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Abstract. We present an expected utility maximisation framework for op-
timally controlling a portfolio of options. By combining the replication ap-
proach to option pricing with ideas of the martingale approach to (stock)
portfolio optimisation we arrive at an explicit solution of the option portfolio
problem. Its characteristics are illustrated by some specific examples. As an
application, we calculate an optimal option and consumption strategy for an
investor who is obliged to hold a stock position until the time horizon.

Zusammenfassung.Wir präsentieren einen Erwartungsnutzenansatz zur
optimalen Steuerung eines aus Optionen bestehenden Portefeuilles. Die
Kombination des Replikationsansatzes der klassischen Optionsbewertungs-
theorie mit dem Martingalansatz zur Portefeuilleoptimierung führt zu ex-
pliziten Lösungen des Optionsportefeuilleproblems. Wesentliche Lösungs-
eigenschaften werden anhand von Beispielen erhellt. Wir benutzen diese
Lösungsmethode zur Bestimmung einer optimalen Portefeuille- und Kon-
sumstrategie eines Investors, der verpflichtet ist, eine vorgegebene Aktien-
position bis zum Planungshorizont zu halten.
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1 Introduction

The trading in derivative securities such as options, futures or swaps has
become increasingly popular over recent years. Originally introduced for
hedging purposes, they are nowadays also used for speculation. Of course,
there are some good reasons for that. Derivative markets are usually more
liquid than the markets for the underlying stocks. Compared to trading in
stocks, transaction costs for trading in derivatives are usually lower. Also,
the pricing and hedging of derivatives is by now well understood due to the
acceptance of the Black-Scholes formula and its various variants. However,
there is still a lack of research concerning the determination of optimal
portfolios of derivatives. If a portfolio of options is hold for speculative rea-
sons then the trading philosophy of the investor must be different from that
of a hedger. The control of the Greeks is no longer the most important task.
Instead, the investor tries to maximise his expected utility from terminal
wealth of the portfolio of options. Therefore, in this paper, we set up a
corresponding portfolio problem for option trading under the assumption
that the underlying stock market is complete. Our main contributions and
insights to this problem are the following:

– an explicit solution of the option portfolio problem consisting of the
optimal terminal wealth and the optimal trading strategies is given,

– the amount of computational work to determine the optimal strategy
for the option problem roughly equals that for computing the optimal
strategy in a corresponding stock portfolio problem,

– frequency and volume of the rebalancing actions are comparable to those
of a corresponding (dynamic) stock portfolio problem,

– the form of the optimal payoff for the option portfolio problem only de-
pends on the choice of the utility function andnot on the payoff of the
derivatives that enter the portfolios,

– the form of the optimal trading strategies can differ significantly from
those of a corresponding stock portfolio problemandthis form is highly
sensitive with respect to the payoff of the derivatives that enter the port-
folios, i.e. the non-linearity of the derivatives prices only affects the way
how the optimal terminal wealth is generated, not its explicit form!

All these findings are illustrated by specific examples.
Mathematically, we combine results of the replication approach of option

pricing and of continuous-time portfolio optimisation for stock portfolios
(see Korn, 1997, for an overview to this subject). While a direct application
of the stochastic control approach of portfolio optimisation to our option
portfolio problem seems to be hopeless (due to the highly non-linear form of
the Hamilton-Jacobi-Bellman equation), we can make use of the separation
principle of the martingale approach. This will directly yield the explicit
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form of the optimal terminal wealth and the optimal consumption process. To
obtain the optimal option strategies, we can combine results of the replication
approach of option pricing and of continuous-time portfolio optimisation.
Therefore, Section 2 contains the description of the market model and some
basics needed from the theory of option pricing. Section 3 reviews some re-
sults of portfolio optimisation while in Section 4 we determine the solution
to the option portfolio problem with the help of the results presented in
the two foregoing sections. An optimal consumption problem under trading
constraints is studied in Section 5.

2 Some basics of option pricing in a complete market model

We look at a financial market consisting of one riskless asset (“bond”) and
n risky assets (“stocks”). Let their pricesPi(t), i = 0, ..., n, be governed by
the equations

dP0(t) = P0(t)r(t)dt , P0(0) = 1 , (2.1)

dPi(t) = Pi(t)


bi (t) dt+

n∑
j=1

σij (t) dWj (t)


 ,

Pi(0) = pi , i = 1, . . . , n (2.2)

whereW (t) is ann-dimensional Brownian motion on a complete, filtered
probability space(Ω,F, P ) with {Ft}t∈[0,T ], T < ∞, the corresponding
Brownian filtration. The market coefficientsr(t), b(t), andσ(t) are assumed
to be progressively measurable and uniformly bounded in(t, ω) ∈ [0, T ] ×
Ω. Furthermore,σ(t)σ(t)′ is required to be uniformly positive definite.

If the (n + 1)-vectorϕ(t) denotes the number of shares of different
securities held by an investor at timet then we will call

X(t) :=
n∑

i=0

ϕi (t)Pi (t)

the corresponding wealth process.

Definition 2.1. i) A trading strategy is anRn+1-valued, progressively mea-
surable processϕ(t), t ∈ [0, T ], with∫ T

0
|ϕ0 (t)| dt < ∞ a.s.,

n∑
i=1

n∑
j=1

∫ T

0
(ϕi (t)Pi (t)σij (t))2 dt < ∞ a.s..

ii) A non-negative, progressively measurable processc(t), t ∈ [0, T ], with∫ T

0
c(t)dt < ∞ a.s.
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is called a consumption rate process (for brevity: consumption process).
iii) A pair (ϕ, c) of a trading strategyϕ and a consumption processc is

called self-financing if the wealth processX(t) corresponding toϕ satisfies

X(t) = X(0) +
n∑

i=0

∫ t

0
ϕi (s) dPi (s) −

∫ t

0
c (s) ds ∀t ∈ [0, T ] .

It is called admissible if it is self-financing and its corresponding wealth
processX(t) is non-negative. LetA(x) denote the set of admissible pairs
withX(0) = x.

Definition 2.2. i) A contingent claim is a non-negative,FT -measurable ran-
dom variableB, such that

E (Bµ) < ∞ (2.3)

for someµ > 1.
ii) (ϕ, c) ∈ A(x) is called a replicating strategy for the contingent claimB
if the wealth processX(t) corresponding to(ϕ, c) satisfies

X(T ) = B a.s..

LetD(x) ⊆ A(x) be the set of replicating strategies forB. The real number

p := inf {x > 0 | D(x) /= ∅}
is called the fair price of the contingent claimB.

Remark 2.3.a) The most popular examples of contingent claims are the
European call option and the European put option whose terminal payouts
are given by

Bcall = (P1(T ) −K)+ , Bput = (K − P1(T ))+ ,

respectively (wherex+ denotes the positive part of the real numberx).
Here, the positive constant K denotes the exercise price, i.e. the fixed price
for which the holder of a call can buy one share of stock from the seller of
the call at time T and for which the holder of a put can sell one share of stock
to the seller of the call at time T. Further examples of contingent claims such
as Asian options, look backs, digitals, etc. can be found in e.g. Jarrow and
Turnbull (1996), Wilmott et al. (1994) or Baxter and Rennie (1996).
b) The main result of option pricing in complete markets is summarised
in Theorem 2.4 below. The idea behind it is that every contingent claim
should have a value equal to the cost of setting up its cheapest replicating
strategy. Otherwise there would be a possibility of making arbitrage gains.
The existence of such a cheapest replicating strategy for every contingent
claim is the defining feature of a complete market.
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Theorem 2.4. Let

H(t) = exp
(

−
∫ t

0

(
r (s) +

1
2

‖θ (s)‖2
)
ds−

∫ t

0
θ (s)′ dW (s)

)

denote the stochastic deflator process withθ(t) = σ−1 (t) (b(t) − r(t)1),
t ∈ [0, T ]. Then, the fair pricep of a contingent claimB equals

p = E(H(T )B) ,

and there exists a unique replicating strategy (ϕ∗, c∗) ∈ D(p) withc∗(t) = 0
for all t ∈ [0, T ] a.s. Its corresponding wealth process,X∗(t), (the “valua-
tion process forB”) admits the representation

X∗(t) =
1

H (t)
E (H(T )B|Ft) .

Remark 2.5.a) For a proof of Theorem 2.4 see Karatzas (1989) or Sec-
tion 2.4 of the monograph Korn (1997).
b) One can rephrase Theorem 2.4 by the introduction of the unique equivalent
martingale measurẽP for the stock prices (i.e. the probability measure with
respect to which all discounted stock pricesPi(t)/P0(t) are martingales).
It is defined as

P̃ (A) := E (Z(T )1A) ∀A ∈ FT

with

Z(t) := exp
(

−
∫ t

0
θ (s)′ dW (s) − 1

2

∫ t

0
‖θ (s)‖2 ds

)
, t ∈ [0, T ] .

Noting that we have

Ẽ

(
exp

(
−
∫ T

0
r (s) ds

)
B

)
= E (H (T )B)

(whereẼ denotes expectation with respect toP̃ ) we see that option pricing in
a complete market as presented above consists of calculating the discounted
expectation of the payoff with respect to the equivalent martingale measure.

One can get an explicit form of the replicating strategy by imposing
additional assumptions on the option price process.

Theorem 2.6. Assume that the price of an option at timet can be written
as aC1,2-functionf(t, p1, . . . , pn) of time and underlying stock prices.
i) Then the replicating strategyψ∗ is given by

ψ∗
i (t) = fpi (t, P1 (t) , . . . , Pn (t)) , i = 1, . . . , n ,

ψ∗
0(t) =

(f (t, P1(t), . . . , Pn(t))−∑n
i=1fpi (t, P1 (t) , . . . , Pn (t))Pi (t))
P0(t)

,
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and the functionf(t, p1, . . . , pn) is a solution of the partial differential
equation

ft +
1
2

n∑
i,j=1

aijpipjfpipj +
n∑

i=1

rpifpi − rf = 0 .

Here, we have seta(t) := σ(t)σ(t)′ and where the subscriptst, p1, . . . , pn

mean partial derivative with respect to the corresponding variable.
ii) The price processf(t, P1(t), . . . , Pn(t)) obeys the stochastic differential
equation

df (t, P1(t), . . . , Pn(t))

=

(
rf (t, P1 (t) , . . . , Pn (t))

+
n∑

i=1

fpi (t, P1 (t) , . . . , Pn (t))Pi (t) (bi − r)

)
dt

+


 n∑

i=1

fpi (t, P1 (t) , . . . , Pn (t))Pi (t)
n∑

j=1

σij (t) dWj (t)


(2.4)

Proof. i) is a well-known result which can e.g. be found in Karatzas (1989).
The form of the stochastic differential equation in ii) follows by application
of Itô’s rule to the processf (t, P1(t), . . . , Pn(t)) and using the fact thatf
satisfies the partial differential equation given in part i). ut
Example 2.7 (Black-Scholes Formula). If we assume a market withn = 1
and constant market coefficientsr, b, σ then explicit computation for the
case of the European call yields the fair pricef call(t, p) (if the stock price
at timet equalsp1) as

f call(t, p1) = p1Φ(d1(t)) −Ke−r(T−t)Φ (d2 (t))

whereΦ(·) is the distribution function of the standard normal distribution
and where we have set

d1(t) =
ln
(p1

K

)
+
(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

, d2(t) = d1(t) − σ
√
T − t .

The replicating strategyψ∗ for the European call is given by

ψ∗
0(t) = −Ke−rTΦ (d2(t)) , ψ∗

1(t) = Φ (d1(t)) .



Optimal control of option portfolios 129

If we introduce the portfolio processπ∗(t) corresponding toψ∗(t) as the
fraction of the investor’s wealth held in the stock at timet then we obtain

π∗(t) =
(Φ (d1(t)) p1)
f call (t, p1)

.

Note especially thatπ∗(t) is always bigger than one. By analogy, for the
European put we obtain

fput (t, p1) = Ke−r(T−t)Φ (−d2(t)) − p1Φ (−d1(t))

and similar forms for the replicating strategy.

3 The continuous-time portfolio problem

The continuous-time portfolio problem(P ) consists of maximising total
expected utility of consumption over the trading interval[0, T ] and/or of
terminal wealthX(T ), i.e. of finding an admissible pair (ϕ, c) that maximises

J(x;ϕ, c) := E

(∫ T

0
U1 (t, c (t)) dt+ U2 (Xx,ϕ,c (T ))

)
(3.1)

whereXx,ϕ,c(t) is the wealth process of an investor endowed with an initial
wealth ofx > 0 and following an admissible strategy (ϕ, c). We require that
the utility functionsU1(t, ·) andU2(·) areC1, strictly concave and satisfy

U ′(0) := lim
x↓0

U ′(x) = +∞ , U ′(∞) := lim
x↓∞

U ′(x) = 0 . (3.2)

Further,U1(·, ·) should be continuous. Typical examples areU1(t, x) =
exp(−βt) ln(x) orU2(x) = 1

αx
α for α ∈ (0, 1).

To ensure the existence of the expected value in (3.1), we have to restrict
the class of admissible pairs to the following sub-class ofA(x):

A′(x) := (3.3){
(ϕ, c) ∈ A (x)

∣∣∣∣E
(∫ T

0
U1 (t, c (t))− dt+ U2 (Xx,ϕ,c (T ))−

)
< ∞

}
.

Note that by introducing this class we do not exclude strategies that will
possibly lead to an infinite utility. We only require that the expected value
over the negative parts of the utility functions is finite. Clearly, if both utility
functions are non-negative thenA(x) andA′(x) coincide.

The central idea of the martingale approach of portfolio optimisation is
a decomposition of the portfolio problem into a static optimisation problem
(“Determination of optimal cash flows, i.e. consumptionc(t) and/or termi-
nal wealthB”) and a representation problem (“Find a strategy that yields the
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(already determined!) optimal cash flow”). This two-step procedure heavily
relies on the completeness of the market model. It is described in e.g. Pliska
(1986), Karatzas e.a. (1987) or Korn and Trautmann (1995). To formulate
its main result we introduce the functionX : (0,∞) → R by

X(y) := E

(
H (T ) I2 (yH (T )) +

∫ T

0
H (t) I1 (t, yH (t)) dt

)
∀ y > 0

whereI1(t, ·), I2(·) are the inverse functions ofU ′
1(t, ·),U ′

2(·), respectively.
This function is strictly decreasing, continuous and possesses an inverse
functionY (x). With its help a complete solution of problem(P ) is given in
Theorem 3.1 (see Section 3.4 of Korn (1997) for a proof):

Theorem 3.1. Letx > 0. Under the assumption of

X(y) < ∞ ∀ y ∈ (0,∞)

the optimal terminal wealthB∗ and the optimal consumption processc∗(t),
t ∈ [0, T ], for problem(P ) are given by

B∗ := I2 (Y (x)H (T )) , (3.4)

c∗(t) := I1 (t, Y (x)H (t)) . (3.5)

Moreover, there exists a trading strategyξ(t), t ∈ [0, T ], such that we have

(ξ, c∗) ∈ A′(x) , Xx,ξ,c∗
(T ) = B∗ a.s.,

J(x; ξ, c∗) = max
(ϕ,c)∈A′(x)

J(x;ϕ, c) ,

i.e. (ξ, c∗) solves the portfolio problem(P ). If we consider the pure con-
sumption problem by settingU2(x) ≡ 0 in (P ) then the optimal consumption
process is still given by representation (3.5) and the optimal terminal wealth
B∗ equals zero in this case. Contrary, in the pure terminal wealth problem
(obtained from(P ) by settingU1(t, c) ≡ 0 for all t ∈ [0, T ]), we still have
representation (3.4) forB∗ with c∗(t) ≡ 0 for all t ∈ [0, T ]).

Remark 3.2.a) In the logarithmic case

U1(t, x) = U2(x) = ln(x) ∀ t ∈ [0, T ]

application of Theorem 3.1 and explicit computations yield (see Exam-
ple 3.19 of Korn (1997) for the details)

c∗(t) =
x

T + 1
1

H (t)
∀ t ∈ [0, T ] , B∗ =

x

T + 1
1

H (T )
.



Optimal control of option portfolios 131

If we define the portfolio processπ∗(t) as then-vector of the fractions of
the optimal wealth invested in then stocks then we have

π∗(t) =
(
σ(t)σ(t)′)−1 (b(t) − r(t)1) ∀ t ∈ [0, T ] .

Hence, the optimal trading strategyξ(t) is given by

ξi(t) = π∗
i (t)X

∗(t)/Pi(t) , i = 1, . . . , n,

ξ0(t) =

(
1 −

n∑
i=1

π∗
i (t)

)
X∗(t)/P0(t)

whereX∗(t) denotes the corresponding wealth process.
b) The computation of the portfolio processπ∗(t) or of the trading strategy
ξ(t) is the more difficult part of the solution of problem(P ). We will only
give a result for the case where the optimal wealth process has a special
structure (see Section 3.4 of Korn (1997)). More general results can be
found in Ocone and Karatzas (1991). If we assume that the optimal wealth
processX(t) can be represented in the form

X(t) =
1

H (t)
E

(∫ T

t
H (s) c∗ (s) ds+H (T )B∗|Ft

)
= f (t,W1(t), . . . ,Wn(t)) (3.6)

for a non-negative functionf ∈ C1,2 ([0, T ) × Rn) with f(0, . . . , 0) = x
and whereB∗, c∗ are the optimal terminal wealth and optimal consumption
as given in Theorem 3.1, then the optimal trading strategyξ(t), t ∈ [0, T ],
is given by

ξi(t) =
1

Pi (t)

(
σ (t)−1 ∇xf (t,W1 (t) , . . . ,Wn (t))

)
i
, i = 1, . . . , n ,

ξ0(t) =

(
X∗ (t) −

n∑
i=1

ξi (t)Pi (t)

)/
P0 (t)

whereX∗(t) is the optimal wealth process of Theorem 3.1 (provided that
ξ(t) meets the requirements of Definition 2.1).∇xf(·) denotes the gradi-
ent of f with respect to the last n variables i.e. the ones that represent the
components of the Brownian motion.

4 Optimal control of an option portfolio

In this section we seek a closed form solution to the portfolio problem if
instead of the n stocks, we are only trading in options on these stocks.
To be able to do so, we assume that the n options in our market satisfy
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the assumptions of Theorem 2.6. In particular, their price processes are then
given by the stochastic differential equation (2.4). If we define an admissible
trading strategy in this market as anRn+1-valued progressively measurable
processϕ(t) such that the corresponding wealth processX(t) satisfies

X(t) = ϕ0 (t)P0(t) +
n∑

i=1

ϕi (t) f (i) (t, P1 (t) , . . . , Pn (t)) (4.1)

= x+
∫ t

0
ϕ0 (s) dP0 (s)

+
n∑

i=1

∫ t

0
ϕi (s) df (i) (s, P1 (s) , . . . , Pn (s)) −

∫ t

0
c(s)ds

wherec(t) is a consumption rate process, then the problem to solve is

max
ϕ,c

E

(∫ T

0
U1 (t, c (t)) dt+ U2 (X (T ))

)
. (4.2)

In view of the martingale approach to portfolio optimisation as described in
the preceeding section, intuition suggests the following: As long as the option
prices carry the same information as the stock prices (mathematically: as
long as they generate the same filtration) then the optimal terminal wealth
of the option portfolio problem (4.2) and that of thestockportfolio (P )
should coincide. Then, it will be possible to reconstruct the corresponding
trading strategy from the optimal one of the stock portfolio problem via an
“inversion” of option replication.

Theorem 4.1. (Optimal solution of the option portfolio problem)Assume
that the option prices satisfy the requirements of Theorem 2.6 and that for
everyt ∈ [0, T ) the matrixψ(t) = (ψij(t)) , i, j = 1, . . . , n, with

ψij(t) := f (i)
pj

(t, P1 (t) , . . . , Pn (t)) (4.3)

is regular (for allω ∈ Ω).
i) Under the assumptions of Theorem 3.1 the optimal terminal wealthB∗
and the optimal consumption processc∗(t) for the option portfolio problem
(4.2) are given by the representations (3.4) and (3.5).
ii) Let ξ(t) be the optimal trading strategy of the corresponding stock port-
folio problem. An optimal trading strategyϕ (i.e. one such that the corre-
sponding wealth process satisfiesX(T ) = B∗ a.s.) is given by

ϕ̄(t) =
(
ψ′(t)

)−1
ξ̄(t), (4.4)

ϕ0(t) =

(
X (t) −

n∑
i=1

ϕ̄i (t) f (i) (t, P1 (t) , . . . , Pn (t))

)/
P0(t)
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whereϕ̄(t) and ξ̄(t) are the lastn components ofϕ(t) andξ(t), andX(t)
is the wealth process.

Proof. i) Note that due to Theorem 2.6 we have

f (i) (t, P1 (t) , . . . , Pn (t)) =
n∑

j=0

ψij (t)Pj (t)

whereψi0(t) equalsψ∗
0(t) of Theorem 2.6 ii). As the strategy(ψi0(t), . . . ,

ψin(t)) is self-financing, we also have

df (i) (t, P1 (t) , . . . , Pn (t)) =
n∑

j=0

ψij (t) dPj (t) . (4.5)

Let now

X(t) = ϕ0(t)P0(t) +
n∑

i=1

ϕi (t) f (i) (t, P1 (t) , . . . , Pn (t))

be the wealth process corresponding to a trading strategyϕ(t) which is
admissible for the option portfolio problem. Using the above representations
of the option prices, we obtain

X(t) =

(
ϕ0 (t) +

n∑
i=1

ϕi (t)ψi0 (t)

)
P0(t)

+
n∑

j=1

(
n∑

i=1

ϕi (t)ψij (t)

)
Pj (t)

=: ζ0(t)P0(t) +
n∑

j=1

ζj (t)Pj (t)

and

dX(t) = ζ0(t)dP0(t) +
n∑

j=1

ζj (t) dPj (t) − c(t)dt

wherec(t) is a consumption process. Due to our assumptions on(ϕ(t), c(t)),
the corresponding pair(ζ, c) is an admissible strategy for the stock portfolio
problem. Thus, part a) of Theorem 2.7 in Korn (1997) is applicable to the
wealth process of every pair of trading strategy and consumption process
(ϕ(t), c(t)) which is admissible for the option portfolio problem, too. With
this fact the above assertion in part i) follows by exactly repeating the proof
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of Theorem 3.16 in Korn (1997) if we can prove that there exists a repli-
cating strategy forB∗ andc∗(t). But this is ensured by part ii) of the above
Theorem 4.1 which will be proved below.
ii) Let ξ(t) be the optimal trading strategy of the corresponding stock port-
folio problem with corresponding wealth processX(t), i.e. we have

X(T ) = B∗ a.s.,

dX(t) = ξ0(t)dP0(t) +
n∑

i=1

ξi (t) dPi (t) − c∗(t)dt

=

(
ξ0 (t)P0 (t) r +

n∑
i=1

ξi (t)Pi (t) bi (t) − c∗ (t)

)
dt

+
n∑

i,j=1

ξi (t)Pi (t)σij (t) dWj (t) .

If on the other hand there exists a trading strategyϕ(t) in the options market
with a corresponding wealth process ofX(t) (and a consumption process
of c∗(t)) then it must have the following representation as in the proof of
part i):

dX(t)

=

(
ϕ0 (t) +

n∑
i=1

ϕi (t)ψi0 (t)

)
dP0(t)

+
n∑

k=1

(
n∑

i=1

ϕi (t)ψik (t)

)
dPk (t) − c∗(t)dt

=


ϕ0 (t) rP0 (t)

+
n∑

i=1

ϕi (t)


ψi0 (t) rP0 (t) +

n∑
j=1

ψij (t) bjPj (t)


− c∗ (t)


 dt

+
n∑

i,j,k=1

ϕi (t)ψik (t)Pk (t)σkj (t) dWj (t) .

Comparison of the coefficients of thedW -terms of both representations of
X(t) yields the desired form of the lastn components ofϕ(t). The form of
ϕ0(t) is an immediate consequence of the self-financing condition. To show
that the strategyϕ(t) is admissible, it suffices to show that the stochastic
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integrals

n∑
i=1

∫ t

0
ϕi (s) df (i) (s, P1 (s) , . . . , Pn (s))

in equation (4.1) are defined. Using the representation (4.5) for the df-terms,
the explicit form (4.4) ofϕ(t), and the admissibility of the strategyξ(t) in
the stock portfolio problem yields the admissibility ofϕ(t) for the option
portfolio problem. ut
Remark 4.2.a) As already announced, part i) of Theorem 4.1 demonstrates
that the optimal terminal wealth and consumption only depend on the choice
of the utility functions. The different choice of the risky assets (compared to
the stock portfolio problem) only manifests itself in the form of the trading
strategy that generates the optimal consumption and the optimal terminal
wealth (see part ii) of Theorem 4.1). The examples below will further high-
light these facts.
b) The first two of the following figures give a graphical representation of the
solution of both the option valuation and thestockportfolio problem. The
third figure shows how these two solution methods are combined to yield our
solution method of theoptionportfolio problem. In either figure the upper
part denotes the problem while the lower part shows the way it is solved. For
ease of exposition, we omit consumption in the optimisation problems, or
better, restrict ourselves to pure maximisation problems of expected utility
of terminal wealth. In view of Theorems 2.4, 3.1 and 4.1 Figures 1–3 are
self-explaining.
c) The regularity condition on the “delta-matrix”ψ(t) in Theorem 4.1 en-
sures that the market made up of the bond and thenoptions is still a complete

Option price p Terminal payoff B

Replicating strategyInitial costs of replication

?

B = X   (T)ψ

(t)

 p = X   (0)     = E   (H(T)B)      
ψ           

ψ

Fig. 1. Option valuation via Theorem 2.4

Initial wealth x Optimal terminal wealth X(T)

Optimal payoff  B* Replicating strategy

?

B* =  I  (Y(x)H(T))2 X(T) = X  (T)

ξ(t)

ξ

Fig. 2. Stock portfolio optimistaion via Theorem 3.1 (without consumption)
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Initial wealth x Optimal terminal wealth X(T)

Optimal payoff  B*

Replicating strategy 
 in stocks and cash

Replicating strategy 
 in options and cash

ξ(t)
ϕ(t) = (ψ(t))-1ξ(t)

B* =  I  (Y(x)H(T))2 X(T) = X  (T)ϕ

?

Fig. 3. Option portfolio optimisation via Theorem 4.1 (without consumption)

one. At every time instantt, there should be an impact ofall n compo-
nents of the Brownian motion on the n option prices. Without this kind of
non-degeneracy assumption we are not able to reduce the “option portfolio
problem” to the portfolio problem in the assets underlying the options.

Example 4.3 (Logarithmic utility). We look at the case of the logarithmic
utility function as in Remark 3.2 a). For simplicity, let us consider the case of
n = 1 and constant market coefficients. Then, the optimal portfolio process
π(t) is a constantπ∗ equal to(b− r)/σ2. By the definition of the portfolio
process we obtain

ξ1(t) =
π∗ (t)X (t)
P1 (t)

=
b− r

σ2
X (t)
P1 (t)

as the optimal number of shares in the stock portfolio problem. Application
of Theorem 4.1 yields

ϕ1(t) =
b− r

σ2
X (t)

ψ1 (t)P1 (t)
,

and the bond componentϕ0(t) is automatically determined by the self-
financing requirement, i.e. we have

ϕ0(t) = (X(t) − ϕ1(t)f (t, P1(t)))/P0(t)

=
(
σ2ψ1 (t)P1 (t) − (b− r) f (t, P1 (t))

σ2ψ1 (t)P1 (t)

)
X (t)
P0 (t)

.

With this representation we can further compute the portfolio process cor-
responding to the option problemπopt(t) as

πopt(t) :=
ϕ1 (t) f (t, P1 (t))

X (t)
=
b− r

σ2
f (t, P1 (t))

fp (t, P1 (t))P1 (t)
. (4.6)
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Note in particular that this portfolio process is only constant forf(t, P1(t))
= P1(t), i.e. if the option is equal to the underlying. Thus, for all non-
artificial options we have a non-constant portfolio process which depends on
both time and the current stock price. It must be pointed out that following
the portfolio processπopt(t) requires no additional computations as both
the option pricef(t, P1(t)) and the option’s deltafp(t, P1(t)) are numbers
that someone trading in this option would automatically compute. Although
πopt(t) is non-linear in the stock priceP1(t), following the constant portfolio
processπ∗ in the stock portfolio problem also requires rebalancing of the
risky position at every time instantt. Thus, regarding the trading frequency,
there is no difference between the optimal stock and the optimal option port-
folio strategy. To verify thatπopt(t) is indeed the optimal portfolio process,
we only have to check the regularity assumption onfp(t, p). To do so, we
need more information on the explicit form of the option. As an example,
we specialise to the case of a European call where we know thatfp(t, p) is
always positive. Further, the last quotient appearing inπopt(t) is always po-
sitive but smaller than one with a non-vanishing denominator. This directly
implies that we have

0 < πopt(t) < π∗ = (b− r)/σ2 .

Hence, the fraction of money invested in the risky asset is alwaysstrictly
smallerif an investor follows the optimal option strategy than if he would
follow the optimal stock strategy. As holding a European call option is more
risky than holding the underlying stock, one can say that the seemingly
reduced risk of having a smaller fraction of money invested in the risky
asset is compensated by the fact that this amount bears a higher risk than
holding the same amount in the stock. We also give a graphical comparison
of the two portfolio processesπopt(t) andπ∗ as functions of the underlying
stock price in Fig. 4 (where we have chosenr = 0, b = 0.05, σ = 0.25,
T = 1, t = 0, K = 100). It clearly highlights the fact that for high stock
prices (compared to the strike price) the option portfolio process tends to
the stock portfolio process while for small stock prices the option portfolio
tends to zero.

Hence, the more risky the call option is – that is, the more the option is
out of the money – the smaller is the fraction of wealthπopt(0) invested in
the risky security.

In the case of a European put we can parallel the foregoing discussion.
Furthermore, we obtain analogous results when using other members of the
HARA class as utility functions.

Example 4.4 (Exponential utility). In contrast to the logarithmic utility case
where the optimalfraction of wealth invested in the stocks is constant, it is
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πopt(0)
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P1 (t)

π

Fig. 4.π∗ andπopt(0) as functions of the stock price

the optimalamountof money invested in the stock that is constant if

U(x) = 1 − e−λx (λ > 0 fixed)

(if we further chooser = 0 and do not allow for consumption). This choice
of utility function does not satisfy the requirements (3.2), but it can be treated
with similar methods. In particular, the implications of Theorems 3.1 and
4.1 remain true. The optimal number of shares of stock in the stock portfolio
problem is given as (see Pliska (1986) or Section 3.5 of Korn (1997))

ξ1(t) =
b

λσ2
1

P1 (t)

which, as a consequence of Theorem 4.1, leads to the optimal number of
option contracts in the option portfolio problem of

ϕ1(t) =
b

λσ2
1

fp (t, P1 (t))P1 (t)
.

If we compare the optimal amounts of money invested in the corresponding
risky asset in both problems,

ξ1(t)P1(t) =
b

λσ2 and ϕ1(t)f (t, P1(t)) =
b

λσ2
f (t, P1 (t))

fp (t, P1 (t))P1 (t)
,

we arrive at similar results as in the case of the European call in Example 4.3:
we always invest a positive amount of money in the corresponding risky
asset, but always the amount of money invested in the stock in the stock
portfolio problem exceeds the amount invested in the option in the option
portfolio problem.
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Example 4.5 (A multi-dimensional, mixed stock and option problem). As-
sume the case of the logarithmic utility function and that we haven = 2.
The trader wants to maximise the terminal wealth from investing in stock
number 1 and in call options on stock 2. As the pure stock can be regarded as
a call with zero strike price this problem falls into the range of Theorem 4.1
(as all stocks can be regarded as appropriate calls with zero strike, the stock
portfolio problem is a special case of the option portfolio problem!). The
matrixψ(t) of Theorem 4.1 is now given as

ψ(t) =
(

1 0
0 Φ (d1 (t))

)

where in the definition ofd1(t) of Example 2.7 we have to replaceσ by√
σ2

21 + σ2
22 .

To see this last claim, note that the market with two stocks and a driving
two-dimensional Brownian motion is a complete one. Hence, computing the
call price means computing discounted expectation of the terminal payoff
with respect to the equivalent martingale measureP̃ . This can be done in

the following way. IfW̃ (t) :=
(
W̃1(t), W̃2(t)

)′
is a P̃ -Brownian motion

then the sum

σ12W̃1(t) + σ22W̃2(t)

occurring in the computation of the above expectation can be replaced by√
σ2

21 + σ2
22Z(t)

whereZ(t) is normally distributed with zero expectation and variancet
underP̃ . To compute the call price and the replicating strategy we can then
proceed as in the usual one-dimensional setting if we replaceσ by the square
root expression above.

An application of Theorem 4.1 and analogous calculations as in Exam-
ple 4.3 will show that in the current setting the optimal fraction of wealth
invested in the risky assets will always be bigger than in the setting where
we trade in a call option on the first stock (with non-vanishing strike) instead
of trading in the first stock. On the other hand, it will be smaller than in the
pure two-dimensional stock portfolio problem.

Example 4.6 (Options with non-monotonic payoffs). We assume the setting
of Example 4.4. As the denominator of the optimal option strategyϕ1(t)
already indicates, iffp(t, p) vanishes for a finite positive p then the number
of option contracts in the optimal portfolio will tend to infinity if the stock
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Fig. 5. Option price and payoff

price is close to that value p. Especially,ϕ1(t) is not defined if this specific
value p is attained by the stock price. We will demonstrate this feature by
looking at an option with a payoff as given by the diagram in Fig. 5, a
so called butterfly spread whose payoff is the same as that of having a long
position in one call with strike 90 and one with strike 110 and a short position
in two calls with strike 100. Before doing so in detail, we should point out
that if we change the optimal option trading strategy of Theorem 4.1 only on
a set of zero measure with respect toL[0, T ]⊗P then the resulting strategy
will still be admissible and optimal for the option problem. We use this fact
to defineϕ1(t) to be zero wheneverP1(t) reaches the unique value p such
that we havefp(t, p) = 0. It is not hard but quite cumbersome to show that
for every t ∈ [0, T ) this pointp is unique. To highlight thedangers and
risks occurring in such a situation we refer to Figs. 5–7. There, we have
given some relevant graphs for the choice ofr = 0, b = 0.05, σ = 0.25,
λ = 0.1 andT = 0.25. Figure 5 depicts the price of our butterfly spread
with 3 months time to maturity as function of the underlying stock price
together with its payoff.

In Fig. 6 we see the already indicated behaviour of the optimal strategy
for the option portfolio problem. The number of options must be increased
(decreased) dramatically if the stock price is close to the valuep∗ ≈ 100.5
where the derivative of the option price with respect to p vanishes. The reason
for this is the much smaller diffusion part of the option price compared to
the stock price. However, the corresponding wealth processes in both the
stock and the option portfolio problem have to coincide. Thus, it needs a
huge number of options to generate the diffusion component of this wealth
process. In particular, the option position changes its sign around this value
of the stock price. This fact will become even more dramatic if we look at
Fig. 7 where we plot the optimal amount of money invested in the option
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Fig. 6. Optimal strategy for the option portfolio problem

--- money in stock

 _ _  money in option

-20

-15

-10

-5

0

5

10

15

20

70 80 90 100 110 120 130 140

P1 (t)

Fig. 7. Optimal amount of money invested in the stock and in the option

against the (constant) optimal amount of money invested in the stock in the
stock portfolio problem.

While outside the region of a positive option payoff we always invest less
money in the option than in the stock in the corresponding stock portfolio
problem the situation completely changes if the stock price is close top∗.
We have to hold huge positive amounts (if the stock price is belowp∗) or
negative amounts of money (if the stock price is abovep∗) in the option,
respectively. In particular, there will be a tremendous change in the option
position if the stock price crosses the valuep∗.

This is a common feature of all options with non-monotonic payoff. The
delta neutrality in the pointp∗ is a desirable feature for hedging purposes
or if the goal of the investor is to control the Greeks of an option portfolio.
However, if the goal is utility maximisation such points of delta-neutrality
of an option are critical. They require huge option positions which are also
extremely sensitive with respect to price changes of the underlying. In our
one-dimensional example, one could informally say that it is the change from
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zero – which corresponds to the stock position in the replicating strategy for
the option if the stock price equalsp∗ – to “1/0” which corresponds to the
option position in the optimal trading strategy of Theorem 4.1 if the stock
price equalsp∗.

In practise however, such huge positions cannot be hold due to limited
supply and demand in the relevant market. A strategy of just keeping the
option position constant until the price of the underlying has moved away
sufficiently far fromp∗ and then following the optimal strategy again should
be an acceptable approximation. Although such a behaviour is not optimal
it avoids the dangers of building up extremely high and very volatile option
positions.

5 Optimal consumption under trading constraints

As an application of the methodology developed in the foregoing section,
we will look at a realistic problem. An investor is required to hold the
position(ζ1(t), . . . , ζn(t)) in the stock market where(ζ1(t), . . . , ζn(t)) are
the lastn components of an admissible stock trading strategyζ with a zero-
consumption process. We also assume that the investor wants to consume
parts of his wealth in an optimal way throughout[0, T ] but is only allowed
to trade in options on the stocks. In this situation, his wealth process has the
form

X(t) = ϕ0(t)P0(t) +
n∑

i=1

ϕi (t) f (i) (t, P1 (t) , . . . , Pn (t))

+
n∑

i=1

ζi (t)Pi (t) (5.1)

= x+
∫ t

0
ϕ0 (s) dP0 (s)

+
n∑

i=1

∫ t

0
ϕi (s) df (i) (s, P1 (s) , . . . , Pn (s))

+
n∑

j=1

∫ t

0
ζj (s) dPj (s) −

∫ t

0
c (s) ds

wherex is his given initial wealth andc(t) is a consumption process such
that with the option trading strategyϕ(t) the pair (ϕ, c) is admissible. We
insert this form for the wealth process into the option portfolio problem (4.2)
of Section 4 and call it themodified option portfolio problem with constraint
ζ. This situation is covered by a generalised version of Theorem 4.1:
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Theorem 5.1. Given the assumptions of Theorem 4.1, assume that an in-
vestor wants to solve the modified option portfolio problem with constraint
ζ.
i) Under the assumptions of Theorem 3.1, the optimal terminal wealthB∗
and the optimal consumption processc∗(t) for the modified option portfolio
problem with constraintζ are given by the representations (3.4) and (3.5).
ii) Let ξ(t) be the optimal trading strategy of the corresponding stock port-
folio problem. Then, an optimal trading strategyϕ for the modified option
portfolio problem with constraintζ (i.e. one such that the corresponding
wealth process satisfiesX(T ) = B∗ a.s.) is given by

ϕ̄(t) =
(
ψ′(t)

)−1 (
ξ̄ − ζ̄

)
(t) , (5.2)

ϕ0(t) = (5.3)(
X (t) −

n∑
i=1

(
ϕi (t) f (i) (t, P1 (t) , . . . , Pn (t)) + ζi (t)Pi (t)

))/
P0(t)

whereϕ̄(t), ζ̄ (t) and ξ̄(t) are the lastn components ofϕ(t), ζ(t) andξ(t),
andX(t) is the wealth process.

Proof. The proof is an immediate consequence of the proof of Theorem 4.1.
Simply note that to replicate the optimal terminal wealth and consumption
of the stock portfolio problem the investor has to hold the option positions
according to representation (5.2) and (5.3) in addition to the required stock
positions given by the constraintζ. ut
Remark 5.2.It is also possible to prove a similar theorem where the con-
straints are given by an options position or by mixed stock/option constraints.
The only necessary requirement is that the remaining “unconstrained” se-
curities generate the same complete market as in the unconstrained case.
In this situation, all constraints can be dealt with by the method given in
the proof of Theorem 4.1 with the modifications indicated in the proof of
Theorem 5.1 above.

Example 5.3 (Optimal consumption in the presence of a fixed stock posi-
tion). As indicated in the section headline, our main application of Theo-
rem 5.1 is the optimal consumption of a package of shares of stock on[0, T ]
under the requirement to hold a constant number of shares of this stock
throughout. More precisely, we are obliged to follow a constant, positive
trading strategyζ1 in the stock. We are only allowed to trade in the bond
and a derivative with pricef(t, P1(t)). Our goal will be to maximise the
expected utility of consumption on[0, T ] in the case of the power utility
function. That is, we solve the problem

max
ϕ,c

E

(∫ T

0
e−βt (c (t))δ dt

)
(5.4)
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where the pairs (ϕ, c) are admissible, and where the constantsβ andδ satisfy

0 < β , 0 < δ < 1 .

Further, we assume constant market coefficients. As there are no additional
endowments, the investor’s initial wealthx is given by

x = ζ1P1 (0) .

As reported in Fleming and Rishel (1975, pp. 160–161), the optimal con-
sumption processc∗(t) and the optimal portfolio processπ∗(t) for the cor-
responding stock portfolio problem are given by

c∗(t) = γ(t)X(t) , π∗(t) =
b− r

(1 − δ)σ2

with

γ(t) =
1

1 − δ

(
β − νδ

1 − e−
(β−r)(T−t)

1−δ

)
,

ν = r +
(b− r)2

2σ2 (1 − δ)
, X(T ) = 0 a.s.

in the case ofβ /= νδ. Using these results and Theorem 5.1 leads to the
optimal option trading strategy

ϕ1(t) =
ξ1 (t) − ζ1
ψ (t)

=
1

fp (t, P1 (t))

(
b− r

(1 − δ)σ2
X (t)
P1 (t)

− ζ1

)
. (5.5)

Note in particular that due to the presence of the constant position in the
stock the number of options in the optimal portfolio can change its sign
depending on the stock price and the wealth process. Further, note that the
optimal option strategy consists of zero holdings if the optimal number of
shares in the stock problemξ1(t) equalsζ1, a result which is of course not
surprising. If however the optimal stock strategy does not equalζ1 – which
is the caseL[0, T ] ⊗P -almost surely – then the optimal consumptionc∗(t)
can only be realised with the help of trading in options. There still remains
the question in which type of options the above investor should trade. From
a theoretical point of view all available options with a non-vanishing delta
are equally suited. From a more practical point of view, the remarks made
in Example 4.3 about extremely high strikes and the danger to suffer from
the volatility smile effect are valid here, too.
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6 Conclusion

We have given closed form solutions for the problem of maximising the
expected utility from consumption and terminal wealth if the tradable assets
are options and not stocks as in the usual formulation of the portfolio prob-
lem. Solving this problem with classical stochastic control methods seems to
be highly complicated as the option price is given by the non-linear stochas-
tic differential equation (2.4). By combining the martingale approach to
portfolio optimisation with the technique of replication of options in com-
plete markets, we could avoid the complexity due to the non-linearity of
the stochastic differential equation (2.4) entering the optimisation problem.
The results and techniques given above raise a lot of further interesting and
open questions. One interesting aspect is that of being able to treat additional
constraints in a portfolio problem by introducing redundant securities. We
could e.g. look at an option portfolio problem where we are allowed in trad-
ing both a put and a call option on the same underlying stock. As we could
solve the corresponding problem with either the call or the put alone there
will be no uniqueness in the optimal trading strategy. This fact can be used to
deal with further constraints such as a maximum number of calls bought or
the desire to find a combination of both the call and put such that a minimum
amount of money is invested in the risky securities while still obtaining the
optimal utility. Another possibility for future research is to extend the results
to incomplete markets. We could look at markets where it is possible to com-
plete them by the introduction of a finite number of options and look at the
resulting increase in the optimal utility by additionally trading in options.
Also, the impact of the pricing rule (which is no longer unique in incomplete
markets) on both the optimal trading strategy and the optimal utility can be
examined. Finally, let us mention a paper on non-linear portfolios, Cvitanic
(1997). There, the non-linearity is introduced via more complicated price
processes, and hedging and portfolio problems are treated with the help of
forward-backward stochastic differential equations. It could be promising to
apply these techniques to our task of computing optimal option portfolios.
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