Local Expected Shortfall-Hedging

by

Marco Schulmerich & Siegfried Trautmann

Johannes Gutenberg-Universität Mainz

CoFaR Center of Finance and Risk Management

Outline:

- 1. Introduction
- 2. Model Framework
- 3. Hedging Approches
- 4. Expected Shortfall-Hedging
- 5. Local Expected Shortfall-Hedging
- 6. Conclusions

1. Introduction

• Let us assume a situation where an investor has written a European call option on a stock, say for a price of $10 \in$.

- Suppose that the market is incomplete and that the investor is unwilling to follow a superhedging strategy which requires very often to buy one unit of the underlying instrument for, say 100 €.
- Question: What is the optimal self-financing hedging strategy under a constraint on the initial hedging capital?
- Föllmer/Leukert (2000) propose a self-financing hedging strategy which minimizes the **expec**ted shortfall in a Black/Scholes (1973) model. This approach is in the spirit of the martingale approach of portfolio optimization.

• One answer: Minimizing the investor's expected shortfall under a budget constraint is tantamount to (super-) hedge a suitable gap option ("modified claim").

• Question: Why should an investor not follow a replication strategy if the market is frictionless and complete? (Risk-averse investors would generally follow a perfect hedging strategy in a complete markets setting like the one assumed by Föllmer/Leukert (2000)).

2. Model Framework

We assume a situation where an investor has written a European contingent claim on a stock and wants to hedge the occurring risk with a fixed but arbitrary initial hedging capital V_0 .

- Hedging Object: Short position of a European contingent claim F_T .
- Hedging Instruments:
 - Underlying stock $S = (S_0, S_1, \dots, S_T)$ and
 - riskless money market account $B_t = (1+r)^t$, $t = 0, 1, \dots, T$.
- Hedging Strategies: To hedge the contingent claim the investor strategy $H = (h, h^0)$ where $h_t(h_t^0)$ represents the quantity of the stock (money market account) held in the portfolio at time t.

The value of a hedging strategy is $V_t(H) = h_t \cdot S_t + h_t^0 \cdot B_t$.

The set of all self-financing strategies is denoted by $\mathcal{H}_{\mathbf{S}}$.

3. Hedging Approaches

	Complete Markets	Incomplete Markets	
No	Delta-Hedging:	Superhedging:	
Shortfall	Black/Merton/Scholes (1973)	El Karoui/Quenez (1995)	No
Risk	Cox/Ross/Rubinstein (1979)	Naik/Uppal (1992)	Restriction
		Local Risk-Hedging:	on Initial
		Föllmer/Schweizer (1991)	Hedging
		Schweizer (1992)	Capital
Shortfall	Global Variance-Hedging:		
Risk	Shortfall Probability-Hedging:		Restriction
	Föllmer/Leukert (1999)		on Initial
	Global Expected Shortfall-	Hedging	
	Föllmer/Leukert (2000), C	Capital	
	Cvitanić (1998), Schulmer		
	Schulmerich(2001)		
	Local Expected Shortfall-I		
	Schulmerich/Trautmann (2		

3.1 No Shortfall-Risk in Incomplete Markets: Superhedging

A strategy $H \in \mathcal{H}$ is called a superhedging strategy if $V_T(H) \geq F_T$ P-a.s.

The time t cost of carrying out the cheapest superhedging strategy is given by the supremum of the expected terminal value over all Equivalent Martingale Measures $Q \in \mathcal{Q}$:

$$\inf_{H \in \mathcal{H}} \{ V_t(H) \mid V_T(H) \geq F_T \text{ P-a.s.} \} = \sup_{Q \in \mathcal{Q}} E_Q(F_T \mid \mathcal{F}_t) / B_{T-t}.$$

Example 1 (Superhedging in a trinomial one-period model)

3.2 Local Risk-Hedging in the Trinomial Model

Example 2 (One-period trinomial Model)

Process parameters $U=1.1,\,D=1,\,J=0.8,$ interest rate $r=0\,\%.$

With two traded assets (stock and money market account) we get the following Equivalent Martingale Measures (EMMs):

	Stock	Call	Physical Measure	EMMs
	S_T	F_T	P	Q
•	55	10	0.57	$2q(\omega_J)$
S = 50	50	5	0.42	$1 - 3q(\omega_J)$
	40	0	0.01	$0 < q(\omega_J) < 1/3$

Local Risk-Hedging in the Trinomial Model: A graphical illustration

3.3 Shortfall-Based Hedging Approaches

Motivation:

- In complete markets: hedger is not willing to invest completely the proceeds from writing the option.
- In incomplete markets: hedger is not willing or able to finance a superhedging strategy.

Measures of Shortfall Risk:

- Shortfall Probability (not a coherent risk measure, → Quantile Hedging)
- Expected Shortfall (no coherent risk measure)

Two-Step Procedure

In accordance with the martingale approach to portfolio optimization the following two-step procedure is suitable:

- (1) Calculation of a modified contingent claim (MCC) X which is attainable given that the initial hedging capital \bar{V}_0 is less than F_0 .
- (2) Superhedging of the modified contingent claim X

4. Expected Shortfall-Hedging

4.1 (Discounted) Expected Shortfall is a quasi-coherent Risk-Measure

Expected Shortfall of a risky position X is defined through

$$\rho(X) = ESD(X) = E_P(\max(-X/B_T; 0)) \equiv E_P(X^-/B_T)$$

fulfills:

Axiom S: (Subadditivity) $\rho(X+Y) \leq \rho(X) + \rho(Y)$.

Axiom PH: (Positive homogeneity) $\rho(\alpha \cdot X) = \alpha \cdot \rho(X)$ when $\alpha \geq 0$.

Axiom M: (Monotonicity) $\rho(Y) \leq \rho(X)$ when $X \leq Y$.

but not

Axiom T: (Translation invariance) $\rho(X + \alpha \cdot B_T) = \rho(X) - \alpha$.

 $\rho(x) = ESD(X)$ fulfills instead

Axiom T': For all risky positions X and all real numbers α we have the inequality

$$-B_T^{-1} \cdot E_P(X + \alpha \cdot B_T) \le \rho(X) - \alpha. \qquad \alpha \in IR$$

4.2 Problem and two-step solution

• Problem ES: Find a self-financing strategy H which minimizes

$$E_P[(F_T - V_T(H))^+]$$
 under the constraints $V_0(H) = \bar{V}_0$ and $H \in \mathcal{H}_S$.

- Solution: Föllmer/Leukert (2000), Cvitanić/Karatzas (1999), and Pham (1999) propose a two-step procedure similar to the martingale approach of portfolio optimization:
 - Step 1: Static optimization problem: (easy to solve if Q is a singleton)

$$\max_{X} E_P(X)$$
 under the constraints $\sup_{Q \in \mathcal{Q}} E_Q(X/B_T) \leq \bar{V}_0$ and $F_T \geq X$.

Step 2: Representation problem:

Superhedge the modified claim X^* calculated in step 1.

4.3 Expected Shortfall-Hedging

Proposition (ES-Hedging without a shortfall bound) In a complete market the optimal modified contingent claim X^* has the representation

$$X^*(\omega) = F_T(\omega) 1_{\{\frac{P}{Q}(\omega) > c_{ES}\}} + \gamma 1_{\{\frac{P}{Q}(\omega) = c_{ES}\}}$$

where

$$c_{ES} = \min_{\omega \in \Omega} \{ P(\omega) / Q(\omega) \}$$

and

$$\gamma = (\bar{V}_0 \cdot B_T - E_Q(1_{\{P/Q > c_{ES}\}} F_T)) / (E_Q(1_{\{P/Q = c_{ES}\}}))$$

Remarks:

- Replicating the modified contingent claim X_T^* with strategy (V_0^*, H^*) minimizes the expected shortfall under the constraint $V_0 \leq \bar{V}_0$.
- In contrast to Föllmer/Leukert (2000) our approach does not require that $X^* \geq 0$. This relaxation results typically in a lower expected shortfall.

The requirement $F_T - X^* \leq b$ leads to the following

Proposition (ES-Hedging with a shortfall bound) In a complete market the optimal modified contingent claim X^* has the representation

$$X^*(\omega) = F_T(\omega) 1_{\{\frac{P}{Q}(\omega) > c_{ES}\}} + \gamma 1_{\{\frac{P}{Q}(\omega) = c_{ES}\}} + (F_T(\omega) - b) 1_{\{\frac{P}{Q}(\omega) < c_{ES}\}}$$

where

$$c_{ES} = \arg\min_{c \in IR_+} \{ E_Q(F_T 1_{\{P/Q(\omega) > c\}} + (F_T - b) 1_{\{P/Q(\omega) \le c\}} \le \bar{V}_0 B_T \}$$

and

$$\gamma = (\bar{V}_0 \cdot B_T - E_Q(F_T 1_{\{P/Q(\omega) > c_{ES}\}} F_T) - E_Q((F_T - b) 1_{\{P/Q(\omega) < c_{ES}\}})) / (E_Q(1_{\{P/Q(\omega) = c_{ES}\}}))$$

Example 3 (Expected Shortfall Hedging in the Binomial Model)

Process parameters $U=1.1,\ D=0.9,\ p^u=0.80,\ p^d=0.20,$ interest rate r=0 %, strike price K=45 and initial hedging capital $\bar{V}_0=4$.

Expected Shortfall:

ESF(F/L): $0.3364 \cdot 0 + 0.4872 \cdot 4.25 + 0.1764 \cdot 0 = 2.07$ (Föllmer/Leukert, 2000)

ESF(S/T): $0.3364 \cdot 0 + 0.4872 \cdot 0 + 0.1764 \cdot 8.5 = 1.5$ (Schulmerich/Trautmann, 2001)

Expected Shortfall as a function of the Initial Capital

- Question: How to solve the static optimization problem if \mathcal{Q} is of infinite size, i.e. if markets are incomplete?
- Our answer: SOP-algorithm for solving the static optimization problem in a discrete model (SOP0) Initialization: Set $i \equiv 1$ and define $Q_1 \equiv \arg \max_{Q \in \bar{\mathcal{Q}}} E_Q(F_T)$.
 - (SOP1) Iteration: Maximize $E_P(X^i)$ under the constraints $X^i \leq F_T$ and $\max_{j=1,...,i} E_{Q_j}(X^i/B_T) \le \bar{V}_0.$
 - (SOP2) Termination test: If the price of the superhedging strategy for X^i obeys the budget constraint, i.e. $\max_{Q \in \bar{\mathcal{Q}}} E_Q(X^i/B_T) \leq \bar{V}_0$, then the modified claim X^i is optimal in the sense of the static opproblem and the algorithm terminates. Otherwise, define timization $Q_{i+1} \equiv \arg \max_{Q \in \bar{Q}} E_Q(X^i/B_T)$, increase i = i+1 and return to step (SOP1)

Static Optimization Problem (SOP1)

Recursive Calculation of Superhedging Values (SOP2)

Example 4 (Expected shortfall-hedging in the trinomial model)

Process parameters $U=1.1,\ D=1,\ J=0.8,$ strike price K=45, interest rate r=0 %, initial hedging capital $\bar{V}_0 = 5.275$.

Expected Shortfall:

 $ESF(F/L): 0.57 \cdot (10 - 7.91) + 0.42 \cdot 0 + 0.01 \cdot 0 = 1,19$ (Föllmer/Leukert, 2000) ESF(S/T): $0.57 \cdot 0 + 0.42 \cdot 0 + 0.01 \cdot (0 + 4.175) = 0.04$ (Schulmerich/Trautmann, 2001) $0.57 \cdot (10 - 9.86) + 0.42 \cdot 0 + 0.01 \cdot 3.9 = 0.12$ (Schweizer, 1992) LR:

5. Local Expected Shortfall-Hedging

We partition the complex overall problem ES into several one-period • Idea: problems and minimize the expected shortfall only locally.

• Problem LES:

$$\min_{H} \sum_{t=1}^{T} E_{P}[(F_{t}^{SH} - V_{t}(H))^{+} \mid \mathcal{F}_{t-1}] \text{ under the constraints } V_{0}(H) = \bar{V}_{0} \text{ and } H \in \mathcal{H}_{S}$$

• Solution:

Calculate ES-strategies in a one-period model n-times via SOP-algorithm!

• Properties:

LES- and ES-strategy coincide in the one-period case.

LES- and ES-strategy coincide in the binomial model.

LES- and ES-strategy coincide if \bar{V}_0 is sufficiently high.

Iterative Calculation of the LES-Strategy

Example (LES-strategy without a shortfall bound $(b = \infty)$)

$$t = 0 t = 1 V_2(H)$$

$$E_P(F_2 - V_2(H))^+ = 0.765$$

Example (LES-strategy with a shortfall bound b = 5)

$$t = 0 t = 1 V_2(H)$$

$$E_P(F_2 - V_2(H))^+ = 1.563$$

The efficient frontier of the ES- and LES-strategy Expected Shortfall vs. Initial Hedging Capital

Parameter values: initial stock price = $50\mathbb{E}$; annual interest rate (r) = 5%; annual volatility of the "normal" stock price return $(\sigma) = 5\%$; 20%; annual expected rate of the "normal" return of the stock (α) = 15%; time to maturity of the option (τ) = 1/12; strike price of the option $(K) = 47 \in$; expected number of jumps $(\lambda) = 3$ per year; number of trading periods (n) = 3.

Computational complexity of ES- and LES-strategies

Panel A

	Main loops	Iterations per main loop (=no. of mcc)	No. of LP's per iteration	Total number of LP'S (incl. number of LP's to be solved for initilization)
ES-strategy	1		$1 + \frac{3^n - 1}{2}$	$\sim 3^{n} \cdot (n-1) \cdot (1 + \frac{3^{n}-1}{2}) + \sum_{t=0}^{n-1} {t+2 \choose 2}$ (average value)
LES-strategy	n	≤ 2	$1 + \frac{3^1 - 1}{2} = 2$	$\leq 4n + n + \sum_{t=0}^{n-1} {t+2 \choose 2}$

Computational complexity of ES- and LES-strategies

Panel B

			ľ	Vumbe	er of Pe	eriods		
Number of constraints	\overline{n}	= 2	n	= 3	n =	= 4	n =	5
in linear programs	ES	LES	ES	LES	ES	LES	ES	LES
1	1	2	1	3	1	4	1	5
2	29	12	443	20	5.881	34	97.406	53
3	1	0	1	0	1	0	1	0
≥ 4	3	0	30	0	143	0	801	0
Total	34	14	475	23	6.026	38	98.209	58

Explicit solutions for the ES-Problem: An Overview

	Discrete Model	Continuous Model
Complete	Closed-form solution	Closed-form solution
Markets	Schulmerich/Trautmann (2001)	Föllmer/Leukert (2000)
	Schulmerich (2001)	
Incomplete	Numerical Solution	Numerical Approximation
Incomplete Markets	Numerical Solution and Approximation resp.	Numerical Approximation
1		Numerical Approximation Schulmerich (2001)

6. Conclusions

- ES-hedging is a reasonable alternative to classical approaches (superhedging, mean-variancehedging) for hedging contingent claims in *incomplete* markets.
- Closed-form solutions are only for complete markets available.
- Calculating ES-strategies in discrete models is equivalent to the iterative solution of linear programs whose number increases exponentially with respect to the number of trading dates.
- LES-strategies approximate ES-strategies quite accurately.
- Calculating LES-strategies in discrete models is equivalent to the iterative solution of linear programs whose number increases only *linearly* with respect to the number of trading dates.