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Abstract: Typically portfolio analysis is based on the expected utility or the mean-variance ap- 
proach. Although the expected utility approach is the more general one, practitioners still appreci- 
ate the mean-variance approach. We give a common framework including both types of selection 
criteria as special cases by considering portfolio problems with terminal wealth constraints. More- 
over, we propose a solution method for such constrained problems. 
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1 Introduction 

The continuous-time portfolio problem consists of maximizing total expected 
utility of consumption and/or of terminal wealth. This problem is usually for- 
mulated for a securities market with d + I assets where one of them is a default- 
free bond whose instantaneous rate of return r(t) may (possibly randomly) 
fluctuate, and the other d securities are stocks whose prices have (randomly 
fluctuating) mean rates of return bi(t) and volatility coefficients cru(t ), and are 
driven by independent Wiener processes. 

In this paper we consider a continuous-time portfolio problem with con- 
straints on the terminal wealth of an investor. Such constraints occur, for 
instance, if the traditional mean-variance approach of portfolio analysis is 
formulated in continuous time. The possibility to consider mean-variance 
problems (in continuous time) and continuous-time portfolio problems in a 
common framework is one of the attractive features of our constrained model, 
because the mean-variance approach is still of great practical importance. How- 
ever, the mean-variance problem in continuous time has not been solved until 
recently (compare e.g, Duffle & Richardson (1991), Hipp (1993) or Schweizer 
(1993)). While Duffle & Richardson (1991) consider the hedging of a futures 
position, Hipp (1993) and Schweizer (1993) consider the hedging of general 
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claims (including as a special casea  mean-variance problem), but there will be 
slight differences to the mean-variance problem considered in this paper. 

The paper is organized as follows. In section 2 we present the market model, 
its main characteristics, and a slight generalization of the usual martingale 
method to solve the (unconstrained) portfolio problem. Section 3 extends this 
method for constrained problems. There we present our main result which 
states existence of the constrained solution. In addition, this result offers a 
constructive way to find the optimal solution. As an application we formulate 
and solve a mean-variance problem in continuous time. 

2 Solution of the Unconstrained Portfolio Problem 

We start with the classical model in which an investor makes consumption 
and investment decisions continuously in time. He is endowed with an initial 
wealth of x and tries to maximize his utility from consumption over a fixed 
time interval [0, T] and/or from terminal wealth in the time horizon T. The 
available d + 1 securities are a riskless bond and d risky stocks. Let Po(t) be the 
price of the bond and Pi(t) be the price of stock i, i = 1 . . . . .  d, at time t. These 
prices are governed by the equations 

dPo(t) = Po(t)r(t)dt Po(O) = 1 (2.1) 

dPi(t) = Pi(t)[ bi(t)dt + i=1 ~ ai~(t)dWj(t)l ' i = 1  . . . . .  d ,  P i (0)=pi  (2.2) 

where W(t)= (Wl(t),. . . ,  W~(t)) r is a d-dimensional Brownian motion defined 
on a complete probability space (f2, F, P). The informaton structure is given by 
the Brownian filtration {Ft}t~tO,Tj, T < ~ .  The market coefficients r(t), b(t) = 
(bl(t) . . . . .  ba(t)) T and a ( t )=  (aij(t))ij=m) n are all assumed to be progressively 
measurable and uniformly bounded in (t, o9) ~ [0, T] x 12. a(t)a(t) T is required 
to be uniformly positive definite. Further, we define the risk premium process 

O(t) : =  o'(t)  -1  (b(t) - r( t ) ' l )  Vt e [0, T] (2.3) 

where 1 = (1, . . . ,  1) T ~ R n. Due to the assumptions on r, b, and a, O(t) is also 
progressively measurable and uniformly bounded in (t, co) e [0, T] x O. Let X(t) 
be the wealth of an investor at time t ~ [0, T]. As usual, we then define 
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Definition 2.1: 

i) A portfolio process is a n  R d - valued, progressively measurable process n(t), 
t ~ [0, T], with 

T 

~. 117t(t)X(t)ll2dt < c~ a.s. (2.4) 
0 

ii) A consumption process is a non-neyative, progressively measurable process 
c(t), t ~ [0, T], with 

T 

S c(t)dt < oo a.s. (2.5) 
0 

Moreover, we require an investor to act self-financing. That means, his wealth 
only changes due to consumption or gains/losses from investment in the bond 
and the stocks. His wealth process X(t)  corresponding to a self-financing 
portfolio/consumption strategy (re, c) is given as the (unique) solution of the 
stochastic differential equation 

dX(t)  = X(t){(1 - z( t )r l )r( t )dt  + z(t)r[b(t)dt + o(t)dW(t)]}  

- c(t)dt , X(O) = x (2.6) 

From now on we consider only investors who trade in such a way that they 
achieve a non-negative wealth over the whole time interval [0, T]. We there- 
fore call a wealth process X(t)  corresponding to the strategy (re, c) and initial 
wealth x > 0 admissible if X(t)  solves equation (2.6), and if we have 

X(t)  >__ 0 Vt ~ [0, T] a.s . .  (2.7) 

Let further 

A(x) := {0r, c): X(t)  > 0 Vt ~ [0, T] a.s., X(0) = x} (2.8) 

be the set of admissible strategies (with initial wealth x > 0). The main charac- 
teristcs of the market model are summarized in the following proposition (see 
for example Cvitanic and Karatzas (1992)): 
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Proposition 2.1: Define the following deflator process 

H(t )=  e x p ( -  i (r(s) + 1/2,]O(s),t2)ds - i O(s)dW(s)~, t e l 0 ,  T ] .  (2.9) \ -  0 0 

a) For every (z~, c) e A(x) with corresponding wealth process X(t) we have 

E( iH(s)c(s )ds+ H ( t ) X ( t ) ) < x  (2.10) 

b) For every consumption process c(t), t e [0, T], and every non-negative, F r - 
measurable random variable B with 

x : =  E( iH(s )c (s )ds+ H ( T ) B ) < ~  (2.11) 

there exists a portfolio process n(t), t e [0, T], with corresponding wealth process 
X(t) such that 

(re, c) e A(x) (2.12) 

X(T) = n a.s. (2.13) 

We now give a short review of the so called martingale method of solving an 
unconstrained portfolio problem which is, for instance, presented in Karatzas 
(1989). 

Definition 2.2: A strictly concave Cl-function U: (0, oo) ~ R with 

U'(0) := lim U'(c) > 0 , where U'(0) = + ~  is permitted (2.14) 
c4,O 

3z E R u { +oo} with U'(z) = 0 (2.15) 

is called a (generalized) utility function. 

Remark 2.1: 

a) A set of functions U(t, .), t e [0, T], will be also called a utility function if 
for every fixed t e [0, T], U(t, .) is a utility function in the second variable, 
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if U(., x) is a continuous function in the first variable and if there exists a 
z ~ R u { + ~ }  with U'(t, z) = 0 for every t ~ I-0, T], where 

U'(t, x) := ~xx U(t, x) , t ~ [-0, T] , x > 0 . (2.16) 

b) Definition 2.2 implies that U' is strictly decreasing on I-0, z] with U': [0, zl 
[0, U'(0)] and has a strictly decreasing, continuous inverse function I*: 
[0, U'(0)] ~ [0, zl. With the notation 

~l*(y) , y ~ I-0, U'(0)] 
/(Y) := /13 ,  y > U'(0) 

(2.17) 

we have 

U(l(y)) > U(c) + y(l(y) - c) , y ~ (0, oo) , c > 0 (2.18) 

where U(0) is defined as U(0) := lim U(c). (2.18) remains valid for y = 0 if we 
c*o 

have z = + ~ .  

Let X .. . . .  (t), t ~ [0, T], be the wealth process of an investor who starts with 
an initial wealth of x > 0 and who uses an admissible strategy (n, c). The inves- 
tor's utility of using this strategy is defined as 

J(x; n, c):= E ( i  Ul(t, c(t))dt+ U2(XX'n'C(T))) (2.19) 

where U1, U2 are utility functions in the sense of definition 2.2 or remark 2.1 a), 
respectively. 

Definition 2.3: The unconstrained portfolio problem (of an investor with initial 
wealth x > O) is the optimization problem 

sup J(y; n, c) 
(~,c) E A ' ( y ) , y < x  

where (2.20) 

A, ( y ) :={ (n , c )~A(y ) :E ( iU l ( t , e ( t ) ) -d t  + U2(X . . . . .  (T))-)  < ~ }  
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Remark 2.2: 

a) If Ul(t, x), U2(x) are strictly increasing in x then there is no need for the 
inequality "y < x" in the optimization problem, and we can then confine 
ourselves to strategies fit, c) ~ A' (x). 

b) The restriction for the admissible strategies in the definition of A'(y) can be 
interpreted that it is not prohibited to get an infinite utility from consump- 
tion/terminal wealth. 

As in Karatzas (1989) we define the function X: (0, ~ )  --, R by 

X(2) := E[Iz(2H(T))H(T) + i H(t)Ia(t, 2H(t))dt ] for 2 > 0 (2.21) 

where 11,/2 a r e  the "inverses" of UI, U2 in the sense of (2.17). The main charac- 
teristics of X(2) are summarized in the following proposition (compare Cvitanic 
and Karatzas (1992)). 

Proposition 2.2: Assume 

X(2) < oo V2 ~ (0, ~ )  , 

and in the case of 

U~(t, O) < m Vt e [0, T] and U~(O) < m 

assume further that O(t), t ~ [0, T], is deterministic with 

} l[0(s)2ll ds > 0 Vte [0, T] 
0 

Then X is continuous on (0, ~),  strictly decreasin9 with 

(2.22) 

(2.23) 

(2.24) 

X ( ~ )  := lim X(2) = 0 (2.25) 
. ,1.-4o0 

I o o  ' r  if lira U~(z )=Oor l im  U[ (t, z) = O Vt e [O, T] 
z ~ c c  2~ --b oo 

X(O) := lim X(~.) = 
~ o  L z lE ! H(t)dt + zzEH(T ) , else 

(2.26) 
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where zx, Z 2 are the values with U~(t, Z l ) = 0  Vte[0,  T] and U~(z2)= 0, 
respectively. 

Remark 2.3: The assumption (2.24) is that of a deterministic "mean-variance 
trade off". It is an open question if this assumption can be relaxed in the 
continuous-time case (compare Schweizer (1993)). 

Proof: 

a) The continuity of X follows from the continuity of ll(t, .) and 12 by the 
dominated convergence theorem. 

b) (compare Karatzas, Lehoczky and Shreve (1987)) I1(t, .) is strictly decreasing 
on (0, U~ (t, 0)). If we can show that 

P(2H(t) < U~(t, 0) for some t ~ [0, T]) > 0 (2.27) 

for every fixed 2 ~ (0, or) then it follows that 

T 

XI()0 := e S H(t)Ii(t, 2H(t))dt (2.28) 
0 

is strictly decreasing in ~. ~ (0, ~ )  because H(t)Ii (t, 2H(t)) is strictly decreas- 
ing in 2 on the set that is characterized in (2.27) and identically zero on its 
complement. Since H(t) and U~(t, 0) are assumed to be continuous, (2.27) 
also implies 

P(S0 < t I < t 2 < T: 2H(t) < U~(t, 0)Vt ~ (tl, t2) ) > 0 , (2.29) 

and we get the claimed monotonicity of X. But we have 

t t t 

ln(H(t)) = - S  O(s)rdW ( s ) -  1/2 S tl~ ~ds - ~  r(s)ds 
0 0 0 

= ffCa,)- i (r(s) + 1/2110(s)ll2)ds a.s. (2.30) 
0 

where ff'a~o, t e [0, T], is a one dimensional Brownian motion with 

a(t) = i I[O(s)ll 2ds , t ~ [0, T] , (2.31) 
0 
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(compare Karatzas  and Shreve (1987), p. 174 ft. " random time change"). 
Because r(t), O(t), t ~ [0, T],  are bounded uniformly in (t, co) e I-0, T]  x s 
there exists a real number  K with 

t 

(r(s) + 1/2110(s)ll2)ds ~ g Vt ~ I-0, 71 (2.32) 
0 

Because A(t) is a positive deterministic function, the characteristics of 
Brownian mot ion  imply that  

P(ln(n(t)) < u for some t ~ [0, T] )  > 0 for u > 0 (u arbitrary) . (2.33) 

Hence (2.27) is proved. Analogous considerations for 

X2(2) := E(H(T)!2(2H(T)) (2.34) 

imply 

P(2H(T) < U~(0)) > 0 . (2.35) 

Thus, X 2 and also X(2 ) :=  X 1 ( 2 ) +  X2(2) are strictly decreasing in 2 E 
(0, ~ ) ,  too. 

Notice further that  (2.27) or (2.35) are always fulfilled if U~(t, 0) = ~ for 
all t e [0, T]  or U~ (0) = ~ .  

c) ll(t, oo) = I2(oo) = 0 (Vt ~ [0, T] )  imply (2.25) by the mono tone  convergence 
theorem. 

d) First consider the case 

lim U~(z) = 0 (2.36) 
z --~ ct9 

Because I1 and 12 are non-negative functions, Fatou 's  lemma implies 

lim inf X(2) >_ X2(2) >_ E ( H ( T ) l i m  inf I2(2H(T))~ = ~ . (2.37) 
~ , ~ 0  \ ~,- '+0 / 

For  the same reasons we have in the case of 

lim U~ (t, z) = 0 u ~ ['0, TI  (2.38) 
z - - )  oo 
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lim~.~oinf X(2)> lim~o inf X1(2)> E ( i  H(t) lim-.ionfll(t'2H(t))dt) 

77 

(2.39) 

If (2.36) or (2.38) are not satisfied, then we have 

T 
lim sup X(2) < zlE S H(t)dt + zzEH(T ) , (2.40) 

~ 0  0 

because of 11 (t, x) _< z I and 12(X) _ Z 2 for every (t, x) from the regions where 
11 and 12 are defined. On the other hand, Fatou's lemma implies 

lim240infX(2)> E(iH(t)lim~oinfll(t, 2H(t))dt+H(T)limx,oinfI2(2H(T))) 

T 
= zlE ~ H(t)dt + z2EH(T) . (2.41) 

0 

Hence, the proof is complete. [] 
If we define 

t T 
zlE S H(t)dt + z2EH(T) , ifz 1 and z 2 are finite 

Z* :~--- 0 

[ oo , else 

(2.42) 

and X(oo) and X(0) as in (2.25) and (2.26) then there exists a continuous 
and strictly decreasing inverse function Y of X on [0, oo] with 

Y: [0, z*] ~ [0, oo] . (2.43) 

Now we can give the solution to the unconstrained portfolio problem. 

Proposition 2.3: Let X > O, assume (2.22) and in the case of (2.23) assume fur- 
ther (2.24). Then the optimal terminal wealth ~ and the optimal consumption pro- 
cess co(t), t ~ [0, T], are given by 

'z2 , if x _> z* 
:= [I2(Y(x)H(T)) , else (2.44) 
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~ z l  , if x >_ z*  
Co(t) := (I i ( t ,  Y(x)H(t)) , else (2.45) 

and there exists a Yo �9 [0, x] and a portfolio process no(t ), t �9 [0, T], such that 
we have 

(no, Co) �9 A'(yo) , XY~176162176 = ~ a.s. 

and (2.46) 

J(Y, no, Co) = s u p  J(y; n, c) 
(n,c) EA'(y),y<_x 

i.e. (n o, c o) is a solution to the unconstrained portfolio problem. 

Proof: 

Case l : x > z* 
Because Ul(t, .) and U2(.) attain their absolute maxima for zl = It(t, 0) for 

every t �9 [0, T] and for z2 = lz(0), respectively, we have 

T T 

U~(t, Ix(t, O))dt + Uz(Iz(O)) > J Ul(t, c(t))dt + U2(X y .... (T)) 
0 0 

f.s. (2.47) 

for every (n, c) e A'(y) with y < x. Thus, the choices of ~ and co(t) are in this 
case pathwise optimal and therefore also optimal for the unconstrained portfo- 
lio problem. The existence of a portfolio process no(t) with (no, Co) �9 A(z*) and 
XZ*'"'C(T) = ~ a.s. follows from Proposition 2.1. Notice further that co(t) and 
are deterministic, so we have 

(i )T E Ul(t, Co(t))-dt + U2(XZ*'~'C(T)) - -- S Ul(t, z l ) -d t  + Uz(zz)- < ~ , 
0 

(2.48) 

which implies (no, Co) E A'(z*). Hence, everything is proved in the case x > z*. 
Case 2: x < z*: compare Cvitanic and Karatzas (1992), Theorem 7.4. []  
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Remark  2.4: 

a) If there exist finite values zt and z 2 with U~(t, zt) = 0 Vt ~ [0, T]  and U2(22) 
= 0 then Proposition 2.3 especially implies that the choice of "optimal con- 
sumption" c(t) = Zx Vt ~ [0, T]  and the choice of "optimal terminal wealth" 

= z2 are optimal for the unconstrained portfolio problem only if these 
choices are financiable (this means that the initial capital x of the investor 
exceeds z*). If only one of the two values zt, z2 is finite, then Proposition 
2.3 states that it is never optimal to choose this value for the consumption 
rate or the terminal wealth, respectively. 

b) Explicit calculations for logarithmic utility can be found in Karatzas (1989), 
while HARA-functions are dealt with in Merton (1971). 

Example: Minimal deviation from a target value. 
Let 

U l(t, .) = 0 Vt ~ [0, T]  , Uz(x ) = - 1/2(x - K )  2 Vx > 0 , (2.49) 

where K > 0 is a given constant ("the target 
problem 

inf 1/2E(X r . . . .  ( T ) -  K)  2 
(n,c)~ A'(y),y<_x 

is equivalent to the unconstrained portfolio problem 

sup EU2(X y . . . .  (T)) 
(x,c) e A'(y),y<_x 

We have to distinguish two cases: 

a) x > K .  E H ( T )  
Proposition 2.3 implies: 

value"). The optimization 

(2.50) 

(2.51) 

:= K is the optimal attainable terminal wealth . 

b) x < K" E H ( T )  
Proposition 2.3 implies: 

(2.52) 

:= I z ( Y ( x ) H ( T ) )  = (K - Y(x )H(T) )"  1 {n(r)_<~K/~)} (2.53) 
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is the optimal terminal wealth. Unfortunately 

X (~) = E(H(T) (K - ~H(T))I Imr)<_~r/;~)~) 

= KE(H(T)1  Intr)<_(x/~)}) - 2E(H(T)  21 lmr)<_(r/~)}) (2.54) 

cannot be solved explicitly for ). to obtain the inverse function Y. However, 
we can obtain a numerical solution in the case of constant coefficients. Con- 
sider especially the case d = 1. Then we have 

X ( 2 ) = K e x p ( - r T ) ~ b  I r T - ( 1 / 2 ) O 2 T + l n ( ~ ) ]  

and we get Y(x) by solving the non-linear equation X(2) = x which has a 
unique solution due to Proposition 2.2. 

Remark 2.5: The above example shows a difference to the results of Schweizer 
(1993) who obtained a closed form solution for a slightly different mean- 
variance problem by projection techniques. His optimal terminal wealth is 
given by 

:= K - (K - xe "r) e x p ( - O W  r - (3/2)02T) (2.56) 

which can be negative with positive probability (for small x or small T). Hence, 
it is not an admissible terminal wealth for our type of portfolio problems (com- 
pare definition (2.8)). However, this is only a special case of the results of 
Schweizer (1993). 

3 A Dual Method to Solve Portfolio Problems with Constraints on the 
Terminal Wealth 

In this section we consider constrained portfolio problems of the following 
type: 
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sup J ( y ,  n, c) 
(n,c)~ Ac(y),y<x 

subject to (3.1) 

E G i ( X  r . . . .  (T))  < O , i =  1 . . . . .  k 

where 

G(u) = (Gl(u)  . . . . .  Gk(U)) r , k ~ N , u > 0 (3.2) 

is an R ~ - valued function such that  

U 2 - dTG is a utility function for all d ~ [0, oo) k . (3.3) 

R e m a r k  3.1: 

a) Condi t ion (3.3) is always fulfilled if for all functions Gi, i =  1 . . . . .  k, their 
negative analogues ( - G g )  are utility functions. 

b) Strategies (n, c) having a terminal  wealth X y .... (T) with 

E G i ( X  r .... (T)) = - ~  (3.4) 

for some i ~ { 1 . . . . .  k} should also be called admissible, if they do not satisfy 

E G i ( X  r . . . .  (T)) + = + ~  (3.5) 

for some i ~ { 1 . . . . .  k}. So let 

A'c(y) := A'(y)\{(n,  c) ~ A'(y): E G , ( X  r . . . .  (T)) + = ~ for some i E {1 . . . . .  k}} 
(3.6) 

be the set of admissible strategies for the constrained opt imizat ion problem 
(3.1). 

The  solution me thod  for p rob lem (3.1) is based on a modificat ion of the 
corresponding method  f rom determinist ic opt imizat ion  which is based on the 
saddle-point  theorem (Compare  Fletcher (1981) for the deterministic case). Let 
x be the fixed initial wealth of the investor. We define a stochastic analogue to 
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the Lagrangian for problem (3.1) by 

L ( ( n , c ) , d ) : = E I i U l ( t , c ( t ) ) d t + ( U z - d r G ) ( X  r . . . .  (T))] 

for (n, c) ~ A'c(y), y < x, d e [0, oo) k. Then we have 

R. Korn and S. Trautmann 

(3.7) 

sup inf L((n, c), d). (3.9) 
(rt ,c)e A'c(y),y<_x d>_ O 

The obvious relation 

sup inf L((n, c), d) < sup L((zc, c), d*) (3.10) 
(r~, c) ~ Ac(Y), y <_ x d >_ 0 (n,  c) ~ A'c(y), y _< x 

for every d e [0, oo) k implies 

sup inf L((n, c), d) < inf sup L((n, c), d) (3.11) 
(rr,c)~ A'c(y),y<_x d > O  d>_ O ( n , c ) e  A'c(y),y<<_x 

Referring to the notations 

~p(d) := sup L((n, c), d) , d e [0, oo) k (3.12) 
(n,c)  ~ A'c(y),y<_x 

~(n, c) := inf L((n,  c), d) , (re, c) e A'c(y) , y < x (3.13) 
d > 0  

we only have to find a pair ((n*, c*), d*) e A'c(y ) x [0, oo) k for some y < x with 

~0(d*) = ~(n*, c*) (3.14) 

to prove equality in (3.11). This will be done in the proof of the following 
theorem. 

i.e. the optimization problem (3.1) is equivalent to the problem 

inf L((n, c), d) = ~ - ~ 1 7 6  , if E G ( X  r .... (T)) ~ 0 (component wise) (3.8) 
~>_o ( J ( y ,  ~, c) , else 
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Theorem 3.1: Let 
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G i : [ O , ~ ) - , R  , i = 1  . . . .  , k  (3.15) 

be convex functions and let the assumptions of Proposition 3.2 be satisfied for 
every unconstrained portfolio problem with utility functions given by (3.7). More- 
over, every solution (n, e) of these problems should be in A'~(y). 

a) Assume that there exists a strategy (no, co) ~ A'~(y), y <_ x with 

EG(X y ...... (T)) < 0 (component wise) , (3.16) 

and that problem (3.1) has a finite optimal solution. Then we have 

sup inf L((n, c), d) = inf sup L((n, c), d) , 
(n,c)e A'c(y),y<_x d>_ O d>_ O Ot,c) e A'c(y),y<_x 

and there exists a pair ((n*, c*), d*) ~ A'c(y) x [0, ~)k for a y < x with 

(3.17) 

e(d*) = q~(~*, c*) 

0 = d * r E G ( X Y ' ~ * ' C * ( T ) )  . 

(3.18) 

(3.19) 

b) I f  the dual problem has no finite optimum, i.e. 

i n f  q ~ ( d ) =  - ~  , 
d>_O 

(3.20) 

c) 

then there is no strategy (n, c) ~ A'c(y ) for any y <_ x with EGi(X y .... (T)) _< 0, 
i = 1  . . . . .  k. 
I f  the primal problem (3.1) has no finite optimum, i.e. 

sup i f (n ,  c) = + ~  , (3 .21)  
(n,c) E A~ty),y_<x 

then there is no admissible solution for the dual problem, i.e. there is no 
d ~ [0, ~)k with 

~o(d) < + m  (3.22) 
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Proof." 

a) We only have to show the existence of the pair (Or*, c*), d*). Then, (3.17) 
follows from (3.14) and (3.11), and (3.19) will be implied by (3.8). Let 

K1 := {(u, z) e R x Rk: 3(n, c) e A'~(y) for some y < x with 

u <_ J(y, n, c), EG(X y .... (T)) < z} 

K 2 := ~(u, z) e R x Rk: U >_ sup 
( (n, c) r A'c(y), y < x 

EG(XY.'~,c(T)) <<. 0 

(3.23) 

J(y, ~, c), z < O~ (3.24) 
J 

The assumptions of the theorem imply that K 2 is a non-empty convex 
set. Next we show: 

K1 is (also) a non-empty convex set (3.25) 

K1 ~ ~ follows directly from the assumptions of a). So it remains to 
prove the convexity of K1. Let (a, b), (c, d) e K1. Then there exist 

(x l, cl) e A'c(Yl) for some Yl --< x with a < J(Yl, ~x, cl) and 

EG(X r ...... ,(T)) < b (3.26) 

0re, c2) e A'c(y2) for some Y2 < x with c < J(Y2, ~r2, c2) and 

EG(XY2'~2'C2(T)) < d 

Defining 

Y := 2X y ...... I(T) + (1 - 2)XY2'"2'C~(T) 

c(t) := ,~c~(t) + ( 1  - ,~)c2(t) 

we get 

x * =  E ( i  H(t)c(t)dt+ H ( T ) Y )  

= 2 E ( i  H(t)Cx(t)dt+H(T)X'  ....... (T)) 

for 2 e [0, 1] 

for 2 e [0, 1] , 

(3.27) 

(3.28) 

(3.29) 
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+ ( l - - 2 ) E ( i  H(t)c2(t)dt+ H(T)XY2'~2'C2(T)) 

< 2yl + (1 - 2)y2 

< x , (3.30) 

where the first inequality follows from (3.26)) and (3.27). Proposi t ion 2.1 
implies the existence of a portfolio process n(t), t ~ [0, T] ,  with 

(n, c) ~ At(x*) and Y = Xx*'~'C(T) a.s. , (3.31) 

and the concavity of U 1 and U 2 together with (3.28), (3.29) imply 

J(x*, n, c) >_ 2J(yl,  nl,  el) + (1 - 2)J(y2, n 2, c2) > 2a + (1 - 2)c (3.32) 

We further have (remind the convexity of the Gi, i = 1, . . . ,  k): 

EG(X~*'~'~(T)) = EG(Y) 

<_ 2EG(X y . . . . . . .  (T)) + (1 - 2)EG(XY2"~2'r 

< 2 b +  (1 - 2)d (3.33) 

Thus (3.32) and (3.33) imply 

2(a, b) + (1 - 2)(c, d) E K 1 u s [0, 1] , (3.34) 

i.e. the convexity of  K~. The assumption of a finite opt imal  solution to the 
constrained problem (3.1) shows that we have 

/(2 ~ ~ (3.35) 

(where/s  is the interior of K2 ) and the definitions of K 1 and Kz give 

K I n / ( 2  = ~ (3.36) 

The separat ion theorem for convex sets (see e.g. Ioffe & Tichomiroff  
(1979)) implies the existence of  a functional w* ~ 0 with w* = (w*, w~T) r 
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R x R k and 

(W*)TX <_ (w*)ry Vx E g I , 

especially 

sup (w*)rx < inf (w*)ry 
x ~ K  1 y~ .K2  

y ~ K z  , (3.37) 

(3.38) 

As a consequence of (3.38) and the form of K2, w* = (w*, w'r) r has to 
satisfy 

w* E [0, oo) , w~' < 0 (component wise) (3.39) 

�9 To prove this, choose y* as the maximum of the objective function sub- 
ject to the contraints in (3.1) (which exists due to our assumptions). Then 
(y*, z )e  K2 satisfies z < 0, but there exist pairs (y*, z) in K1 with z > 0. 
Now (3.38) implies 

w* < 0 . (3.40) 

So (3.38) and the existence of pairs of the form (u, 0) which are elements 
of K1 and K 2 result in 

w* _> 0 . (3.41) 

We can even show 

w~' > 0 , (3.42) 

because the assumption w T = 0, inequality (3.38), and the fact that we have 
(y*, 0) E K2 imply 

(w*)r(Xz)=W'~z<O V(y, zT)~K1 . (3.43) 

This is a contradiction to the existence of the pair (no, Co) with property 
(3.16), because the assumption w* = 0 and relation (3.40) imply that there 
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exist some negative components of w~ (remember w* ~ 0), so this pair 
doesn't satisfy (3.43). Hence, we have (3.42). 

Because of relation (3.42) we can assume w~' = 1 w.l.o.g. If we choose y* 
as the maximum of the objective function subject to the constraints in (3.1) 
we have 

y* = sup J(y, n, c) = sup inf L((n, c), d) (3.44) 
(n, c leA 'c (y) ,y<x (n,c)ea'~(yl,y<_x d>O 
EG(XY'~'e(T)) <_ 0 

and on the other hand 

(y*, 0) e K t n  K 2 . (3.45) 

Thus, because of (3.38) and (3.45) we have 

sup ( w * ) r ( z X ) = , * =  inf ( w ' ) r ( : )  [3.46) 
( x , z ! e K t  ( x , z ) e K 2  

Furthermore, we have 

y * =  sup (w~,w*r) r{'u'] w*rz) 
(u,z)EKl 2 \ z ]  = (.,z)~rlsup (u + 

> sup (J(y, n, c) + w*rEG(XY .... (T))) 
(n,c) ~ A'c(y),y < x 

> sup J(y, n, c) = y* , (3.47) 
(n, c) E A'c(y), y_< x 
EG(XY,Z.c(T)) <_ 0 

'where the first inequality follows from the fact that the pairs (J(y, n, c), 
EG(X y .... (T))) are also in K 1. Relation (3.47) and the definition 

d* := - w* , (3.48) 

imply the inequality 

inf sup 
d>O (~,c)r 

L(Oz, c), d) _< ~p(d*) = y* 

= sup inf L((n, c), d) . (3.49) 
(~,c)~Ac(y),y<_x d>_O 
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Hence, equality (3.17) is proved (recall that the opposite inequality to 
(3.49) is always valid). The existence of the strategy (r~*, c*) fulfilling equal- 
ity (3.18) follows from Proposition 2.3, because it solves the unconstrained 
portfolio problem 

sup L((~z, c), d*) . (3.50) 
(n,c)~ A'c(y),y<_x 

b) Relations (3.20) and (3.11) imply 

- ~  = inf r > sup inf L((~z, c), d) > inf L((rc, c), d) (3.51) 
d>_ O Ot, c)E A c ( y ) , y ~ x  d>_ O d>_ O 

c) 

for every (n, c)~ A'c(y), y < x. Combining this with equality (3.8), we can 
conclude that there is no strategy (n, c)~ A'c(y), y < x, with EG(X y .... (T)) < O. 
Relations (3.11) and (3.21) imply statement c) in an analogous way to the 
proof of b). []  

Remark 3.2: The theorem offers a separation of the solution of the constrained 
optimization problem (3.1) into two steps: 

Step I: Solve the unconstrained portfolio problem 

sup L((n, c), d) (d e [0, ~)k arbitrary but fixed) (3.52) 
(~,c)e A~(y),y_<x 

Step 2: Minimize the solution L((rc*(d), c*(d)), d) of Step 1 with respect to 
d e [0, ~)k. 

Example 3.I: A mean-variance problem 
Consider a continuous-time analogue Of the traditional mean-variance prob- 

lem: 

inf Var(X"~(T)) (3.53) 
(n, O) E A'c(y), y <_ x 
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subject to E ( X r : ( T ) )  > K 
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where K > 0 is a given constant and x > 0 is the initial wealth of the investor. 
First, we have to consider two different cases to convert 

Var(Xr:(T)) = E ( ( X r : ( T )  - EXY, . (T))  2) (3.54) 

into the form of a utility function in the sense of definition 2.2. 

Case l : r > ~ ln 

Here, the terminal wealth of K can be reached with a zero variance by a 
pure bond strategies. 

1 l n ( K ) a n d b C r  Case 2: r < 

Notice that every strategy that satisfies the expectation constraint must now 
include stock investment. Therefore, the unconstrained minimum variance of 
zero cannot be attained. Hence, the expectation constraint must be satisfied as 
an equality for an optimal solution. So it is easy to show that problem (3.53) is 
equivalent to the following auxiliary problem 

sup -(1/2)E(XY'"(T) - K) 2 
(re, O) ~ A' .(y),  y <_ x 

subject to K - EXr '"(T)  < 0 

(3.55) 

Therefore, we are able to solve the problem with the help of Theorem 3.1: 
Fix d > 0, solve the unconstrained problem 

sup - E ( ( 1 / 2 ) ( X Y : ( T )  - K) 2 + d (K - XY'~(T)) 
(x, O) ~ Ae(Y), y_< x 

= sup - E ( ( 1 / 2 ) X Y : ( T )  2 - (K + d )XY:(T)  + (1 /2)K 2 + dK) 
Oz, O) ~ A'e(y), y <_ x 

= I sup - E ( ( 1 / 2 ) ( X Y : ( T )  - (K + d))Z)] + (1/2)d 2 , 
L ( n , O )  e A'~(y),y<_x 

(3.56) 

and then minimize the solution in d e [-0, oe). Notice that the optimization prob- 
lem in the last line of relation (3.56) is an unconstrained problem of the type 
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considered in our example in section 2. The remark about its (possible numeri- 
cal) solution is here valid too. Furthermore, the Lagrange multiplier d figures 
out the auxiliary problem of the form (3.55) with the correct target value K + 
d. The solution of this auxiliary problem delivers the solution of the mean- 
variance problem. 

In addition, we give some numerical results for case 2. Let the initial wealth 
of the investor be x = 100, the bond interest rate r = 0.1. We let the mean rate 
of stock return take the values b = 0.15 or b = 0.25, for the volatility we choose 
o = 0.05, and we take T = 1 or T = 10. For all the possible combinations of 
these values we consider three values for the desired minimal expected terminal 
wealth K. The lowest of these is always a little bit above the terminal wealth 
attained by the pure bond strategy, whereas the highest value is approximately 
the expected terminal wealth achieved by the pure stock strategy. The results 
are summarized in tables 1 to 4. 

Table 1. T =  1, b =0.15  

K 111 113.5 116 

Variance 0.14 5.18 17.55 

d 0.56 3.47 6.43 

Table 2. T = 1, b = 0.25 

K 111 120 128 

Variance 3.10 -5 0.04 0.20 

d 2" 10 -s 0.01 0.03 

Table 3. T = 10, b = 0.15 

K 275 360 445 

Variance 9'  10 -4 4.91 39.63 

d 5" 10 -4 0.17 0.72 

Table 4. T = 10, b = 0.25 

K 275 790 1200 

Variance ~ 0 ~ 0 ~ 0 

d ~ 0  ,~0 ~ 0  
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Table 5. T = 10, b = 0.25, a = 0.2 
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K 275 790 1200 

Variance 0.04 1215 8006 

d 0.02 130 790 

Clearly, an increasing target value leads to an increasing variance and a 
higher value of the Lagrange multiplier d. Furthermore, comparing Table 1 to 
2 and Table 3 to 4, respectively, we notice that the corresponding target values 
can be reached (in the mean) with a smaller variance in the case of a higher 
mean rate of stock return. Maybe the most remarkable results are the small 
values of the minimum variances. Compare for example the low variance of 
17.55 in the last column of Table 1 with the variance of the pure stock strategy 

which  is approximately 34. More extreme examples are the very small entries 
in Tables 2, 3, and 4. These values can be explained by two facts. Due to our 
choice of the market coefficients it is very advantageous to invest in the stock 
(and to sell bonds short!). This stock investment results in gains that are with 
a high probability greater than that obtained from bond investment. Immedi- 
ate transfer of these gains to bond positions leads to a reduction of the vari- 
ance of the terminal wealth. In the cases when T = 10 this process of obtaining 
high gains from stock investment and putting them immediately into bond 
positions runs a longer time. This results in a greater reduction of variance. 
This is not the case when the risk premium (b - r ) /a  is small. It is also clear 
that the minimum variance of the terminal wealth increases with increasing 
stock volatility. For illustration, Table 5 shows how the entries of Table 4 will 
change when a = 0.05 is replaced by a = 0.20. 

This increase of variance is not so tremendous as it seems at a first glance. 
The variance of the pure stock strategy (resulting in an expected terminal wealth 
of approximately 1200) is namely nearly 729932 which is 90 times higher than 
the minimum variance for K = 1200. 

Notice that these results differ from the formulae in Schweizer (1993) be- 
cause we only consider strategies leading to a non-negative terminal wealth. 

4 Conclusion 

We consider a portfolio problem with constraints on the terminal wealth of an 
investor. As a result, we give a theorem about the existence of solutions for a 
very general class of such constrained problems. This theorem also suggests a 
solution method for the problem benefitting of existing methods for solving 
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unconstrained portfolio problems. As a consequence of our approach it is now 
easy to consider the expected utility approach and mean-variance problems in 
continuous time in a common framework. 

Furthermore, we like to point out that the formulation of the constrained 
problem (3.1) is very general. It fits for example pathwise constraints which 
could be expressed with the help of indicator functions. However, Theorem 3.1 
is not applicable in this case, because assumption (3.3) is not satisfied. There- 
fore, the extension of Theorem 3.1 to such a case seems to be a desirable aspect 
for future research. This will also require a generalization of existing methods 
for unconstrained problems. 
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