhedging strategy for the claim X∗:

EP (FT − VT (H
ES)) = min

H∈Sb0

EP (FT − VT (H))
+ = EP (FT −X∗).

Notice that choosing the constant b appropriately is of some importance. If b is
too small then the set Xb might be empty. To avoid such cases we assume in the
following that the constant b is chosen such that b ≥ supQ∈Q̄EQ(FT )− V̄0 · BT .

Now, Proposition 2 (proved in the appendix) justifies the following two-step
procedure for solving Problem 1.

STEP 1 (Static optimization problem). Find an optimal modified contingent claim
X∗ ∈ Xb with X∗ = arg minX∈Xb

EP (FT −X).

STEP 2 (Representation problem). Determine a superhedging strategy of X∗.

We first show how to solve step 1 in a complete markets setting to get a better un-
derstanding of the problem and its solution. Then we turn to the more complicated
case of incomplete markets.

3.3. SOLUTION IN COMPLETE MARKETS

In complete markets it is always possible to implement strategies leading to
constant hedging costs. Even if an investor has insufficient hedging capital, by
borrowing money, he can follow a hedging strategy which results in constant total
hedging costs. Hence, if the sole objective of an investor is to reduce risk, then
the replicating strategy which can always be found in a complete markets setting
is optimal. Nonetheless, an investor may also consider return or a risk-return re-
lationship as an objective. In this case ES-hedging could be one approach for the
investor to find his optimal strategy. As formulated in this paper, ES-hedging gives
the investor two degrees of freedom in the sense that he can vary the initial hedging
capital as well as the shortfall bound b and then choose the strategy which fits his
attitude to risk-return best. Moreover, the way how to solve the problem in a com-
plete markets setting helps to understand the solution in incomplete markets. For
example, we show that in complete markets the “efficient frontier”, i.e., the optimal
expected shortfall as a function of the initial hedging capital V̄0, is piecewise linear.
Afterwards we see in a numerical example in Section 5 that in incomplete markets
the efficient frontier is “almost piecewise linear”. Finally, one can use the results of
complete markets as building blocks for the solution in incomplete markets (see,
e.g., Föllmer and Leukert (1999)).

In complete markets the solution of step 1 is a direct consequence of a slight
modification of the fundamental Neyman–Pearson lemma. Particularly, it is pos-
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sible to determine the optimal modified contingent claim analytically. Föllmer and
Leukert (1999, 2000) were the first who used this fundamental statistical lemma in
a financial context when solving – in a continuous-time, complete markets setting
– the same problem.

PROPOSITION 3. (ES-Hedging with a shortfall bound). In a complete market the
modified contingent claim

X∗(ω) = FT (ω)1{ PQ (ω)>cES} + γ 1{ PQ (ω)=cES} + (FT (ω)− b)1{ PQ (ω)<cES} (8)

with cES = arg minc∈IR+{EQ(FT 1{P/Q(ω)>c} + (FT − b)1{P/Q(ω)≤c} ≤ V̄0BT }
and γ = (V̄0 · BT − EQ(FT 1{P/Q(ω)>cES}FT ) − EQ((FT − b)1{P/Q(ω)<cES}))/
(EQ(1{P/Q(ω)=cES})) solves the static optimization problem (Step 1) if there is a
shortfall bound b < ∞. Replicating X∗ with a strategy HES solves the Problem 1.

Proof. See appendix.

PROPOSITION 4 (ES-Hedging without a shortfall bound). In a complete market
the modified contingent claim

X∗(ω) = FT (ω)1{ PQ (ω)>cES} + γ 1{ PQ (ω)=cES} (9)

with cES = minω∈	{P(ω)/Q(ω)} and

γ = (V̄0 · BT − EQ(1{P/Q>cES}FT ))/(EQ(1{P/Q=cES}))

solves the static optimization problem (Step 1) if there is no shortfall bound (b =
∞). Replicating X∗ with a strategy HES solves the Problem 1.

The proof is very similar to the one of Proposition 3 given in the appendix. Ob-
viously, the inverse P/Q of the state price density plays a fundamental role in
both propositions. If we consider the special case where b = ∞ and state price
densities are different for different outcomes, then the optimal hedging strategy
can be interpreted as follows. Replicate a modified contingent claim which is
equal to the original contingent claim except in one state ω∗. This state is used
to finance the replication of the other states because w.l.o.g. we can assume that
the initial hedging capital is not high enough to replicate the original contin-
gent claim in the whole. Alternatively we can say that the optimal strategy is to
sell (γ < 0) or buy (γ > 0) exactly γ Arrow–Debreu securities of state ω∗
such that there is enough money to buy FT (ω) Arrow-Debreu securities of all
other states ω ∈ 	\{ω∗}. Therefore, a shortfall occurs only in one state ω∗ and
the shortfall of the ES-strategy is FT (ω∗) − VT (H(ω

∗)). According to Proposi-
tion 3 the expected shortfall of the optimal strategy is (FT (ω∗) − γ ) · P(ω∗) if
γ < FT (ω

∗) and zero otherwise. Therefore the efficient frontier is given through
V̄0 → (EQ(FT )− V̄0BT )

+ · P(ω∗)/Q(ω∗).
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The critical state ω∗ can be interpreted as the state for which the inverse of the
state price density, i.e., the ratio between the expected payoff from an Arrow–
Debreu security (P(ω∗)) and the cost of that security (Q(ω∗)), is worst. In a
binomial model (denoting the probability for an up-tick by P(u), resp. Q(u))
this is either the state leading to the highest stock price, namely if P(u)/Q(u) >
(1 − P(u))/(1 −Q(u)), or the state leading to the lowest stock price, otherwise.

Example: Problem 1 in the complete case is illustrated for a two-period binomial
model with S0 = $50 and St+1 = St · Y for t = 0, 1. The random variable Y
has two possible outcomes, namely Y = 1.1 (up-tick) with (P -)probability 0.80
and Y = 0.9 (down-tick) with (P -)probability 0.20. The outcomes are uniquely
determined by the up- and down-ticks, e.g., ud represents the state with an up-
tick in the first period and a down-tick in the second one. Furthermore, we assume
an investor who tries to hedge a long position in a European call option on the
stock with strike K = 45 and who is endowed with an initial hedging capital
of $4. Thus, when using the interest rate r = 0%, the fair price of the call is
F0 = EQ(F2/B2) = $6.125.

To determine the optimal strategy with respect to problem 1 we first determine
the values of the inverse of the state price density for the possible outcomes:

P(uu)

Q(uu)
= 2.56

P(ud)

Q(ud)
= P(du)

Q(du)
= 0.64

P(dd)

Q(dd)
= 0.16.

Thus, in the case b = ∞ the optimal strategy with respect to the expected shortfall
is to replicate X∗ where X∗(dd) = γ = −8.5 and X∗ = F2 for all other possible
outcomes. Of course, the fair value for this (fictitious) modified contingent claim is
X∗

0 = EQ(X
∗/B2) = $4. Obviously, in the state dd we have to invest an additional

amount of $8.5. If we want to constraint the shortfall we can impose a shortfall
bound by using a real value for b. For example, if we choose b = 4, then we find
cES = 0.64, X∗(ud) = X∗(du) = 2.25 and X∗(dd) = −4. Hence, there is no state
where we have to spend more than $4 at maturity.

Notice that in multiperiod binomial trees expected shortfall strategies are always
path-independent. This results from the fact that replicating strategies are path-
independent as long as the contingent claim to be hedged is path-independent and
that in binomial models the optimal modified contingent claim is always path-
independent because paths which lead to the same final state also lead to the same
value of the state price density.

3.4. SOLUTION IN INCOMPLETE MARKETS

Expected shortfall-hedging in incomplete markets is much more complicated than
in complete markets. This results from the fact that in incomplete markets the set
of equivalent martingale measures is no longer a singleton and even of infinite
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size. Cvitanić (1998) and Föllmer and Leukert (1999/2000) examine the incom-
plete case in continuous time models. But they only show that an optimal solution
exists. An explicit solution or an algorithm to calculate an explicit solution is not
provided. For the discrete model under consideration we are able to devise such an
algorithm. Remember that Step 1 of the two-step procedure minimizes EP (FT −X)
or maximizes EP (X) under the constraints

FT − b ≤ X ≤ FT and max
Q∈Q̄

EQ(X/BT ) ≤ V̄0. (10)

Although the set of martingale measures is of infinite size it suffices to consider
only a finite number of martingale measures for the optimization. This results
from the fact that the set of martingale measures is a convex polyhedron and the
constraints (10) form again a linear program.10

PROPOSITION 5. For every contingent claim FT there exist a finite number of
martingale measures Q1, . . . ,QL ∈ Q̄ such that the static optimization problem
(Step 1) is equivalent to maximize EP (X) under the constraints

FT − b ≤ X ≤ FT and max
i=1,...,L

EQi
(X/BT ) ≤ V̄0 (11)

where L denotes the number of extreme points of the convex polyhedron Q̄.

Now we present a procedure which finds the extreme points of the convex poly-
hedron and hence solves the static optimization problem in incomplete markets.

ALGORITHM FOR CALCULATING EXPECTED SHORTFALL STRATEGIES

(S0) Initialization: Set i ≡ 1 and define Q1 ≡ arg maxQ∈Q̄EQ(FT ).
(S1) Maximize EP (Xi) under the constraints FT − b ≤ Xi ≤ FT and

maxj=1,...,i EQj
(Xi/BT ) ≤ V̄0.

(S2) If maxQ∈Q̄EQ(X
∗
i /BT ) ≤ V̄0 holds for the optimal solution X∗

i of step (S1),
then it is optimal in the sense of the static optimization problem and the
algorithm terminates.
Otherwise, define Qi+1 ≡ arg maxQ∈Q̄EQ(X

∗
i /BT ), increase i = i + 1 and

return to step (S1)
Note that due to Proposition 5, the algorithm stops after a finite number of steps.
Moreover, the algorithm solves Step 2 of the two-step procedure concurrently due
to the duality relation (3). Furthermore, remember that all probability measures

10 In a trinominal model this convex polyhedron is described by 3n variables, 3n inequalities and
1 + (3n − 1)/2 equalities. The variables correspond to the martingale probabilities at each node
at time T of the multiperiod tree. The inequalities ensure that all these 3n values are positive and
the (3n − 1)/2 equalities ensure that the measure has the martingale property. Finally, we need
one more equality to make the measure a probability measure. In a recombining tree we need only∑n−1
i=0 (i + 1) · (i + 2)/2 equalities to describe the martingale property.
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and contingent claims can be represented by vectors of length N and therefore
steps (S1) and (S2) can be solved by linear programming. Step (S1) is a standard
linear programming problem and in step (S2) the lowest upper bound for arbitrage-
free prices of a contingent claim is searched. Due to relation (3) the latter problem
can be solved by linear programming as well.

The optimal ES-strategy is in general path-dependent, and even worse, the
algorithm needs a lot of computational time. This can be seen when having a
closer look at the different steps of the algorithm. In step (S0) we determine the
superhedging strategy of FT as described in Section 2.1. Every iteration of step
(S1) solves a linear program with a growing number of constraints, and in each
iteration step (S2) a superhedging strategy is determined. The linear optimization
of step (S1) is very fast at the beginning of the algorithm but becomes slower and
slower when the number of constraints increases. Because of the path-dependency
of the optimal ES-strategy, computational time increases substantially with respect
to the number of periods. In the numerical example in Section 5, we present some
explicit results about the computational effort of the above algorithm.

4. Local Expected Shortfall-Hedging

4.1. THE PROBLEM

As mentioned in the foregoing section, solving Problem 1 needs a lot of com-
putational time. To overcome this drawback, we now focus on myopic hedging
strategies. An investor behaves myopically if his sequence of decisions is obtained
as a series of single-period decisions (starting with the first period), where each
period is treated as if it were the last one. We call this simplified procedure Local
Expected Shortfall-Hedging (LES-Hedging).

PROBLEM 2 (LES-Hedging). Let FT be a European contingent claim and F SH
t ≡

Zt the corresponding superhedging values, and let Gt = σ (H LES
1 , . . . , H LES

t ) de-
note the σ -field generated by the LES-hedging strategy until time t . Then, find
sequentially a self-financing strategyH LES = (H LES

1 , . . . , H LES
T )with V0(H

LES) =
V̄0 whose components H LES

t minimize the (local) expected shortfall EP [(F SH
t −

Vt(H))
+ | Ft−1 ∨ Gt−1] for t = 1, . . . , T .11

For simplicity, we restrict ourselves in the theoretical part of this section to the
case b = ∞. However, it is no problem to impose a bound b < ∞ as in the
foregoing section. In later examples we will make use of this possibility.

11 Recall that according to convention (2) Vt (H) depends only on the hedging strategy until time
t .
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Figure 1. Minimizing the local expected shortfall. This figure illustrates the LES-strategy in a
trinomial tree with zero interest rate and for a fixed trading date t ∈ {1, . . . , T }. At the end of
the t th period, the values of the hedging portfolio Vt (H) should be as close as possible to the
superhedging values FSH

t . With the knowledge of Ft−1 there are three possible superhedging
values at t , marked by the dots. Because of the zero interest rate, the change in the value of the
hedging portfolio is Vt (H) − Vt−1(H) = ht · �St . Hence, the future values of the hedging
portfolio are represented by a line Vt (H) = Vt−1(H)+ht ·�St whose slope corresponds to the
hedge ratio ht . The latter minimizes the local expected shortfallEP ((F

SH
t −Vt (H))+ | Ft−1)

if the sum of the probability-weighted positive differences between the lines and the dots is
minimal. The different weights of the possible states are visualized through the size of the
dots.

4.2. SOME PROPERTIES OF THE LES-STRATEGY

LEMMA 1. In the one-period case (T = 1), a strategy which minimizes the local
expected shortfall also minimizes the expected shortfall, i.e., H ES = H LES.

Proof. In the one-period case we have F SH
1 = F1 by definition. Hence the two

problems coincide. �

The lemma shows that one can solve Problem 2 iteratively by solving Problem 1 in
one-period settings. In contrast to the recursive procedure for solving Problem 1 in
a multiperiod setting this iterative procedure is much faster.

LEMMA 2. Let H SH be a superhedging strategy of FT . If V̄0 ≥ F SH
0 = V0(H

SH),
then the ES-strategy and the LES-strategy coincide, i.e., H ES = H LES.

Proof. By definition, a superhedging strategy fulfils VT (H SH) ≥ FT and
Vt(H

SH) = F SH
t . Moreover Vt(H SH) ≥ F SH

t holds for all t = 0, . . . , T − 1.
Because V̄0 ≥ V0(H

SH), we can find a self-financing strategy H SH∗ such that
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Figure 2. Evolution of the stock price process in a subtree of a trinomial model.

V0(H
SH∗) = V̄0 and VT (H SH∗) ≥ FT as well as Vt(H SH∗) ≥ F SH

t for all t = 1,
. . . , T − 1. Therefore, when using H SH∗ the expected shortfall as well as the local
expected shortfall is zero and hence H SH∗ is optimal for Problems 1 and 2. �

PROPOSITION 6. The LES-strategy coincides with the ES-strategy if the market
is complete and volatility is constant.

Proof. See appendix.

4.3. TWO-PERIOD EXAMPLES

We consider the simplest version of an incomplete market: a trinomial model.
Starting with a time horizon τ , we therefore assume that there are three possible
successors for each stock price at each trading date. Hence, there are also three
possible returns in each trading period of length τ/n: Un, Dn and Jn. We interpret
these values as returns from “normal” up- (Un) and down-movements (Dn) and
from a “rare” event which we interpret as a jump (Jn) in the stock price process.
The probability for this rare event is denoted by λn whereas the probability for an
up-movement conditional that there is no jump is pn. The stock price change can
therefore be written as St = St−1 · Y , t = 1, . . . , T where Y is a random variable
which takes the values Un,Dn and Jn with probability pn ·(1−λn), (1−pn)·(1−λn)
and λn. Figure 2 visualizes the evolution of the stock price process in one subtree.

If λn is zero then we neglect the rare outcome Jn and the trinomial tree reduces
to a binomial tree. If furthermore Un = exp{ατ/n+σ√

τ/
√
n},Dn = exp{ατ/n−

σ
√
τ/

√
n} and pn = (eατ/n −Dn)/(Un−Dn), then one can show (see, e.g., Duffie

(1992, p. 198)) that this binomial tree converges in distribution for n → ∞ to the
continuous-time stock price process of the Black and Scholes (1973) model with
an annual volatility σ and an expected rate of return α.

Now, if λn > 0 then an additional jump component with a constant jump
size is present. Thus, we can interpret the trinomial model under consideration
as a discrete version of a jump-diffusion process with constant jump size. Such
continuous-time models including jumps are very popular in finance theory and
are used – often in a more general form – for example by Merton (1976), Cox and
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Figure 3. LES-strategy without a shortfall bound (b = ∞).

Ross (1976), and Jarrow and Madan (1995). Moreover, Amin (1993) presents a
discretization of Merton’s (1976) jump-diffusion model where the jump size is log-
normally distributed. This would also be an appropriate model to examine here, but
for simplicity and especially to be able to calculate the ES-strategy in reasonable
time, we use the trinomial model as presented above. Finally notice that the number
of jumps is binomially distributed in the interval [0, τ ] and hence the expected
number of jumps in this interval is n · λn. Therefore, λ ≡ n · λn/τ is the expected
number of jumps per year.12

In the following example we consider essentially the same parameters as in
the binomial example of Section 3. For the “jump-state” j we assume the gross
rate of return J = 0.8. The probability for this state is p(j) = 0.05 and for the
other states p(u) = 0.75 and p(d) = 0.2. Figures 3 and 4 illustrate the behaviour
of the LES-strategy in a two-period example without and with a shortfall bound,
respectively. It is interesting to observe that in the case without a shortfall bound
(Figure 3) the hedge ratio h2 increases if the stock price S1 decreases. This follows
from the fact that in this example the probability of a jump is apparently small
enough to compensate the shortfall due to the jump component. More precisely, the

12 In the following examples we calculate λn from a given expected number of jumps per year.
Thereby we have to be careful, because this only makes sense for large n or small τ . Hence, when
calculating the ES-strategy which needs a lot of computational time already for more than 4 periods,
we choose a short time horizon τ .
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Figure 4. LES-strategy with shortfall bound b = 5.

relatively high hedge ratio h2(j) = 2.167 results since the expected shortfall from
the jump-states ju, jd and jj is a linear and decreasing function of h2(j) as long
as h2(j) ≤ 2.167. This follows from V2(H, j ·) = −8, 67 + h2(j) · (S2(j ·)− 40)
leading to the expected shortfall 0.05 · (8.67 + h2(j) · (−4 · 0.75 + 4 · 0.2 + 8 ·
0.05)) = 0.05 · (8.67 − 1.8h2(j)) for h2(j) ≤ 2.167. Unfortunately, this LES-
strategy without a shortfall bound results in a relatively high shortfall especially
in state jj (26). Although this happens only with probability 0.0025, it may be to
risky for an investor because the amount to add to his portfolio is more than six
times his initial hedging capital. Figure 4 represents the case where an investor
restricts his shortfall to b = 5. In this case we get a completely different strategy
with the hedge ratio h2 decreasing with respect to S1. The expected shortfall of
this strategy is now higher (1.563) as in the case without a shortfall bound (0.765),
but the shortfall does now not exceed 5 which may give additional safety to the
investor.

5. Numerical Comparison

In this section we use the same model as in the previous section. But now, to be
more realistic we use a higher number of periods and therefore another parameter
set. We therefore consider a stock with a current price of $50. The annualized
volatility of the “normal” return of the stock, i.e., the return neglecting the jump
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part is assumed to be σ = 20%, the expected rate of the “normal” return is α =
15% and the riskless interest rate is r = 5%. Moreover, we assume that in the case
of a jump the return of the stock is Jn = exp{ατ/n− 2σ

√
τ/

√
n}. The contingent

claim to be hedged is a European call option with strike price K = $47.
Table 1 presents the expected shortfall resulting from the ES-strategy, the LES-

strategy, and the trivial strategy of not hedging at all (ht ≡ 0). The absolute
deviation between the expected shortfall of the LES-strategy and the ES-strategy
is quite small. Only when the initial hedging capital approaches the capital needed
for superhedging there are larger percentage deviations. Moreover, remember that
the expected shortfall of both strategies coincide if the expected number of jumps
is zero or if the initial hedging capital exceeds the initial hedging capital needed
for a superhedging strategy.

Figure 5 demonstrates that the piecewise linear structure as observed in the
complete market holds for the ES- as well as for the LES-strategy. We also see that
the efficient frontier of the approximative strategy fits the efficient frontier of the
ES-strategy very well.

Table 2 presents the number of linear programs to be solved when calculating
the ES-strategy and the LES-strategy, respectively. Panel A contains the theoretical
values including the number of linear programs needed for the initialization step
of the algorithm. The latter one is

∑n−1
t=0 3t = (3n − 1)/2 for the ES-strategy if the

original contingent claim is path-dependent and
∑n−1

t=0 (t+1)(t+2)/2 if the original
contingent claim is path-independent. For the LES-strategy we have n more linear
programs to solve in each case since for the LES-strategy the (one-period) ES-
algorithm is initiated n times. The number of iterations which equals the number
of modified contingent claims to be determined cannot be specified exactly. But in
the special case of a one-period situation where the set of martingale measure has
only two extreme points at most two iterations can occur. For the ES-strategy we
observed that 3n ·(n−1) is a reasonable approximation for the number of iterations.
When calculating the total number of linear programs needed to determine the
strategies we see that this number increases exponentially for the ES-strategy while
for the LES-strategy it increases only linearly. Panel B contains the values for a
concrete example grouped by the number of constraints. Remarkable is the fact
that most of the linear programs have two constraints because these are essentially
the linear programs whose solutions are needed to solve the superhedging problems
recursively.

Table 3 presents some statistical values of the distribution of the total hedging
costs for different initial hedging capital. We now use a time horizon τ = 0.25 and
a sample of n = 10 trading periods which leads to 59,049 different paths. Most of
the observations are very close to the initial hedging capital. Moreover, the mean of
the total hedging costs decreases when the initial hedging costs decrease. But the
standard deviation as well as the 90%, 95% and 99% quantile increases when the
initial hedging capital decreases. Particularly, the maximum of the total hedging
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Figure 5. Efficient frontier. This figure presents the efficient frontier, i.e., the optimal ex-
pected shortfall values as a function of the initial hedging capital. The efficient frontier of
the ES-strategy is represented by the solid line whereas the dotted line visualizes the efficient
frontier of the LES-strategy. For comparison the efficient frontier of the trivial hedging strategy
is represented by the dashed line.
Parameter values: initial stock price = $50; annual interest rate (r) = 5%; annual volatility of
the “normal” stock price return (σ ) = 20%; annual expected rate of the “normal” return of the
stock (α) = 15%; time to maturity of the option (τ ) = 1/12; strike price of the option (K) =
$47; expected number of jumps (λ) = 3 per year; number of trading periods (n) = 3.

costs is very large for a low initial hedging capital. Of course, these extremely high
values only occur with low probability.

In Table 4 it is shown how the distribution of the total hedging costs changes
when we impose an upper bound bc for these costs. Such an upper bound can be
easily implemented by using b = (bc − V̄0) · BT as upper bound for the shortfall.
We can observe that the mean as well as lower quantiles decrease when the upper
bound for the costs increase. In contrast to this, the standard deviation and the
upper quantiles increase with increasing bc. Not surprisingly, the more restrictive
the bounds for the total hedging costs are, the more observations are very close to
that bound.
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Table II. ES-strategy versus LES-strategy: Number of linear programs to be solved

Panel A: Number of LP’s to be solved in a n-period trinominal model

Main Iterations No. of LP’s Total number of LP’s

loops per main loop per iteration (incl. number of LP’s to

(= no. of mcc) be solved for initilization)

ES-strategy 1 ∼ 3n · (n− 1) 1 + 3n−1
2 ∼ 3n · (n− 1) · (1 + 3n−1

2 )

+∑n−1
t=0

(t+2
2

)

(average value) (average value)

LES-strategy n ≤ 2 1 + 31−1
2 = 2 ≤ 4n+ n+ ∑n−1

t=0

(t+2
2

)

Panel B: Number of LP’s to be solved in the example under consideration

Number of

constraints Number of periods

in linear n = 2 n = 3 n = 4 n = 5

programs ES LES ES LES ES LES ES LES

1 1 2 1 3 1 4 1 5

2 29 12 443 20 5,881 34 97,406 53

3 1 0 1 0 1 0 1 0

≥ 4 3 0 30 0 143 0 801 0

Total 34 14 475 23 6,026 38 98,209 58

This table presents the number of linear programs which have to be solved when calculating
the ES-strategy resp. the LES-strategy for a path-independent option. Panel A presents the
theoretical values including the linear programs needed for initialization. Panel B presents the
number of linear programs needed to solve in a concrete example where the parameters are
chosen as in Figure 6 and the initial hedging capital is V̄0 = 2. Thereby, linear problems with
more than 3 constraints are grouped together.

6. Summary and Extensions

This paper presents hedging strategies in an incomplete, discrete financial markets
setting. We justify the expected shortfall as a suitable risk measure and we present a
two-step procedure to minimize the expected shortfall for a given capital constraint
by solving linear programs. This two-step procedure goes back to Cvitanić and
Karatzas (1999), Pham (1999) and Föllmer and Leukert (1999, 2000) and makes
use of the superhedging concept. We calculate expected shortfall strategies analyt-
ically in complete markets and provide an algorithm for calculating such strategies
even in incomplete markets. Moreover, we show that it is possible to impose a
flexible ex-ante bound for the shortfall in these strategies. Since the algorithm is
very time-consuming, we propose a strategy which minimizes the expected short-
fall locally. The latter approximation is quite accurate and its computational time
drops significantly compared to the original ES-strategy.
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Table III. Distribution of the total hedging costs

Initial hedging capital

V̄0 = 5 V̄0 = 4 V̄0 = 3 V̄0 = 2 V̄0 = 1 V̄0 = 0

Mean 4.31 4.07 3.78 3.48 3.18 2.87
Std. dev. 0.40 2.00 3.97 5.96 7.94 9.94
Minimum 3.43 2.43 1.43 0.43 −0.56 −1.56
5% quantile 3.54 2.85 1.90 0.90 −0.10 −1.10

50% quantile 4.34 3.61 2.72 1.73 0.88 −0.12
75% quantile 4.60 3.97 2.97 1.99 1.14 0.31
90% quantile 4.80 4.42 4.75 4.87 4.98 5.10
95% quantile 4.85 5.84 8.44 10.90 13.35 15.82
99% quantile 4.97 13.94 23.63 33.33 43.03 52.73
Maximum 5.00 106.95 208.58 310.22 411.86 513.50

This table presents some statistical values of the distribution of the total hedging
costs when the initial hedging capital varies. The initial hedging capital of $5
corresponds to a superhedging strategy.
Parameter values: initial stock price = $50; annual interest rate (r) = 5%; annual
volatility of the stock price return (σ ) = 20%; annual expected rate of return of
the stock (α) = 15%; time to maturity of the option (τ ) = 0.25; strike price of the
option (K) = $47; expected number of jumps (λ) = 3 per year; number of trading
periods (n) = 10.

Table IV. Distribution of the total hedging costs

Upper bound for the total hedging costs

bc = 6 bc = 8 bc = 10 bc = 15 bc = 20 bc = 25

Mean 4.17 4.08 4.01 3.91 3.85 3.81
Std. Dev. 2.02 2.99 3.64 4.63 5.29 5.78
Minimum 0.59 0.44 0.44 0.44 0.44 0.44
5% quantile 1.31 1.00 0.95 0.90 0.90 0.90

50% quantile 5.42 1.97 1.94 1.82 1.78 1.78
75% quantile 5.98 7.95 9.16 2.71 2.14 2.09
90% quantile 5.98 7.95 9.97 15.00 10.82 5.40
95% quantile 5.98 7.95 9.97 15.00 20.00 25.00
99% quantile 5.98 7.95 9.97 15.00 20.00 25.00
Maximum 6.00 8.00 10.00 15.00 20.00 25.00

This table presents some statistical values of the distribution of the total hedging
costs when we impose an upper bound for the costs. The initial hedging capital used
in this example is $2.
Parameter values: initial stock price = $50; annual interest rate (r) = 5%; annual
volatility of the stock price return (σ ) = 20%; annual expected rate of return of the
stock (α) = 15%; time to maturity of the option (τ ) = 0.25; strike price of the option
(K) = $47; expected number of jumps (λ) = 3 per year; number of trading periods
(n) = 10.
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Figure 6. Distribution of the total hedging costs of the local expected shortfall strategy. This
figure visualizes the distribution of the total hedging costs of the LES-strategy when the initial
hedging capital varies. Panel A presents the case of a superhedging strategy, i.e., a strategy
with initial hedging capital V̄0 = 5. Panel B is based on V̄0 = 3 whereas in Panel C the
strategy needs no initial investment (V̄0 = 0). All values larger than ten are collected in the
rightmost bar. Parameter values: initial stock price = $50; annual interest rate (r) = 5%; annual
volatility of the “normal” stock price return (σ ) = 20%; annual expected rate of the “normal”
return of the stock (α) = 15%; time to maturity of the option (τ ) = 0.25; strike price of the
option (K) = $47; expected number of jumps (λ) = 3 per year; number of trading periods (n)
= 10.

In the numerical example we restrict ourselves to a trinomial model. However,
it would be interesting to examine multinomial models, as for example the one
provided by Amin (1993). Amin’s discrete model converges to the continuous-
time jump-diffusion model presented by Merton (1976) and hence one may try to
find an approximation for an ES-strategy when the stock price process follows a
jump-diffusion with lognormally distributed jumps.
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Appendix

Proof of Proposition 2

The following proof is in the spirit of similar proofs by Föllmer and Leukert (2000)
in a continuous-time setting and by Pham (1999) in a discrete time-setting. We only
prove the case b = ∞ because the proof for b < ∞ is very similar to that.

(i) First, we show J ≡ infH∈Sb0
EP (FT −VT (H))+ = infX∈XEP (FT −X) ≡ J̄ .

Consider an arbitrary self-financing strategy H ∈ Sb0 and define X ≡ FT −
(FT − VT (H))

+ = min(FT , VT (H)) which leads to X ≤ FT and X ≤ VT (H).
Moreover, note that the discounted value process Vt(H)/Bt is a martingale un-
der every martingale measure Q ∈ Q̄. Thus, we obtain for all QıQ̄ the relation
EQ(X/BT ) ≤ EQ(VT (H)/BT ) = V̄0. Hence, X ∈ X. Additionally, we have
EP (FT − VT (H))

+ = E(FT −X) ≥ J̄ and thus particularly J ≥ J̄ holds.
Consider now an arbitrary X ∈ X. Then we have maxQ∈Q̄EQ(X/BT ) ≤ V̄0.

From Proposition 1 we know that there exists a superhedging strategy H SH ∈ Sb0
of X with VT (H SH) ≥ X and V0(H

SH) = V̄0. Because of X ≤ FT and X ≤
VT (H

SH) this strategy fulfils (FT − VT (H
SH))+ ≤ FT − X and we therefore get

J ≤ EP (FT − VT (H
SH))+ ≤ EP (FT − X) = J̄ (X) for all X ∈ X. Hence, we

have J ≤ J̄ and with the above result J ≥ J̄ finally J = J̄ .
(ii) Second, from Proposition 1 we know that there exists a superhedging

strategy H ES ∈ Sb0 for X∗. Similar to (i) we get (FT − VT (H
ES))+ ≤ FT − X∗.

Hence, J ≤ EP (FT − VT (H
ES))+ ≤ EP (FT − X∗) = J̄ = J and therefore

EP (FT − VT (H
ES))+ = J . �

Proof of Proposition 3

The following proof follows closely the proof of the fundamental Neyman–Pearson
lemma as given in Witting (1985, p. 192) or Ferguson (1969, p. 200). First, notice
that the constant cES is well-defined because of the before made assumption b ≥
supQ∈Q̄(FT )− V̄0BT .

Remember that the problem is to solve maxX∈Xb
EP (X), or more explicitly

max
FT −b≤X≤FT

EP (X) (A1)

under the constraint

EQ(X/BT ) ≤ V̄0. (A2)

In the standard formulation of the Neyman–Pearson lemma the boundedness of X
by 0 ≤ X ≤ 1 is required. Nevertheless, as we show in the following, it is possible
to prove the slight extension FT − b ≤ X ≤ FT similarly to the proof of the
fundamental Neyman-Pearson lemma.

Define for an arbitrary modified contingent claim X ∈ X and with cES as
defined in the proposition:
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f (X) ≡ EP (X)

g ≡ sup
FT−b≤X≤FT

(f (X)+ cES · (V̄0 · BT − EQ(X))).

We can rewrite these expressions to

g = cES ·V̄0 ·BT + sup
FT −b≤X≤FT

(EP (X)− cES ·EP (X ·Q/P))

= cES ·V̄0 ·BT + sup
FT −b≤X≤FT

EP (X(1 − cES ·Q/P))

= cES ·V̄0 ·BT + sup
FT −b≤X≤FT

EP (X(1 − cES ·Q/P)+ −X(1 − cES ·Q/P)−)

= cES ·V̄0 ·BT + EP (FT (1 − cES ·Q/P)+ − (FT − b)(1 − cES ·Q/P)−)
f (X) = EP (X)

= EP (X (1 − cES ·Q/P + cES ·Q/P))
= EP (X (1 − cES ·Q/P)+ −X (1 − cES ·Q/P)−)+ cES ·EQ(X).

Hence the difference between g and f (X) is:

g − f (X) = cES · (V̄0 · BT − EQ(X))+ EP ((FT −X) (1 − cES ·Q/P)+
+EP ((X − FT + b) (1 − cES ·Q/P)−).

The three terms on the right hand side of the last equation are positive because cES

is positive and FT − b ≤ X ≤ FT as well as EQ(X) ≤ V̄0BT holds. Therefore,
we have g ≥ f (X) and thus, g is an upper bound for f . If for a X∗ ∈ Xb the
three terms are zero, then we have g = f (X∗) and hence X∗ is optimal in that
case. Using X∗ as defined in Proposition 3, all three terms become zero because γ
is chosen such that EQ(X∗) = V̄0BT and P/Q(ω) ≷ cES is equivalent to 1 − cES ·
Q/P(ω) ≷ 0: �

Proof of Proposition 6

Notice that in the complete case FSHt corresponds to the values of the replicating
portfolio of FT . Hence, due to Lemma 2 we can assume w.l.o.g. V̄0 < FS0 . Using
the notation from page 12 we furthermore assume w.l.o.g. P(u)/Q(u) > (1 −
P(u))/(1 −Q(u)).

Now, we determine the first part of the approximative strategy. At t = 0 we
have to decide about H LES

1 which minimizes EP (F SH
1 − V1(H

LES))+ under the
constraint V0(H

LES) = V̄0. From Lemma 1 we know that we can use Proposition
3 to solve this problem. Thus, H LES

1 replicates a modified contingent claim X∗,1
which is equal to F SH

1 if there is an up-tick in the first period and which is equal to
a constant γ LES if there is a down-tick in the first period. Hence,H LES

1 is the unique
solution of the following system of linear equations:

FSH1 (u) = hLES
1 · S1(u)+ h

0,LES
1 · B1 (A3)
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V̄0 = hLES
1 · S0 + h

0,LES
1 · B0 (A4)

Now we turn to the ES-strategy. Because (1 − P(u))T /(1 − Q(u))T <

(P (u)/Q(u))i · ((1 − P(u))/(1 −Q(u)))T−i for all i = 1, . . . , T we know from
Proposition 3 that the ES-strategy H ES also replicates a modified claim X∗. This
modified claim is equal to FT if there is at least one up-tick until maturity and is
equal to a constant γ ES if there is no up-tick at all. Therefore, we know that the first
part of the strategy (HES

1 ) replicates a modified contingent claim which is equal
F SH

1 if there is an up-tick in the first period and which is equal to a constant γ ES1 if
there is a down-tick in the first period. Hence, H ES

1 also solves the equations (A3)
and (A4) and therefore H LES

1 = H ES
1 . Moreover, we conclude that the constants

γ LES and γ ES
1 are equal. Now consider the next period. If there is an up-tick in the

first period, both strategies H ES and H LES are worth FS1 at t = 1 and hence the rest
is just to replicate the contingent claim. If there is a down-tick in the first period
then the same arguments as above with γ LES taking the role of V̄0 also shows that
the strategies coincide. Thus we finally get H LES = H ES. �
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