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Motivation

Probability of default and recovery payment (or recovery rate
defined as the payback quota of the borrower) are crucial
quantities in credit risk models.

Both quantities are important when pricing and hedging credit
derivatives written on the underlying loans and bonds.

This paper’s focus is on hedging, e.g. when a risk manager
has to hedge a short position in a credit derivative (e.g. a
defaultable senior bond).
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Related Literature

Most pricing and hedging models for credit derivatives assume
that the recovery payment is a known quantity.

Bielecki, Jeanblanc and Rutkowski (2007, 2008) provide
explicit hedge ratios only when the default time is the only
random quantity.

Biagini and Cretarola (2007, 2009, 2012) calculate the hedge
ratio explicitly only when the recovery payment is constant
conditional on default time and do not consider coupon
payments.

None of these papers examines the impact of the shape of the
recovery payment distribution on hedging strategies.
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Single- vs. Doubly-Stochastic Recovery

Two recovery models are distinguished: single-stochastic and
doubly-stochastic recovery models.

A recovery model is called single-stochastic (SSR) if the
recovery payment only depends on the default time (and the
interest rate level).

In doubly-stochastic recovery (DSR) models the recovery
payment does not only depend on the default time (and the
interest rate level) but also on another source of uncertainty,
e.g. bankruptcy costs, time delay of the promised recovery
payment, etc.
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Single-Stochastic Recovery of a Zero Bond (T=2)
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Doubly-Stochastic Recovery of a Zero Bond (T=2)
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Main Findings

Only the first moment matters: Hedging approaches
minimizing the quadratic hedging error do only depend on the
expected recovery payment at default (and not on the whole
shape of the recovery payment distribution).

For hedging purposes, a doubly-stochastic recovery payment
model can be replaced by a single-stochastic recovery
payment model where the recovery payment equals the
expected value of the doubly-stochastic recovery payment.

This result also holds when interest rates and default
intensities are stochastic.
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Hedging Concepts: An Overview

Complete Financial Market Incomplete Financial Market

No Delta-Hedging Superhedging
Shortfall Black,Merton, Scholes (1973) Naik and Uppal (1992) No

Risk-&Variance-Minimizing Hedging Restric-
Föllmer and Sondermann (1986) tion

on
Locally Risk-Minimizing Hedging Initial
Föllmer and Schweizer (1989) Costs

Globally Risk- and Variance-Minimizing Hedging
Shortfall Schweizer (1995)
Risk Shortfall-Hedging Restric-

Föllmer and Leukert (1999) tion
(Global) Expected Shortfall-Hedging on
Föllmer and Leukert (2000) Initial
Local Expected Shortfall-Hedging Costs
Schulmerich (2001), Schulmerich and Trautmann (2003)
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Locally Risk-Minimizing (LRM) Hedging

Problem

Given two hedging instruments, a money market account with
time-t price Bt , and an underlying instrument (say, a
defaultable junior bond) with time-t price St

one looks for a trading strategy H = (hS ,hB) which exactly
replicates the credit derivative V F

T (say, a defaultable (senior)
bond) at maturity T and in addition

minimizes the expected quadratic growth of the hedging costs
∆Ct(H) = V F

t − (hSt St + hBt Bt) at every point in time t :

EP

[
(∆Ct(H))2 |Ft−1

]
→ min for all t and H with VT (H) = V F

T .
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Solution: Linear Regression

The LRM-Hedging problem is equivalent to a sequential
regression problem and can be solved by backwards induction
for t = T ,T − 1, . . . ,1.

We obtain the hedge ratio hS as the slope and the share in
the money market account hB as the intercept of the
regression line.

The following figure illustrates this proposition and the
paper’s main finding.
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LRM-Hedging of a Defaultable Bond (T=1):
Key Insight
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Basic Model

Credit derivative to be hedged is a defaultable coupon bond
(”senior bond ”) characterized by the triple (Z , C , F ), where

Z is the recovery payment,

C is a stream of (cumulative) coupon payments,

F is the senior bond’s face value.

The cumulative value V F ,cum of the senior bond at maturity
T is given by

V F ,cum
T =


BT

∫ T
0

1
Bt

dCt + F , if τ > T ,

BT

∫ τ
0

1
Bt

dCt + BT · Z(τ)
Bτ

, if τ ≤ T .
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The default time τ of the senior bond is modelled by an
inhomogeneous Poisson process Ht = 11{τ≤t} with

deterministic intensity function λ̂ and corresponding survival
probability

Gt = P̂(τ > t) = P̂(Ht = 0) = exp

{
−
∫ t

0
λ̂(s)ds

}
.

Hedging instrument is a defaultable zero coupon bond with
maturity T , face value 1, and total loss in case of default
(”junior bond ”) of the same firm whose price process S is
given by

St = (1− Ht)
Bt

BT
exp

{
−
∫ T

t
λ̂(s)ds

}
= (1− Ht)

Bt

BT
·GT

Gt
.
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Assuming deterministic interest rates we get the time-t value
V F
t = gZ

t + gC
t + gF

t of the senior bond (Z , C , F ), where

gZ
t =

∫ T

t

Bt

Bu
exp

{
−
∫ u

t
λ̂(s) ds

}
λ̂(u) µZ (u) du ,

gC
t =

∫ T

t

Bt

Bu
exp

{
−
∫ u

t
λ̂(s) ds

}
dCu ,

gF
t =

Bt

BT
exp

{
−
∫ T

t
λ̂(s) ds

}
· F ,

µZ (t) denotes the expected recovery payment when default
occurs at time τ = t.
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LRM-Hedge

The LRM-hedge ratio hS is given by

hSt =
d〈V F ,cum, S〉P̂t

d〈S , S〉P̂t
=

V F
t− − µZ (t)

St−
, if τ > t,

hSt = 0 , if τ ≤ t.

The number of money market accounts hB is given by

hBt =

∫ t

0

1

Bs
dCs +

µZ (t)

Bt
, if τ > t,

hBt =

∫ τ

0

1

Bs
dCs +

Z (τ)

Bτ
, if τ ≤ t.
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Extensions

Stochastic Default Intensity

The default time τ is modelled by a doubly-stochastic Poisson
process with intensity process λ̂ under the minimal martingale
measure P̂.

The time-t information is given by Gt = Ft ∨Ht , where Ft

contains the information about the diffusion risk and Ht

about the jump risk.

Denote by G the conditional survival probability

Gt = P̂(τ > t|Ft).
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The cumulative value V F ,cum
T of the senior bond at maturity

T admits the representation, see Bielecki et al. (2008),

V F ,cum
T

BT
=

V F
0

B0
+

∫ T

0
(1−Ht)

1

Gt
dmt +

∫ T

0

(
Zt − V F

t

Bt

)
dH̃t .

dmt describes the change of the senior bond’s value that is
solely due to the diffusion risk with

mt = Ê

[∫ T

0

Gu

Bu
λ̂u µ

Z (u) du +
GT

BT
F +

∫ T

0

Gu

Bu
dCu

∣∣∣∣Ft

]
= m0 +

∫ t

0
ξm,rs dŴ r

s +

∫ t

0
ξm,λ̂s dŴ λ̂

s .
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When using CIR dynamics to model r and λ̂,

drt = κr (θr − rt)dt + σr
√
rtdŴ

r
t ,

d λ̂t = κλ̂(θλ̂ − λ̂t)dt + σλ̂
√
λ̂tdŴ

λ̂
t ,

there exists a deterministic function u such that

mt = u(t,rt ,λ̂t).

Applying a result from Heath (1995), we then can get the
integrands in the martingale representation:

ξm,rt = σr
√
rt

∂

∂r
u(t,rt ,λ̂t) and ξm,λ̂t = σλ̂

√
λ̂t

∂

∂λ̂
u(t,rt ,λ̂t).
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The LRM-hedge ratio is now given by

hSt =
V F
t− − µZ (t)

St−
+

ξm,rt + ξm,λ̂t

GtσtSt

where σ denotes the junior bond’s volatility.

The first term of the RHS equals the LRM-hedge ratio in our
basic model.

The second term on the RHS of the above equation is
therefore solely due to the assumed additional diffusion risk.
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Hedging Costs Distribution: r and λ̂ deterministic

Parameters: N = 10000 (runs), r0 = 0.05, κr = 2.5, θr = 0.05, σr = 0.2,

λ̂0 = 0.35, κλ̂ = 0.5, θλ̂ = 0.35, σλ̂ = 0.4, F = 100, C = 0.08, T = 2.
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Hedging Costs Distribution: r and λ̂ stochastic

Parameters: N = 10000 (runs), r0 = 0.05, κr = 2.5, θr = 0.05, σr = 0.2,

λ̂0 = 0.35, κλ̂ = 0.5, θλ̂ = 0.35, σλ̂ = 0.4, F = 100, C = 0.08, T = 2.
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Conclusion

Quadratic hedging approaches depend only on the first
moment of the recovery payment distribution (conditional on
the default time and/or interest rate development).

Therefore single- and doubly-stochastic recovery modeling
result in the same quadratic hedging strategy, if the expected
recovery payment in a DSR model coincides with the recovery
payment in a SSR model.

The paper provides explicit hedge ratios even when all
relevant quantities are stochastic.
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Appendix

The time-t values of the senior bond’s three components are
now given by

gZ
t =

Bt

Gt
· Ê
[∫ T

t

Gs

Bs
λ̂(s) µZ (s) ds

∣∣∣∣Ft

]
,

gC
t =

Bt

Gt
· Ê
[∫ T

t

Gs

Bs
dCs

∣∣∣∣Ft

]
,

gF
t =

Bt

Gt
· Ê
[
GT

BT

∣∣∣∣Ft

]
· F .

which can be explicitly calculated (in the general case,
admittedly, with the help of numerical integraton).

The time-t value of the junior bond is

St = (1− Ht) ·
Bt

Gt
· Ê
[
GT

BT

∣∣∣∣ Ft

]
· 1.
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