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1. Introduction

e Let us assume a situation where an investor has written a European call option on a stock,
say for a price of 10 €.

Fr
Long Position
K St
—Ir Short Position
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e Suppose that the market is incomplete and that the investor is unwilling to follow a superhed-

ging strategy which requires very often to buy one unit of the underlying instrument for, say
100 €.

e Question: What is the optimal self-financing hedging strategy under a constraint
on the initial hedging capital?

e Follmer/Leukert (2000) propose a self-financing hedging strategy which minimizes the expec-
ted shortfall in a Black/Scholes (1973) model. This approach is in the spirit of the martingale
approach of portfolio optimization.
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e One answer: Minimizing the investor’s expected shortfall under a budget constraint is tan-
tamount to (super-) hedge a suitable gap option ("modified claim®).

A

>
T >

K Sy

e Question: Why should an investor not follow a replication strategy if the market is frictionless
and complete? (Risk-averse investors would generally follow a perfect hedging strategy in a
complete markets setting like the one assumed by Follmer/Leukert (2000)).
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2. Model Framework

We assume a situation where an investor has written a European contingent claim on a stock and
wants to hedge the occuring risk with a fixed but arbitrary initial hedging capital V}.

e Hedging Object: Short position of a European contingent claim Fr.

e Hedging Instruments:

- Underlying stock S = (S, Sy, ...,Sr) and

- riskless money market account B, = (1 +r),, t=0,1,...,T.

e Hedging Strategies: To hedge the contingent claim the investor chooses a
strategy H = (h,h°) where h,(hY) represents the quantity of the stock (money market
account) held in the portfolio at time ¢.

The value of a hedging strategy is  V,(H) =h,- S, + h} - B,.
The set of all self-financing strategies is denoted by Hg.
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3. Hedging Approaches

Complete Markets Incomplete Markets
No Delta-Hedging: Superhedging:
Shortfall | Black/Merton /Scholes (1973) | El Karoui/Quenez (1995) | No
Risk Cox/Ross/Rubinstein (1979) | Naik/Uppal (1992) Restriction

Local Risk-Hedging: |on Initial
Follmer/Schweizer (1991) | Hedging

Schweizer (1992) Capital
Shortfall | Global Variance-Hedging: Schweizer (1996)
Risk Shortfall Probability-Hedging: Restriction
Follmer/Leukert (1999) on Initial
Global Expected Shortfall-Hedging: Hedging

Féllmer /Leukert (2000), Cvitani¢/Karatzas (1999) Capital
Cvitani¢ (1998), Schulmerich/Trautmann (2001),
Schulmerich(2001)

Local Expected Shortfall-Hedging:
Schulmerich /Trautmann (2001), Schulmerich(2001)
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3.1 No Shortfall-Risk in Incomplete Markets: Superhedging

A strategy H € H is called a superhedging strategy if Vp(H) > Fp P-as.
The time ¢ cost of carrying out the cheapest superhedging strategy is given by the supremum of
the expected terminal value over all Equivalent Martingale Measures ) € Q:

ind {Vi(H) | Vr(H) = Fr P-as.} = sup Eg(Fr | Ft)/Br .
GH QGQ

Example 1 (Superhedging in a trinomial one-period model)

Fr |
10 ¢
Slope of line, connecting
Lextreme” pairs of values,
51 equals hedge ratio
RSH — F%_F’{’
N S%—57,
40 K 50 55 St
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3.2 Local Risk-Hedging in the Trinomial Model

Example 2 (One-period trinomial Model)

Process parameters U = 1.1, D =1, J = 0.8, interest rate r = 0 %.

With two traded assets (stock and money market account) we get the following Equivalent Mar-

tingale Measures (EMMs):

Physical

Stock  Call M EMMs
easure
St Fr P Q
55 10 0.57 2q(w ;)
S =50 50 5 0.42 1 —3q(wy)

40 0 0.01 0<q(wy) <1/3
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Local Risk-Hedging in the Trinomial Model: A graphical illustration

Ly
Value of LR-minimizing
hedge portfolio
VT:hT'ST+h%'AT
10 +
Slope of regression
line equals hedge ratio
5
hLR — OOU(AFT,AST)
T Var(ASp) 7
Where AST = ST — ST—I
N ® i i

40 45 50 59 St
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3.3 Shortfall-Based Hedging Approaches

Motivation:

e In complete markets: hedger is not willing to invest completely the proceeds from writing the
option.

e In incomplete markets: hedger is not willing or able to finance a superhedging strategy.

Measures of Shortfall Risk:

e Shortfall Probability (not a coherent risk measure, — Quantile Hedging)

e Expected Shortfall (no coherent risk measure)

Two-Step Procedure

In accordance with the martingale approach to portfolio optimization the following two-step pro-
cedure is suitable:

(1) Calculation of a modified contingent claim (MCC) X which is attainable given that the initial
hedging capital V is less than Fj,.

(2) Superhedging of the modified contingent claim X
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4. Expected Shortfall-Hedging

4.1 (Discounted) Expected Shortfall is a quasi-coherent Risk-Measure
Expected Shortfall of a risky position X is defined through

p(X) = ESD(X) = Ep(max(—X/Br;0)) = Ep(X~/Br)
fulfills:
Axiom S: (Subadditivity) p(X +Y) < p(X) + p(Y).
Axiom PH: (Positive homogeneity) p(a - X) = a - p(X) when a > 0.
Axiom M: (Monotonicity) p(Y') < p(X) when X <Y
but not
Axiom T: (Translation invariance) p(X + a - By) = p(X) — a.
p(z) = ESD(X) fulfills instead

Axiom T’: For all risky positions X and all real numbers a we have the inequality

~Bi' Ep(X+a-Bp)<p(X)—a. aclR
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4.2 Problem and two-step solution

e Problem ES: Find a self-financing strategy H which minimizes

Ep|[(Fp — Vp(H))*| under the constraints Vy(H) =V, and H € Hy.

e Solution: Follmer/Leukert (2000), Cvitani¢/Karatzas (1999), and Pham (1999) propose a
two-step procedure similar to the martingale approach of portfolio optimization:

Step 1: Static optimization problem: (easy to solve if Q is a singleton)

max Ep(X) under the constraints sup Egy(X/Br) <V and Fr > X.
Qe

Step 2: Representation problem:
Superhedge the modified claim X* calculated in step 1.
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4.3 Expected Shortfall-Hedging

Proposition (ES-Hedging without a shortfall bound) In a complete market the optimal
modified contingent claim X* has the representation

X w) = FT(w)l{g(w>>CEs} + fﬂ{gw:%s}

where
Cpg = glelg{P(@/Q(W)}
and
v= Vo Br — Eg(Lipjgseps} Fr))/ (EQ(1{p/g=chs}))
Remarks:

e Replicating the modified contingent claim X with strategy (V{, H*) minimizes the expected
shortfall under the constraint Vj, < V4.

e In contrast to Follmer/Leukert (2000) our approach does not require that X* > 0.
This relaxation results typically in a lower expected shortfall.
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The requirement F7p — X* < b leads to the following

Proposition (ES-Hedging with a shortfall bound) In a complete market the optimal modified
contingent claim X* has the representation
Xt(w) = Frw)lpw)sepsy T Y Bw)=epsy T ETW) = O£ () <opg)
where
Cps = arg Ienl%%n {EQ(FTl{P/Q(w)>c} + (Fr — b>1{P/Q(w>Sc} < VyBr}
celliiy

and

v = Vo Br — Eo(FrlipigwsepsiFr) — Eo((Fr — 0)1ipiow)<csst)/ (Eo(Lip/ow)=cps)))
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Example 3 (Expected Shortfall Hedging in the Binomial Model)

Process parameters U = 1.1, D = 0.9, p* = 0.80, p? = 0.20, interest rate r = 0 %, strike price
K = 45 and initial hedging capital Vj, = 4.

Vi (H*) according to

s, B | op 0 | F/L sy
| |
60.5 155 | 06400 025 | 155 155

55<
S5o< 495 45 | 03200 05 | 025 45
45<

| |
405 0 ‘ 0.0400 0.25‘ 0 8.5

Expected Shortfall:

ESF(F/L): 0.3364 -0+ 0.4872 - 4.25 + 0.1764 - 0 = 2.07 (Féllmer /Leukert, 2000)
ESF(S/T): 0.3364-0+0.4872-040.1764-8.5 =15  (Schulmerich/Trautmann, 2001)
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Expected Shortfall as a function of the Initial Capital

S

Initial
— Hedging
Vi Capital
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e Question: How to solve the static optimization problem if Q is of infinite size, i.e. if markets
are incomplete?

e Our answer: SOP-algorithm for solving the static optimization problem in a discrete model
(SOPO) Initialization: Set i = 1 and define )1 = argmaxgco Eq(F7).

(SOP1) [teration: Maximize FEp(X?) under the constraints X' <  Fp and

max;—y . EQj (Xi/BT) < Vo-

(SOP2) Termination test: If the price of the superhedging strategy for X°
obeys the budget constraint, ie. maxgeqEo(X'/Br) <V, then
the modified claim X! is optimal in the sense of the static op-
timization problem and the algorithm terminates. Otherwise, define
Q11 = argmaxpeo Eo(X'/By) | increase 1 = i + 1 and return to step (SOP1)
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Static Optimization Problem (SOP1)

Maximize Ep(X)
such that: X <F

T
EQl(X> <V, By
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Recursive Calculation of Superhedging Values (SOP2)

XooH(Q

where

A1(1) = {wy, wy, wi}
A;(2) = {ws, w5, we
A;(3) = {wr, ws,wo t

1, SH
Xl

(Ai(1))

X% (w1)

X%(‘*’z)
X§ (ws)

X%(Wzl)

X3 (ws)
X% (we)

X% (wr)

X%("‘}S)

X%(%)

Superhedging
requires to
solve
4 LPs here
and

"3t LPs

in general
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Example 4 (Expected shortfall-hedging in the trinomial model)

Process parameters U = 1.1, D = 1, J = 0.8, strike price K = 45, interest rate r = 0 %, initial
hedging capital V, = 5.275.

Terminal value V7 of optimal

hedging strategy according to

F/L ST LR

|
|
|
|
|
|
|
y 55 0| 791 10 9.86
|
S = 50 <20 50 5 : 5 5 5.975
|
|
|

p—=0.01

40 0 0 -4.175  -3.9

Expected Shortfall:

ESF(F/L): 0.57-(10 —791)4+0.42-0+0.01-0=1,19  (Follmer/Leukert, 2000)
ESF(S/T): 0.57-040.42-0+0.01- (04 4.175) =0.04  (Schulmerich/Trautmann, 2001)
LR: 0.57 - (10 — 9.86) + 0.42- 0+ 0.01-3.9 = 0.12 (Schweizer, 1992)
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5. Local Expected Shortfall-Hedging

e Idea: We partition the complex overall problem ES into several one-period
problems and minimize the expected shortfall only locally.

e Problem LES:

T
m}}nz Ep[(FP" — Vi(H))* | F,_4] under the constraints Vy(H) =V and H € Hg
=1

e Solution:

Calculate ES-strategies in a one-period model n-times via SOP-algorithm!

e Properties:
LES- and ES-strategy coincide in the one-period case.
LES- and ES-strategy coincide in the binomial model.
LES- and ES-strategy coincide if V; is sufficiently high.
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Iterative Calculation of the LES-Strategy

F.
FEH(A (1) A
Fy(w,)
F3H(Q)
Fy(w;)
Fy(wy)
F15H<A1<2>> VZ(HLE; >4Xlocn
Vy(HLES) > xloen™ Fy(ws)
Fy(wg)
where o Fy(w-)
A1<1> = {Wlawmws} FPH(A4(3))
Ay(2) = {w;, w5, we}
A1<3> - {w77 Wy, w9} F2(w8)

Fy(wy)
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Example (LES-strategy without a shortfall bound (b = 0))

t=0 t=1 Vo(H)
/ 15.5
10.33
< 0.939 > o117
\ 0
/ 4.5
V(H)\ [ 4 ~2.3
< hit > B < 1.267> < 1.519> —917
\ 16
/ 0
—8.67
< 5167 > —17.33
Ep(Fy — Vy(H))* = 0.765 \

—26
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Example (LES-strategy with a shortfall bound b = 5)
t=0 t=1 Vo(H)

)=o) (W)

Ep(Fy — Vy(H))* = 1.563
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The efficient frontier of the ES- and LES-strategy
Expected Shortfall vs. Initial Hedging Capital

Parameter values: initial stock price = 50€; annual interest rate () = 5%; annual volatility of the “normal” stock price return (o) =
20%; annual expected rate of the “normal” return of the stock (o) = 15%; time to maturity of the option (7) = 1/12; strike price of the

option (K) = 47€; expected number of jumps (A) = 3 per year; number of trading periods (n) = 3.

35

N
) o

Expected Shortfall

0.5

| | |
0 0.5 1 15 2 25 3 35 4

Initial Hedging Capital V;
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Computational complexity of ES- and LES-strategies

Panel A

[terations

Total number of LP’S

Mai No. of LP’
| — per main loop © _E ; > (incl. number of LP’s to
OOpS (=no. of mcc) PEF TREration be solved for initilization)
ES-strategy 1 ~ 3" (n—1) 1+ ?’2—_1 ~ 3" (n—=1)-(1+ SHT_l) +3 0 (tf)
(average value) (average value)
LES-strategy | n <2 1+ 317_1 =2 <4dn+n-+ Zyz_ol (HQ)

2
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Computational complexity of ES- and LES-strategies

Panel B

Number of Periods

Number of constraints n =2 n=23 n=4 n=>5
in linear programs ES LES ES LES ES LES ES LES
1 1 2 1 3 1 4 1 5
2 29 12 443 20 5.881 34 97406 53
3 1 0 1 0 1 0 1
> 4 3 0 30 0 143 0 801

Total 34 14 475 23 6.026 38 98.209 58
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Explicit solutions for the ES-Problem: An Overview

Discrete Model

Continuous Model

Complete Closed-form solution Closed-form solution

Markets Schulmerich /Trautmann (2001) Féllmer/Leukert (2000)
Schulmerich (2001)

Incomplete Numerical Solution Numerical Approximation

Markets and Approximation resp.

Schulmerich /Trautmann (2001)
Schulmerich (2001)

Schulmerich (2001)
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6. Conclusions
e ES-hedging is a reasonable alternative to classical approaches (superhedging, mean-variance-
hedging) for hedging contingent claims in incomplete markets.
e Closed-form solutions are only for complete markets available.

e Calculating ES-strategies in discrete models is equivalent to the iterative solution of linear
programs whose number increases exponentially with respect to the number of trading dates.

o LES-strategies approximate ES-strategies quite accurately.

e Calculating LES-strategies in discrete models is equivalent to the iterative solution of linear
programs whose number increases only linearly with respect to the number of trading dates.



