Robust Recovery Risk Hedging: Only the First Moment Matters

Patrick Kroemer, Monika Müller and Siegfried Trautmann

Gutenberg University, Mainz

FMA Asia Pacific Conference 2016 Sydney, July 13-15, 2016

Introduction •00000	LRM-Hedging	Basic Model	Extensions	Conclusion O
Motivation				

- *Probability of default* and *recovery payment* (or *recovery rate* defined as the payback quota of the borrower) are crucial quantities in credit risk models.
- Both quantities are important when pricing and hedging credit derivatives written on the underlying loans and bonds.
- This paper's focus is on hedging, e.g. when a risk manager has to hedge a short position in a credit derivative (e.g. a defaultable senior bond).

Introduction o●oooo	LRM-Hedging	Basic Model	Extensions	Conclusion ○
Related Lite	erature			

- Most pricing and hedging models for credit derivatives assume that the recovery payment is a known quantity.
- Bielecki, Jeanblanc and Rutkowski (2007, 2008) provide explicit hedge ratios only when the default time is the only random quantity.
- Biagini and Cretarola (2007, 2009, 2012) calculate the hedge ratio explicitly only when the recovery payment is constant conditional on default time and do not consider coupon payments.
- None of these papers examines the impact of the shape of the recovery payment distribution on hedging strategies.

Introduction	LRM-Hedging	Basic Model	Extensions	Conclusion
000000				

Single- vs. Doubly-Stochastic Recovery

- Two recovery models are distinguished: single-stochastic and doubly-stochastic recovery models.
- A recovery model is called *single-stochastic* (SSR) if the recovery payment only depends on the default time (and the interest rate level).
- In *doubly-stochastic* recovery (DSR) models the recovery payment does not only depend on the default time (and the interest rate level) but also on another source of uncertainty, e.g. bankruptcy costs, time delay of the promised recovery payment, etc.

Single-Stochastic Recovery of a Zero Bond (T=2)

(See, e.g., Jarrow and Turnbull, 1995)

Doubly-Stochastic Recovery of a Zero Bond (T=2)

$$V_{1}^{F}(u, b, 1) = Z_{1}^{1}$$

$$V_{1}^{F}(u, b, m) = Z_{1}^{m}$$

$$V_{2}^{F}(u, lb, 1) = Z_{2}^{1}(u)$$

$$V_{1}^{F}(u, l)$$

$$V_{1}^{F}(d, b, 1) = Z_{1}^{1}$$

$$V_{2}^{F}(u, lb, m) = Z_{2}^{m}(u)$$

$$V_{2}^{F}(u, lb, m) = Z_{2}^{m}(u)$$

$$V_{1}^{F}(d, b, m) = Z_{1}^{m}$$

$$V_{1}^{F}(d, l)$$

$$V_{1}^{F}(d, l)$$

$$V_{2}^{F}(d, lb, 1) = Z_{2}^{m}(d)$$

$$V_{2}^{F}(d, lb, m) = Z_{2}^{m}(d)$$

$$V_{2}^{F}(d, lb, m) = Z_{2}^{m}(d)$$

Introduction 00000●	LRM-Hedging	Basic Model	Extensions	Conclusion ○
Main Findi	ıgs			

- Only the first moment matters: Hedging approaches minimizing the quadratic hedging error do only depend on the *expected* recovery payment at default (and not on the whole shape of the recovery payment distribution).
- For hedging purposes, a doubly-stochastic recovery payment model can be replaced by a single-stochastic recovery payment model where the recovery payment equals the expected value of the doubly-stochastic recovery payment.
- This result also holds when interest rates and default intensities are stochastic.

 Introduction
 LRM-Hedging
 Basic Model
 Extensions
 Conclusion

 000000
 0000
 00000
 000000
 0

Hedging Concepts: An Overview

	Complete Financial Market	Incomplete Financial Market]
No	Delta-Hedging	Superhedging	
Shortfall	Black, Merton, Scholes (1973)	Naik and Uppal (1992)	No
		Risk- & Variance-Minimizing Hedging	Restric-
		Föllmer and Sondermann (1986)	tion
			on
		Locally Risk-Minimizing Hedging	Initial
		Föllmer and Schweizer (1989)	Costs
	Globally Risk- and Variance-M	inimizing Hedging	
Shortfall	Schweizer (1995)		
Risk	Shortfall-Hedging		Restric-
	Föllmer and Leukert (1999)		tion
	(Global) Expected Shortfall-H	ledging	on
	Föllmer and Leukert (2000)		Initial
	Local Expected Shortfall-Hedg	ging	Costs
	Schulmerich (2001), Schulme	rich and Trautmann (2003)	

Introduction	LRM-Hedging	Basic Model	Extensions	Conclusion
	0000			

Locally Risk-Minimizing (LRM) Hedging

Problem

- Given two hedging instruments, a money market account with time-t price B_t, and an underlying instrument (say, a defaultable junior bond) with time-t price S_t
- one looks for a trading strategy $\mathbf{H} = (h^S, h^B)$ which exactly replicates the credit derivative V_T^F (say, a defaultable (senior) bond) at maturity T and in addition
- minimizes the expected quadratic growth of the hedging costs $\Delta C_t(\mathbf{H}) = V_t^F (h_t^S S_t + h_t^B B_t)$ at every point in time t:

$$\mathsf{E}_{P}\Big[(\Delta \mathcal{C}_{t}(\mathbf{H}))^{2} | \mathcal{F}_{t-1}\Big] \to \mathsf{min} \text{ for all } t \text{ and } \mathbf{H} \text{ with } \mathsf{V}_{T}(\mathbf{H}) = V_{T}^{F}.$$

Introduction	LRM-Hedging	Basic Model	Extensions	Conclusion
	0000			

Solution: Linear Regression

- The LRM-Hedging problem is equivalent to a sequential regression problem and can be solved by backwards induction for t = T, T 1, ..., 1.
- We obtain the hedge ratio h^S as the *slope* and the share in the money market account h^B as the *intercept* of the regression line.
- The following figure illustrates this proposition and the paper's main finding.

LRM-Hedging of a Defaultable Bond (T=1): Key Insight

Introduction	LRM-Hedging	Basic Model ●000	Extensions	Conclusion
Basic Mode	el			

- Credit derivative to be hedged is a defaultable coupon bond ("*senior bond*") characterized by the triple (Z, C, F), where
 - Z is the recovery payment,
 - C is a stream of (cumulative) coupon payments,
 - F is the senior bond's face value.
- The cumulative value V^{F,cum} of the senior bond at maturity T is given by

$$V_T^{F,cum} = \begin{cases} B_T \int_0^T \frac{1}{B_t} dC_t + F, & \text{if } \tau > T, \\ \\ B_T \int_0^\tau \frac{1}{B_t} dC_t + B_T \cdot \frac{Z(\tau)}{B_\tau}, & \text{if } \tau \leq T. \end{cases}$$

Introduction	LRM-Hedging	Basic Model	Extensions	Conclusion
		0000		

• The default time τ of the senior bond is modelled by an inhomogeneous Poisson process $H_t = \mathbb{1}_{\{\tau \leq t\}}$ with deterministic intensity function $\hat{\lambda}$ and corresponding survival probability

$$G_t = \widehat{P}(\tau > t) = \widehat{P}(H_t = 0) = \exp\left\{-\int_0^t \hat{\lambda}(s) ds\right\}.$$

• Hedging instrument is a defaultable zero coupon bond with maturity *T*, face value 1, and total loss in case of default ("*junior bond*") of the same firm whose price process *S* is given by

$$S_t = (1 - H_t) \frac{B_t}{B_T} \exp\left\{-\int_t^T \hat{\lambda}(s) ds\right\} = (1 - H_t) \frac{B_t}{B_T} \cdot \frac{G_T}{G_t}$$

Introduction	LRM-Hedging	Basic Model	Extensions	Conclusion
000000	0000	0000	000000	

• Assuming deterministic interest rates we get the time-t value $V_t^F = g_t^Z + g_t^C + g_t^F$ of the senior bond (Z, C, F), where

$$g_t^Z = \int_t^T \frac{B_t}{B_u} \exp\left\{-\int_t^u \hat{\lambda}(s) \, ds\right\} \hat{\lambda}(u) \, \mu^Z(u) \, du \, ,$$

$$g_t^C = \int_t^T \frac{B_t}{B_u} \exp\left\{-\int_t^u \hat{\lambda}(s) \, ds\right\} \, dC_u \, ,$$

$$g_t^F = \frac{B_t}{B_T} \, \exp\left\{-\int_t^T \hat{\lambda}(s) \, ds\right\} \cdot F \, ,$$

μ^Z(t) denotes the expected recovery payment when default occurs at time τ = t.

Introduction	LRM-Hedging	Basic Model ○○○●	Extensions 000000	Conclusion O

LRM-Hedge

• The LRM-hedge ratio h^S is given by

$$\begin{split} h_t^S &= \ \frac{\mathrm{d} \langle V^{F,cum}, S \rangle_t^{\widehat{P}}}{\mathrm{d} \langle S, S \rangle_t^{\widehat{P}}} &= \ \frac{V_{t-}^F - \mu^Z(t)}{S_{t-}} \ , \quad \text{if } \tau > t, \\ h_t^S &= \ 0 \qquad \qquad , \qquad \text{if } \tau \leq t. \end{split}$$

• The number of money market accounts h^B is given by

$$h_t^B = \int_0^t \frac{1}{B_s} dC_s + \frac{\mu^Z(t)}{B_t}, \qquad \text{if } \tau > t,$$

$$h_t^B = \int_0^\tau \frac{1}{B_s} dC_s + \frac{Z(\tau)}{B_\tau}, \qquad \text{if } \tau \le t.$$

Introduction	LRM-Hedging	Basic Model	Extensions •00000	Conclusion O
Extensions				

Stochastic Default Intensity

- The default time τ is modelled by a doubly-stochastic Poisson process with intensity process $\hat{\lambda}$ under the minimal martingale measure \hat{P} .
- The time-t information is given by $\mathcal{G}_t = \mathcal{F}_t \vee \mathcal{H}_t$, where \mathcal{F}_t contains the information about the diffusion risk and \mathcal{H}_t about the jump risk.
- Denote by G the conditional survival probability

$$G_t = \widehat{P}(\tau > t | \mathcal{F}_t).$$

Introduction	LRM-Hedging	Basic Model	Extensions ○●○○○○	Conclusion ○

• The cumulative value $V_T^{F,cum}$ of the senior bond at maturity T admits the representation, see Bielecki et al. (2008),

$$\frac{V_T^{F,cum}}{B_T} = \frac{V_0^F}{B_0} + \int_0^T (1-H_t) \frac{1}{G_t} dm_t + \int_0^T \left(\frac{Z_t - V_t^F}{B_t}\right) d\widetilde{H}_t.$$

dm_t describes the change of the senior bond's value that is solely due to the diffusion risk with

$$m_t = \widehat{E}\left[\int_0^T \frac{G_u}{B_u} \,\widehat{\lambda}_u \,\mu^Z(u) \,du + \frac{G_T}{B_T}F + \int_0^T \frac{G_u}{B_u} dC_u \bigg| \mathcal{F}_t\right] \\ = m_0 + \int_0^t \xi_s^{m,r} d\widehat{W}_s^r + \int_0^t \xi_s^{m,\hat{\lambda}} d\widehat{W}_s^{\hat{\lambda}}.$$

Introduction	LRM-Hedging	Basic Model	Extensions 00●000	Conclusion O

• When using CIR dynamics to model r and $\hat{\lambda}$,

$$dr_t = \kappa^r (\theta^r - r_t) dt + \sigma^r \sqrt{r_t} d\widehat{W}_t^r,$$

$$d\hat{\lambda}_t = \kappa^{\hat{\lambda}} (\theta^{\hat{\lambda}} - \hat{\lambda}_t) dt + \sigma^{\hat{\lambda}} \sqrt{\hat{\lambda}_t} d\widehat{W}_t^{\hat{\lambda}},$$

there exists a *deterministic* function u such that

$$m_t = u(t, r_t, \hat{\lambda}_t).$$

• Applying a result from Heath (1995), we then can get the integrands in the martingale representation:

$$\xi_t^{m,r} = \sigma^r \sqrt{r_t} \ \frac{\partial}{\partial r} u(t,r_t,\hat{\lambda}_t) \quad \text{and} \quad \xi_t^{m,\hat{\lambda}} = \sigma^{\hat{\lambda}} \sqrt{\hat{\lambda}_t} \ \frac{\partial}{\partial \hat{\lambda}} u(t,r_t,\hat{\lambda}_t).$$

Introduction	LRM-Hedging	Basic Model	Extensions	Conclusion
			000000	

• The LRM-hedge ratio is now given by

$$h_t^S = rac{V_{t-}^F - \mu^Z(t)}{S_{t-}} + rac{\xi_t^{m,r} + \xi_t^{m,\lambda}}{G_t \sigma_t S_t}$$

where σ denotes the junior bond's volatility.

- The first term of the RHS equals the LRM-hedge ratio in our basic model.
- The second term on the RHS of the above equation is therefore solely due to the assumed additional diffusion risk.

Costs

Costs

Introduction	LRM-Hedging	Basic Model	Extensions	Conclusion ●
Conclusion				

- *Quadratic hedging* approaches depend *only* on the *first moment* of the recovery payment distribution (conditional on the default time and/or interest rate development).
- Therefore single- and doubly-stochastic recovery modeling result in the *same quadratic hedging* strategy, if the expected recovery payment in a DSR model coincides with the recovery payment in a SSR model.
- The paper provides *explicit* hedge ratios even when all relevant quantities are stochastic.

 The time-t values of the senior bond's three components are now given by

$$g_t^Z = \frac{B_t}{G_t} \cdot \widehat{E} \left[\int_t^T \frac{G_s}{B_s} \widehat{\lambda}(s) \ \mu^Z(s) \ ds \middle| \mathcal{F}_t \right] ,$$

$$g_t^C = \frac{B_t}{G_t} \cdot \widehat{E} \left[\int_t^T \frac{G_s}{B_s} \ dC_s \middle| \mathcal{F}_t \right] ,$$

$$g_t^F = \frac{B_t}{G_t} \cdot \widehat{E} \left[\frac{G_T}{B_T} \middle| \mathcal{F}_t \right] \cdot F .$$

which can be explicitly calculated (in the general case, admittedly, with the help of numerical integraton).

• The time-t value of the junior bond is

$$S_t = (1 - H_t) \cdot \frac{B_t}{G_t} \cdot \widehat{E} \left[\frac{G_T}{B_T} \mid \mathcal{F}_t
ight] \cdot 1.$$