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Abstract

We examine Schweizer�s ������ locally risk�minimizing �LRM� hedge approach for

hedging a European call in the case when the stock price follows a Poisson jump

di�usion process with lognormally distributed jump sizes� In contrast to Merton�s

������ hedging strategy where di�usion risk is perfectly hedged while jump risk

remains un�hedged� the locally risk�minimizing strategy hedges both di�usion risk

as well as jump risk partly� The hedge ratio consists of a di�usion component and a

jump component� The value of the LRM hedge portfolio is equal to the �discounted�

expected terminal payo� of the option weighted with a so�called minimal martingale

density� It is a weighted sum of Black�Scholes values where some weights may be

negative� The latter property is due to our result that the minimal martingale density

is negative with positive probability if� e�g�� the market price of risk is positive�

However� introducing a single call does not admit arbitrage opportunities if its value

is smaller than the underlying stock price and larger than the Black�Scholes value

based on the di�usion volatility�

We relate the LRM approach to the so�called locally variance�minimizing �LVM�

hedging strategy in Bates� ������ systematic jump risk model� By numerical analysis

we �nd that the LRM and LVM hedge ratios are less sensitive to changes in the

stock price than delta hedging strategies in the models of Merton� Black�Scholes�

and Bates� If the expected jump size is signi�cantly di�erent from zero and positive

�negative�� then the LRM and LVM hedge ratios are substantially larger �smaller�

than e�g� Merton�s for out�of�the�money �in�the�money� calls� Moreover� the worst

case behaviour of the LRM strategy and LVM strategy are substantially better� The

����� ����� as well as the �
��quantile of the total hedging costs are signi�cantly

lower than for the alternative strategies�



� Introduction

In the complete market model of Black and Scholes ������ the terminal payo� of a

European option can be duplicated by a self��nancing portfolio consisting of the un�

derlying stock and a money market account� Thus� one can hedge the risk of a short

position in the option perfectly by buying the duplicating portfolio� Unfortunately�

the Black�Scholes model does not allow for jumps in the stock price process� Mod�

elling jumps is� however� economically very appealing not only because of market

crashes �as in ���� or ����� but also because of the ability to explain skewness and

kurtosis observed in stock return data� However� modelling jumps with stochastic

amplitude leads to incompleteness of the market model� Thus� a self��nancing du�

plicating portfolio no longer exists� pricing by arbitrage and perfectly hedging the

option are no longer possible� Option pricing requires general equilibrium arguments�

whereas in order to hedge the option �beside the initial investment� additional cash

infusions or withdrawals during the lifetime of the option or at the expiration date

are necessary� Since these additional costs are stochastic they determine the risk of

the hedging strategy�

The main purpose of this paper is not valuation but hedging options in the presence

of systematic jump risk� We assume that the stock price moves according to a Poisson

jump di�usion process with constant parameters and lognormally distributed jump

sizes� as it was �rst studied in the context of option valuation by Merton �������

We particularly focus on the locally risk�minimizing hedging strategy� F�llmer and

Sondermann ������ pioneered this approach in the special case where the discounted

actual stock price follows a martingale� At each point in time they require that the

risk� de�ned as the expected quadratic hedging error� is minimized� However� in

semimartingale models a risk�minimizing strategy does not always exist� Therefore�

Schweizer ������ introduces a locally risk�minimizing strategy �LRM� and shows

that � under certain assumptions � a strategy is locally risk�minimizing if the cost

process is a martingale which is orthogonal to the martingale part of the stock price

process� The value of the hedge portfolio is then the discounted expected terminal

payo� of the option under the so�called minimal equivalent martingale measure�

Colwell and Elliott ������ present a general formula for the minimal equivalent

martingale measure and the LRM strategy in jump di�usion models� However� their

assumptions only allow for bounded jumps� If jump sizes are lognormally distributed�

as assumed in this paper� a minimal equivalent martingale measure does not exist

since the corresponding density process �the minimal martingale density� is no longer

�



strictly positive� We repeat the analysis of Colwell and Elliott ������ for lognormally

distributed jumps� In contrast to Colwell and Elliott ������� we emphasize the fact

that the minimal martingale density is not strictly positive and calculate explicitly

both the value of the hedge portfolio and the hedge ratio� The value of the hedge

portfolio can be written as a weighted sum of Black�Scholes values where some of the

weights may be negative� However� we derive arbitrage boundaries for a European

call in a jump di�usion model� and all LRM hedge portfolio values computed lie

within these boundaries� The hedge ratio consists of a di�usion as well as a jump

component� The strategy is mean�self��nancing� that is at each point in time the

expected sum of discounted cash infusions or withdrawals until maturity is zero�

We compare the LRM approach with the following strategies� If an investor �erro�

neously� assumes jump risk to be diversi�able he will apply Merton�s ������ hedging

strategy� If on the other hand jump risk is not even perceived� a Black�Scholes strat�

egy �based on the di�usion volatility or the total volatility� would seem appropriate�

However� if jump risk is perceived and deemed to be systematic� Bates� ������ equi�

librium model o�ers a way to price but not to hedge the option� Assuming Bates�

price to be correct� we introduce a so�called locally variance minimizing �LVM�

strategy �a modi�cation of the LRM strategy� and compare it with a delta�hedging

strategy� In contrast to the LRM strategy where the hedge portfolio value coincides

with Bates� option value only at expiration� these latter two strategies track Bates�

prices at all times� We calculate the LRM strategy for representative parameters�

We �nd that the LRM and LVM hedge ratios are less sensitive to changes in the

stock price than delta hedging strategies in the models of Merton� Black�Scholes

or Bates� This is a very desirable property because it leads to less adjustments of

the hedge portfolio� In addition� the worst case behaviour of the LRM and LVM

strategies is considerably better� The ����� ����� and �
� quantiles of the total

hedging costs are substantially lower�

The paper is organized as follows� Section � presents the relevant stochastic

processes� Section � discusses especially the LRM hedging strategy and compares

it with the alternative strategies in Merton�s� the Black�Scholes� and Bates� model�

Finally� arbitrage boundaries in the jump di�usion model are presented� In Section

 we analyse how the LRM hedge reacts to changes in the parameter values� A

comparison of sensitivities and total hedging costs is made with respect to the other

strategies� Section � summarizes the main results�

�



� Model Framework

We consider a frictionless market with one stock and a riskless security� Trading is

continuous in time on the interval ��� T �� The riskless interest rate� r� is constant�

and therefore the value of the money market account at time t is given through

Bt � exp�rt��

��� Stock Price Dynamics

The stock price follows a Poisson jump di�usion process with lognormally distributed

jump sizes� It satis�es the following stochastic di�erential equation�

dSt � �St�dt� �DSt�dWt �

Z �

��

ySt����dy� dt��H�dy�dt� ���

where

� � the constant instantaneous drift of the total process�

W � a standard Brownian Motion� �D is the constant volatility of the di�usion�

� � a homogeneous Poisson measure with deterministic compensatorH�dy�dt

�see� e�g�� Jacod�Shiryaev ����� p� �
��� The measure � counts the num�

ber of jumps of size x � �y� y� dy� which occur at time s � �t� t� dt�� We

denote by � � E�
R �

�

R
d�� the mean number of jumps in unit time�

H � the ��fold of the distribution function of a random variable Li where

ln�� � Li� is normally distributed with mean �J � �
��

�
J and variance ��

J �

We write ln�� � Li� � N ��J � �
��

�
J � �

�
J�� Moreover� k � �

�

R
yH�dy� �

E�Li� � e�J � � denotes the expected percentage jump size in the stock

price�

Alternatively� the integral expression in ��� can be written in the following way� Nt �R t
�

R
��dy� ds� is a Poisson�counting process with parameter � and arrival time Ti �

infftjNt � ig� Furthermore� �Li �
R Ti
Ti��

R
y��dy� dt��i is a sequence of independent

identically distributed random variables with ln�� � Li� � N ��J � �
��

�
J � �

�
J�� Then

���	 dy� dt� �
X
i

��Ti���� ��Li����Ti�����dy� dt� �

where �a denotes the Dirac measure in point a and � the indicator function� With

I �
P

i Li��Ti���Ti� followsZ �

��

ySt����dy� dt��H�dy�dt� � St��ItdNt � �kdt� �

�



The process is de�ned on a probability space �
�FT � P � endowed with the right�

continuous� P�complete �ltration� �Ft�t� generated by S �see e�g� Jacod�Shiryaev

������ p� ���� With the exponential formula for semimartingales �see� e�g�� Protter

����
� p� ���� follows�

St � S� exp

�
��� �

�
��
D � �k�t� �DWt �

NtX
i��

ln�� � Li�

�
�

ST is square�integrable� We will also work with discounted processes since it is

often convenient not having to regard the interest rate explicitly� That gives us the

following stochastic di�erential equations for the discounted price processes of the

money market account� 	� and the stock price� Z�

d	 � �

dZt � ��� r�Zt�dt� �DZt�dWt �

Z �

��

yZt����dy� dt��H�dy�dt� � ���

���r� equals the expected excess return of the stock� Z is a special semimartingale�

Therefore� there exists a unique decomposition of Z into a predictable process with

�nite variation A and a local martingale M � The latter is the sum of a continuous

local martingale M c � Zc and a purely discontinuous local martingale Md � Zd

�see e�g� Jacod�Shiryaev ������ p� ����

Z � Z� �

Z
Z�� � r�dt� �z �

A

�

Z
Z�DdW� �z �
Mc

�

Z Z
yZ���dy� dt��H�dy�dt�� �z �

Md� �z �
M

� ���

We denote by ��
jump � �E�L�

i � � ���k����e�
�
J��k��� the instantaneous variance of

the jump component of the price process and by ��
tot � ��

D���
jump the instantaneous

variance of the total price process�� Then 
 � ��
jump��

�
tot represents the percentage

of the total stock variance explained by the jump component�

�Contrary to most empirical papers �e�g� Bates ������� Beinert�Trautmann ������� our process

parameters refer to the price process and not the return process� The instantaneous variance of

the stock price equals �see� e�g�� Du	e ����
� p� ����

��tot �
d

d�
var

�
Zt��
Zt�

jFt�

�����
���

�

Replacing Z by Zd and Z by Zc we get ��jump and ��D � respectively�





��� Density Processes

The value of a European option corresponds to the expected value of its discounted

terminal payo� with respect to a not necessarily unique equivalent martingale mea�

sure�� Put di�erently� the value of the option equals the expected value of the dis�

counted payo� weighted with the Radon�Nikodym�density of the martingale mea�

sure� We determine the value of a hedge portfolio in a similar way� Therefore� we

look at density processes � in a jump di�usion model such that Z� becomes a mar�

tingale under P � We want to consider a Markovian model where density processes

are given through the following di�erential equation�

d�t � �t�g�t� Zt��dWt �

Z �

��

�t��h�t� Zt� � y�� �� ���dy� dt��H�dy�dt� ��

with �� � �� We assume functions g and h such that � is P �square�integrable� This

guarantees that S� is integrable� Moreover� � is a martingale and �t � E��T jFt��

The function g is responsible for the transformation of the di�usion part of the

price process whereas h transforms the jump part� In order to be able to consider

a Black�Scholes hedge as well as the locally risk�minimizing hedge� we do not �

contrary to Colwell and Elliott ������ � assume � to be strictly positive� Hence the

corresponding measure dP g�h � �TdP is not necessarily equivalent to P � It is even

signed when the density process becomes negative with positive probability� To allow

for the non�positivity of � as well as the martingale property of �Z we recall the

following de�nition of Schweizer �������

De	nition � A local P�martingale � with �� � � is called a martingale density for

Z if the process �Z is a local P�martingale� � is called a strict martingale density if�

in addition� � is strictly positive�

It follows�

Lemma � The density process � is a martingale density if

f �� � r� � �Dg �

Z
�h� ��yH�dy� g� � ���

�Recall that an equivalent martingale measure P � is a probability measure such that on the one

hand Z is a martingale with respect to P � and on the other hand for A � FT we have P �A� � � if

and only if P ��A� � �� This measure denes a unique Radon�Nikodym�density �T � dP ��dP and

a density process �t � E��T jFt� such that Z� is a �local� martingale under P �

�



Proof� see appendix or Colwell�Elliott �������

In the following we only consider martingale densities� The existence of a strictly

positive martingale density also implies that the jump di�usion model contains no

arbitrage opportunities� If we choose a constant function h  � and determine the

function g according to equation ���� the corresponding density process is strictly

positive�

�t � exp

�
gWt �

g�

�
t� ln�h�Nt � ��� h��t

�
 � � ���

Therefore P g�h is an equivalent martingale measure implying no arbitrage �see� e�g��

Du�e �������� Since h is constant but otherwise arbitrarily chosen there exist many

equivalent martingale measures and thus the market is incomplete�

��� Value of the Hedge Portfolio

Consider a European path�independent option which pays o� c�ST � at time T for a

suitable function c� Then � as mentioned above � we can describe the value of the

option at time t as the discounted expected value of the payo� �conditional on Ft�

with respect to some equivalent martingale measure� By analogy� we want to de�ne

the value of the hedge portfolio� F � as the discounted expected payo� of the option

weighted with the martingale density� We get�

F �t� St� �
Bt

BT

E

�
c�ST �

�T
�t
jFt

�
� ���

However� since � may not be strictly positive� we have to be cautious about inter�

preting F as the value of the call in an arbitrage�free market� We only consider

functions c�ST � such that F �t� s� is once continuously di�erentiable in t and and

twice continuously di�erentiable in s for t � T �� In addition� c�ST � should be P�

square�integrable and thus c�ST �� integrable� The discounted value process is given

�To be correct we would have to write �tT instead of �T ��t where �tT � � �
R T
t
d�ts �see�

e�g�� Colwell�Elliott �������� That means that we forget the history of � for calculating F �t�� This

is relevant when �t is zero with positive probability as with the Black�Scholes hedging strategy

discussed in section ��
�That is particularly the case for the European call and the martingale densities considered

in section �� However� the value function F �t� s� is usually not di�erentiable with respect to s for

t � T �

�



by

V �t� Zt� � �

Bt

F �t� St�

�
�

Bt

F �t� BtZt�

� E

�
�

BT

c�BTZT �
�T
�t
jFt

�
� ���

The following Proposition � con�rms the results of Colwell and Elliott ������ with

respect to the di�erential representation of the value process of the hedge portfolio�

Proposition � The discounted value function V �t� z� satis�es the deterministic par�

tial di�erential equation

� � Vt �
Z

VzyzhH�dy� �
�

�
Vzzz

���
D

�

Z 	
V �z�� � y��� V �z�



hH�dy� � ���

and V�t�Z�t�� satis�es the stochastic di�erential equation

dV � VzZ��� r�dt� VzZ

Z
�h� ��yH�dy�dt� Vz�DZdW

�

Z 	
V �Z�� � y��� V �Z�


	
��dy� dt�� hH�dy�dt



� ��
�

Accordingly� we have the following partial di�erential equation for F �t� s�	

� � Ft � rF � rFss�
Z

FsyshH�dy� �
�

�
Fsss

���
D

�

Z 	
F �s�� � y��� F �s�



hH�dy� � ����

The subscripts denote partial derivatives� As in the following the integrands of the

stochastic di�erential equations are evaluated at time t��

Proof� see appendix or Colwell�Elliott �������

This partial di�erential equation is known for special functions h� For instance� for

h � � we get Merton�s ������ di�erential equation�

Ft � rF � �r � �k�Fss�
�

�
Fsss

���
D � �EL��F � � � � ����

�



where EL��F � � EL�F �s�� � Li��� F �s�� denotes the expectation with respect to

the jump size Li� For h � � we derive the Black�Scholes ������ di�erential equation�

Ft � rF � rsFs �
�

�
Fsss

���
D � � � ����

If we choose a positive and constant function h with h �� � we obtain Merton�s

equation with a transformed jump parameter � � � � h�

��� Hedge Ratio and Hedging Error

In the following we choose a martingale density � in order to specify a hedge plan

for the option� The value of the hedge portfolio F is then given through ��� and thus

the value of the portfolio at the expiration date� FT � is equal to the exercise value of

the option c�ST �� We also choose a predictable hedge ratio � with E�
R
��dhZ�Zi� �

��� It determines the number of shares of the stock in the hedge portfolio� The

number of shares in the money market account� �� is determined such that the

portfolio value equals F � i�e� � � �F � �S��B� Since the market is incomplete we

can not perfectly hedge the option with a self��nancing strategy� Therefore� we need

additional cash infusions �or withdrawals� in order to �nance the hedge portfolio�

The costs C induced by the hedging strategy then consist of the initial cost of the

hedge portfolio� C� � F�� and the additional cash �ows during the life of the option�

necessary to maintain the hedge portfolio� We also call C hedging error or tracking

error �although� strictly speaking� the hedging �tracking� error only consists of the

additional costs� C �C��� Thus� the changes in the value of the hedge portfolio are

due to the additional costs as well as to gains in the stock position and in the money

market account� dF � �dS � �dB � dC� It follows that�

C�t� � F �t��
Z t

�

�dS �
Z t

�

�dB � ���

The discounted hedging error� �� with �� � C� is then equal to

��t� � �� �

Z t

�

�

B
dC � V �t��

Z t

�

�dZ � ����

Using equations ��� and ��
� and rearranging terms we get the following stochastic

di�erential equation for ���

�h�� �i denotes the predictable �or conditional� quadratic covariation process �see e�g� Protter

������ p� �����
�It is more intuitive to evaluate the second term for �� since the hedging strategy should be

predictable� However� note that
R
��dB �

R
�dB�

�Replacing V with F and Z with S yields the stochastic di�erential equation for C�

�



d� � dV � �dZ

� Vz�DZdW �

Z 	
V �Z�� � y��� V �Z�


	
��dy� dt��H�dy�dt



���DZdW �

Z
�yZ���dy� dt��H�dy�dt� ����

�
n
VzZ��� r� � VzZ

Z
�h� ��yH�dy�

�

Z 	
V �Z�� � y��� V �Z����� h�H�dy�� ���� r�Z

o
dt �

�

Z
�V �Z�� � y��� V �Z�� �yZ� ��dy� dt�

� �Vz�DZ � ��DZ� dW ����

�
n
VzZ��� r� � VzZ

Z
�h� ��yH�dy�

�
Z 	

V �Z�� � y��� V �Z�


hH�dy� �

Z
�yZH�dy�

����� r�Z
o
dt �

The �discounted� hedging error � consists of a jump component� a di�usion com�

ponent� and a time component� A strategy is called mean�self��nancing if the dis�

counted cost process forms a martingale� that means that for each t the remaining

discounted costs have zero expectation�

�



� Alternative Hedging Strategies

So far we calculated the value of the hedge portfolio in the assumed incomplete

market setting by means of a martingale density� We now examine the locally risk�

minimizing �LRM� hedging strategy of Schweizer ������ for a European call and

compare it with Merton�s ������ hedging strategy and the Black�Scholes hedging

strategy based on the di�usion volatility and on the total volatility� respectively� as

discussed by Naik and Lee ����
�� Finally� we consider Bates� ������ pricing model

for systematic jump risk and compare a locally variance�minimizing �LVM� strategy

and a Delta�hedging strategy�

��� Locally Risk�Minimizing Hedging Strategy

In an incomplete market where the actual discounted stock price process follows a

martingale� F�llmer and Sondermann ������ introduce a mean�self��nancing� risk�

minimizing hedging strategy� They de�ne a risk process

Rt��� �� � E���T � �t�
�jFt�

representing the expected remaining quadratic hedging error� A strategy is called

risk�minimizing if it minimizes Rt for each t � T � It exists in their setting but

might not exist if the price process follows a continuous time semimartingale� Hence

Schweizer ������ extends this concept by introducing a locally risk�minimizing strat�

egy� He starts with the following de�nition�

De	nition � A trading strategy � � ��� �� is called a perturbation if � is bounded

and �ST � �BT � ��

That means that a strategy ��� �� generates the same �nal cash �ow as the perturbed

strategy �� � �� � � ��� With �j�s�t� � ����s�t�� ���s�t�� and with a partition � of ��� T �

where � � t� � t� � � � � � tN � T Schweizer ������ introduces the risk quotient�

r����� ����� �
X
ti

Rti���� �� � �j�ti�ti�����Rti���� ���

E�hM�Miti�� � hM�Miti jFti�
��ti�ti��� � ����

The numerator determines the additional risk that arises from the perturbation ��

Division by the denominator standardizes the risk measure� i� e� the additional risk

is allowed to be larger when the additional �conditional� covariance of M is large�

Schweizer ������ de�nes�

�




De	nition � A trading strategy ��� �� is called locally risk�minimizing if �

lim inf r�n���� ����� 	 � PM � a�e�

holds true for every perturbation � and every increasing sequence ��n�n with j�nj �
max jti	� � tij 
 ��

Each deviation of the locally risk�minimizing strategy leads in the limit to a rise

in the risk� Schweizer ������ Prop� ���� shows that � under certain assumptions

on Z which are all satis�ed here � a strategy is locally risk�minimizing if the dis�

counted cost process � is a martingale that is orthogonal to M� i�e� h��Mi � ��

The orthogonality result can also be explained as follows� The space of processes

fR �dM jE�
R
��dhMi� � �g consists of all contingent claims that can be hedged

by the martingale part of price process� In order to hedge as much as possible of

an option we project the martingale part of V on the space fR �dMg� The not�

hedgeable part is equal to � plus some �continuous� process with �nite variation� It

follows that h��Mi � �� We get

Lemma � The hedging error is orthogonal to the martingale part of the price if the

hedging strategy is given by

� �
dhM�V i
dhM�Mi

� ��� 
�Fs � 

EL��S�F �

EL���S���
� ����

Proof� see appendix�

The hedge ratio consists of a di�usion component and a jump component� The

di�usion part corresponds to the �rst derivative of the value process with respect to

the stock price which is weighted with the percentage of the total variance explained

by the di�usion component� The jump part is given by an instantaneous 	�factor�

i�e� the instantaneous covariation of the jumps in the stock price and in the hedge

portfolio value which is divided by the instantaneous variance of the jump in the

stock price� EL��S�F ��EL���S�
��� It is weighted with the percentage of the total

variance explained by the jump component�

Furthermore� the cost process � follows a martingale under the conditions of the

following lemma�

�dPM � dP x dhM�Mi denotes the Dol�ans measure of hM�Mi on the predictable ��eld �see�

e�g�� Schweizer ����� M�tivier ���
 p� ����

��



Lemma � Since � is assumed to be a martingale density the cost process � is a

martingale if

g � ���� r��D
��
tot

and h � �� �� � r�y

��
tot

�

The corresponding martingale density is given by

�t � exp

���� � r��D
��
tot

Wt �
�

�

��� r����
D

�

tot

t�
��� r��k

��
tot

t

�
NtY
i��

�
�� ��� r�Li

��
tot

�
� ��
�

Proof� see appendix�

By inserting g and h into equation �� and rearranging terms one can see that d��� �

�a dM where a � �� � r�Z����
totZ

�� � dA�dhM�Mi� This de�nes the minimal

martingale density introduced by Schweizer ������� If it is a strict martingale density

then dP g�h � �dP is the minimal equivalent martingale measure de�ned by Schweizer

������� Only if � is strictly positive the minimal equivalent martingale measure

exists�	 However� observe that � is strictly positive only if the factors in the last

product are positive� Consequently� if ��� ���� r�Li���
�
tot� is negative with positive

probability� P g�h is not an equivalent probability measure� Since so far we have not

used the fact that ln�� �Li� is normally distributed we can formulate the following

Proposition � In a Poisson jump di�usion model with arbitrarily distributed�

square�integrable jump sizes� Li� the minimal equivalent martingale measure exists

if and only if

��� r�Li

��
tot

� � P � a�s� ����

Proof� This follows directly from the de�nition of the minimal martingale density

and �  � P � a�s� It derives also directly from Theorem � of Schweizer �������

An application to our setting yields the following corollary�

	F�llmer and Schweizer ������ show for continuous processes that the minimal martingale

measure is unique if it exists and that its Radon�Nikodym density is equal to the minimal martingale

density� Their proof can be given analogously for the Poisson jump di�usion process�

��



Corollary � In a Poisson jump di�usion model with lognormally distributed jump

sizes the minimal equivalent martingale measure exists if and only if

�� � ��� r�

��
tot

� � � ����

Proof� Since �� � Li� is lognormally distributed the values of Li lie in the open

interval �� ����� Therefore� equation ���� is satis�ed if and only if equation ���� is

true�

Consequently� in typical situations where the market price for risk is positive� ���
r���tot  �� the minimal martingale measure does not exist� Furthermore� we should

stress again that we have to be cautious about interpreting the value of the hedge

portfolio as a call value in an arbitrage�free market�

The following di�erential equation describes the value of the hedge portfolio for the

locally risk�minimizing strategy� Compared with Merton�s di�erential equation� we

get an additional jump term proportional to the excess return�

Proposition � The value of the locally risk�minimizing hedge portfolio satis�es the

following deterministic partial di�erential equation	

� � Ft � rF � �r � �k�sFs �
�

�
Fss�

�
Ds

� � �EL��F �

�
���� r�

��
tot

	
FssEL�L

�
i �� EL��FLi�



� ����

Proof� This follows directly from Proposition � and h � �� ��� r�y���
tot�

The value of the locally risk�minimizing hedge portfolio results from�

Theorem � In the Poisson jump di�usion model with constant parameters and

lognormally distributed jump sizes in the stock price the value of the locally risk�

minimizing hedge portfolio for a European call is given by

F �
�X
n��

nX
l��

an�lF
BS�St�K� rn�l� �n� �� � ���

where

��



FBS � Black
Scholes value

� � T � t � time to expiration

rn�l � r � ���k �
n�J	�n�l���

J

�

�� � � � �� ���r�k
��
tot

�

�k � �
��
� �k � ���r��E�L�

i
�

��
tot

�

��
n � n��

J

�
� ��

D

an�l � exp������k � ���� �
����k	����n

n� �n
l
�
	

a
����k	��


l 	
b

����k	��


n�l
a �

	
�� ����r�

��
tot



� �k � ��

b � �����r�
��
tot

� E�L�
i � � �k � � � �

Proof� Evaluating equation ��� yields formula ����

Having determined the value of the hedge portfolio we can now derive the hedge

ratio�

Theorem � The locally risk�minimizing hedge ratio equals

� � ��� 
�Fs � 

EL��S�F �

EL���S���

� ��� 
�
�X
n��

nX
l��

an�lN�d��n� l�� ����

�

�

��
jump

�X
n��

nX
l��

an�l

n
�k F

BS�S�K� rn�l� �n� ��

S

��k � ���e�
�
J

FBS�S�K� rn	��l� �n	�� ��

S

��k � ��
FBS�S�K� rn	��l	�� �n	�� ��

S

o
where in addition to the notations of Theorem � we use

d��n� l� � �ln�S�K� � �rn�l � �����
n������n

p
� ��

Proof� The result follows from inserting the value of F � according to equation ����

into equation �����

The value of the locally risk�minimizing hedge portfolio is a weighted sum of

Black�Scholes values� The weighting factors sum up to unity� However� some of the

weighting factors are negative if condition ���� is not satis�ed� If no jumps occur �i�e�

� � �� formula ��� specializes to the formula of Black and Scholes ������� the same

�



is true for the hedge ratios� If we are in the pure jump model of Cox and Ross ������

with a constant jump size �i�e� �D � �J � �� the locally risk�minimizing portfolio

value and hedge ratio coincide with those of Cox and Ross� F equals Merton�s ������

value if the expected return of the stock coincides with the riskless return� i�e� the

expected excess return is zero and the discounted price process follows a martingale�

In both cases we determine the value of the hedge portfolio by simply taking ex�

pectations under the original measure� However� the hedge ratios are di�erent since

jump risk is not hedged in Merton�s model while it is partly hedged by the locally

risk�minimizing strategy�

The increments of the cost process can be decomposed in the following way�

dC � �F � ��S

��Fs � ���DSdW ����

����kS � �EL��F ��dt �

where � stands for the jump of the process �e�g� �F � F �t��F �t���� The expression

in the �rst line gives the hedging error caused by a jump in the stock price� The

expression in the second line stems from a change in the di�usion component of the

stock� The last term results from a change in time� Therefore� we have a hedging error

even if no jumps occur� Figure � shows for representative parameters the hedging

error of the locally risk�minimizing hedging strategy due to changes in S �for �xed

t��

��� Merton�s Hedging Strategy

Merton ������ assumes that jump risk is diversi�able and devises a hedge portfolio

where jump risk is not hedged� therefore � � Fs� He derives the deterministic partial

di�erential equation for F given through equation ����� Solving the equation for

lognormally distributed jump sizes in the stock price yields the following formula

for a European call and the following hedge ratio� respectively�

F � FMe�S�K� �� r� �D� �� �J � �J�

�
X
n

e��
�� ��

���n

n�
FBS�S�K� �� rn� �n� ����

and

� � FMe
s

�
X
n

e��
�� ��

���n

n�
N�d��n�� ����

��



Figure �� Locally Risk
Minimizing Hedging Error due to Stock Price

Changes

The solid line depicts the value of the hedge portfolio as a function of the stock price� F �S��

for the parameters r � ���� K � ���� T � ����� � � ���� � � �� �tot � ��� and � � ����

The dashed line gives the value of the unadjusted hedge portfolio as a function of S when

the hedge ratio � as well as 	 are determined for S� � ��� �Panel A� and S� � ��� �Panel

B�� respectively� i�e� ��S��S		�S��B� The slope of the dashed line is equal to �� Since the

hedge ratio does not correspond to the �rst derivative �it can be either greater or smaller�

the dashed line is not the tangent to the portfolio value function� The hedging error due

to a change in S �t �xed� equals the vertical di�erences between these two lines� It can be

negative as well as positive� A hedging error appears if the stock price jumps� but even if

the stock price changes continuously� the hedging error due to a change in S is not equal

to zero�

Panel A� Positive Expected Jump Size k � ����


Panel B� Negative Expected Jump Size k � �����


��



where

FBS � Black�Scholes value�

� � T � t�

�� � ��k � ���

�n � ��
D �

n��
J

�
�

rn � r � �k � n�J
�

d��n� � �ln�S�K� � �rn � �����
n������n

p
� � �

According to Merton ������ the hedging error equals

dC � �FMe � FMe
s �S

�
�
�kSFMe

s � �EL��F
Me�

�
dt � ����

Contrary to the locally risk�minimizing strategy the hedge ratio now consists of a

di�usion component but not of a jump component� Hence the hedging error does

not contain a di�usion component as can be see from equation ����� It now consists

of two terms� The expression in the �rst line gives the hedging error in case of a

jump� which is always positive since FMe is a convex function in S� Figure � shows

for representative parameters the hedging error of Merton�s strategy due to changes

in S �for �xed t�� The second expression represents the hedging error that arises

continuously in time� It is always negative thus compensating for the �rst term� We

see that the total hedging error is not zero even if the stock price does not jump�

The value of the hedge portfolio is again a weighted sum of Black�Scholes values�

Although this strategy does not hedge jump risk the value of the hedge portfolio

takes into account that with each jump the variance of the stock price changes�

In a formal sense� with the locally risk�minimizing hedging strategy we projected

the martingale part of V on fR �dMg� It followed that hM��i � �� Here� we only

hedge with the di�usion component� Therefore� we project the martingale part of V

on the space fR �dM cjE�
R
��dhM c�M ci� ��g consisting of all contingent claims

that can be hedged by the di�usion part of the stock price process� It follows that

h��M ci � �� From the stochastic di�erential equation of �� ����� as well as the

orthogonality of M c� and Md and t �i�e� hM c�Mdi � 
 � and hM c� ti � �� we infer

that h��M ci � � is equivalent to the hedge ratio being equal to the �rst derivative

��



of the hedge portfolio value��


� �
dhV Me�M ci
dhM c�M ci

� V Me
z � FMe

s � ��
�

We know from Proposition � that setting h � � yields Merton�s partial di�erential

equation� and from Lemma � that we have g � ���� r���D� Inserting h as well as

� into equation ���� yields again the hedging error� We also derive that Merton�s

strategy is mean�self��nancing��� For the martingale density we infer

�t � exp
n
���� r�

�D
Wt �

�

�

��� r��

��
D

t
o
� ����

Since � is a strict martingale density� P g�h is an equivalent martingale measure���

��� Black�Scholes Hedging Strategy

We have seen that Merton�s hedging strategy hedges di�usion risk completely but not

jump risk� However� it takes into account that the jump component of the stock price

process contributes to the variance of the process� We now consider a Black�Scholes

hedging strategy which even ignores the variance of the jump component as discussed

by Naik and Lee ����
�� This would be the case if a Black�Scholes world is assumed

and the variance of the process is estimated for a period where no jump occurs�

Consequently� the value of the hedge portfolio corresponds to the Black�Scholes

�
Since we can put the integrand 	 in front and since hA� �i � � we get

dh��Mci � dhV �

Z
	dZ�Mci

� dhV�M ci � 	dhZ�Mci

� dhV�M ci � 	dhMc�Mci �

Orthogonality is thus equivalent to 	 � dhMc� V i�dhM c�Mci � We have dhMc�Mci � ��DZ
�dt and

dhV�Mci � VzZ
���Ddt and thus 	 � Vz � Fs �

��Insert h and 	 into equation ���� of the proof of Lemma � �see appendix�� That yields the

martingale condition for �
��We would obtain the same result by arguing thus� Since the variance of the jump component

is perceived but jump risk is not hedged the density process � should not eliminate the jump

component but leave it unchanged� This can be achieved by setting h � �� From the martingale

property of the density� equation ���� we have g � ����r�
�D

� Finally� requiring a mean�self�nancing

strategy yields 	 � Vz �

��



value based on the di�usion volatility� �D�

FBS � FBS�S�K� �� r� �D� ����

� SN�d���D���Ke�r�N�d���D��

where

d� � �ln�S�K� � �r � �����
D������D

p
��

d� � d� � �D
p
�

� � T � t �

The hedge ratio equals the �rst derivative of the portfolio value with respect to the

stock price�

� � FBS
s � N�d�� � ����

Conditional on no jump this strategy is self��nancing� However� contrary to the

locally risk�minimizing strategy and to Merton�s strategy this strategy is not mean�

self��nancing� If a jump occurs the hedging error is always positive�

dC � �FBS � FBS
s �S  � � ���

since the Black�Scholes call value is a convex function in S� This hedge plan clearly

�underhedges� the option� According to Naik and Lee ����
�� a perfect hedge requires

a jump �nancing security � that is a security that pays exactly dC� Since such a

security does not exist the approach of Naik and Lee ����
� is tantamount to totally

ignoring the jump component of the stock price process� That means that the hedger

acts as if he only observed the di�usion component and its volatility�

In a formal sense this approach is equivalent to choosing h � � as can be seen from

the partial di�erential equation ����� Condition ��� for martingale densities then

yields g � ���� r � �k���D� Hence� the density process equals

�t � exp

�
���� r � �k�

�D
Wt �

�

�

����� r � �k�

�D

��

t�Nt � �t

�

�
Y
s�t

����Ns�e
Ns

� exp

�
���� r � �k�

�D
Wt �

�

�

����� r � �k�

�D

��

t� �t

�
� �fNt��g � ����

��



The martingale density is no longer signed��� However� it is not strictly positive

but becomes zero when a jump occurs� That means that the martingale density

assigns zero probability to jump events thus eliminating the explicit in�uence of the

jump component on the hedge portfolio� Nonetheless� the value of the hedge portfolio

jumps� when S jumps since the value of the hedge portfolio is a continuous function of

S� Figure � illustrates for representative parameters the hedging error due to changes

in S �t �xed�� It shows that this hedging error � and thus the total hedging error

since the money market account re�nances the portfolio for in�nitesimal changes �

is positive if S jumps� This also implies an arbitrage opportunity if the call is traded

for FBS� We get�

Lemma � In a Poisson jump di�usion model the value of a European call must be

larger than the Black
Scholes value based on the di�usion variance�

Proof� Buy the call for FBS and sell the hedge portfolio� Then the cash in�ow

equals the hedging error dC � �FBS�FBS
s �S which is nonnegative with probability

� and strictly positive with positive probability� Therefore� this strategy forms an

arbitrage opportunity�

A Black�Scholes hedging strategy based on the total variance� ��
tot� corresponds to

an investor who ignores jump risk but who uses historical volatility estimators from

a period with stock price jumps� Hence the value of the hedge portfolio is

FBS � FBS�S�K� �� r� �tot�

� SN�d���tot���Ke�r�N�d���tot�� �

The hedge ratio and the hedging error are given by

� � FBS
s ��tot� � N�d���tot��

dC � �F � Fs�S �
�

�
FssS

���
jumpdt �

respectively� This Black�Scholes hedging strategy is no longer self��nancing even if

no jumps occur until the option�s maturity� dC � ����FssS���
jumpdt�

��

��By �signed� we mean negative with positive probability�
��The Black�Scholes value based on the total variance is not computable by changing the mea�

sure� The Girsanov transformation of a Brownian motion always yields a Brownian motion with

the same variance� Therefore� no martingale density exists that could transform the jump di�usion

process into a geometric Brownian Motion based on the total variance�

�




��� Hedging Strategies in Bates� Model

We now regard Bates� systematic jump risk model ������ and assume that all the

jump risk is purely systematic�� and is therefore priced� Bates computes a value for

European options in an equilibrium model where the representative investor has a

time separable utility function with constant relative risk aversion R� The resulting

option pricing formula for a European call corresponds to Merton�s formula with a

transformed jump part�

FBa�S�K� �� �D� r� �� �J � �J � R� � FMe�S�K� �� �D� r� �
�� ��J � �J�

where

�� � � exp��R�J � ���R�� �R���
J�

��J � �J �R��
J �

FBa can be calculated with the help of the following martingale density

d�t � �t�
���� r�� ��k� � �k

�D
dW �

Z
�t���y � ���R � �����dy� dt��H�dy�dt�

with k� � exp����� �� For R � � density and price collapse to those of Merton�

Assuming Bates� option price to be correct� we propose two hedging strategies where

the values of the corresponding hedge portfolios track these prices all the time���

Delta Hedge

A common way to hedge options is by choosing a Delta�hedging strategy� In analogy

to the Black�Scholes model or the Merton model for jumps the hedge ratio is chosen

equal to the �rst derivative of the call value with respect to the stock price�

� � FBa
s �

The hedging error is equal to

dC � �FBa � FBa
s �S

� �FBa
s ��k�S � EL���F

Ba��dt �

��I�e� S is perfectly correlated to the wealth process of the economy�
��Recall that in general the value of the LRM hedge portfolio is di�erent from Bates� option

price�

��



Locally Variance Minimizing Hedging Strategy �LVM�

As mentioned before� a strategy is locally risk�minimizing if the discounted hedging

error � is a martingale which is orthogonal to the martingale part of the price

process��� Loosely speaking� we minimize the local variance of the hedging error

dh���i under the condition that the mean hedging error is zero at all times t� A

similar hedging strategy for the Bates model reads as follows� Minimize the local

variance of the hedging error dh���i� under the condition that at all times t the

value of the hedge portfolio equals Bates� model price� Again the hedge ratio � can

be obtained by projecting the martingale part of Bates� value� V Ba� on fR �dMg���
This leads to a hedge ratio that has a very similar form to the locally risk�minimizing

hedge ratio��	

� �
dhV Ba�Mi
dhM�Mi � ��� 
�FBa

s � 

EL��S�F

Ba
s �

EL���S���

� ��� 
�
X
n

a�nN�d��n��

�

�

��
jump

�X
n��

a�n

n
�k F

BS�S�K� r�n� �n� ��

S

��k � ���e�
�
J

FBS�S�K� r�
��

n	�� �n	�� ��

S

��k � ��
FBS�S�K� r�

�

n	�� �n	�� ��

S

o
�

where

a�n � exp�����k� � ��� ��
��k�	���n

n�

r�n � r � ��k� � n����

r�
�

n � r�n �R�J��

r�
��

n � r�n � �R � ���J�� �

This yields the following hedging error�

dC � �FBa � ��S � �FBa
s � ��S�DdW

�

�FBa

s � ������ r�� �k�S � ��E���FBa� � FBa
s S��k�

�
dt �

Figure �� shows for representative parameters the hedging error of these two hedging

strategies due to changes in S �t �xed��

��Under regularity assumptions�
��However� note that this time Bates� value instead of the locally risk�minimizing portfolio value

is projected�
�	see appendix�
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Figure �� Mertons Hedging Error due to Stock Price Changes

The solid line depicts Merton	s value as a function of the stock price� FMe�S�� for the

parameters r � ���� K � ���� T � ����� �tot � ���� � � ���� � � �� k � ����
� The

dashed line represents the value of the unadjusted hedge portfolio as a function of S where

the hedge ratio � as well as 	 are determined for S� � ���� i�e� ��S��S 	 	�S��B� It

corresponds to the tangent of the solid line since the hedge ratio equals the �rst derivative

of the portfolio value with respect to the stock price� The hedging error caused by a change

in the stock price �for �xed t� equals the vertical di�erence of these lines� It is zero when the

change in S is only in�nitesimal and it is strictly positive when the stock price jumps since

the value function is a convex function of S� However� due to the position in the money

market account this strategy is mean
self
�nancing when changes in t are considered�

��



Figure �� Black�Scholes Hedging Error due to Stock Price Changes

The solid lines depict the Black�Scholes values as a function of the stock price� FBS�S��

for the parameters r � ���� K � ���� T � ���� �tot � ���� � � ���� � � � and k � ����
�

Panel A is based on �D and Panel B on �tot� The dashed lines represent the value of the

unadjusted hedge portfolio as a function of S where the hedge ratio � as well as 	 are

determined for S� � ���� i�e� ��S��S		�S��B� They correspond with the tangents to the

solid lines in S� since � � FBS
s � The hedging error due to changes in S �t �xed� equals the

vertical di�erences between these two lines� It is always positive since the value function

is a convex function in S� A hedging error appears if the stock price jumps� but if the

stock price changes continuously� the hedging error due to changes in S is equal to zero�

Whereas in Panel A the total hedging error is also zero for continuous changes in S �the

money market account �nances the rearrangements of the portfolio� this is not the case in

Panel B�

Panel A� Based on �D

Panel B� Based on �tot

�



Figure � Bates Hedging Error due to Stock Price Changes

The solid lines depict the Bates values as a function of the stock price� FBa�S�� for the

parameters r � ���� K � ���� T � ���� �tot � ���� � � ���� � � � and k � ����
�

Panel A shows the hedging error based on the Delta hedge and Panel B based on the

locally variance
minimizing hedge� The dashed lines represent the value of the unadjusted

hedge portfolio as a function of S where the hedge ratio � as well as 	 are determined for

S� � ���� i�e� ��S��S 	 	�S��B� The hedging error due to changes in S �t �xed� equals

the vertical di�erences between these two lines� In Panel A the dashed line corresponds

with the tangent to the solid line in S� since the � � FBa
s � Consequently the hedging error

due to changes in S is always positive as in Merton	s or the Black�Scholes case� In Panel

B the hedge ratio is not equal to the �rst derivative� The hedging error due to changes in

S can be either positive or negative�

Panel A� Delta Hedge

Panel B� Locally Variance Minimizing Hedge

��



��	 Arbitrage Boundaries

As we have noted in section ���� the Poisson jump di�usion model contains no

arbitrage opportunities� With the help of Merton�s model we can give boundaries

for the arbitrage�free call value�

Proposition � There are no arbitrage opportunities for a single call if and only if

the call value F is smaller than the stock price and larger than the Black
Scholes

value based on the di�usion volatility	

F � �FBS��D�� S � � ����

Proof� If we choose the function h to be positive and constant and determine g

according to equation ��� the corresponding density process � is strictly positive

and thus determines an equivalent martingale measure P g�h �see equation ����� The

partial di�erential equation for the value of the hedge portfolio F � F �g� h� coincides

with Merton�s di�erential equation but with a transformed jump parameter � � ��h�
We derive F �g� h� � FMe���� Therefore� all call values F �

n
FMe��� � �  �

o
can

be written as expected discounted values with respect to the equivalent martingale

measure P g�h� thus allowing no arbitrage� Furthermore� it can be shown that �for

�D� �J � k constant� we get lim���� F
Me��� � FBS��D� and also lim���� FMe��� �

S� independent of the sign of the expected percentage jump size k� The latter is

remarkable because for � 
 � the stock price converges to zero in measure� It

follows that for a single call all values in the open interval
n
FMe��� � �  �

o
�

�FBS��D�� S� are feasible without creating arbitrage opportunities� On the other

hand we can determine simple arbitrage strategies if the call value equals S and

FBS��D� �as in Lemma �� respectively� Therefore� S and FBS are strict boundaries�

All call values calculated in the following subsections satisfy these boundaries�

��



� Numerical Analysis

We are now interested in the sensitivity of the LRM portfolio value and hedge ratio

with respect to the model parameters� Therefore� we compute portfolio values and

hedge ratios for typical parameter values� We want to focus especially on changes in

the money ratio and in the expected percentage jump size� Furthermore� we analyse

the di�erences between the hedge ratios of the LRM and LVM strategies and the

alternative strategies� Finally� we perform a Monte Carlo simulation to compare the

distribution of total hedging costs�

��� LRM Strategy for Representative Parameters

Table � shows how the locally risk�minimizing portfolio value depends on the exercise

price K� time to expiration T � jump intensity �� and the expected jump size per unit

time �k� We take the total stock variance� ��
tot� as well as the percentage of the total

stock variance explained by the jump� 
� as constant� Accordingly� the variance of

the di�usion component ��
D as well as the variance of the jump component ��

jump are

constant and the variance of the jump size in the return ��
J decreases as k increases�

As expected� we �nd that the value of the hedge portfolio is an increasing function

of time to maturity and a decreasing function of the strike price� For given jump

intensity �� with increasing magnitude of the expected jump size per unit time �k�

the value of the portfolio decreases� except for out�of�the money calls with a short

time to expiration where the converse is true� This observation con�rms the result

of Trautmann�Beinert ������ who �nd a similar relationship in the idiosyncratic

jump risk model of Merton ������ and the systematic jump risk model of Bates

������� The in�uence of �k on the hedge portfolio�s value decreases with increasing

�� This re�ects the fact that for constant total variance� as � increases� the jump

component converges to a second independent di�usion process implying that the

whole process is again a geometric Brownian motion� In this case we know that the

drift � � �D � �k has no in�uence on the option value� Consequently� �k as the

drift of the jump component looses its in�uence for increasing ��

Table � shows the corresponding hedge ratios� All other parameters kept constant

the hedge ratio decreases with increasing strike price� The relationship between the

hedge ratio and time to maturity is similar to that in the Black�Scholes model

�see� e�g�� Cox�Rubinstein ������ p� ������ The hedge ratio always increases with

the drift of the jump component� �k� Our intuitive explanation for this result reads
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Table �� Values of the Locally Risk
Minimizing Hedge Portfolio

S � ���� � � ���
� r � ���� �tot � ���� � � ���

� � � � � ��

�k K T � ���� T � ��� T � � T � ���� T � ��� T � �

� ����� ����� ����� ���� ����� �����

��� � ���� ���� ����� ��� ���� �����

�� ��� ���� ����� ��� ���� �����

� ����� ����� ����� ����� ���� �����

 � ���� ���� ����� ���� ���� �����

�� ��� ���� ���� ��� ���� �����

� ���� ����� ���� ����� ����� �����

�� � ���� ���� ����� ���� ���� �����

�� ��� ���� ���� ��� ���� �����

as follows� While the Black�Scholes hedging strategy adjusts the hedge ratio after

a jump occurred� the locally risk�minimizing strategy obviously anticipates� on an

average basis� the hedge ratio appropriate after the next jump� Therefore� it is smaller

for small �k and larger for large �k� Again� the larger � the smaller is the in�uence

of �k on the hedge ratio� As argued before� this results from the convergence of the

jump component to a geometric Brownian motion�

While the hedging strategies of Merton and Black�Scholes do not depend on the

expected excess return �� � r� the locally risk�minimizing hedging strategy does�

Figure � shows� for di�erent k� the dependence of the locally risk�minimizing port�

folio value on the excess return� As before� we �x the total stock variance as well as

the variance explained by the jump component while the volatility of the jump size

in the return �J is chosen accordingly� For k � �� as ��� r� increases� the portfolio

value varies only slightly� However� for k � ����� as �� � r� increases so does the

portfolio value� whereas for k � ���� the portfolio value is a decreasing function of

��� r�� Figure � also depicts the dependence of the hedge ratio with respect to the

excess return� The hedge ratio increases with the excess return independent of k�
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Table �� Values of the Locally Risk
Minimizing Hedge Ratio

S � ���� � � ���
� r � ���� �tot � ���� � � ���

� � � � � ��

�k K T � ���� T � ��� T � � T � ���� T � ��� T � �

� ��� ��� ��� ��� ��� ���

��� � ��� ��� ��� ��� ��� ���

�� �� �� ��� �� ��� ���

� �� �� ��� ��� �� ��

 � ��� ��� ��� ��� ��� ���

�� ��� ��� ��� ��� ��� ���

� ��� �� ��� �� ��� ���

�� � ��� ��� �� ��� ��� ��

�� ��� ��� ��� ��� ��� ���

Figure �� Excess Return and the Locally Risk
Minimizing Strategy

S � ���� K � ���� r � ���� T � ���� � � �� �tot � ���� � � ���

Hedge Portfolio Value Hedge Ratio
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��� Comparison of Hedging Strategies

As mentioned above� for ���r� � � the portfolio value of the locally risk�minimizing

strategy is equal to Merton�s value� Therefore� one can also infer from Figure � how

the portfolio values of these two strategies di�er for di�erent excess returns� For

k � � the portfolio values are very similar� independent of the excess return� On the

other hand the portfolio values di�er considerably if the absolute values for k and

�� � r� are high�

Figure � illustrates for di�erent parameters k� the hedge ratios of the alternative

strategies as functions of the stock price� If the expected excess return is positive

and the expected jump size is signi�cantly di�erent from zero and positive �negative�

then the LRM and LVM hedge ratios are substantially larger �smaller� than the delta

hedge ratios for out�of�the�money �in�the�money� calls� Moreover� it shows that the

LRM and LVM hedge ratios are least sensitive to changes in the stock price� This

is a very important property because it means that changes in the underlying stock

require smaller adjustments in these risk�minimizing hedge ratios� Therefore� the

corresponding transaction costs and the hedging error due to discrete adjustments

of the portfolio are smaller than for the remaining strategies� Although not explicitly

presented here the lower sensitivity of the locally risk�minimizing hedge ratio with

respect to the stock price remains true even if the excess return is zero� ��� r� � ��

Recall that in this case Merton�s value is equal to the locally risk�minimizing portfolio

value while the hedge ratios are di�erent� As shown in Figure �� for �xed parameters

��
tot and 
� Merton�s value and the portfolio value of the locally risk�minimizing

strategy converge if � goes to in�nity� The same is true for the hedge ratios� This

again is due to the fact that in this case the price process converges to a di�usion

process and thus to a complete model where all prices and hedging strategies must

be equivalent� The di�erence in the Merton strategy and the locally risk�minimizing

strategy is largest for small �� If� on the other hand� � as well as ��
jump go to zero we

also have convergence of the portfolio values and the hedge ratios for all strategies

since in this case the process converges to a Brownian motion with volatility ��
D�

��� Monte Carlo Simulation of Total Hedging Costs

A Monte Carlo Simulation�
 based on �
�


 sample paths is used to derive the

frequency distribution of the total �discounted� hedging costs for all alternative

�
We used the empirical martingale simulation method of Duan and Simonato �������

�




Figure �� The Hedge Ratios as a Function of the Stock Price

Parameters� K � ���� r � ���� T � ����� � � ���
� � � �� �tot � ���� � � ���� R � ��

Expected Jump Size k � ����

Expected Jump Size k � �

Expected Jump Size k � ���
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Figure �� Di�erence of LRM hedge and Mertons hedge as function of �

Parameters� K � ���� S � ���� r � ���� T � ���� � � ���
� �k � �� �tot � ���� � � ����

Di�erence in the portfolios values Di�erence in the hedge ratios

hedging strategies� The hedge portfolio was adjusted only once a week� this discrete

rebalancing of the hedge portfolio results in an additional error term since in a strict

sense the hedge ratios are determined for continuous adjustments� Theoretically�

the initial costs and the mean costs of the LRM strategy and Merton�s strategy

should coincide� the divergence is mainly due to this discrete hedging policy� Table

� shows the initial hedging costs as well as mean� standard deviation� skewness�

kurtosis� minimum� maximum and nine quantiles of the total �discounted� costs

for hedging a European call� where the expected jump is of considerable size� k �

��� �� It is remarkable that the initial hedging costs� ��� di�er by more than ���


dollars between Bates model and the Black�Scholes model based on �D� whereas the

di�erence in mean hedging costs amounts to only about � dollar� Standard deviation

and skewness are smallest for the LRM and LVM strategies� but kurtosis is highest

for the LRM hedge� The quantiles for the LRM strategy and the LVM strategy

lie close together� It is striking that the worst case behaviour is best for the LRM

strategy and LVM strategy� the ����� ���� and �
��quantiles of the total hedging

costs are substantially lower� E�g�� the total hedging costs are above ���� ����
�

dollars only in �� of the cases when applying the LRM �LVM� strategy� However�

using a delta hedging strategy costs more than ����� ���� �� and ���� dollars�

respectively� with �� probability� In �� of the cases a delta hedging strategy requires

more than ������ ����� ������ and ����� dollars� respectively� whereas ����� �������

dollars are su�cient with a LRM �LVM� approach� Figure � visualizes the empirical

��



frequency distribution of the total hedging costs� It can be seen� that the mode of

the total hedging costs is lowest for the Black�Scholes strategy based on �D��� The

alternative delta�hedging strategies have higher modes of total hedging costs� The

modes are highest for the LRM and LVM strategies�

For a less extreme jump size� k� the di�erences in the shapes of the frequency dis�

tributions are similar though not as pronounced�

Table �� Simulated Distribution of Total Hedging Costs

S � ���� K � ���� � � �� k � ����� �tot � ���� � � ���� T � �� � � ���
� r � ���� R � �

Hedging Strategies

Total LRM Bates Bates Merton B�S B�S

Hedging Costs �LVM� �Delta� ��tot� ��D�

�Initial Costs� ����� ������� ������ ������ ������� ������

Mean ����� ����� ���� ����� ���� ����

Stand� Dev� ���� ���� ���� ���� ���� ����

Skewness ��� ��� ���� ���� ���� ����

Kurtosis ��� ��� ���� ���� ���� ����

Maximum ����� ����� ����� ����� ���� �����

��� Quantile ����� ���� ����� ����� ����� �����

��� Quantile ����� ����� ����� ����� ����� �����

�� Quantile ����� ���� ���� ���� ����� �����

��� Quantile ����� ����� ����� ����� ���� �����

�� Quantile ����� ����� ����� ����� ����� �����

��� Quantile ����� ����� ����� ����� ����� �����

�� Quantile ����� ����� ����� ����� ����� ����

�� Quantile ����� ����� ��� ���� ���� ���

�� Quantile ���� ���� ���� ���� ��� ����

Minimum ���� ���� ���� ��� ���� ����

��If no jump occurs� the costs should coincide with the initial costs since only in case of a jump

a hedging error occurs �when ignoring the hedging error due to the discrete rebalancing��

��



Figure �� Distribution of Total Hedging Costs

S � ���� K � ���� � � �� k � ����� �tot � ���� � � ���� T � �� � � ���
� r � ���� R � ��

The heights of the columns give the frequency �in �� that the duplicating costs are

between �� ��
 and � 	 ��
� At �� the frequency that the duplication costs are above

���� is depicted�

Panel A� Locally Risk
minimizing strategy Panel B� Bates	 strategy �LVM�

Panel C� Bates	 strategy �Delta� Panel D� Merton	s strategy

Panel E� Black�Scholes strategy ��tot� Panel F� Black�Scholes strategy ��D�
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� Conclusion

This paper derives explicitly two formulae for hedging options in a jump di�usion

framework� The �rst formula is an application of Schweizer�s ������ LRM approach

while hedging according to the second formula minimizes the local variance of the

hedging error in Bates� ������ equilibrium option pricing model� Both hedge formu�

lae consist of a di�usion component and a jump component and thus hedge di�usion

as well as jump risk partly� The value of the LRM hedge portfolio is a weighted sum

of Black�Scholes values� Some of the weighting factors are negative if� for example�

the market price of risk is positive� Negative weighting factors result if the mar�

tingale density is negative with positive probability� In this case the corresponding

martingale measure is not an equivalent martingale measure in contrast to the as�

sumptions of Colwell and Elliott ������� However� as long as the call value is above

the Black�Scholes value based on the di�usion variance and below the stock price

itself there is no arbitrage opportunity�

We compared the LRM strategy and LVM strategy with delta hedging strategies

in the models of Merton ������� Black�Scholes ������� and Bates� Delta hedging

strategies only consist of a di�usion component and thus hedge di�usion risk but do

not hedge jump risk� By numerical analysis we found that the LRM and LVM hedge

ratios are less sensitive to stock price changes than the alternative delta hedging

strategies� Moreover� if the expected excess return is positive and the expected jump

size is signi�cantly di�erent from zero and positive �negative� then the LRM and

LVM hedge ratios are substantially larger �smaller� than delta hedge ratios for out�

of�the�money �in�the�money� calls� We also showed that the worst case behaviour of

the LRM and LVM strategies is superior� The ����� ����� and �
� quantiles of the

total hedging costs are substantially lower�

��



� Appendix

In the following all integrand processes Z� �� V� Vt � � � should be regarded at time t�

and at Z�t��� But for the sake of simplicity we omit the argument�

Proof of Lemma �

With the de�nition of the quadratic covariation� ��� �� �see e�g� Protter ����
� p� ���

or Jacod�Shiryaev ������ p� ���� and since �Z� ��� hZ� �i is a local martingale �see

e�g� Protter ����
� p� ���� we get for the product of � and Z

d�Z � Zd� � �dZ � d�Z� ��

� Zd� � �dZ � d�Z� ��� dhZ� �i� dhZ� �i
� Z�

n
gdW �

Z
�h� ���d� �H�dy�dt�

o
�Z�

n
��� r�dt� �DdW �

Z
y�d� �H�dy�dt� g

�d�Z� ��� dhZ� �i� Z�
n
�Dgdt�

Z
�h� ��yH�dy�dt g

� local martingale� Z�
n
�� � r� � �Dg �

Z
�h� ��yH�dy�

o
dt �

Therefore �Z is a local martingale and � a martingale density if and only if the

last term is a local martingale� But since this is a continuous martingale with �nite

variation it follows that this martingale must be constant �see� e�g�� Protter ����
�

p� �� and thus�n
�� � r� � �Dg �

Z
�h� ��yH�dy�

o
�f� ���g � � � ����

For the Black�Scholes hedge with h � � it follows that �� � r� � �Dg � �k � �

and thus g � ��� � r � �k���D� For Merton�s hedge we get h � �� Consequently

�� � r� � �Dg � � and thus g � ���� r���D�

��



Proof of Proposition �

With Ito�s formula as well as dhZc� Zci � Z���
Ddt and

R
yZ��dy� dt� � �Z �

Z�t�� Z�t�� we derive for V

dV � Vtdt� VzdZ �
�

�
VzzZ

���
Ddt��V � Vz�Z

� Vtdt� Vz

n
��� r�Zdt� �DZdW �

Z
yZ���dy� dt��H�dy�dt�

o
�
�

�
VzzZ

���
Ddt��V � Vz�Z

� Vz�DZdW ��V ����

�
n
Vt � Vz��� r�Z �

�

�
VzzZ

���
D � Vz

Z
ZyH�dy�

o
dt �

According to the de�nition of the quadratic covariation� since �V� ���hV� �i is a local

martingale and since
R 	

V �Z�� � y�� � V �Z�


��dy� dt� � �V � V �t� � V �t�� the

product V � equals

dV � � V d� � �dV � d�V� ��

� V d� � �dV � d�V� ��� dhV� � i� dhV� �i
� V d� � �Vz�DZdW � ��V

��
n
Vt � Vz��� r�Z �

�

�
VzzZ

���
D � Vz

Z
ZyH�dy�

o
dt

�d�V� ��� dhV� �i
�
n
Vz�DZ�gdt�

Z
�
	
V �Z�� � y��� V �Z�



�h� ��H�dy�

o
dt

� V d� � �Vz�DZdW� �z �
local martingale

�

Z
�
	
V �Z�� � y��� V �Z�



�� �H�dy�dt� � d�V� ��� dhV� �i� �z �

local martingale

��
n
Vt � Vz��� r�Z �

�

�
VzzZ

���
D � Vz�DZg � Vz�Zk

�

Z 	
V �Z�� � y��� V �Z�



hH�dy�

o
dt �

Since �V ��t � E�c�BTZT ��T�BT jFt� is a local martingale so must beZ r

�

�
n
Vt � Vz��� r�Z �

�

�
VzzZ

���
D � Vz�DZg � Vz�Zk

�

Z 	
V �Z�� � y��� V �Z�



hH�dy�

o
dt � ����

��



This is a continuous local martingale with �nite variation� Therefore it is zero�

Consequently� so is the term in fg if � �� �� Thus V satis�es the following di�erential

equation�

Vt � Vz��� r�z �
�

�
Vzzz

���
D � Vz�Dzg � Vz�zk

�

Z 	
V �z�� � y��� V �z�



hH�dy� � � �
�

Since � is a martingale density condition ���� must be satis�ed� Inserting this into

equation �
� we get equation ���� On the other hand if we insert equation ��� into

the stochastic di�erential equation for V � according to ����� we get equation ��
��

With V � e�rtF equation ���� follows�

Proof of Lemma �

We required � to be orthogonal to the martingale part of the stock price process M �

Since we can put the integrand � in front and since hA�Mi � � we get

dh��Mi � dhV �
Z

�dZ�Mi
� dhV�Mi � �dhZ�Mi
� dhV�Mi � �dhM�Mi �

Orthogonality is thus equivalent to

� �
dhM�V i
dhM�Mi �

V is a special semimartingale and can thus be written as

dV � �� � ��dt� �z �
dAV

�Vz�DZdW� �z �
dV c

�

Z 	
V �Z�� � y��� V �Z�



���dy� dt��H�dy�dt�� �z �

dV d

where AV is a predictable process with �nite variation� V c is a continuous martingale

and V d is a purely discontinuous martingale� We have hAV �Mi � �� Moreover

the instantaneous variances can be depicted as dhM c�M ci � ��
DZ

�dt as well as

dhMd�Mdi � ��
jumpZ

�dt and dhM�Mi � ��
totZ

�dt� We can therefore write

��



� �
dhM c �Md� AV � V c � V di

dhM�Mi

�
dhM c� V ci� dhMd� V di

dhM�Mi

�
dhM c�M ci
dhM�Mi � dhM

c� V ci
dhM c�M ci �

dhMd�Mdi
dhM�Mi � dhM

d� V di
dhMd�Mdi

� ��� 
�Vz � 

EL��Z�V �

EL���Z���

� ��� 
�Fs � 

EL��S�F �

EL���S���
�

Proof of and Lemma �

From equation ���� it follows that � is a �local� martingale if and only ifZ n
�VzZ��� r�� VzZ

Z
�h� ��yH�dy�

�
Z 	

V �Z�� � y��� V �Z�


��� h�H�dy� � ���� r�Z

o
dt

is a local martingale �since all other terms on the right are local martingale�� But

this is a continuous process with �nite variation and thus it is equivalent to

� � f �Vzz�� � r�� Vzz

Z
�h� ��yH�dy�

�
Z 	

V �z�� � y��� V �z�


��� h�H�dy� � ���� r�z g � ���

In addition � should be a martingale density� Thus we have equation ����� Together

with equation ���� we �nd that the following functions g and h satisfy conditions

��� and ���� for all options c�ST ��

g � ���� r��D
��
tot

h � �� �� � r�y

��
tot

�

��



Derivation of the locally variance minimizing strategy in Bates model

For each hedge ratio � the �discounted� hedging error is

�t � V Ba
t � V Ba

� �
Z t

�

�dZ �

We want to �nd a strategy such that the local variance dh���it is minimized� Denote

by M�V Ba� the martingale part of V Ba under the original measure P and by A�V Ba�

the drift term� The martingale part of � is denoted by L� it reads

Lt � �t �A�V Ba�t �

Z t

�

�dA

� M�V Ba�t �
Z t

�

�dM �

Since A�V Ba� and
R
�dA are continuous and of �nite variation

hL�Li � h���i �

Therefore min dh���i is equivalent to min dhL�Li� This is achieved by projecting

M�V Ba� on fR �dMg or equivalently by requiring L to be orthogonal to M � In

analogy to the derivation of the locally risk minimizing strategy we obtain

� �
dhM�V Ba��Mi

dhM�Mi
�

dhV Ba� Zi
dhZ�Zi

� ��� 
�V Ba
z � 


EL��V
Ba�Z�

EL���Z���

� ��� 
�FBa
s � 


EL��F
Ba�S�

EL���S���
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