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Abstract

The purpose of this paper is threefold. First, we use ML-techniques to estimate a Poisson-
type jump diffusion model that describes the return behavior of actively traded German
stocks and the DAX stock index as a proxy of aggregate wealth, respectively. We find
that jump risk is statistically significant and systematic.

Second, we compute option values according to Merton’s idiosyncratic jump risk model
and the more recent systematic jump risk model and compare them with Black/Scholes
values. Using a comprehensive sample of stock options traded at the Frankfurt Options
Market between April 1983 and June 1990 and at the Deutsche Terminbdrse between
January 1990 and December 1991, respectively, we find only in post-crash periods eco-
nomically significant differences between Black/Scholes and systematic jump risk option
values when using historical parameter estimates.

Third, we take the systematic jump risk model to infer the implicit stock price distributi-
ons from observed option prices before, during, and after periods of dramatic stock price
changes in the sample period from April 1983 to December 1991. The implicit parame-
ters reflect the different expectations of call and put market participants. Confirming the
findings of Bates (1991) for the US-market, our implicit parameters estimated for pooled
calls and puts indicate strong crash fears especially in July 1987 but not during the 2
months immediately preceding the October 1987 crash. While after the market crash the
results for the US-market exhibit even stronger crash fears, our implicit parameters reflect

mainly rebound hopes.
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1 Introduction

Not only because of the various stock market crashes in recent years, it seems natural
to model stock prices for option valuation as continuous time stochastic processes with
discontinuous sample paths. These processes constitute an important alternative to the
standard diffusion model of Black/Scholes (1973) and were first studied by Press (1967)
and incorporated into the theory of option valuation by Merton (1976a). More recent
applications of such processes in the option valuation context include the papers of Jo-
nes (1984), Naik/Lee (1990), Jarrow/Madan (1991), Bates (1991), Ahn (1992), Amin/Ng
(1993), and Amin (1993). The popularity of these jump-diffusion type continuous time
stochastic processes stems from at least two facts. First, as distinguished from pure diffu-
sion processes, these processes can explain the observed empirical characteristics of stock
return distributions, such as high levels of kurtosis and skewness. Second, they are eco-
nomically appealing because they allow that stock prices change by significant amounts
in a very short time (‘jumps‘) — a reasonable assumption for an efficient stock market —

while the probability of such jumps is zero in diffusion processes.

Statistical investigations of such mixtures of a diffusion process and a compound jump pro-
cess for American stock prices may be found in Press (1967), Beckers (1981), Ball/Torous
(1983, 1985), Jarrow/Rosenfeld (1984) and Akgiray/Booth (1986). Akgiray/Booth/Loistl
(1989) provide some evidence for the general form of the mixed process by examining
the weekly returns of a portfolio consisting of 48 stocks actively traded on the Frankfurt
Stock Exchange. However, few papers have investigated the effect of jumps in the under-
lying stock price process on stock option values. Ball and Torous (1985, p.155) point out
that there were no ’operationally significant differences between the Black/Scholes and
Merton model prices” in the context of pricing options on NYSE stocks. However, their
jump-diffusion model restrict jump sizes to having zero mean and is therefore incapable a
priori of eliminating the Black/Scholes model bias with respect to the call option’s exerci-
se price. More importantly, Merton’s (1976a) option pricing model is based on the crucial
assumption that jump risk is idiosyncratic and therefore diversifiable. By contrast, Bates
(1991) finds that a jump-diffusion model allowing systematic jump risk fits the actual
data markedly better than the Black/Scholes model when examining transaction prices

of S&P 500 futures options over the period 1985-1987.



The main purpose of this paper is to investigate the relationship between Black/Scholes
option values and the option values according to the idiosyncratic jump risk model of Mer-
ton (1976a) and the systematic jump risk model of Bates (1991) and Amin/Ng (1993), re-
spectively. Using a comprehensive sample of stock options traded at the Frankfurt Options
Market (FOM) between April 1983 and March 1991 and the Deutsche Terminborse (DTB)
between January 1990 and December 1991 we pose a similar question as Ball/Torous
(1985, p.156): *Can this more general specification eliminate the systematic biases of the
Black/Scholes option pricing model?’” However, this paper extends the methodology ap-
plied in Ball and Torous in at least three ways. First, we contrast the constant variance
diffusion model (BS-model) of Black and Scholes with the unrestricted Poisson-type jump-
diffusion model with idiosyncratic as well as systematic jump risk. Second, instead of va-
luing American call options on dividend paying stocks according to the pseudo-American
valuation model of Black (1975) (where the pseudo-American call value is the maximum
of the European call value assuming no premature exercise and the European call value
with expiration date corresponding to the ex-dividend date), we use a discrete time model
recently developed by Amin (1993). Third, we calculate American put values by the same

efficient approximation scheme.

Furthermore, we use the systematic jump risk model of Bates (1991) to infer the implicit
stock price distributions before, during, and after periods of dramatic stock price changes
within the sample period from April 1983 to December 1991. We examine especially the
period around the October 1987 crash and the period around the German reunificati-

on/Kuwait crisis in 1990.

The paper is organized as follows. Section 2 contains a description of the Poisson-type
jump-diffusion process and the methodology of parameter estimation. Parameter estimates
are presented for the Deutscher Aktienindex (DAX) and 5 actively traded German stocks
for the period from January 1, 1981 to December 30, 1991. Section 3 presents different
formulae and a discrete Markov chain model for valuing American stock options when the
underlying stock process includes idiosyncratic and systematic jumps, respectively. Section
4 examines the impact of stock price jumps on option values based on hypothetical as well
as historical process parameters while section 5 presents the parameter estimates implied

in option prices around stock market crashes. Section 6 concludes the paper.



2 Modeling stock price jumps

2.1 The Poisson jump-diffusion model

Jump-diffusion processes are popular processes to model stock prices since they have an
intuitive interpretation. The jump component is an attempt to incorporate the arrival
of very important (abnormal) new information while the diffusion component models
the arrival of less important (normal) new information. The most general jump-diffusion
process with independent increments is a Brownian motion superimposed by a compound
jump process of the Poisson-type. The Poisson process is assumed to be homogeneous
(with respect to time and state) and independent of the Brownian motion. Letting S;
denote stock price at time ¢ and S;- the stock price an instant before time ¢, the dynamics
of the stock price process S = {S5;;¢ > 0} can be represented by the following stochastic

differential equation

% — apdt + opdB, + LdN, , (1)
t_

where

(i) B ={Bt> 0} is a standard Brownian motion,
ap is the drift parameter and op > 0 is the volatility parameter of the
diffusion component of the Poisson-jump diffusion process,

(i) N = {N;;t > 0} is a Poisson counting process with parameter A > 0,
denoting the expected number of jumps per unit time,

(iii) I ={l;t >0} is a process with left-continuous sample paths describing
the stochastic size of the jump occuring next: Iy = Y " L.1(7,_, 7,(t)
where L = (L4, Ls, . ..)is an i.i.d. sequence of random variables with L,, >
—1 representing the percentage change of S due to a jump (jump size)
occuring at time T,,: L, = (S7, — St1,,-)/S1,— , To = 0and {11, T3,...} =
{t > O|N; — N;= = 1} is the set of arrival times of the jumps. The
expression [;dN; symbolizes a compounded Poisson process,

(iv) B, N, I are independent,

(v) B, N and [ are adapted to the filtration {F;;¢ > 0}, i.e., Ny, By and [,
are F;-measurable random variables. The filtration will be assumed to

satisfy the usual conditions®.

1See, e.g., Karatzas and Shreve (1988, p.10).



An equivalent representation of relationship (1) reads as follows:

dSt == OéDSt_dt + O'DSt_dBt + St—]tht . (2)

Accordingly, the stock price change d5; = S 4 — Si— is the sum of three components. The
component apS;_dt represents the instantaneous expected stock price change conditional
on no arrivals of abnormal information. The opS;_dB; part describes the unanticipated
part of the instantaneous stock price change due to the arrival of normal information, and
the S;_I;dN, part describes the total instantaneous stock price change due to the arrival
of abnormal information. Application of a fairly general version of It6’s lemma (see, e.g.,

Rogers and Williams (1987, p. 394)) to In(S;) delivers

In(S;) = In(So) + (ap — U%/Z)t +opB; + zt: In(l1 +L,) . (3)

n=1
Defining X; = In(S;/So) to be the rate of return over the interval [0,¢], up = ap — 01,/2,
and J, = In(1 + L,), we obtain

N
Xe=ppt+opBi+ ) Ji  (t>0). (4)

=1
In the special case when the {.J;} are normally distributed with parameters p; and o3,
we have k = FE(L) = ¢*7 — 1 with ay = ps + 05/2 and the rate of return over the unit
interval [0, 1], Xj, is then distributed as

= E®(z|pp + Nips, op + Nio3)
0 —/\ n
=0

where ®(-) denotes the cumulated normal density function. The corresponding density

(z|pp + iy, op +noj) (5)

function is easily obtained as

0 —/\)\n
Z (z|pp + npg, op +noj) (6)
=0

where ¢(-) denotes the normal density function. In a similar manner we can get the
unconditional expected rate of return per unit time and the unconditional variance of the

rate of return per unit time, respectively:

E(Xy) = EE[X;|Ni]



= HUD + AﬂJ ) (7)

Var(X1) = EVar[Xi|N;i] + VarE[X;| V]

= op+Nos+u7). (8)

Compared to the normal density function, the shape of f(x) is always more peaked in
the center (leptokurtic) and has thicker tails as long as 0 < A < co. The density function
f(z) is symmetric around pp if gy = 0 and skewed otherwise®. Therefore a jump-diffusion
process with 0 < A < co might explain the observed leptokurtosis and skewness of stock

return distributions.

2.2 Parameter estimation

In accordance with most of the preceding studies, we calculate the maximum likelihood
estimates (MLEs) of the process parameters. Given a sample of (daily or weekly) stock

returns X = (&1, &2,...,&n), the logarithm of the corresponding likelihood function is

defined as

In L(x]0) = }:m flail0) , (9)

where 0 = (up, o, A, juy,05), and f(+|0) is the density function given in (6) resulting from
a Poisson-type jump-diffusion process. Relying on the experimental evidence reported in
Ball and Torous (1985, p. 160), we truncate the infinite sum in f(2;]6) at N = 10 and

maximize instead of (9) the truncated log-likelihood function

m N
In L(x]0) = }:m(E:
=1 =0

p(xilup +nps,op + WJ)) (10)

with V = 10. Necessary conditions for a maximum likelihood estimator 8 become

1n Ly(x]0%)

30, =0, i=1,....5, (11)

2 Akgiray and Booth (1986, p. 169) show graphs of various density functions f(-) and a standard normal
density function ¢(-) for comparison. However, when A — oo, the jump component converges to a second
standard Brownian motion. Even for a smaller A | e.g. A = 10, the Poisson distribution approximates the

normal distribution quite good.



sufficient conditions require the positive definiteness of —H(x|0"), the 5x5 Hessian matrix

H(x|0) being defined by

 9PIn L(x]0)

H(X|(9)Z']‘— 8(98(9 5 i,jzl,...,5. (12)
? J

The MLEs of the process parameters are calculated by solving the nonlinear equation
system (11) numerically. The employed quasi-Newton procedure® is known to converge
quickly, provided the initial values of the algorithm are close to the final solution. Confir-
ming Ball and Torous (1985), we found that the Bernoulli jump-diffusion* MLEs provide
excellent starting values for the quasi-Newton algorithm. Therefore we computed first of
all the MLEs for the simpler process by constraining the mean logarithmic jump size equal
to zero, py = 0, and by taking arbitrary starting values for the other parameters to be

estimated.

Since a diffusion-only model is nested within a combined diffusion and jump model, a
likelihood ratio test can be used to test the null hypothesis Hy: stock return and stock

index returns are normally distributed. We calculate the likelihood ratio statistic
A = =2(In L(x|07) — In L(x|0°)) , (13)

where 0% is the MLE under a jump-diffusion specification, and #° is the MLE corresponding
to the situation when no jump structure is present (i.e., A = py = o5 = 0). We assume
that A is asymptotically y*-distributed with 3 degrees of freedom.® Estimates of the
standard errors of " are obtained from the main diagonal of the inverse of the Hessian

evaluated at 8.

3We used a FORTRAN routine (E04JAF) available in the NAG program library. All calculations were

done on the IBM 3090 mainframe of the Rechenzentrum der Universitdt Karlsruhe.
4f stock prices follow a Bernoulli jump-diffusion model then over a fixed period of time either no infor-

mation impacts upon the stock price, or at most one significant information arrival occurs. Furthermore,
if returns were computed for finer time intervals, the Bernoulli jump-diffusion model would converge to

the Poisson jump-diffusion model.
>The null hypothesis can be rejected if A > X(ZS,Q) for some significance level «. The critical values

of A are 6.25, 7.81 and 11.35, for o =0.10, 0.05 and 0.01, respectively. Because A > 0 and ¢% > 0 the
actual return distribution is a weighted sum of chi-squared ones. Since A is very large, see table 2, this

approximation will be acceptable.



2.3 Parameter estimates for the period from 1981 to 1990

Parameter estimates of the Poisson jump-diffusion process were estimated for the DAX
stock index® and 14 common stocks with DTB-traded options. The raw data consist of
daily share prices (Kassakurse) quoted at the Frankfurt Stock Exchange spanning the
10-year period from January 1, 1981 through December 31, 1990. The data source is a
DFDB 7 daily stock price file, wherein cash dividends, issue rights, stock dividends and
splits are accounted for by adjusting previous prices downward. The stock’s rate of return
of trading day t is then defined as X; = In(S5;/S;—1) where S;_y is the adjusted share
price of the preceding trading day. Accordingly, weekend and holiday returns are treated
as overnight returns. A weekly rate of return is defined as the difference between the

logarithm of two successive Wednesday prices.

Table 1 summarizes the Poisson jump-diffusion parameter estimates for the DAX stock in-
dex returns across different subperiods. In addition to the five parameters to be estimated
(instantaneous mean pp and variance o}, of the diffusion component, the mean number
of abnormal information arrivals (jumps) per unit time A, the mean p; and variance o3
of the (logarithmic) jump size) the table reports on the annualized total standard de-
viation (volatility) of the jump-diffusion process (VOLA)®, the log-likelihood value and
the likelihood ratio test statistic (A). Standard errors are given in parentheses. The re-

sulting t-values indicate that the parameter estimates are statistically significant (at the

1%-level).

Based on the likelihood ratio test, in all cases considered here we have evidence implying
the existence of a jump structure in DAX returns. The null hypothesis of a pure diffusion
process is rejected at the 1% significance level. A comparison of the results for the daily
returns in the two subperiods 1981-1985 and 1986-1990 shows that the likelihood ratio
test statistic is in the second subperiod substantially larger than in the first subperiod.

Furthermore, while the mean jump size is positive in the first subperiod it becomes ne-

SThe DAX is a capital weighted index of 30 stocks actively traded on the Frankfurt Stock Exchange.
Since December 30, 1987 the DAX is quoted continuously during the trading hours and is supposed to

be the most important German stock index.
"DFDB (Deutsche Finanzdatenbank) is a German capital market data base maintained with the

support from Deutsche Forschungsgemeinschaft (DFG).
8VOLA= /Var(X¢)n = [(% + X(E% + ﬁ%))n]l/z -100% where n = 52 (weeks a year) and n = 250

(trading days per year) when using weekly and daily estimates, respectively.



gative in the second subperiod. The latter results from an empirical return distribution
skewed to the left. This observation can be explained with the market crashes in the

second subperiod (e.g., the October 1987 and October 1989 crashes).

A comparison of the results based on daily returns (panel A) and weekly returns (panel
(') shows that the jump component is statistically more significant for daily data®’. Ho-
wever, when eliminating Monday and Friday returns in daily return series (panel B), the
statistical significance of the jump structure is even lower than with weekly data for the

subperiod from 1981 to 1985.

Table 2 reports the MLEs of the five parameters for 14 common stocks based on daily
return data from January, 1981 to December, 1985 (panel A) and from January, 1986
to December, 1990 (panel B). The standard errors of the estimates (not reported here)
indicate that most of these estimates are statistically significant. The null hypothesis was
rejected in all cases. Furthermore, we found that in the total period (the results are not
reported here) the likelihood ratio test statistic is always significant for daily returns. For
weekly returns, however, the null hypothesis is rejected for 71.4% and 92.9% of the stocks
considered in the subperiods 1981-1985 and 1986-1980, respectively. In the total period
the null hypothesis can be rejected for the weekly returns of all stocks considered in the

sample'®.

Figure 1 visualizes the peakedness't and the thicker tails of the empirical density function
of daily Deutsche Bank stock returns observed between January 1, 1981 and December

31, 1985. The two remaining density functions result from the parameter estimates of

9This observation confirms corresponding results for a value-weighted index including all stocks on
the New York Stock Exchange and the American Stock Exchange as documented in Jarrow/Rosenfeld
(1984).

10To compare our results with the results of earlier papers (e.g. Ball and Torous (1985)) the parameters
were also estimated under the assumption gy = 0. In comparison with the unconstrained model little
of the explanatory power of the model was lost, but the values of all other parameters were influenced.

Therefore the results obtained for the unconstrained model are more valuable.
"PpPeakedness is determined by the kurtosis and defined as KURT= FE(zx — 7)*/o* while skewness

is defined as SKEW= E(x — 7)3/o3, where x denotes the observations of the sample,  and o denotes
mean and volatility of the sample. For a jump diffusion model kurtosis and skewness specialize to KURT=
Mi3 461530343031/ (03 + M3 +07))?) and SKEW= Ay 13 +3031/ (0 A +73))%/2), respectively.
One can get annualized values for skewness and kurtosis by dividing SKEW by y/n and by dividing KURT
by n, respectively, where for weekly returns n = 52 (weeks a year) and for daily returns n = 250 (trading

days per year).



the normal distribution and of the distribution of the Poisson jump-diffusion process.
Figure 2 shows the density functions for daily returns for the subperiod form January
1, 1986 to December 31, 1990. Obviously, during this subperiod the return volatility is
higher than in the first subperiod. In both cases the density function of the Poisson jump-
diffusion process approximates the peakedness of the empirical density function of the
returns much better than the normal distribution. Furthermore, Figure 3 and 4 visualize
the leptokurtosis of the empirical density functions of the daily DAX returns and Deutsche
Bank returns observed between January 1, 1981 and December 30, 1990. Consequently,
the density function of the Poisson jump-diffusion process approximates the empirical

density function much better than the normal density function.

For the sake of convenience, we refer in the context of option pricing only to annualized
jump intensities and diffusion variances. To annualize these parameters, we multiply the

parameter estimates from daily returns by 250 (average number of trading days per year).



Table 1

10

Poisson jump-diffusion parameter estimates for the DAX across different subperiods

Panel A: Daily returns

Standard errors in parentheses
p

Period m A o x 10" o2 x10® pup x 10®° py x 10> VOLA® InL A
1981—-1985 | 1249 0.658 0.371 0.052 0.825 0.0004 13.34 4207 | 30.98*
(0.017%)  (0.004%)  (0.001%)  (0.011%)  (0.174)
1986—1990 | 1247 0.060 1.302 1.497 0.309 —4.933 23.52 3615 | 279.1*
(0.000%)  (0.002%)  (0.013%)  (0.010%)  (0.145%)
1981—-1990 | 2496 0.071 0.867 0.780 0.759 —4.750 18.97 7731 | 514.7*
(0.000%)  (0.001%)  (0.004*)  (0.004%)  (0.052")
Panel B: Daily returns without Monday and Friday returns
Period m A o x 10" 0% x 10> up x 10> py x 10> VOLA InL A
1981—-1985 | 733 0.677 0.395 0.053 0.714 0.395 13.71 2512 | 16.02*
(0.030%)  (0.007%)  (0.001%)  (0.022%)  (0.030%)
1986—1990 | 751 0.054 1.347 1.144 0.276 —0.683 22.16 2185 | 94.88*
(0.001%)  (0.003%)  (0.017%)  (0.017%)  (0.233%)
1981—-1990 | 1505 0.067 0.925 0.639 0.781 —2.573 18.40 4653 | 178.5*
(0.001%)  (0.002%)  (0.006*)  (0.007%)  (0.083%)
Panel C: Weekly returns
Period m A 0% x 10 6% x 103 pup x 10> py x 10> VOLA InL A
1981—-1985 | 251 2.407 0.055 0.011 0.623 —0.095 12.98 652 | 31.70*
(0.112%)  (0.005%)  (0.000%)  (0.020)  (0.009%)
1986—1990 | 250 0.210 0.520 0.167 0.480 —2.310 22.60 526 0 | 38.30*
(0.013%)  (0.009%)  (0.007*)  (0.016%)  (0.121%)
1981-1990 | 501 0.167 0.356 0.172 0.447 —1.373 18.74 1154 | 86.50*
(0.005%)  (0.003%)  (0.004*)  (0.006%)  (0.036*)

¢ Annualized volatility of the Poisson jump diffusion process in percent.
* Indicates significance at 1% level.




Poisson jump-diffusion parameter estimates based on daily stock returns

Table 2

Panel A: Subperiod from 1.1.1981 to 30.12.1985

11

Stock m A 0% o2 1755 15 VOLA*“ InL A
x104 x103 x103 x103

BASF 1249 1.384 0.255 0.064 —0.259 0.782 16.95 3922 61.22
BAYER 1249 1.502 0.299 0.059 -0.174 0.745 17.27 3894 44.16
BMW 1249 0.384 0.814 0.230 0.175 2.857 20.79 3688 112.12
COBANK 1249 0.479 0.900 0.268 —0.608 3.138 23.62 3535 112.02
DBENZ 1249 0.151 0.649 0.367 0.516 6.387 17.78 3942 214.06
DREBA 1249 0.115 1.358 0.453 —0.430 11.723 22.57 3590 103.62
DTBANK 1249 0.426 0.455 0.154 —0.465 3.824 17.13 3955 161.00
HOECHS 1249 1.344 0.202 0.070 -0.427 1.026 17.01 3928 93.50
MANNES 1249 2.167 0.159 0.062 —1.062 0.851 19.48 3744 59.00
RWEST 1249 0.318 0.332 0.151 -0.104 1.472 14.31 4194 187.22
SIEMNS 1249 0.406 0.485 0.142 0.789 0.533 16.30 3991 93.04
THYSSN 1249 0.460 0.840 0.302 -1.015 2.771 23.79 1459 58.40
VEBA 1248 0.300 0.580 0.249 0.164 2.321 18.32 3876 172.78
VW 1249 0.577 0.961 0.228 —0.461 2.519 24.05 3495 105.18
Panel B: Subperiod from 1.1.1986 to 30.12.1990

Stock m A 0% o2 1755 15 VOLA InL A

x104 x103 x103 x103

BASF 1246 0.421 0.818 0.330 0.121 —0.518 23.50 3551 177.12
BAYER 1246 0.197 1.266 0.713 —0.123 0.419 25.84 3459 201.72
BMW 1246 0.376 1.079 0.629 -0.947 2.252 29.42 3316 280.04
COBANK 1246 0.538 1.474 0.317 —0.262 0.103 28.19 3280 82.02
DBENZ 1246 0.140 2.128 1.397 0.064 -3.327 32.01 3200 231.06
DREBA 1246 0.452 1.239 0.379 0.506 -1.134 27.19 3347 122.96
DTBANK 1246 0.093 1.855 1.335 —0.061 —1.687 27.84 3362 201.76
HOECHS 1246 0.279 0.923 0.426 —0.216 0.446 22.98 3589 194.04
MANNES 1246 0.301 2.007 0.817 0.212 -0.399 33.42 3110 187.48
RWEST 1246 0.183 1.638 0.849 0.032 3.596 28.35 3333 210.78
SIEMNS 1246 0.383 1.189 0.393 0.435 -1.410 25.99 3409 140.44
THYSSN 1246 0.314 2.016 0.511 0.835 —1.987 30.14 3201 79.48
VEBA 1246 0.256 1.179 0.593 0.079 0.294 25.97 3446 247.94
VW 1246 0.201 2.123 1.072 0.400 —2.773 32.76 3151 212.16

¢ Annualized volatility of the Poisson jump diffusion process in percent.

* Indicates significance at 1% level.
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Figure 1
Distribution of daily Deutsche Bank returns
(Sample period 81/1 - 85/12)
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Figure 2
Distribution of daily Deutsche Bank returns
(Sample period 86/1 - 90/12)
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Figure 3
Distribution of daily DAX returns
(Sample Period 81/1 - 90/12)
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Figure 4
Distribution of daily Deutsche Bank returns
(Sample Period 81/1 - 90/12)
£(X) Parameter estimates
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3 Option valuation when jump risk is present

Options are usually priced at the discounted expected value of their future payoffs where
the expectation is taken over the risk neutral, rather than the true, return distribution
of the underlying asset. A necessary condition for the risk neutral pricing methodology
to be applicable is that the true and the risk neutral return distribution share a common
support (i.e., are equivalent) and that the risk neutral return distribution summarizes the
prices of relevant Arrow-Debreu state-contingent claims. As long as the option’s payoff can
be replicated by a dynamic trading strategy in the underlying asset and a riskless bond,
the equivalent risk neutral return distribution can be derived via no-arbitrage conditions.
Based on this methodology Black/Scholes (1973) derived their path-breaking option valua-
tion model (henceforth BS-model). Unfortunately such a replication is not possible if the
stock price follows a general jump-diffusion process. In this case deriving the appropriate
risk neutral probability measure requires additional restrictions on distributions and/or
on preferences. Merton’s (1976a) idiosyncratic jump risk model (henceforth IJD-model),
for instance, assumes that the jump risk is idiosyncratic, i.e., the jump component of a
security’s return is uncorrelated with the market return. More recently, Naik /Lee (1990),
Bates (1991), Ahn (1992), and Amin/Ng (1993) assume the existence of a representative
investor with time-separable power utility, so that Cox/Ingersoll/Ross (1985) and Ru-
binstein (1976) separability results, respectively, can be invoked to price the additional
risk when stock jumps are systematic. Although the statistical significance of jumps in
the DAX returns reported in section 2 indicates that Merton’s simplifying assumption of
diversifiable jump risk might not be fulfilled, we present first of all Merton’s IJD-model.
Afterwards we present Bates’s version of the systematic jump risk model (henceforth

SJD-model) and compare it with the IJD-model.

3.1 Diversifiable jump risk

The terminal payoff of a European call option maturing 7' years from now, given terminal
asset price realization St and strike price K, is max(0,57 — K). Under the standard
assumption that the short-term interest rate r is constant over the lifetime of the option,

the price of a European call, conditional upon a current stock price of S = Sy, will be

C = TR, max(0, 57 — K) (14)
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= ¢ TEy(Sp — K|S7 > K)Pr(Sy > K) .

The call price is therefore the discounted expected payoft conditional upon finishing in-
the-money times the probability of finishing in-the-money. Expectations and probabilities
are calculated with respect to the risk neutral probability measure @ In the special case of
a Geometric Brownian Motion governing the underlying stock price the above relationship

specializes to the Black/Scholes formula for Furopean calls:

CP® = CP°(S K, T, 0% r) (15)
= SO(dy) — e TK®(dy) ,

where
dy = [In(S/K)+ (r+0%/2)T))oVT,
dy = dy—oVT,
¢(.) = standard normal cumulative density function,
r = riskless rate of return,
o? = variance of the stock’s rate of return.

If the stock price follows the Poisson-type jump-diffusion dynamics described in (1) and
if the jump risk is diversifiable, then relation (14) specializes to the Merton formula for

European calls:*?

ol — T Z ]Bvr(n jumps)Eo [max(0, 57 — K) | n jumps] (16)

n=0

I
]2

ALY | Box, [CP3(5X, e KT 0 )|

3
Il
=]

I
]2

0] [ K]

3
Il
=]

where

12 A detailed explanation of the following transformations can be found in the appendix.
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X, = v (L, + 1), random variable with the same distribution as the product
of n independently and identically distributed random variables, each
identically distributed to the random variable 1 + L,,, where it is
understood that X =1,

Fox,(.) = expectation operator with respect to the distribution of X,
N = M1+ k)= At t1/275

v? = o} +no;/T,

- = r— M+ n(In(l 4 k)/T,

dy = [In(S/K) +r,T +1/2(02T)] [(v2T)?,

dy. . = dy, — (V2T)Y2

Equivalently, Merton’s call value (relation (16)) can be represented by
P = TR (maX(O, Sy — K)) , (17)
where Sy is the terminal stock price resulting from the risk neutral stock price dynamics
- 1 Nt
St = Sy exp {(r — 50% — Ae)T + opBr + Z JZ} ) (18)
=1

European puts have an analogous formula:

o0

PIJD _ Z

n=0

e—A’T(A’T)”/n!} {e—“Tch(—dQ,n) - Scp(—dl,n)} . (19)

3.2 Systematic jump risk

Since the empirical results presented in section 2 indicate that jump risk is systematic,
Merton’s diversification argument is not valid. Therefore we use a general equilibrium
approach to test for the impact of jumps on option values. While the model of Amin/Ng
(1993) is based on the discrete time model of Rubinstein (1976), Bates (1991) derives
a similar formula which is embedded in the Cox/Ingersoll/Ross (1985) equilibrium fra-
mework. While Rubinstein (1976) models a pure exchange economy, Cox/Ingersoll/Ross
(1985) derive their results for a production economy. Therefore, instead of modeling the
aggregate consumption process as in Amin/Ng (1993), Bates (1991) models the optimal

invested wealth as a jump diffusion process:

dW,
W;_

= (apw — Mew — Y;/We)dt + opwB: + LwdN, ,
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where {Y'} represents the optimal consumption stream. The percentage wealth jump sizes
plus one, (1 + Ly ), are independently and identically log-normally distributed: In(1 +
Lw) ~ N(/MW,in) with Cov(In(1 + L),In(1 + Lw)) = ojsw, while the covariance
between the stock returns and the change in the optimal invested wealth conditional on
no jumps is given by op sw. By construction jump risk is systematic, 1. e., stock prices

and wealth jump simultaneously, albeit by possibly different amounts.

Like in the Cox/Ingersoll/Ross (1985) world, Bates assumes the existence of a repre-
sentative investor who seeks to maximize his expected utility of lifetime consumpti-
on. This investor has an indirect utility of wealth function of the form V(W.t) =
maxyy,y £ ftoo ¢ "'U(Y;)dr, where the direct utility function is given as U(Y;) = (1/(1 —
R))Ytl_R, where Y; is the consumption at date ¢, p is the time discount factor and R is
a coefficient of relative risk aversion'®. Within this equilibrium framework Bates derives
the following 'risk-neutralized’ valuation formula'* for a European call:

I = T Z ]Bvr(n jumpS)Eo [max(0, 57 — K) | n jumps] (20)

n=0

- e_TTi_o: Ty ] [SemT 0 — K@(da)]

where

rn = (r—=XFk)+nuy/T,

di = [W(S/E) 4T + (b T +n03)/2] [ |(0hT + 0o,
dy, = dy,— (cbT +no2)/*

X = Aexp(—Ragw + (1/2)R(1 + R)oT ),

a7 = aj— Rojsw,

Bz explad) 1,

py = ay—1/207,

J* = is N(u5,03) distributed.

The terminal stock price resulting from the ’risk neutral’ stock price dynamics, SN’T, is

given by the following relation:

Nt
§T:Soexp{(r—l/QO'QD—)\*k*)T—I-O'DBT—I-ZJZ»*} . (21)

=1

13With R = 0, one obtains a risk neutral investor, and with & — 1, one obtains logarithmic preferences.
1 Although formula (20) is written in a 'risk-neutralized’ fashion, the call value depends via A* and k*

on the risk aversion parameter R.
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Equation (20) is a specialization of the general equilibrium pricing formula:

C = <e—pT zvvvvg)) (Sy — K)+> , (22)

where Viy (T') denotes the marginal utility of wealth at time 7'. In this equilibrium frame-

work the instantaneous drift of the stock price process a and the instantaneous riskless

interest rate r are endogenously given by the following two conditions:'®

o o (0

= Ropsw — \E { [(1 4 Ly) R - 1} L}

= Ropsw — Ae oo HEOR 205w (oo=Rossw _ 1y 4 \(e%7 — 1), (23)

and

R (dvvvj(( )>> Jdi (24)

- aW—Ra;WJrAEH(HLW —1} LW}

= oy — RUDW _ )‘kW +he” Ro jw+(R(1+R)/2) U?]W(eOZJVW—RU?LW . 1) ‘

According to equation (24), the riskless interest rate r is equal to minus the expected
rate of change in the marginal utility of wealth. Therefore jumps that increase both, the
stock price and wealth, will increase the expected rate of change in the marginal utility
of wealth and therefore decrease the riskless interest rate. All known option formulae
for jump-diffusion processes are special cases of Bates’ formula. When an investor with
logarithmic utility (R = 1) is assumed, then the above formula collapses the one presented
by Ahn (1992). In the case of index options on a proxy of the market portfolio, i. e.,
osws = opws = Lopw = op,ogw = oy and pgw = pj, we obtain the formula
proposed by Naik/Lee (1990). Finally, when stock jumps are idiosyncratic, i. e., ayw =
osw = oysw = 0, then we have r = ap w — Roqy and ap = r+ Rop sw — Mexp{ay} —1)

and the call formula (20) collapses to Merton’s call formula.

I5The above representations of the riskless interest rate and the stock price drift are derived by a
general version of the CAPM in a production economy. They differ therefore from the ones in Amin/Ng
(1993) since in their model these are derived from the Euler conditions in an exchange economy. The

equivalence of these two approaches is shown in Breeden (1986).
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3.3 Valuing American Puts

Like in the pure diffusion environment, there is no known analytic solution for American
puts when the underlying stock obeys a jump diffusion process. Finite difference methods
can be applied to evaluate options accurately for the modeled jump diffusion setting but
at a prohibitive cost in computer time. Therefore Bates (1991) generalizes McMillan’s
(1987) quadratic approximation to American option values for jump-diffusion processes.

The partial differential equation to be solved for American puts is given by
P+ {r — N'k*}SPs + %ags%s + X E[P(S¢”", T,K)— P] = rP, (25)

where the subindices of P denote the partial differentials. Approximating this formula

leads to the following formula for American puts

pSID _ p P (S, T, K) + KA(£/y;)" for S/K >y

(26)
K -5 for S/K <y,

where pSJD(y;, T,1) denotes the European put evaluated at the critical stock price/strike
price ratio y; = S/K < 1. This ratio below which the put is exercised immediately is

given implicitly by solving the equation

L=y =p(ys, T.1) + (i) — @)L+ ps(ys, T, 1)),

where ¢ is the negative root of

1 | r
—ohq’ + (=Nk = Soh)q — ———

! 2 n )\*[ea’;qﬂ/zq(l—q)ai —1]=0.

ps gives the first partial differential of the European put and A, = (y,/ — qi)[1 +
ps(y,,T,1)]. The parameters ¢; and y, can be evaluated via Newton’s method for a given
parameter set and a specific option. This quadratic approximation is fast and inexpensive
in computer resources. Therefore we use this method to estimate the parameters implicit

in observed option prices.

In order to value puts based on historical parameter estimates,we use Amin’s (1993) more
accurate Markov chain model. Amin (1993) approximates the jump-diffusion process suffi-
ciently accurate with a Markov chain. This enables him to carry out calculations of order
roughly 20 to 40 times that for the ordinary binomial model of Cox/Ross/Rubinstein.

More precisely, Amin (1993) includes rare event jumps by extending the recombining
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binomial model to a recombining multinomial model. The stock price at each date is de-
termined as its time zero value times the exponential of the value of the state variable
obtained from the grid of figure 7. Every transition from time kAt to time (k 4+ 1)At is
the sum of a drift component a(kAt)At, a binomial part +ov/At, and the jump with
part +£jo/At for some integer j < k.

Figure 7

Discrete approximation of the stock price distribution

t=20 t = At t = At

(a(0) + a(A) At + 4ov/At
(«(0) + (A1) At + 30v/AL
a(0)At + 20v/At (a(0) + a(A1) At + 20v/AL
a(0)At + ov/AL (@(0) + a(At) At + o VAL
a(0)At (0(0) + a(At)) At
" a(0)At — oAt ((0) 4+ a (A1) At — oAt
a(0)At — 20/AL (a(0) + a(A1) At — 20+/AL

(a(0) + a(At))At — 30V/At
(a(0) + a(Al)) At — dov/AtL
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4 Impact of stock price jumps on option values

We now suppose that the underlying stock price processes have systematic jumps of ran-
dom amplitude. Therefore investors have to use the SJD-model in order to value options
appropriately. As long as investors are risk neutral, the SJD-model collapses to Mer-
ton’s [JD-model. Clearly, both the SJD-model and [JD-model collapse to the BS-model
it A =0, p;y =0, and o5 = 0. Furthermore, for a fixed volatility of the jump component,
the compound jump process converges to a Geometric Brownian motion for A — oco.
Therefore the BS-model approximates the SJD-model quite accurate for a high jump in-
tensity, say, on average more than 100 jumps a year: A > 100 (see, e. g., Merton (1976b)).
Consequently, there is a significant difference between BS-values and SJD-values only if
the jump component is statistically and economically significant. To illustrate the impact
of systematic or idiosyncratic jumps on option value, we now assume that an investor
believes that stock prices follow a pure lognormal diffusion while the stock price dyna-
mics actually obey a Poisson jump diffusion process with idiosyncratic or systematic jump
risks. Therefore the investor erroneously calculates the call values with the BS-formula,
when the SJD-formula or the IJD-formula should be used. This may potentially bring
about significant errors in option pricing. Furthermore, we will illustrate the valuation
errors which risk averse investors using the IJD-formula take into account when jump risk
is systematic and the SJD-formula with a risk aversion parameter R > 0 should be used.
The same error occurs if risk averse investors erroneously value options as if they were
risk neutral when recognizing that jump risk is systematic. To ensure a ’fair’ comparison,
the drift of aggregate wealth is adjusted such that the observable interest rate is equal to

the ’endogenous’ interest rate in the SJD-model.

4.1 Results based on hypothetical parameter values

In the following we analyze the differences between BS-values, [JD-values, and SJD-values
for European calls based on hypothetical model parameters. The preference-dependent
SJD-value is calculated for the risk aversion parameter R = 5 implying strong risk aver-
sion. Due to the put-call parity, the differences in model values for calls are exactly the
same for otherwise identical European puts. All simulations presented in this section refer

to calls on a stock index (as a proxy for aggregate wealth). We consider the case were
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investors have sufficiently long time series of closing prices so that the volatility estimate
of the pure diffusion process corresponds to the total volatility of the Poisson jump diffu-

sion process, VOLA = /[¢} + A(u% + ¢%)] - 250. The other model parameters are fixed

as follows: the strike price is K = 100, the riskless interest rate is r = 10%, the total
volatility is VOLA = 30% and 80% of the total variance is due to the jump component,
that is, v = M3 +07)/[o] + A(p5 + 7)) = 0.8. The three-dimensional plots presented in
the following illustrate the absolute deviation between different model values for different

times to maturity and different money ratios. We use the money ratio classification of

table 3.

Table 3
Money ratio classes

Money ratio (S/K) Class

S/K <0.80 Vi & DOTM = deep out of the money
0.80 < S/K <0.85 V2 & DOTM = deep out of the money
0.85 < S/K <0.90 Vi <« OTM = out of the money
0.90 < S/K <0.95 Vi <  OTM = out of the money
0.95 < S/K < 1.00 V5 ATM = at the money
1.00 < S/K < 1.05 V6 & ATM = at the money
1.05 < S/K < 1.10 Vi & ITM = in the money
1.10 < S/K < 1.15 V8 & ITM = in the money
1.1 < S/K <1.20 V9 &  DITM = deep in the money
1.20 < S/K V10 < DITM = deep in the money

Figure 6 visualizes the absolute deviation between the IJD-values (i. e., the SJD-values
for R = 0) and the BS-values for the jump intensity A = 1 and the mean jump return
py = 0 implying a symmetric return distribution. It confirms the wellknown v-shaped
relationship as presented for the first time by Merton (1976b). As long as the time to
maturity is short, for ATM options the BS-values are significantly larger than the [JD-
values. For DOTM options as well as for DITM options the [JD-values exceed the BS-
values. For OTM options the mean percentage difference'® is about 100%. With increasing
time to maturity the BS-value becomes more and more larger than the IJD-value such
that for options with 42 weeks time to maturity the v-shaped relationship is less obvious

and corresponds to a smile-shaped relationship. This relationship can be explained by

16The percentage difference between C2% and C17P is defined as [C1/P — CP5)/C17P . 100.
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Figure 6
SJD-value versus BS-value for calls
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the different shape of the models’ risk neutral return distributions. For example, figure
7 visualizes the corresponding risk neutral density functions for options with one month
time to maturity. The shaded area represents the risk neutral probability for an ATM
option of ending up in the money. For an ATM option this probability is smaller in the
BS-model than in the [JD-model. But the BS-model yields higher option values compared
to the [JD-model since the expected return, conditional on the option being in the money
at the expiration date, is larger in the BS-model. For ITM and OTM options these effects
reverse each other. Therefore for these options the [JD-model value exceeds the BS-model

value.

Contrary to the v-shaped relationship between BS-values and [JD-values, as depicted in
figure 6, the SJD-values exceed the corresponding BS-values except for short-term ATM
calls. Figure 8 visualizes the absolute differences between the SJD-value (for R = 5)
and the BS-value for A=1, i. e., for a low jump intensity. The difference with respect to
volatility and skewness of the corresponding ’risk-neutralized’ return distribution serves
as an explanation for the higher SJD-value compared to the BS-value. For index calls with
a mean jump return of py = 0, the risk-neutralized jump intensity and the squared risk-
neutralized mean jump size increase with risk aversion: A < \* = Xexp{—Rus+ R*c5/2}
and p% < (%)% = (pg — Ro3)? for R > 0. Therefore in the symmetric SJD-model (1) the
risk-neutralized’ volatility, VOLA™ = /[03 + A*((u5)% + 02)] - 250, exceeds the actual

volatility, VOLA, used in the BS-model, and (2) the risk-neutralized skewness is negative
(15 < 0)'7. While the first effect (volatility effect’) leads to higher SJTD-values, the second
one (’skewness effect’) overcompensates the first effect for short-term OTM options. A
comparison of figure 8 with figure 9 confirms the statement made earlier in this section
that the BS-model approximates the SJD-model quite accurate for a high jump intensity
(say, A=100), given that the total volatility of the jump component is held fixed.

Table 4 presents a sample of corresponding model prices for European calls written on the
market index. The column with the header 'BS’ gives BS-value for short-term (7 = 1/12,
i. e., one month) and for long-term (7 = 1, i. e., one year) OTM calls (S = 80), ATM calls
(S =100), and ITM calls (S = 120) calls, respectively. The numbers written in bold face
correspond to symmetric return distributions as assumed in the foregoing comparisons
illustrated in figures 6 to 9. Panel A contrasts Merton’s [JD-values with BS-values while
panel B does the same with respect to SJD-values with R = 5. While for the BS-model

'7Recall that the sign of the mean jump return determines the sign of the skewness.
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Table 4

Calls written on the market index: Influence of the jump component

(Fixed parameters:® K = 100,r = 10%, VOLA=30%, v = 0.8)
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Panel A: Idiosyncratic jump risk model (Merton (1976a)) or risk neutrality (R = 0)
BS JD (A =1) IID () = 100)
A 0 1 1 1 1 1 100 100 100 100 100
735 0| -0.20 -0.10 0.00 0.10 0.20; -0.02 -0.01 0.00 0.01 0.02
bk 0| -0.17 -0.07 0.03 0.14 0.24] -1.96 -0.87 0.03 1.04 2.04
VOLA 30.0/ 30.0 30.0 30.0 30.0 30.00 30.0 300 30.0 30.0 30.0
CBS| Diff* Dif CcYP  Diff Diff Diff Diff CcUYDP  Diff Diff
S=80 r=1/12] 0.02| -0.30 -0.18 0.31 0.18 0.26|] -0.02 -0.01 0.02 0.02 0.02
=1 5.76| -1.40 -1.08 5.52 1.08 1.50, -0.13 —0.109 5.75 0.10 0.14
S=100 r=1/12| 3.87| 0.08 -0.01 2.74 0.07 0.19 0.02 0.01 3.84 0.01 0.03
=1 16.73| 048 0.15 15.89 0.29 0.79/ -0.01 -0.01 16.72 0.02 0.03
S=120 r=1/12| 20.88| 0.26 0.15 21.11 —-0.16 -0.27 0.04 0.03 20.89 -0.02 -0.04
r=1 32.41| 070 050 32.19 -0.58 -0.81| 0.06 0.05 32.40 -0.05 -0.07
Panel B: Systematic jump risk model and strong risk aversion (R =5)
BS SID (A =1) SJID () = 100)
% 0| 4.06 3.58 246 1.32 0.55| 110.69 105.45 100.90 95.42 94.18
p 0| -0.36 -0.41 -0.36 —0.21 0.04 -0.02 -0.01 -0.00 0.01 0.02
A k* 0| -0.86 -0.61 —-0.33 -0.12 0.02 -2.35 -1.34 -0.32 0.69 1.70
fVOLA*| 30.0] 821 91.7 71.7 3938 19.1 31.3 30.7 30.1 295 29.3
CBS| Diff* Diff CSIP  Diff Diff Diff Diff €SI Diff Diff
S=80 r=1/12] 0.02| -0.04 —-0.02 0.05 0.01 0.26|] -0.01 -0.01 0.02 0.01 0.01
=1 5.76/ 3.64 551 15.25 -8.79 -12.56 0.59 0.44 5.79 —-0.38 —-0.55
S=100 r=1/12| 3.87| 2.28 242 5.86 -258 -3.61 0.26 0.18 3.87 -0.18 -0.25
=1 16.73| 3.72 594 28.73 -9.48 -16.09 0.70 0.60 16.78 -0.54 -0.78
S=120 r=1/12| 20.88| 0.97 1.65 23.89 —2.09 -3.02 0.67 0.05 20.90 -0.04 —-0.06
=1 32.41| 3.54 5.93 44.29 -8.94 -14.22 0.67 0.52 32.45 -0.44 -0.65

¢ the drift parameters ap and ap y are determined endogenously by the Euler conditions.

b The mean jump size per year is calculated as: k = exp{us + ¢2/2} — 1.
¢ Diff = C¥P(puy #£0) — C¥P(uy =0)).

4 The ’risk neutral’ jump intensity is defined as: A* = Ne—Bui+R*o3/2,
¢ The ’risk neutral’ mean of In(L; + 1) is: py = ps — RU%.
= VIoh + X ((u5)? + 03)] - 250.

I The ’risk neutral’” volatility is given by: VOLA*
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and [JD-model there is no difference between the shapes of the actual and the risk neutral
return distributions, the shape of the risk neutral return distribution underlying the SJD-
model depends on R as visualized in column 1 of table 5 for options with one year time
to maturity. Since p = py — Ro> < 0 for yuy = 0 and R > 0, the risk neutral return
distribution is skewed to the left. The representative sets of parameter values include not
only situations where the actual return distribution is symmetric (when gy = 0.00) but
also situations where the actual return distribution is positively skewed (when p; = 0.20
or py = 0.10) or negatively skewed (when p; = —0.20 or gy = —0.10). The columns
with the header 'Diftf’ contain the differences between the corresponding jump diffusion
model values according to the symmetric actual return distribution and the model values
according to the skewed ones. Table 5 visualizes the differences between the BS-values
and the IJD-values (middle column) as well as the differences between the BS-values
and the SJD-values (for R = 5) (right hand side of the table) with respect to different
money ratios, for options with one month and one year time to maturity, respectively.
As distinguished from table 4, we consider beside a symmetric actual return distribution
only one negatively skewed (when p; = —0.20) and only one positively skewed (when

py = 0.20) actual return distribution.

A comparison of panel A with panel B of table 4 shows that in the symmetric case the
SJD-values exceed substantially the corresponding [JD-values except for short-term OTM
calls. Again, the interaction of the volatility effect and the skewness effect explains this
relationship. Another economic rationale for the relationship between [JD-values and SJD-
values is given by Amin/Ng (1993). They compare the actual distributions rather than
the 'risk-neutralized’ ones. According to Amin/Ng (1993), the interaction of the so-called
"drift effect” and the so-called ’discounting effect’ explains this difference. First, if there is
a positive correlation between stock price jumps and wealth jumps, i.e. o579 > 0, then
the stock return premium is higher under systematic jump risk relative to the diversifiable
jump risk case. Therefore the stock price drifts upwards at a faster rate under systematic
jump risk than under diversifiable jump risk and causes the call option value to be worth
more ('drift effect’). Second, if a positive correlation between stock jumps and wealth
jumps is assumed, then the expected rate of change of the marginal utility of wealth tends
to jump with the stock return when jump risk is systematic but not under idiosyncratic
jump risk. As shown in the former section this leads to a lower interest rate and therefore

to lower call values ( 'discounting effect’). Since the direction of these effects depends on the
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assumption about the sign of the correlation between the consumption jumps and asset
jumps, o sw, the above effects reverse itself when a negative correlation is assumed. The

discounting and drift effect now influence the call price exactly in the opposite way.

Skewness of the actual return distribution changes the sign and magnitude of the diffe-
rences between the BS-value and the alternative values.'® Let us first of all look at the
influence of skewness it jump risk is idiosyncratic. According to panel A of table 4, nega-
tive skewness of the actual return distribution (p; < 0) decreases the IJD-value for OTM
calls compared to the symmetric case, while a positive skewness of the return distributi-
on (pg > 0) decreases the IJD-value for ITM calls compared to the symmetric case. The
[JD-value for ATM calls increase with skewness independently of the sign of the skewness.
Therefore, according to the figures in the middle column of table 5, the v-shaped relation-
ship between BS-value and [JD-value still exists for short-term options, but depending on
the sign of the skewness the v-shape is lopsided to the right and to the left, respectively.
For calls with one year time to maturity the difference in value increases (decreases) with
the money ratio if the skewness is negative (positive). The shapes of the corresponding
risk-neutralized return distributions, as visualized in the first column of table 5, explain

this result.

In contrast to the idiosyncratic jump risk case, skewness of the actual return distribution
influences the deviation from the BS-value significantly when jump risk is systematic.
Unfortunately, the more realistic SJD model exhibits an even stronger smile effect when
the actual return distribution is systematic or negatively skewed while the IJD model
tends to reduce the smile effect when using the BS model.' According to panel B of
table 4, the SJD-value decreases substantially compared to the symmetric case if the
actual return distribution has a positive skewness. For an extremely positively skewed
return distribution with p; = 0.20, the BS-value exceeds the corresponding SJD-value, as

illustrated in column 3 of table 5. For an extremely negatively skewed return distribution

18Recall that the BS-model is based on a symmetric return distribution, while the jump diffusion-model
allows for a positive or a negative skewness in the actual return distribution. Return distributions with
a negative (positive) skewness exhibit a larger probability for returns far below (above) the mean than
it is for returns far above (below) the mean. This implies that the mean lies below (above) the median if

the return distribution has a negative (positive) skewness.
19Tf option prices in the market are quoted according to the BS model, the implied volatility would be

a constant function of the money ratio. In reality, this is not the case. Implied volatility ’smiles’: see, for

instance, Rubinstein (1985) or Trautmann (1986, 1989) for the Frankfurt Options Market.
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Calls written on the market index: Deviations from Black/Scholes-values

(Fixed parameters:® K = 100,r = 10%, VOLA=30%, A =1, v = 0.8)
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¢ Resulting risk-neutralized parameters of the SJD-model are the same as in table 4.

b Deviations are plotted only for options with one month (dashed line) and one year (solid line) time to

maturity, respectively.
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with p; = —0.20 the difference in value increases for options with one year time to
maturity for about 30% while for short-term OTM options the SJD-value decreases a
little bit. The interaction between the volatility effect?® and the skewness effect explains

again this result.

4.2 Results based on historical parameter estimates
4.2.1 Sample description

The sample period starts on April 1, 1983 and ends on December 31, 1991 including the
market crash periods around October 1987 and around October 1989 as well as the bearish
period around August 1990 when Iraq invaded Kuwait. The option price data consist of
more than 600,000 transaction prices quoted on the Frankfurt Options Market (FOM) in
the period from April 1, 1983 to June 31, 1990 and on the Deutsche Terminbéorse (DTB)
in the period from January 26, 1990 to December 31, 1991, respectively, for calls and puts
written on five actively traded stocks: Daimler Benz, Deutsche Bank, Siemens, Thyssen,
and VW.2' Henceforth this sample is called BIG5. More precisely, we examine only the
subsample BIG5/NODIV since price observations are eliminated if dividends were paid or
a stock split took place during the lifetime of the option. All option prices, stock prices,
dividend data, and split data, as well as daily stock return were taken or generated from
the Karlsruher Kapitalmarktdatenbank (Karlsruhe capital market data base). The FOM-
sample consists of 76.721 call and 13.307 put transaction prices fixed between 11.30 and
13.30. Unfortunately, these option prices and the corresponding stock prices (Kassakurse,
i. e., odd-lot prices) are not time-stamped. However, in the subperiod from January, 1990
to December, 1991, both, the option price and the price of the underlying stock are
time-stamped, allowing more precise statements on option values. We use all available
transaction prices quoted between 10.30 until 13.30 (333.467 call prices and 209.094 put

prices)??, since we have time-stamped stock prices from the Frankfurt Stock Exchange only

2For pry < 0 we have VOLA < VOLA* while for 03 R/2 < py and R > 0 we have VOLA > VOLA*.
21 Although the older FOM still exists, options on these five underlyings (as well as several others *blue

chips’ stocks) can only be traded on the DTB since its opening in January 1990. Options written on the

DAX-index were not considered since trading started only in August 1991.
22The huge number of transaction prices observed on the DTB compared to the FOM is due to the

different market structures. Although the FOM was designed as a continuous auction market, there was

usually only one market call for a specific options series a day. In contrast, the DTB is a liquid screen



31

for this time interval. As shown in the foregoing section a substantial impact on option
values can only be expected when the estimated model parameters reflect the statistical
and economical significance of the jump risk. Therefore we present especially the values
of calls and puts whose underlying parameter estimates are based on the extreme volatile
stock returns around the crash period in October 1987 and October 1989. The riskless
interest rate appropriate to each option was estimated by the interest rate on three-
month inter-bank time deposits®® (Geldmarktsitze fiir Dreimonatsgeld am Frankfurter
Borsenplatz). These monthly data were compiled from various issues of the Monatsberichte

der Deutschen Bundesbank.

4.2.2 Parameter estimation

The time-consuming parameter estimation for the Poisson jump-diffusion process was per-
formed only once a month during the sample period, based on 250 daily returns preceding
the estimation date. We use the DAX return as a proxy for the percentage change in
aggregate wealth. Although the SJD-model requires a simultaneous estimation of the mo-
del parameters associated with all individual stock returns and the return of the market
proxy, we did simplify the estimation procedure for computational reasons by the followi-
ng two-step procedure. First, we estimate the historical parameters for the DAX-returns
and the individual stock returns (except the correlation between jump returns) indepen-
dently. Second, we identify the return of the DAX and an individual stock, respectively, of
a certain day as a 'jump return’ if either the DAX-return or the individual stock’s return
exceeds 3% or is less than —3%. The correlation between these jump returns’ serves as
a proxy of the true correlation between jumps in stock return and aggregate wealth.**
Typically there is a strong positive correlation between our selected stock returns and the
DAX-returns. This indicates that jump risk is indeed systematic and should therefore be

valued.

Figures 10 and 11 show the time series of the estimated annualized jump intensity (A), the

mean jump return (uy), and the total annualized volatility (VOLA) of Deutsche Bank

based market where market maker quote bid-ask-spreads continuously during the trading hours.
ZRecall that in the SITD-model the riskless interest rate is endogenously determined. In order to be

able to compare the SJD-model with models whose r is exogenous given, we endogenize instead the drift

rate of wealth: ay 1s chosen such that the ’endogenous’ r is equal to the observable 7.
24The parameter of the pure diffusion process were estimated daily based on the 250 preceding daily

stock returns and DAX-returns, respectively.
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and DAX, respectively. Large estimates for the jump intensity are typical for the first
4-year subperiod from April 1983 to March 1987, and occur less frequently in the second
4-year subperiod from April 1987 to June 1991. This is consistent with the observation
that in the first subperiod absolute DAX-returns, for example, exceed the 5% level only
one time while this happens 20 times in the second subperiod. The average A-estimate
of the DAX-returns is 389 in the subperiod from April 1983 to March 1987 while for the
crash period the corresponding value is only about 116.** Hence, the jump component
tended to a Geometric Brownian motion, especially in the first subperiod until March

1987.

The figures 12 and 13 show the monthly reestimated parameter values of skewness and
kurtosis of the jump diffusion process, based on 250 daily returns preceding the observation
date. The historical distributions of DAX and Deutsche Bank are negatively skewed and
leptokurtic, especially those estimated after the October 1989 crash and during the year
1992, reflecting the stock price decline in both periods.

4.2.3 Results for American calls

According to the foregoing discussion, a substantial stock price jump impact on option
value can only be expected for a small jump intensity. As detected by figures 10 and 11,
a low jump intensity is estimated especially in the post-crash periods®® from November
1987 to January 1988 and from November 1989 to January 1990. Figure 14 visualizes the
mean DM-differences between BS-values and [JD-values with respect to different money
ratios (left scale) for the BIG5-calls traded in these periods. The right scale corresponds
to the plotted frequency distribution of observed money ratios®”. The deviation pattern

between BS-values and [JD-values resembles the one when the return distribution is

ZFor A > 250 the estimate suggests that there will be, on an average basis, more daily jumps than

assumed price observations per day.
26Gince there is only one estimate of the jump-diffusion parameter per month, the parameter estimates

of November 1987 and 1989 are the first estimates considering the October 1987 and October 1989 crash

returns, respectively.
2TThe frequency distribution of the money ratios is less leptokurtic in this FOM-subperiod than in the

FOM-subperiod from April 1983 to June 1990 since we have relatively more observations in the ITM
and OTM classes. This is due to the two stock market crashes in October 1987 and in October 1989.
Furthermore, since the number of quoted transactions prices did steadily increase from 1983 to 1990, most

observations considered in the figure are quoted in the period from November 1989 to January 1990.
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Monthly reestimated annualized parameter estimates of Deutsche Bank
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Figure 11

Monthly reestimated annualized Parameter estimates of DAX
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Figure 12
Annualized skewness of the jump diffusion process for Deutsche Bank and DAX
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Annualized kurtosis of the jump diffusion process for Deutsche Bank and DAX
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positively skewed, as visualized in table 5. This seems to be a quite unexpected result. But
especially after the October 1989 crash large positive returns caused obviously positively
skewed return distributions for some stocks during the three months considered. Figure
12 confirms the positive skewness of the Deutsche Bank return distribution after the
October 1989 crash. While there is a v-shaped relationship for short-term and middle-
term options, the [JD-value exceeds the BS-value especially for long-term OTM calls. The
DM-difference (mean percentage difference) between the BS-value and [JD-value for OTM
calls is for short-, middle-, and long-term calls DM 0.30 (9.5%), DM 0.61 (3.9%), and DM
0.76 (3.3%), respectively. In contrast to the OTM calls, for ATM calls the BS-value are
DM 0.31 (1.2%), DM 0.10 (0.14%), and DM 0.21 (0.4%) for calls with a short, middle,
and long time to maturity, respectively, higher than the corresponding [JD-value. For
ITM calls the mean [JD-value exceeds the mean BS-value, but the percentage difference
is negligible. This deviation pattern contradicts the one according to tables 4 and 5 when
the return distribution is positively skewed. The answer to this puzzle reads as follows:
the call value in the period from November 1987 to January 1888 and November 1989 to
January 1990 is based on 5 - 6 = 30 different sets of parameter estimates. Unfortunately,
some sets of parameter estimates imply a positively skewed return distribution while other

sets result in a negatively skewed return distribution.

Figure 15 depicts the mean DM-differences between BS-values and IJD-values of the
BIG5-calls traded in the period from July 1990 to September 1990, that is shortly before
and after Iraq’s invasion into Kuwait. For long-term options the differences in value are
larger than expected but still exhibit the expected v-shaped relationship. This might be
due to the different sign of the skewness of the five individual stock’s return estimated for
the three months.?® For short-term options the difference between BS-value and LJD-value

is consistent with the expected v-shaped relationship.*”

Figures 16 and 17 show the mean DM-differences between BS-value and SJD-value (for
R = 3) for the same post-crash periods as in the figures 14 and 15, respectively, for

Z8Recall that the parameters of the ’pure’ diffusion process were daily reestimated while the jump
diffusion process parameter were monthly reestimated. Therefore the parameters of the jump diffusion

process are adjusted in a slower way to new events than the ’pure’ diffusion process ones.
2%In contrast, in the whole DTB sample period (90/2 — 91/12) as well as in the FOM-subperiod 87/4

— 90/6, the v-pattern exists for options in all maturity classes considered (the figures are not presented
in this paper). For OTM options the percentage differences are significant, while the DM-differences are

not large.
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different money ratios. According to the findings of section 4.1, the SJD-value exceeds the
BS-value substantially, except for short-term OTM calls. This deviation pattern resembles
the one for symmetric or negatively skewed return distributions, as visualized in table 5
in the foregoing section. In contrast to the observed pattern of the difference between
the BS-value and the [JD-value, the estimated positive skewness of some of the five
underlyings does not influence the expected result. Obviously, this is due to the fact
that for symmetric as well as for negatively skewed return distributions the SJD-value
exceeds the BS-value much more substantially than the BS-value exceeds the SJD-value
in the case of positively skewed return distributions. In the post-crash period after the
October 1987 and the October 1989 crash, the SJD-value is on average DM 0.66 (5.08%)
higher than the BS-value. The largest mean percentage difference of 11.39% is observed
for OTM calls while for ATM calls and ITM calls this difference is only 1.70% and 0.60%,
respectively. As visualized in figure 17, the largest difference is observed for ATM calls
with a long time to maturity. For long-term OTM calls the SJD-value is on average DM
0.26 (14.38%) higher than the BS-value. The percentage differences for ATM calls with a
long, middle, and short time to maturity are 3.7%, 2.8%, and 3.8%, respectively.

The largest mean difference between the SJD-values and the IJD-values in the post-crash
period from November 1987 to January 1988 and November 1989 to January 1990 is
observed for long-term OTM calls. Figures are not presented here since this difference is
a result from the differences discussed above. The mean difference is DM 1.30, while the
mean percentage difference is about 4%. For ATM calls the mean difference is about DM
0.95, DM 1.22, and DM 0.88 for middle-, long-, and short-term options, respectively. The
corresponding mean percentage differences are about 2.8%. Furthermore, since there is
usually a positive correlation between asset jumps and wealth jumps, the ’discounting-
effect’ causes the short-term OTM calls to be worth more under idiosyncratic jump risk
than under systematic jump risk. On the other side, the ’drift-effect’ causes ITM calls
and ATM calls with a longer maturity to be worth more under systematic jump risk than
under idiosyncratic jump risk. This pattern can also be found in the period around the
Kuwait crisis. Especially for ATM calls the SJD-value exceeds the [JD-value while for

OTM calls this difference is much smaller and partly negative for short-term calls.
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Figure 14
Mean differences (in DM) between model values in post-crash periods
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Figure 15
Mean differences (in DM) between model values at the beginning of the Kuwait crisis
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Figure 16
Mean differences (in DM) between model values in post-crash periods

(R=3, BIG5/NODIV Calls, 87/11 - 88/1 and 89/11 - 90/1)
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Figure 17

Mean differences (in DM) between model values at the beginning of the Kuwait crisis

(R=3, BIG5/NODIV Calls, 90/7 - 90/9)
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4.2.4 Results for American puts

Put-call parity guarantees that the difference between the BS-value and an alternative
value for a European call is the same as for an otherwise identical European put. But even
if the American puts examined would be of the European type, we could not expect the
same deviation pattern (with respect to S/K) unless there is for each call an otherwise
identical put (and conversely) in the sample. Nonetheless, the deviations depicted in

figures 18 and 19 are very similar to the ones plotted in figure 15 and 17, respectively.

Figure 18 visualizes the mean difference between the BS-value and the [JD-value for
different money ratios in the subperiod from July 1990 to September 1990. Compared to
the results for calls in the foregoing subsection (compare figure 15), the corresponding
differences are somewhat larger for middle-term and long-term puts with a money ratio
between 0.9 and 1.1. The mean DM-differences (mean percentage differences) for ATM
puts with a short, middle, and long time to maturity are DM -0.09 (-0.01%), DM 0.50
(2.3%), and DM 1.03 (3.1%), respectively, while the corresponding differences for ATM
calls are DM —-0.26 (-0.2%), DM 0.30 (0.9%), and DM 0.94 (2.0%), respectively. In all
other money ratio classes the mean DM-differences are smaller than the corresponding

ones for calls.?®

Figure 19 shows the mean differences (in DM) between the BS-model and the SJD-model
for a risk-aversion parameter of K = 3 for the same subperiod as in figure 18. Compared
to the calls, the differences are larger for puts with a money ratio between 0.9 and 1.1.
As expected, the mean differences are larger for the ’bearish’ period around August 1990

when Iraq invaded Kuwait compared to the sample period from January 1990 to December

1991.

Subtracting the difference in value as depicted in figure 18 from the difference in value as
depicted in figure 19 gives the mean difference between the IJD-model value and the SJD-
model value. Obviously, the SJD-value for middle-term and long-term ITM puts exceeds
the [JD-value. This effect disappears for DITM puts.

3%In the post-crash periods from October 1987 and October 1989 (the figures are not presented in the
paper) the differences between BS-value and IJD-value for puts with a short, middle, and long time to
maturity are DM —0.20 (-0.97%), DM -0.13 (-0.16%), and DM —0.24 (-1.10%), respectively. For calls the
corresponding differences are DM —0.31 (-1.20%), DM —0.10 (-0.10%), and DM —0.20 (-0.40%).
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Figure 18
Mean differences (in DM) between model values at the beginning of the Kuwait crisis
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Figure 19

Mean differences (in DM) between model values at the beginning of the Kuwait crisis
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5 Parameter estimates implied in option prices

We now present the parameters of the jump diffusion model implicit in call prices, put

prices, as well as put and call prices. The reason for doing this is twofold:

(1) Historical process parameter estimates are in general not the best predictors for
future process parameters. Furthermore, we have simplified the estimation procedure
in the foregoing section for the sake of numerical tractability. Therefore the process

parameter estimates may be biased.

(2) Since option prices offer a direct insight into the climate of expectations we can
examine whether market participants expected extreme price movements. For in-
stance, an assessed risk of a large downward movement in the market will result in
higher OTM put prices compared to values calculated for a symmetric distribution.
A chronology of implicit parameter estimates could thereby be generated, indicating

market sentiments on a daily basis over the sample periods.

We take especially option prices observed around the October 1987 crash, the October
1989 crash, and around the Kuwait crisis in 1990 to examine whether these abnormal

stock price movements were expected by the market participants .

The calculation of SJD-values requires either the risk aversion parameter R and the seven
parameters op, A, g, 05, 5w, 05w, and oyws of the true stock price distribution and
true wealth distribution, respectively, or the four parameters
X = Xexp(—Ragw + (1/2)R(1 + R)ogyy), the implied risk neutral mean

jump frequency (IJFrn),

k* = explas— Rpojow,.y) — 1, the implied risk neutral jump size
ocp = the volatility of the diffusion component, and
ocyj = the jump size volatility,

characterizing the distribution of the risk neutral terminal stock price

Ny
ST = Soexp {(T — 1/20'2D - )\*k*)T + O'DBT + Z JZ*} .
=1
For the sake of numerical tractability, we restrict ourselves to infer only the parameters of

the corresponding risk neutral (instead of the true) stock price distribution from observed

option prices.



42

5.1 Estimation procedure

The risk neutral parameters \*, k™, op, and o are estimated via nonlinear regression. We
minimize the sum of the squared differences between market prices and corresponding

SJD-values,

. 2
Z [%_OSJD(17([(j/5)7Tj70-D7)‘*7k*70-J) ’

J=1

where O; denotes the market price of option 5 = 1,...n. This minimization is done
separately for every trading day during the observation period.?! This procedure needs at
least four price observations. If there are not sufficiently many option price observations
for a given underlying stock (it happened only in the FOM market) we use in addition
the corresponding price observations of up to four trading days preceding the trading day

under consideration.

The implied parameters are inferred from transaction prices of two different sample peri-
ods. First, we examine all FOM-prices in the period around the October 1987 crash, and
second, DTB-prices of the most liquid maturity class in the period from January 26, 1990
to December 30, 1991. Options in whose time to maturity dividends or other rights were

paid are eliminated from the sample.

31We first transformed the problem to a three dimensional problem as proposed by Bates (1991) and
used the FORTRAN routine BCLSF available in the IMSL program library. Furthermore, since this
nonlinear optimization problem has usually many local minima, we started the optimization procedure

with four different sets of starting values to improve the probability to arrive at the global minimum.
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5.2 Results

We now present the time series of implicit risk neutral jump frequency per year (\*),
the implicit risk neutral jump size per year (A"k™), the implicit risk neutral skewness
(SKEW™), and the implicit risk neutral volatility (VOLA™) of Deutsche Bank options.
Positive and negative values for A*&™ imply positive and negative skewness of the implicit
risk neutral stock price distribution, respectively. According to our analysis in section 4.1,

skewness will be large if

o the X" is sufficiently small and the absolute value of the mean jump size (|g5]) is

large, or

o the \* is sufficiently small and the mean jump size is close to zero (|u5| = 0) when

the volatility of the jump size is large (o7 > 0).

In the first case negative skewness indicates strong crash fears while positive skewness
indicates hopes of a trend reversion. In the second case there is a large uncertainty about
the size of the jump that might occur. The figures 20 — 24 visualize the implied parameter
estimates for Deutsche Bank calls, puts, and pooled calls and puts, respectively, for all

trading days in the period from July 1, 1987 to December 30, 1987.

Figures 20 and 22 visualize the A\* (left scale) and the A"k™ (right scale) of Deutsche
Bank calls and Deutsche Bank puts, respectively. The figures 21 and 23 show SKEW™
(left scale) and VOLA™ (right scale) of Deutsche Bank calls and Deutsche Bank puts,
respectively. The plotted implicit parameters estimated for calls differ substantially from
the corresponding ones for puts. This indicates different market sentiments of call and
put market participants. We found that the implicit parameters estimated for Deutsche
Bank calls indicate (1) significant crash fears in August 1987 and in the beginning of
October 1987, and (2) a positively skewed implicit return distribution after the crash.
This dramatic change in implicit stock price distributions after the crash is evinced in
figures 20 and 21. Compared to the absolute value of the historical skewness (see figure
12), the absolute value of the implicit "risk neutral’ skewness is significantly larger. Figures
22 and 23 show the risk neutral parameters implicit in Deutsche Bank puts. While the call
market reflected crash fears in July 1987, the put market did not show any signs of crash
fears until late August 1987 and September 1987. Hopes of a trend reversion after the
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Figure 20
Risk neutral jump frequency (IJFrn = A") and risk neutral jump size per year (IJSYrn
= A"k™) implied in Deutsche Bank calls observed around October 1987
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Figure 21

Risk neutral volatility (VOLArn = VOLA™) and risk neutral skewness (SKEWrn)
implied in Deutsche Bank calls observed around October 1987
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Figure 22
Risk neutral jump frequency (IJFrn = A") and risk neutral jump size per year (IJSYrn
= A"k") implied in Deutsche Bank puts observed around October 1987
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Figure 23

Risk neutral volatility (VOLArn = VOLA™) and risk neutral skewness (SKEWrn)
implied in Deutsche Bank puts observed around October 1987
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October 1987 crash are not observable in the time series of implicit parameters estimated

for Deutsche Bank puts.

Especially figure 24 confirms the findings of Bates (1991) when examining the implicit
return distribution of the S&P 500 futures price. There were strong crash fears in July
1987: |A"k™| is quite large while A™ is small. Therefore the market participants expected
a rare jump with a large negative amplitude (a crash). In the two months preceeding the
crash, the S&P 500 futures options reflect a negatively skewed return distribution but
during this time the estimates of the implicit jump size per year were low indicating no
strong crash fears. In contrast to these findings, Deutsche Bank options reflect mostly
a positively skewed distribution. While the crash fears reflected by the S&P 500 futures
options prices returned after the stock market crashed around October 19, 1987, Ger-
man options market participants expected an upward stock price correction. The graphs
evince these changes in implicit stock price distributions after the crash. The different
developments of US and German stock return distributions implicit in option prices can
be explained by the corresponding historical stock price movement. While the US market
peaked in August 1987 after a dramatic upward movement during the preceding twelve
months, the German stock market peaked already in December 1985 and declined during
the years 1986 and 1987. The October 1987 crash left the US stock market at year-end
essentially unchanged from its level in January 1987, while the German one fell back to
the level of January 1985. Therefore US options market participants feared a further drop
while the German price level was so low that a further price drop was not expected by
the options market participants. As distinguished from the US situation, option prices

quoted at the FOM market reflected even strong rebound hopes.

Figure 25 visualizes the estimated implied risk neutral jump size per year and the implied
risk neutral jump frequency in the period from January 1990 to December 1991 of Deut-
sche Bank for the pooled sample. Fears of a ’bearish’ market are characteristic for almost
the whole year 1990. A trend reversion was especially expected in the end of July 1990.
But with the beginning of the Kuwait crisis in August 1990 these hopes disappeared.
Substantial crash fears did not exist in this observation period. After the end of the Gulf
war in March 1991, the level of the mean jump size per year increased. But since the jump
frequency was also high, the implicit parameters indicate no strong crash fears or hopes
of a trend reversion. Afterwards no crash fears or rebound hopes are reflected in option

prices of Deutsche Bank. This might be due to the low price volatility in this period. The
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Figure 24
Risk neutral jump frequency (IJFrn = A") and risk neutral jump size per year (IJSYrn
= A"k™) implied in Deutsche Bank calls and puts observed around October 1987
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Figure 25

Risk neutral jump frequency (IJFrn = A") and risk neutral jump size per year (IJSYrn
= A"k™) implied in Deutsche Bank calls and puts observed in 1990 to 1991
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implicit parameters of Siemens (the figures are not presented in the paper) confirm these

findings.

Figures 26 and 27 show the differences in root mean squared errors (RMSE) between the
BS-model and SJD-model (upper scale) for the pooled sample of Deutsche Bank calls
and puts. The lower scale of figures 26 and 27 visualizes the differences in RMSE for the
SJD-model when the parameter estimation is based on the pooled sample of Deutsche
Bank calls and puts compared to the situation when the parameter estimation is done
separately for puts and calls written on Deutsche Bank stocks. Figure 26 is based on prices
of calls and puts written on Deutsche Bank stocks quoted on the FOM in the period from
April 1, 1987 to June 31, 1988. The root mean squared errors observed for Deutsche Bank
options quoted on the FOM are quite large. This is obviously due to the fact that (1)
all transaction prices of one day are used to estimate the implied parameters, and (2)
price data for this period are not time-stamped. Figure 26 shows that the SJD-model
does not yield a substantially better fit of the market prices compared to the BS-model,
except after the October 1987 crash: in this period the SJD-model fits the data much
better than the BS-model. Furthermore, the difference between the parameter estimates
implied in Deutsche Bank calls and the parameter estimates implied in Deutsche Bank
puts (compare figures 20 and 21 with figures 22 and 23) is reflected by the increase of the
RMSE between late August 1987 and October 1987 when the pooled sample is used.

Figure 27 is based on Deutsche Bank options of the most liquid maturity class traded on
the DTB from January 26, 1990 to December 30, 1991. Sampling only option prices of
the most liquid maturity class reduces the RMSE of the SJD-model as well as the BS-
model significantly. But this is not true for the the pooled sample. In accordance with the
observed RMSE for FOM options, figure 27 shows only a slightly better fit of the market
prices by the SJD-model compared to the BS-model for DTB options. The decrease in
RMSE from relaxing the constraint of a pooled sample implied parameter estimation is
visualized on the lower scale of figure 27. The difference between the parameter estimates
implied in Deutsche Bank calls and the parameter estimates implied in Deutsche Bank

puts explains this result.
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Figure 26
Differences in RMSE as % of the stock price for Deutsche Bank

(Upper scale: RMSE(BS-model) minus RMSE(SJD-model) for calls and puts pooled)
(Lower scale: RMSE(SJD-model calls and puts pooled) minus RMSE(SJD-model unpooled))
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Figure 27

Differences in RMSE as % of the stock price for Deutsche Bank

(Upper scale: RMSE(BS-model) minus RMSE(SJD-model) for calls and puts pooled)
(Lower scale: RMSE(SJD-model calls and puts pooled) minus RMSE(SJD-model unpooled))
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6 Conclusions

The classical Black/Scholes model assumes that stock price movements can be modeled
by a pure diffusion process while Merton’s jump diffusion model assumes that jump risk is
diversifiable. When using daily and weekly return data we found, however, that German
stocks and stock indices (especially the DAX) contain a statistically significant jump
component. Since the DAX is supposed to be a good proxy for the market portfolio,
the economic implication is that jump risk is not diversifiable. Consequently, this paper
concentrates on the impact of systematic stock price jumps on option value. In conclusion

we list several contributions of this study.

In the first place, we have presented a detailed analysis of the impact of stock price jumps
on option values for representative model parameters. The shapes of the risk neutral re-
turn distributions plotted in figure 7 and table 5 help to explain the deviation of jump
diffusion values from Black/Scholes values (BS-values). According to Amin/Ng (1993),
the difference between the systematic jump risk model values (SJD-values) and the idio-
syncratic jump risk model values (IJD-values) relies on the interaction between the drift
effect and discounting effect. While the drift effect causes call options to be worth more
under systematic jump risk relative to a model with idiosyncratic jump risk, the discoun-
ting effect leads to the opposite result. For longer-term calls and for in-the-money and
at-the-money calls the drift effect dominates. Hence, these calls are worth more under
systematic jump risk since the stock price drifts upwards at a faster rate than under di-
versifiable jump risk. However, for short-term out-the-money calls the discounting effect
dominates. Therefore the option values given by the SJD formula are lower than the option
values given by the IJD formula. The difference between the BS-value and the SJD-value
can be explained by the interaction between the wvolatility effect and the skewness effect.
As long as the representative investor is risk averse and the actual return distribution is
symmetric, the risk-neutralized volatility exceeds the actual one. On the other side, the
negatively skewed risk-neutralized return distribution causes out-the-money calls with a

short time to maturity to be worth more under the BS-model than under the SJD-model.

In the second place, we have examined the historical stock price jump impact on option
values. Based on historical parameter estimates the mean differences between BS-values
and jump diffusion-values are surprisingly small for the total sample period from April

1983 to December 1991. Consequently, neither Merton’s (1976a) IJD-model nor Bates
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(1990) SJD-model are able to remove the wellknown smile effect of the Black/Scholes
model as documented, e. g., in Trautmann (1986,1989) for the Frankfurt Options Mar-
ket. This confirms the findings of Ball/Torous (1985). For options written on 30 NYSE
listed common stocks Ball/Torous (1985) find no operational significant differences bet-
ween BS-value and [JD-value although statistically significant jumps were present in the
underlying stock returns. In their sample the mean percentage deviation from OTM calls
is only 2.98%. When using the IJD-model in the post-crash period from November 1987
to January 1988 and from November 1989 to January 1990, we found a mean percentage
difference between the BS-model and the 1JD-model of 6.3% for OTM calls (-0.81% for
ATM calls and 0.19% for I'TM calls). However, the mean percentage difference between
the SJD-value (for R = 3) and the BS-value is more substantial: 7.62% for long-term calls
in general and even 11.39% for OTM calls, respectively. For puts the differences in values

are of comparable magnitude.

In the third place, we have inferred the risk neutral jump intensity, jump size and the risk
neutral skewness as well as the risk neutral overall volatility from transaction prices for
calls and puts. The time pattern of the magnitude of the implied risk neutral jump size per
year suggests that the market participants’ hopes of stock market rebounds after dramatic
drops are obviously reflected in option prices. Our implicit parameters estimated for the
pooled sample including all quoted call and put prices, confirm the findings of Bates (1991)
for the US-market. The parameters indicate strong crash fears especially in July 1987 but
not during the 2 months immediately preceding the October 1987 crash. While after the
market crash the results for the US-market exhibit even stronger crash fears, our implicit
parameters reflect mainly rebound hopes. The more recent prices of the early Nineties for
options written on German stocks indicate, however, a slight negative skewness of implicit

stock return distributions.
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Appendix:

Alternative derivation of jump-diffusion option formulae

We use two properties contained in the following lemma to derive jump-diffusion option

formulae like the ones of Merton (1976a), Bates (1991) and Amin/Ng (1993).

Lemma:' If the random variable X is normally distributed with parameters p and o?,

respectively, and o, [ are real constants with B > 0, then the following properties hold:

Bo(X) = o (p/Vi+0?). (A1)

B0 (X —a)/8) = 70 ((02 Y —a)/ ot 52) . (A.2)

Since Merton’s formula (16) and the formula of Bates (24) are equivalent in a formal

sense (you need only substitute A and k in Merton’s formula by A\* and k™, respectively,

to get the SJD-formula of Bates), their derivations are analogous. Therefore we restrict

ourselves to explain the transformations of relationship (16) in a more detailed way. The

first two rows of relation (16) are identical because of the assumed independence of the

Brownian motion from the Poisson process:

CMB

et Z Pr(n jumps)Eo [max(0, 57 — K) | n jumps] (A.3)
n=0

e Z {e_AT()\T)n/n!} Ey max(0, Ve X, e M — K)} (A4)
n=0

{e‘AT(AT)” /n!} Fo.x, {e_TTEO(maX(O, VX, e T — K)} (A.5)

[]#

3
Il
=]

[]#

{e—AT(AT)”/n!} Eox, {CBS(SXne—W,K, T, afj,r)} . (A.6)

3
Il
=]

where Vy = S exp{(r— (1/2)o5)T + opBr} denotes the risk neutral terminal stock price
in the Black/Scholes world.

IThe proof of this lemma can be obtained from the authors upon request.
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In order to verify the equivalence of the second row of relation (16) with the idiosyncratic

jump risk formula, we have now to prove the relationship

ALY | Box, [CP3(5X, e KT 0 )|

= [Ty | [59(d) — T Ko (AT)

for all n = 0,1,2,.... Since the random variable X,, is defined as X, = e’, where J is

normally distributed, J ~ N(npy,no%), we have:

Eox, {CBS(SeJe_MT, T, K, o, r)}
= Bo{[S€7eTO (In(S/K) + T = T + (r + o /2)T)| JopVT} (A8)

— B { {Ke—Tch (In(S/K) + J — AT + (r — aﬁ/g)T)} /aD\/T} .

We shall calculate these two terms (henceforth termed H; and Hj, respectively) one by

one. Using (A.1), the second term can be written as

H, = KT L
V1473
with E = [In(S/K)+nps+ (r— Xk —o0p)/2)T] JopVT

_ 2/ 2
and g° = no;lopT

Using (A.2), the first term can be written as

Hl — Se_/\kTen“J'Hw%/z(I) (na'?] —|— npy — Oé)

with a = MT —In(S/K)—(r+o5/2)T
and 8 = opVT

Finally, putting the pieces back into equation (A.8), we get

Eo CBS(SeJe_MT, T:K, o5, T)}

— Hl_H2



o4

—  Ge M rurtnal/2g <; [In(S/K)+ (r — X+ npg /T +noy /T + U%/Z)T])

\/noi + o T

—Ke o <[ln(S/K) +(r =X+ npy /T — U%/Z)T] / U%T—I—U?,)

2 2
nos; + opl

= G M rustni/2g (é [In(S/K) + (r — Me 4 (npg 4 noy/2) )T+

(o3 + na?,/T>/2>T])

_Ke_TTCI)< [In(S/K) + (r — Mk + (npg +no3/2)/T — (op +nas/T)/2)T] /
1/0'2DT—|-0'?]>

— Se‘AkTe”“J’””QJ/Q(I)( ! [zn(S/K)+(rn+aZ/2)T]>

On

3

—Ke o ([Zn(S/K) +(ry — 02 /2)T] /anﬁ)
= M ustno;/2 {S(I)(dln) - Ke_T"T(I)(dzn)}

= (L4 )" {S@(dln) - Ke_T"TCD(dzn)} .

This proves the desired relationship (A.7).



)

References

Ahn Ch.M. (1992), Option Pricing when Jump Risk is Systematic, in: Mathematical
Finance 2, 299-308.

Akgiray V. and G.G. Booth (1986), Stock Price Processes with Discontinuous Time
Path, An Empirical Examination. in: The Financial Review, Vol. 2, 163-168.

Akgiray V., G.G. Booth and O. Loistl (1989), Statistical Models of German Stock Re-

turns, in: Journal of Economics, Vol. 50, 17-33.

Amin K. (1993), Jump Diffusion Option Valuation in Discrete Time, in: Journal of
Finance, Vol. 48, 1833-1863

Amin K. and V. Ng (1993), Option Valuation with Systematic Stochastic Volatility, in:
Journal of Finance, Vol. 48, 881-910

Ball C.A. and W.N. Torous (1983), A Simplified Jump Process for Common Stock Re-
turns, Journal of Financial and Quantitative Analysis, Vol. 18, 53-65.

Ball C.A. and W.N. Torous (1985), On Jumps in Common Stock Prices and Their Impact
on Call Option Pricing, in: Journal of Finance, Vol. 40, 155-173.

Bates D.S. (1991), The Crash of 87, Was It Expected? The Evidence from Options
Markets, in: Journal of Finance, Vol. 46, 1009-1044.

Beckers S. (1981), A Note on Estimating the Parameters of the Diffusion-Jump Model of
Stock Returns, in: Journal of Financial and Quantitative Analysis, Vol. 16, 127-129

Beinert M. and S. Trautmann (1991), Jump-Diffusion Models of German Stock Returns
- A Statistical Investigation, in: Statistical Papers, Vol. 32, 269-280.

Black F. and M. Scholes (1973), The Pricing of Options and Corporate Liabilities, in:
Journal of Political Economy, Vol. 81, 637-654.

Black F. (1985), Facts and Fantasy in the Use of Options, Financial Analysts Journal,
Vol. 31 (July-August), 36-41 and 61-72.

Cox J.C., J.E. Ingersoll and S.S. Ross (1985), An Intertemporal General Equilibrium
Model of Asset Prices, Econometrica, Vol. 53, 363-384.

Geske R. and W. Torous (1991), Skewness, Kurtosis and Black-Scholes Option Mispri-
cing, in: Statistical Papers, Vol. 32, 229-309.

Ho M.S., Perraudin R.M. and Sgrensen B.E. (1992), Multivariate Tests of a Continuous
Time Equilibrium Arbitrage Pricing Theory with Conditional Heteroscedasticity
and Jumps, Working Paper No.24, Center for Economic Policy Research, London.

Jarrow R.A. and D. Madan (1991), Option Pricing using the Term Structure of Interest
Rates to Hedge Systematic Discontinuities in Asset Returns. Working Paper, Cornell
University.



56

Jarrow R.A. and E. Rosenfeld (1984), Jump Risks and the Intertemporal Capital Asset
Pricing Model, in: Journal of Business, Vol. 57, 337-351.

Jones E.P. (1984), Option Arbitrage and Strategy with Large Price Changes, in: Journal
of Financial Economics, Vol. 13, 91-113.

Karatzas I. and S.E. Shreve (1988), Brownian Motion and Stochastic Calculus, Springer-
Verlag, New York.

MacMillan L.W. (1987) Analytic Approximation for the American Put Option, Advances
in Futures and Options Research 1A, 119-139.

Merton R.C. (1976a), Option Pricing when Underlying Stock Returns are Discontinuous,
in: Journal of Financial Economics, Vol. 3, 125-144.

Merton R.C. (1976b), The Impact on Option Pricing of Specification Error in the Un-
derlying Stock Price Returns, in: Journal of Finance, Vol. 31, 333-350.

Naik V. and M. Lee (1990), General Equilibrium Pricing of Options on the Market
Portfolio with Discontinuous Returns, in: Review of Financial Studies, Vol. 3, 443-

521.

Press J.S. (1967), A Compound Events Model for Security Prices, in: Journal of Business,
Vol. 40, 317-335.

Roger L.C.G. and D. Williams (1987), Diffusions, Markov Processes, and Martingales,
Vol.2, John Whiley & Sons, Chinchester-New York.

Rubinstein M. (1976), The Valuation of Uncertain Income Streams and the Pricing of
Options, Bell Journal of Economics, Vol. 7, 407-425.

Trautmann S. (1986), Finanztitelbewertung bei arbitragefreien Finanzméarkten - Theo-
retische Analyse sowie empirische Uberpriifung fiir den deutschen Markt fiir Akti-
enoptionen and Optionsscheine. (Habilitationsschrift).

Trautmann S. (1989), Aktienoptionspreise an der Frankfurter Optionsborse im Lich-
te der Optionsbewertungstheorie, Finanzmarkt und Portfoliomanagement, 3. Jahr-
gang, Nr. 3, 210-225. Ebenfalls abgedruckt in: Optionen und Futures, hrsg. von
Goppl H., Bithler W. und Rosen v.R., Frankfurt (Fritz Knapp Verlag), 79-100.



