Option Valuation: Theory and Empirical Evidence
Robert Geske and Siegfried Trautmann

Summary: This paper reviews option valuation theory and the empiri-
cal evidence. The rapid growth of interest in option theory is pro-
bably due to the abundance of relevant applications in the financial
marketplace. The precision of the option valuation models relies
primarily on preference-free, enforceable arbitrage conditions. First,
these arbitrage conditions are reviewed, and the related partial
equilibrium hedging models are discussed. Next, the more general equi-
librium, non-hedging models are briefly surveyed. Then, the differ-
ences in options on equity, debt, currency, and futures are mentioned,
along with other applications of option theory.

Most of the empirical work testing the arbitrage boundaries has been
related to equities, where the market data originated. Empirical tests
of the boundaries and tests comparing various option models are re-
viewed for options on a variety of underlying assets. The estimation
problems most relevant to option pricing are also discussed.
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1. Introduction

The history of trading options is very long, and it is also rather
checkered. Stories in the Bible describe both the terms and the ex-
change of options, as do historical accounts of Medieval and Re-
naissance periods. Usually, these tales attribute great risk and
often much ruin to those foolish enough to trade options. No doubt,
the wisdom of the times is reflected in the tales. However, today

the wisdom of the times is greater, at least with respect to options.
In the last fifteen years, we have learned to regard the trading, the
pricing, and the uses of options as a precise science. Today, we know
exactly why past predictions of the great risk involved with trading
options were correct, but we have further learned how to use options
to control risk. As we will see, the most widely used model for valu-
ing options is the European model developed by Black and Scholes
(1973) . However, almost all options traded in the world market place
are American options. The distinction between European and American
options is somewhat misleading, because it has nothing to do with
geography, but instead describes the differences between the exer-
cise properties of two options. The European option can only be exer-
cised at one specific point in time, the expiration date of the op-
tion. On the other hand, an American option can be exercised at any
point in time between the origination date and the expiration date

of the options.

This paper reviews the development of modern option pricing theory
(section 2) and the results of the corresponding empirical tests
(section’'3). In section 2.1, we discuss the preference and distribu-
tion-free results. Here, bounds on the range of feasible prices are
implied by arbitrage conditions. Subsection 2.2 discusses distribu-—
tional assumptions and hedging models. This approach is popular with
traders because hedging specifies a technique for reducing risk
while making marketsin options. The preference assumptions of non-
hedging models, new option instruments, and applications of option
theory to other financial valuation problems are discussed in the
remaining subsections of the theoretical part. Section 3 starts with
a discussion of the problems of testing model validity and market
efficiency. Subsections 3.1 and 3.2 report results of boundary condi-
tion tests. These boundary tests avoid confounding joint hypotheses
of both model validity and market efficiency. The empirical evidence

on different option pricing models is discussed subsequently, and



estimation problems relevant to option pricing are briefly reviewed.

2. Option Valuation Theory

2.1 Preference and Distribution-Free Results

The choice of whether to buy or sell one risky asset or another is
an example of a decision problem under uncertainty. Expected utility
theory has been developed and refined for many uncertainty problems
since its advent during World War II. There, it drew attention for
many important investment decisions, such as the inventory stock-out
problem of supplying bullets to a machine-gun nest. The theory fo-
cuses on the tastes (or preferences) and beliefs (or probability dis-
tributions) of individuals, subject to a variety of possible con-
straints. In finance today, many decision problems under uncertainty
are about optimal investment decisions, subject to the constraint of
no margin, taxes, or being fully invested. Another major research

topic in financial theory is asset valuation under uncertainty.

Most valuation models in modern financial economics, such as the ca-
pital asset pricing model (CAPM), the option pricing models (OPM),
and the arbitrage pricing models (APM), impose restrictions on the
individual's tastes (for example quadratic utility), or beliefs
(normal or lognormal distributions) in orcer to simplify the problem.
However, in option pricing theory, Merton (1973a) has shown that
merely by assuming individuals which prefer more to less (i.e., are
rational), arbitrage will place restrictions on the values of put
and call options. This section discusses these arbitrage restric-

tions. The arbitrage results will be stated but not proven.

We assume that markets are perfect, which allows us to ignore short
sale restrictions, margin regquirements, transaction costs, taxes,
differences in borrowing and lending rates, illiquidity, and price
pressures. All of these effects can be introduced, some more eaéily
than others. Interest rates can be random, but they must always ke
positive. The arbitrages will be between options differing only in
time to expiration, options differing only in exercise price, or be-
tween options, the underlying stock, and default-free zero-coupon

bonds.

2.1.1 cCall Options

A call option gives its owner the right to buy a specified asset For

a specified price within a specified time period. The specified price

of the underlying asset is termed the exercise or strike price K .
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The crecified expiration date T of the option implies a time premium
whicl: is wasting. An option (put or call) differs from a futures con-
tract where the holder must take delivery of the underlying asset at
expiration, or buy back the future to avoid that obligation. By defini-
tion, the optionholder has the option to take delivery, and it is the
theory of this option value which is the focus of much discussion. The

following paragraphs begin the review of the valuation theory.

The value C of a call option will never be less than zero. This is
because limited liability of the stock restricts the stock price S
to be positive. Also, the value of a call will never be worth less
than either zero or its exercisevalue & -~ K . Furthermore, the value
of a European call will be greater than the exercise value by the
difference between the exercise price and the present value of the
exercise price. In fact, if dividends are paid over the life of the
option and the call is dividend unprotected, the call value will be
greater than the difference between the stock price and the present
value of the exercise price, less the present values of any stock
dividends to be paid prior to expiration. Finally, the call will
never sell for more than the stock.These conditions can be expressed
by the following inequality:

SZCZmax(O,S—Ke_rT—-Z Dj eartj) (1)
J
where r is the riskless interest rate, and Dj denotes the amount

of dividend paid at date tj .

Arbitrage also forces restrictions on the relation between changes

in the call prices as the exercise price changes. Given two calls
which differ only in exercise price, the one with the lower exercise
price, K4 , must be at least as valuable as the other. Furthermore,
the difference in value between these two calls must never be greater
than the difference in their exercise prices. This can be expressed

by the following inequality:

-1<[cKa) -C(xN1/(Ka-Kq) <0 . (2)

Finally, given three calls (butterfly spreads) differing only in
exercise prices, the value of the call with the middle exercise
price can never be greater than a weighted average of the two ex-

treme calls (convexity). This can be expressed as:

C(K2) sw4C(Kq) +waC(Ka) (3)

I



where the weights (w4 and w2) are the ratios of the partial to the
total difference in the exercise prices:
_ Ks-Ka _ Kz - K¢

r W2

\4 =
' Ka-Kq K3 - K (32)

The time value of an American option is always positive. Given two
calls which differ only in time to expiration, the one with more
time to expiration must be at least as valuable as the other. Vhen

T, 1is greater than T. , this relation can be expressed as follows:

C(Tz2) 2C(Tq) . (4)

Since American calls can be exercised §rior to their expiration date,
arbitrage imposes restrictions on the optimal exercise policies.
Merton (1973a)showed that an American call will sell for the same
price as a European call when the underlying stock does not pay divi-
dends. In this instance, the option to exercise early has no value.
The logic is as follows: The owner of an American call can take one
of three choices: (i) hold it; (ii) exercise it; or (iii) sell it.
Since the premium above (i.e., exercise value) is always positive
prior to expiration, selling the call dominates exercising it, ex-
cept when the underlying stock pays dividends. Then, it may be ra-
tional to give up the premium above parity to det the dividend.
Thus, an American call should only be exercised just before an ex-
dividend date or at expiration. If it is ever optimal to exercise a
particular call option, then all other calls with either smaller
exercise prices or less time to expiration should also be exercised
at that time. However, it will never be optimal to exercise an Ameri-
can call early if the present value of the dividends to be paid over
the 1life of the call are less than the possible interest that can be

earned on the exercise price during the same time period.

2.1.2 Put Options

A put option gives its owner the right to sell the specified asset
for a specified price within a specified time period. Thus, a put
seems to be the opposite of a call, since semantically, the right to
sell is the opposite of the right to buy. However, in option valua-
tion theory, such simple reasoning can lead to confusion. Both the
right to buy and the right to sell have unique value, which we will
see depend on the allowable range of the underlying asset price. The

following paragraphs discuss this theory of value for puts.
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Similar to call options, arbitrage restrictions exist for unprotected
American put options. An American put will never sell for less than
either zero or the difference between the exercise price and the
stock price, K-S . The maximum value a put can achieve is its exer-
cise price, because of the limited liability of the stock. The rela-

tions can be summarized by the following inequality:

K2>P 2max(0,K-S) , (5)
where P denotes the put value.
Arbitrage also forces restrictions on the relation between changes
in put prices for different exercise prices. Given two puts which
differ only in exercise price, the one with the higher exercise price
must be at least as valuable as the other. Furthermore, the differ-
ence in value between these two puts must never be greater than the
difference in their exercise prices. This can be expressed by the

following inequality:

12[P(K2) ~P(Kq4)] /(Kz2-K4q) 20 (6)

Finally, given three puts (butterfly spread) differing only in exer-
cise price, the value of the put with the middle exercise price can
never be greater than a specific weighted average of the values of

the two extreme puts. This can be expressed as follows:
P(K2) <w4P(Kq) + wz2P(Ka) (7)

where the weights (3a) are ratios of the'partial to the total differ-

ences in the exercise prices (convexity).

Since the time value of an American put is always positive, given two
puts which differ only in time to expiration, the one with more life
remaining will be more valuable. If T, 1is greater than T4 , this

can be expressed as:
P(T2) 2P(T4) (8)

However, for a European put, more time to expiration can sometimes
reduce value. The intuition is, if it is optimal for the putholder to
exercise early, then more time to expiration only prolongs the agony
of not being able to exercise an option. Merton (1973a) also demon-
strated that an American put always has a positive probability of
premature exercise. This occurs because the limited liability of the
stock bounds the stock price below at zero. Thus, for some (low)
stock price, it is better to take the exercise proceeds and invest
them at the risk-free rate rather than wait for the additional option

value. At this critical stock price where the put is exercised early,
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the premium above parity has gone to zero and the put is worth its
exercise value. Dividends paid on the underlying stock increase put
values because thevreduce the stock price, and thus, dividends reduce
the probability of early exercise. In fact, the put should never be
exercised prematurely if the present value of the dividends to be
paid prior to expiration of the put exceed the present value of in-
terest that could be earned on the exercise price during the same
time period. Finally, if it is ever optimal to exercise a particular
put, then all other puts with either a larger exercise price or less

time to expiration should also be exercised at that time.

2.1.3 Relations Between Puts and Calls

Converters, reverse converters, and box spreaders make a business of
converting calls into puts, puts into calls, and calls, puts, and
the underlying stock into risk-free bonds. These conversions or re-
plications hold exactly for European options, and the relation be-
tween these securities is termed put-call parity. The following ar-
bitrage condition describes this relation for European options hav-

ing the same exercise price and expiration date:
~rT
P=C-S+Ke = . (9)

This implies that a bought put can be duplicated by a bought call,

short stock, and lending the present value of the exercise price.

American options complicate these conversion and replication strate-
gies. The package of securities necessary to replicate the American
option's countable but infinite set of exercise contingencies, is
itself infinite (see Geske and Johnson, 1984) . The simple equality
of European put-call parity does not hold, and only a pair of in-
equalities hold for either payout-protected American options or for
options written on non-dividend paying stock:

rT

C-S+K2P>C-S+Ke (10)

When dividends are paid and the option is not payout-protected, these
bounds must include the dividends. Uncertainty about interest rates
and about dividends further complicate these bounds. Transactions
costs, margin requirement, and differential borrowing and lending

rates widen the inequality bands bounding the American put value.

2.1.4 Additional Arbitrage Restrictions

In all of the above arbitrage relations, no assumption about the

distribution of stock price changes was necessary. However, in order
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to discuss even weak restrictions with respect to stock price, it is
necessary to assume that the distribution of stock price changes is
independent of the level of the stock price. Although this is gener-
ally not valid, as even casual empiricism would reveal, it may not
be a bad assumption. Given this assumption, the value of one call
can never be greater than the value of an otherwise identical call
with a higher stock price. If S2 is greater than S, , this can be

expressed as:

C(Sz) 2C(84) (11)
Also, given three calls which are identical, except for different
stock prices, the value of the call on the middle stock price can

never be greater than a weighted average of the values of the calls

on the two extreme stock prices.
C(S2) £w4C(Sq) +waC(S3) (12)
where the weights ({(comp. (3a)) are ratios of the partial to the total

differences in the stock prices (convexity).

2.2 Distributional Assumptions and Hedging Models

2.2.17 Hedge Portfolios

In the last section, we were able to learn something about rational
option pricing by studying the restrictions placed on option values
by arbitrage. Most of the arbitrage results did not require very
specific assumptions about individual preferences (i.e., utility) or
beliefs (i.e., distribution of stock price changes). It was only ne-
Cessary to assume that investors are rational, and for the arbitrage
restrictions with respect to the stock price, that the distribution
of stock price changes be independent of the level of the stock price.
In order to be more specific about the price process for options in

a securities market where individuals allocate their wealth to select
optimal investments, we need to be more specific about either their
preferences, their beliefs, or both. Here, we will make stronger as-
sumptions about investors' beliefs regarding the distribution of
stock price changes in order to present the hedging models for option
values. The European option models will be discussed first because

they are simpler than the American option hedging models.

First, assume that investors believe that the distribution of stock
price changes follows a lognormal (proportional) diffusion process.
The lognormal is empirically preferred to a normal (absolute) diffu-

sion because the probability of price changes appears to be a con-
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stant proportion of the levellof the stock price rather than a con-
stant absolute amount. Now, if investors can trade continuocusly for
this price process, and if the option's price evolution is derived
entirely from stock price changes so that the option and the stock
are perfectly correlated, then investors can form perfect, self-
financing, riskless hedges between the option and underlying stock.
This hedge portfolio contains two risky securities, the option and
the stock. Earlier work in finance taught us that in order to effi-
ciently diversify risk in a two-security portfolio, the higher the
correlation among the two securities, the better the diversification.
If the two risky securities are perfectly correlated, then by buying
one and selling (writing) the other in the correct proportions all the

risk can be eliminated.

In order to demonstrate this concept, consider the following hedge

portfolio, H, consisting of ng shares of stock and ng calls?

= . 1
H nSS+nCC (13)

Now, if the stock price changes, inducing a change in the call price,
and assuming all else is (approximately) constant, what proportion of
shares of stock to calls can the investor hold so that the value of
the hedge will not change? To derive this "hedge ratio", set the
change in the value of the hedge, dH, induced by changes in the stock
price, dSs, and call price, dC, to zero, and solve for the number of

calls to write (buy) per share of stock long (short). This yields

dH:nS dS+nC ac=0 . (14)
If we take nS==1 we have
nc=—l/(dC/dS)

where dC/dsS is the hedge ratio. This simple example is illustrative,
but is only approximate because as the stock price and call price
change, so must the ratio of calls per share of stock in order to re-
main risk-free. Furthermore, when the investor sells out of one
position in order to obtain the required new riskless hedge ratio,
the hedging transaction must be self-financing. Fortunately, this is
exactly what happens. In order to make this hedge an enforceable ar-
bitrage, a third security, riskless bonds, should be added to the
hedge portfolio. When riskless bonds are included, it is immediately
evident that the option investment can be exactly replicated by a
levered position in the underlying stock. This replication is the
forcing mechanism of the arbitrage between the option, the stock, and

riskless bonds. The riskless bonds also facilitate the self-financing.
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The solution to the European call option pricing problem will depend
on the assumption made to describe the distribution of stock price
changes, dS . Before stating the various assumptions leading to dif-
ferent hedging models, consider the notable implications of the hedg-
ing approach. First, any investor who is perfectly hedged does not
care whether the stock price goes up or down, since the value of the
hedge is independent of the direction of stock price movements. This
intuition implies that the option value may be independent of the ex-
pected return on the stock. Second, the arbitrage conditions necess-—
ary to maintain the hedge only require that investors be greedy, but
not risk-averse. Investors could prefer risk and still the above risk-
less arbitrage portfolio would place restrictions on the relation be-
tween the option price and the stock price. Third, if the stock price
is the only variable assumed to be random in the hedge, then the call
value will only depend on one random variable. Fourth, the ability
to create riskless hedges does not imply that investments in call op-
tions are riskless, or that investors only earn the risk-free rate on
their investment. In fact, if an investor correctly feels that an op-
tion is over or underpriced, the proper establishment of this arbi-
trage portfolio will yield returns in excess of the risk-free rate,

at no risk.

Now, return to the consideration of the relevant assumption for the
distribution of stock price changes, dS . The origin of the alterna-
tives discussed here stems primarily from empirical observations of
stock price movements. The models are simple attempts to capture the
observed phenomena. There are two main differences in these models of

stock price changes:

(1) whether the price changes are continuous

(ii) whether the variance of price changes is constant.

The seminal model in modern option pricing theory (Black and Scholes

1973) assumes that the stock price changes are continuous with a con-
stant variance of price changes. The other models vary these éssump—

tions in an attempt to capture differences in the way information in-
duces stock price changes. Several models are catalogued in Table 1.

Some motivation of the assumptions is contained in Sec. 2.2.3. The

equations resulting from the models are given in the Appendix.
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Table 1: Assumptions of Models for Pricing Options

Model Price Change

Variance Motion Egquation

1. Diffusion Continuous

(Black-Scholes)

2. Binomial Discrete
(Cox, Ross,
Rubinstein)

3. CEV Continuous
(Cox-Ross)

4. Compound Continuous
(Geske)

5. Displaced Continuous
(Rubinstein)

6. Jump Discontinuous
(Cox-Ross)

7. Diffusion-Jump Continuous/

(Merton) Discontinuous

Constant dsS = usdt + vSdz , where dz is the

increment of a standard Gauss-—
Wiener process and U is the ex-
pected instantaneous rate of return

Constant  S(t+1) -s(t) =£f(u,d)s(t)

Changing dS==uSdt4—vSpdz
Changing ds = usdt + (3S/9V) (V/S)v'sdz
Changing dS = usSdt + v'Sdz

Constant ds = (p-ik)sdt +Sdg (dg = increment

of a Poisson process with parameter A)

Constant ds = (u-Ak)sdt + vsdz + sdg

2.2.2 The Classical Black-Scholes Model

In the partial equilibrium diffusion model of Black and Scholes (1973),

the hedge between the stock, the option, and the riskless bond is

maintained continuously. The arbitrage relation between the call and

its replication by a
implies that the res
depend on whether th
all information may
fore may be over or
tion must hold. The

unique position
ultant valuation
e stock price is
not be reflected

undervalued, and

in the stock and riskless bond
equation for the option does not
in equilibrium. In other wordcs,
in the stock price which there-

still the option valuation equa-

Black-Scholes equation is only for European op-

tions, and is given by:
-rT
C=SN(dq) - Ke N(dz)
where
IS = stock price at current date
K = exercise price
T = time to expiration
v2 = variance of the stock's rates of return
r = riskless interest rate
N(-) = the cumulative standard normal distribution
S 1
In (= = v2
(K)~+rT“+2 v=T

dq =

v VT
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da=d4 -vVT

First, note that the expected return on the stock does not directly
enter this equation. It only enters indirectly through the stock price,
~ which is observable. As predicted in hedging models, the expected di-
rection of stock price movements is not important to the value of the
option. This is the primary reason why hedging models are so accurate
relative to other financial valuation models, and probably the reason
they have gathered the attention of so many academics and practitio-

ners.

Although this formula appears complex, it has at least two intuitive
interpretations. The first is that it represents the present value of
the probability of receiving the exercise value, if and only if, S(7) ,
the stock price at expiration, is greater than X, the exercise price.
The first term, SN(d4) , is the present value of receiving the stock,
and the second term, —Ke_rTN(d2) , is the present value of paying the
exercise price, if and only if the option is exercised. Another inter-
pretation is based on the arbitrage idea that the call can be replica-
ted by a levered position in the stock. Then the first term is the
amount invested in the stock, and the second term is the amount bor-

rowed.

2.2.3 A Brief Description of Other Option Valuation Models

The binomial hedging model (Cox, Ross, Rubinstein, 1979) is based on

a discrete process where the stock price can move to only one of two
positions in a finite time interval. The size of the up and down (u
and d) movements is a constant proportion of the stock price, and this
implies a constant variance of stock price movements. The primary ad-
vantage of the binomial model is simplicity. In the limit, as the dis-
crete time interval is reduced to zero, the binomial model can be made
to converge to the Black-Scholes model. In addition, the binomial pro-
cess is flexible, and depending on how the limits are taken and what
is assumed about the up and down movements, the binomial process can
incorporate the changing variance and jump process models. While this
flexibility is useful pedagogically, empirically, the limiting para-
meters of each model must be estimated and then converted into the

proper up and down jumps.



CEV means constant elasticify of variance models (Cox-Ross, 1976b).
In these models, the stock price process is continuous, and the va-
riance of stock pride changes is dependent on the level of the stock
price. The volatility of the stock's rate of return is ¢ =vsP™' .
The elasticity of this olatility with respect to the stock price,
(39/38) (S/¥) , is a constant, namely p-1 . For these processes, if

p <1 , the variance of the rate of return varies ihversely with the
stock price. This property has been empirically established by many
researchers. If p>1 , the opposite (direct) relation holds between
the volatility and the stock price. When p =1 , the CEV corresponds
to the Black-Scholes constant variance model. Thus, the CEV model is
also flexible since it can handle a variety of relations between the
stock price and the volatility, and it contains the Black-Scholes

model as a special case.

The compound option model (Geske, 1979a) offers an economic rationale
for the inverse relation observed between the volatility of stock
price changes and the stock price. It is a capital structure argu-
ment, based on the observation that as the stock price changes with

a fixed amount of corporate debt outstanding, the firm's leverage
ratio will vary inversely with the stock price. This will induce the
observed inverse relation between stock return volatility and stock
price. To keep the problem simple, the firm is assumed to consist of
only pure discount bonds maturing at T and stock. The stock is then
considered to be an option on the assets of the firm, and an option

on the stock is an option on an option.

In the compound option model, the volatility of the stock rate of re-
turn is nonstationary, changing randomly as the leverage changes.
Although the resultant formula appears complex (see Appendix for de-
finitions of terms), it has in intuitive interpretation. The first
two terms of the formula, VNx(h ,k ;p) —Me—rTNz(h',k';p) , represent
the present value of receiving the stock if the stock price at the
option expiration date T is greater than the exercise price

(S(T) >k, or if Vv >V) , just as in the Black-Scholes formula, only
now the stock is itself an option on the firm. The third term in the
formula is identical to the Black-Scholes second term (—Ke“rTN(ll)),
and represents the present value of paying the exercise price, if
and only if V>V (or S(T) >K) .The compound option model contains
the Black-Scholes model as a special case when there is no effective

leverage in the firm (i.e., M=0 or Ty =) .
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The displaced diffusion model (Rubinstein, 1983) is a third changing
variance model for which the simple Black-Scholes equation is again

a special case. This model is motivated from the asset side of the
balance sheet, while the compound option model is motivated by the
liabilities. In the compound option model, the changing liabilities

of stocks and bonds induces the nonstationarlty in the stocks' variance.
In the displaced diffusion model, a portfolio of risky and riskless
assets is the source of the changing variance. To keep the problem
simple, the firm is assumed to own two types of assets, one risky and
one riskless. If the value of the firm rises at greater than the risk-
less rate, it must be due to the return on the risky asset. This
shifts the portfolio composition toward the risky asset, and since
the volatility of both assets is assumed constant, the volatility of
the firm and also of the stock will rise. Thus, there is a direct re-
lation between the stock price and its volatility, which is opposite

to the relation in the compound option model.

In diffusion models, price changes are small and continuous, whereas
empirically, we sometimes notice large and discontinuous price changes.
This difference in price changes can be conceptualized as alternative
models of the rate of arrival of unexpected, important information.

An example would be the discovery of a new mine or a tender offer for
the firm. To construct a hedging model of discontinuous price changes,
the discontinuity must be deterministic. This is one example of a pure
jump process, where the price is constant between jumps, and very in-
frequently a jump of constant amplitude occurs. The resulting jump
model (Cox-Ross, 1976b) has two terms as in the Black-Scholes equa-
tion, and the interpretation of them is similar to before. However,
the probability terms indicative of whether the stock price is greater
than the exercise price are complementary Poisson, rather than cumu-
lative normal. Although this model allows for the empirically ob-
served discontinuous price changes, the assumption that in between
infrequent jumps the price remains constant, and at the jumps the

size of the price move is constant seems unrealistic.

The diffusion-jump model (Merton, 1976a) is an attempt to incorporate
a more realistic distribution than the pure jump process. If the am-
plitude of the jump is allowed to be random, and if between jumps
small random (diffusion) price changes are allowed, then the resul-
tant model will no longer be a pure hedging model. No arbitrage port-
folio can be constructed to remove this generalized uncertainty.

However, if the jumps of individual stocks are assumed to be uncorre-
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lated with the market, then all of the jump risk is nonsystematic

and thus diversifiable. The intuition of the solution to this pro-
blem is that a hedger must hold a well-diversified portfolio to
eliminate the jump risk, and then continuously adjust the portfolio
to hedge the diffusion risk. Thus, the resulting formula contains the
sum of infinitely many Black-Scholes type calls weighted by the
Poisson probabilities reflecting the likelihood of the jumps. The
variance of the jump-diffusion differs from the pure diffusion, but

it is stationary.

2.2.4 Analytic Models for American Calls and Puts

All of the above hedging models listed in Table 1 were developed fo;
valuing European options, but listed options are American and can be
optimally exercised at any time prior to expiration. As previously
discussed, puts always have a positive probability of early exercise,
while calls may only be exercised just before a dividend payment or
at expiration. Many approximations exist which accurately price Ameri-
can options. In discrete time, the binomial model can be modified to
check for exercise at all relevant instants. In the case of listed
call options on stock which currently have at most a nine-month life
in the U.S. (in Germany nine and one half months), there would be a
maximum of three dividends and one expiration, or four exercise times
during the life or the option. For currently listed puts, approxima-
tely 150 exercise checks are necessary for penny accuracy (Geske-
Shastri, 1985). In continuous time, when approximating the partial
differential equation subject to the relevant exercise boundaries, a
similar number of critical stock price computations are required for
accurate valuation of both puts and calls. However, when evaluating
an analytic solution to the continuous time problem, only three or

four exercise checks are necessary for accuracy.

These analytic models of American calls (Roll, 1977, Geske, 1979D,
and Whaley, 1981) and puts (Geske-Johnson, 1984) are based on the
compound option model. At each relevant exercise instant, the inves-
tor has an option on an option, and the choice is either to exercise
or to take the next option. The solutions are differentiable, and
thus provide analytic formulae for hedge ratios and other sensitivi-
ties. Furthermore, this compound option approach can be used to value
American options on currencies and futures, where both calls and puts
have a positive probability of premature exercise at every instant.
Shastri-Tandon (1984a), Whaley (1984a), Bodurtha-Courtadon (1984)
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model American options on currencies, while Shastri-Tandon (1984b), -
Whaley (1984b), Brenner, Courtadon, Subrahmanyan(1984), Ramaswamy
and Sundaresan (1984), and Ball-Torous (1985b)model American options

on futures.

The hedging models based on arbitrage provide unique insights about
preference-free valuation. In fact, since preferences do not enter
the problem, the solutions should be consistent with any set of pre-
ferences. ') Thus, if we assume risk neutrality, we should be able to
discount the expected value of the option at expiration by the risk-
less interest rate to find the option's current value. In order to
compute the expected value of the option at expiration, if we can
find the terminal distribution of stock price changes conditional on
the current stock price, then we can solve the option valuation pro-
blem by conventional discounting of cash flows. Cox-Ross (1976b) de-
monstrated this solution technique. However, if we cannot create self-
financing, riskless hedges, then preferences will enter the valuation
process. If trading is not continuous, possibly because of trans-
action costs, or if other sources of risk enter the option problem,
possibly through random interest rates or payouts, or if the jumps are
correlated with the market, then perfect hedging may not be feasible,
and preferences may enter the problem. The next section discusses

preference-based option models.

2.3 Preference Assumptions and Non-Hedging Models

Prior to the growth of interest in option models, most valuation
theory in financial economic approached the valuation problem from
the demand, or preference side. In the recent tradition of solving
choice problems under uncertainty by assuming individuals maximize
expected utility of terminal wealth, much effort has been placed on
investigating the conditions where individual demand equations can
be aggregated to arrive at a market clearing valuation equation. The
work of Wilson (1968) and Rubinstein (1974) documenté the sets of
assumptions on preferences (i.e., utility functions) and beliefs
(i.e., distributions) which will allow aggregation yielding equili-
brium valuation eqguations. The difficulty with most of these solu-

tions is that they involve the estimation of parameters such as the

1) See Harrison and Kreps (1979) and Kreps (1981) for details regarding
preference requirement in arbitrage pricing.



expected return on the market, or a market risk aversion parameter

where the measurement error is large.

Rubinstein (1976) was the first to demonstrate that the continuous
trading assumption could be relaxed in a preference-based setting,
and yet a preference-free option model would result. If utility
functions are of the constant proportional risk averse (cpPrA) family,
and stock returns are lognormally distributed, then the resultant op-
tion valuation equaticn is identical to Black-Scholes. At first, this
seemed to be a paradox, since riskless hedging appeared to be the key
ingredient necessary for a valuation expression independent of an
expected return. However, recall that investors who possess the class
of constant absolute and constant proportional risk averse utility
functions behave myonically (i.e.,are shortsighted). Myopia implies
that investors today act as if they will not value the opportunity

to revise their portfolios tomorrow (Mossin, 1968), even if they

ultimately do revise tomorrow.

Brennan (1979) extended these preference-based results by showing
that with constant absolute risk averse utility functions, and nor-
mal distributions of security returns, risk neutral valuation re-
sults also occur. These risk neutral valuation relations may pfovide
valuable insights to our understanding of more complex option valua-
tion problems where riskless hedging does not appear feasible. Rubin-
stein's (1976) result is based on a familiar "arbitrage" condition
termed the "law of one price". The idea is that any two securities
with identical cash flows in every state must sell for the same
price. Brennan's (1979) basic valuation equation follows from the
first order conditions of the portfolio optimization problem for the
representative investor. Egle and Trautmann (1981) confirmed these

results by using an alternative, more basic, "no-arbitrage" condition.

2.4 New Option Instruments

Since the advent of the equity option market in April, 1973, new
options have been proposed and listed on many other instruments.
Although some of the proposals are still pending by the Securities
and Exchange Commission (SEC), today, options are listed on curren-—
cies, on stock indices, on debt instruments and on futures trading
on these underlying instruments. Many of the earlier option results
will apply to these new contracts, but there are some differences.

For example, call options on futures and currencies will always

95
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possess a positive probability of premature exercise, and like the
American put, will be more difficult to value. The empirical investi-
gation of these new option instruments is just beginning, and some

results will be presented later in this paper.

The concept of early exercise for an American call on a future can
be seen immediately by considering a Furopean call. Black (1976)
showed that since arbitrage relates the futures price, F, to the

rT

current spot price S by the riskless cost of carry (i.e., S=Fe ),
the Black-Scholes European option pricing model will apply to Euro-
pean futures options simply by substituting Fe—rT for the stock
price S in equation (15). Now, as the futures price becomes large
relative to the exercise price, the value of a FEuropean call on a
future converges to (F-—K)e_rT as a lower bound. Since the American
call can be exercised immediately for (F-K) , early exercise is al-
ways possible. The reasoning is similar for American currency options,
where the differential interest rate between domestic and foreign '
countries is similar to a stock paying a continuous dividend. Since
call options on dividend-paying stocks can be exercised early, Ameri-
can call options on currencies will be more valuable than European

calls.

Options on government securities (i.e., debt options) are more diffi-
cult to value because of the interest rate sensitivity of the fixed
payout, and because the bond price converges to the amount of the
terminal payout (i.e, face value). The fact that each fixed (cf.,
semiannual) payout is sensitive to a different intérest rate implies
that debt option values depend on many correlated random variables.
Originally, most papers in this area assumed a specific stochastic
process for the interest rate(s) which determined bond prices. For
example, Brennan-Schwartz (1982) derived an equilibrium model of the
term structure which implied equilibrium bond prices, and then options
were priced off these bond prices. Geske (1981) pointed out that a
hedqihg approach between the optioned bond, a financing bond, and the
option might yield a better model because bond market prices could be
used directly, regardless of whether the bond price was an equilibrium

price.

While Brennan-Schwartz' equilibrium approcach and Geske's hedging
approach both required two random variables, Courtadon (1982) and
Cox, Ingersoll, Ross (1985) presented a model based on only one ran-

dom interest rate. Ball and Torous (1983) assumed a stochastic pro-
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cess for the bond price (Brownian bridge) which accommodated its
convergence to a terminal value. The empirical work is slowly
accumulating, while the theoretical work on this difficult problem

continues.

2.5 Applications of Option Theory

As was first noted by Black-Scholes (1973) and Merton (1973a), op-
tion theory can be used to value corporate securities. Merton (1974)
showed that the stock and pure discount bonds of a firm that has no
other payouts can be valued directly by application of option theory.
This leads to insights about the risk structure of interest rates.
Black-Cox (1976), Geske (1977), and Cox-Ross (1976b) extended the
analysis to consider junior debt, securities of arbitrary maturity,
and general corporate payouts. Ingersoll (1976) and Brennan and
Schwartz (1977) applied the theory to problems of dual funds and
callable, convertible debt and preferred stock. Option theory has
also been applied to interpretations of the firm's financing and in-
vestment decisions by Galai and Masulis (1976), insurance concepts,
such as deposit insurance by Merton (1977%) portfolio insurance by
Leland (1980)to warrant valuation (Galai-Schneller, 1978), and
Emanuel (1983), leasing problems, rights offerings, and employee
stock options (Smith-Zimmerman, 1976). The list of applications is
already long and still growing. The empirical evidence collected to

date on a variety of option concepts is the topic of the next section.

3. Empirical Tests of Option Valuation

The primary goal of this chapter is to present the main results of
the empirical work in option valuation. After a discussion of the
problems of testing model validity and market efficiency, the analy-
sis concentrates on the empirical examination of the theoretical re-
sults discussed in Section 2. To begin, a few useful terms will be

defined and explained:

1. Vafue vs. Price: The distinction is the market prices an asset
while a model values the asset. An asset will be considered
underpriced (overpriced) when the market price is below (above)
the model value. Underpriced (overpriced) assets are considered

to be good buys (sells).

2. Efficient market: A market (or a set of markets) will be termed

efficient if no single trader can consistently make above-normal,
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risk-adjusted profits on an after-transaction cost and after-

tax basis.

3. Synchronous markets: Synchronous markets are markets in which (1)
trading in related assets takes place simultaneously in time
(trading synchronization) and, (2) the technology for registra-
tion of trades accurately reflects the transaction time and the
time the price information is made available to market partici-
pants (data sychronization). Market synchronization is required
in order to test for arbitrage profits, although it is not a

necessary condition for market efficiency.

4. Above-nonmal profits: For a riskless portfolio strategy (e.g., buy-
ing one option and selling the appropriate number of underlying
shares), above-normal profits mean profits in excess of the
risk-free rate of interest (i.e., on a government bond with the
same maturity as the strategy). An uncertain yield is considered
above-normal, if, after adjusting for risk, it is in excess of
the expected return. The expected return is determined by an
asset pricing model (c.f., the capital-asset-pricing model (CAPM)

or the arbitrage-pricing model (APM)).

5. Ex-post fests: Based on information at time t , a trading strategy
is devised and, by assumption, a position is established based
on prices at time t . The position will be liguidated one period
later at t+1 , based on prices available at that time. Such a
test procedure ignores the time lag in acting upon a profit op-

portunity indicated by the date, t , mispricing signal.

6. Ex-ante tests: Based on information at time t, a trading strategy
is devised, but the position is established at time t+1 at
prices that are unknown at time t . The position will be liqui-
dated one period later at t+ 2 , based on prices available at
that time.

The statistical inference based on empirical studies of option valua-
tion is complicated by the fact that usually some or all of the hypo-
theses about model validity (and its correct parameter estimation),
market efficiency, market synchronization and data accuracy are
tested jointly. In order to gain clearer insights from these con-
founding joint tests, empirical analysis of option valuation can be

classified in the following way:
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1. Test of boundary conditions between &an individual option and

the underlying asset.

2. Tests of boundary conditions between different options and the

underlying asset.

3. Tests of absolute price levels for options.

From Section.2, it is clear that most boundary conditions are model
independent and, therefore, the corresponding tests are more rigoxous
than those of the third class. But even boundary condition tests are
joint tests of market efficiency, market synchronization, and data
accuracy if market synchronization cannot be guaranteed, and the
tests are conducted as ex-post tests. Given accurate data and correct
risk adjustment, above-normal profits from an ex-post test may indi-
cate either market inefficiency or nonsynchronous markets. It is a
definite indication of market inefficiency only if above-normal pro-
fits are revealed from an ex-ante test. Table 2 summarizes the ex-
pected results for the different permutations of the joint hypotheses
regarding model validity, market efficiency, and market synchroniza-

tion, given accurate (market) data.

Empirical tests of option valuation models may be further complicated
by market imperfections. Besides ignoring commissions costs and taxes,
most option models also ignore the bid-ask spread. The latter should
be considered in an efficiency test, since a listed security is ge-
nerally bought at its (higher) ask price and sold at its (lower) bid
price. The observed bid-ask spread is the most important component

of the transaction costs, whenever market efficiency is measured in
terms of a lowest cost trader, such as a market maker on the trading
floor paying negligible commissions and no brokerage fees (c.f.,Phil-
lips and Smith, 1980). Other sources of problems are insufficient depth
(i.e., number of-option contracts traded at a given price) or the
virtual illiquidity of some option contracts and markets (out-of-the-
money options near expiration or the German stock option market be-
fore the 1983 changes in trading rules), or finally, the discreteness
of trading with minimum price changes will affect the results (e.g.,
in the U.S. markets, one-eighth $ for options, and in the German

stock option markets, one-twentieth DM for stocks and options).
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Table 2

Joint Hypotheses and Expected Results

(Adapted from Galai, 1983)

Model is Correct

and its Parameters Option Market Markets are
P s Expected Results

are Correctly is Efficient Synchronous
Estimated

Yes Yes Yes Good predictions of option prices
by the option pricing model for
given stock prices. But, there is
not way to make above-normal pro-
fits.

Yes Yes No "Paper" ex-post profits, but no
above-normal profits can be ex-
pected ex-ante.

Yes No Yes Ex-ante above-normal profits are
expected. No alternative model
is expected to yield more.

Yes No No Both "paper" and realized profits
are expected.

No Yes Yes Less than (risk-adjusted) expec-—
ted profits, though normal.

No Yes No Less than (risk-adjusted) expec-—
ted profits, may be ex-post pro-
fits.

No No Yes Potential for above-normal pro-
fits, but an alternative model
may yield more.

No No No Poor predictions of option prices;

an alternative model may show
higher ex-post and ex-ante pro-
fits.

3.1 Test of Boundary Conditions Among an Individual Equity Option

and the Underlying Stock

Rational boundaries for the price of a simple call or put option are
described by relations (1) and (5), respectively. Of these upper and
lower boundary conditions, only the lower boundary condition for a
call option has been empirically tested. Galai (1978) and Bhattacharya
(1983) performed tests of dividend unprotected call options traded on
the Chicago Board Options Exchange (CBOE) during the exchange's first
eight months of operation (April 1973 to November 1973), and during
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the period August 1976 to June 1977, respeCtively; While Galai's
(1978) early data ignores'the depth of the market, the bid-ask
spread, and transactions costs, Bhattacharya's (1983) better data
does closely approximate the market's operational constraints. Both
studies consider the time lag in acting upon a profit opportunity
indicated by a mispricing signal. That is, market efficiency is

tested by means of Galai's ex-ante test.

Table 3 presents the observed frequency and average size of three
types of call option lower bound violations defined in the following
equations characterizing (1) immediate exercise, (2) European lower

bound, and (3) pseudo-American lower bound, respectively:

€1 = S-K~-C<O (16)
~xT I ~rt-
€2 = S-Ke - £ p.e J-cx<o (17)
=1 J
€5 = max(S—Ke—rti— ¥ D, e_rtj) -c<o0 , (18)
i€1 j<i J
where I={1,...,n+1} , to=0 (the current date), tn+1=T ,and
Dj denotes the amount of dividend paid at date tj (3=1,2,...,n) .
Table 3

Tests of Call Option Boundary Violations

(Results of Bhattacharya, 1983)

Immediate European Pseudo~American
exercise test lower bound test lower bound test
Ho : €450 Ho : €250 Ho : €350
Sample size 86,137 54,735 32,432
Mispricing frequency 1,120 1,304 4472
Average mispricing 12.57 9.88 10.85
per contract (%) : : .
Number of positions 759 670 139

executed

Average profit per
contract $)

e for a zero
transaction 4.91 5.17 8.20
cost trader

e for a member

of the NYSE - 0.59 - 6.98 - 8.26

e for a member

of the CBOE - 7.00 -13.14 - 8.63




102

The first type of mispricing occurs if the immediate exercise value
of the option is greater than its current market value (i.e., €4 >0).
The second type of mispricing takes into consideration the European
lower bound for a dividend unprotected call option that is expected
to be held to its maturity. That is, if e, >0 , then the European
call dominance condition is violated. Finally, if the expression de-
fined as €3 1is positive, then the pseudo-American lower bound is
violated. As distinguished from the European lower bound, this lower
bound considers the possibility of exercising the unprotected Ameri-

can call at any time tj , Jjust before the stock goes ex-dividend.

A comparison of Galai's and Bhattacharya's ex-post test results shows
that the relative mispricing freguencies (mispricing frequency divided
by sample size) observed in both studies are similar. The average
dollar mispricing magnitudes per contract, however, are significantly
smaller in the study of Bhattacharya (1983). This result is due to the
consideration of bid-ask spreads in the calculation of the mispricing
magnitude. A second reason for the smaller ex-post inefficiency in

the later sample period might be "learning" as CBOE traders became
more experienced. On the other hand, both studies have the following
in common: mispricing occurs most frequently for deep-in-the-money
options with a short time to maturity. This leads Bhattacharya (1983,
p. 177) to conclude that if these options were held by (average) in-
vestors, "they may have sold the calls at a discount so as to avoid
having to exercise them and incur a round-trip transaction cost in

the stock." Thus, some of the mispricing may be due to the existence

of different transaction costs for different market participants.

More importantly, the last three rows of Table 3 demonstrate that only
in the zero transaction cost case, the observed mispricing could have
been translated into above-normal profits on an average basis. Further-
more, by trying to simulate a trading strategy based on mispricing
signals, Bhattacharya (1983), like Galai (1978) for his earlier sample
period, observes a "substantial reduction in the mean profit oppor t-
unities coupled with their transformation into uncertain outcomes"”
(Galai 1978, p. 209). In summary, for the largest option market in

the world, no evidence contrary to option market efficiency was found

when transaction costs were taken into account.

In a recent paper, Trautmann (1985a) reports violations of the Furo-
pean lower bound for call options traded on the Frankfurt Option Ex-

change (FOE) during the first eighteen months after the 1983 trading
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rule changes (April 1983 to September 1984). Compared with the
European lower bound test in Table 3, in this study the violation
is defined by

eh =ez+(§ D,) T (19)

j=t J

because stock options traded in Germany are (partially) payout pro-
tected (i.e., similar to Over-the-Counter (OTC) options in the United
States). That is, when a stock pays a dividend, the exercise price
of the option is reduced by the amount of the dividend. Also, when a
company issues rights to purchase additional shares of stock at less
than the market price, the exercise price is reduced by the market

price of the right, if the rights expire before the options.

There were 891 violations of the bound, or about 1.4 % of the sample
size of 63,391, when the transaction costs of the lowest cost trader
were taken into account. The average mispricing magnitude was DM 59.96
per contract (comprising rights to 50 shares in the case of German
stocks). When a strategy based on observed mispricing was acopted,
the resulting executed positions averages losses of DM 60.58 net of
the transactions costs for the lowest cost trader (e.g., the floor
broker). Recall that such a trading strategy consists of buying the
call, shorting or selling the stock, lending an amount equal to the
sum of the present values of the exercise price and the expected di-
vidends, and holding this portfolio until expiration. Since short
selling is not permitted legally in Germany, however, this strategy

could have been pursued only by owners of the underlying stock.

Tests concerning the immediate exercise lower bound and the pseudo-
American lower bound have not been conducted in Trautmann's study be-
cause Geske, Roll and Shastri (1983) demonstrated that this payout
protection completely inhibits the early exercise of American call
options. Therefore, for the payout protectedcall options traded in
Germany, the pseudo-American lower boundary test parallels exactly
the European lower boundary test. On the other hand, violations of
the immediate exercise lower bound may not have been observed in
Germany for two simple institutional reasons: first, in Germany, a
call option cannot be bought and exercised on the same day. Second,
the German board-brokers who trade stock options have reportedly pre-

vented call transactions from violating this condition.
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3.2 Test of Boundary Conditions Among Different Equity Options

and the Underlying Stock

Among all boundary conditions involving more than one option written
on the same underlying stock, most interest has been devoted to the
relations between the prices of a put and a call option having the
same exercise price and expiration date. This relation, termed put-
call parity was first proposed and tested by Stoll (1969). By trans-
forming equation (9) into a least-squares regression model, he empiri-
cally investigated put-call parity among Over-the-Counter (OTC) op-
tions written during 1967 in the U.S. Even though the estimated in-
tercept was significantly higher than the expected value (zero),

Stoll (1969, p. 823) reasons that his results are consistent with

his model.

Later, Gould and Galai (1974) argued that regression analysis is not
an appropriate tool for investigating arbitrage opportunities. Follow-
ing Merton's (1973b) extension of put-call parity to American options,
they claimed that, in the absence of transaction costs, any market
violation of relation (10) may indicate market inefficiency. Again,
using OTC options data from 1967 to 1969, Gould and Galai observed
many violations where the right side of condition (10) exceeded the
price of the put. Taking into account transaction costs, these mis=-
pricing signals disappeared for nonmembers of the exchange, while
members could have made above-normal profits. However, no ex-ante
test has been conducted to examine the extent to which the remaining

mispricing signals would translate into above-normal profits.

Klemkosky and Resnick (1979) were the first to test the put-call
parity relation for American options traded on the CBOE, the American,
and the Philadelphia Stock Exchanges. Transactions data for one day
each month from July 1977 to June 1978 for fifteen stocks and their
dividend unprotected options were used in testing relation (10),
modified for dividend payments. Also, the data was screened to eli-
minate those options which were likely to be prematurely exercised.
Violations of the lower and upper boundary (in terms of a call) for

a dividend unprotected American put are expressed by the gross ter-

minal profit, €4, from engaging in a long hedge position:
n —t
cu=(C-P-S)e"T+K+ I Djer(T t5) (20)

. j=1
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and by the gross terminal profit, es, from engaging in a short hedge
position:
n .
€5=(S+P—C)erT—K— ¥ D,e 3) (21)
=1 J
A long hedge position can be established by selling (writing) a call
and purchasing an equivalent position obtained by a long position in
the underlying stock, buying a put, and financing the purchase in
part by borrowing at the riskless interest rate r the amount
rT -rty
J

Ke ™ -+Z?:1 Dje , where Dj is the dividend payment at date tj‘

In order to approximate the required simultaneity of option and stock
prices, Klemkosky and Resnick (1979) considered only those positions
whose hedge securities were traded within one minute of each other.
From these 606 positions, 66 violated the sufficient condition for

no premature exercise of the call option and were eliminated. Of the
remaining 540 long hedge positions, 243 guaranteed a non-negative,
riskless terminal profit (e4 >0) . But, after introducing transac-
tion costs of $20 per trade for a member of the exchange and $60 for
a non-member, it was found that only 147 member observations and 38
non-member observations of the 540 acceptable observations, respec-

tively, were still profitable.

In perfect capital markets, a short hedge position is obtained by
selling a long hedge position (i.e., e4 =-es5) . The corresponding
terminal profit, es, however, equals =-e4 only if neither the put
nor the call option will be prematurely exercised. For a call option,
there exists a sufficient condition for not premature exercise, but
without sufficient dividends paid exactly at expiration, there is no
condition which assures that the put will not be exercised early.
Hence, the return on a short hedge where an American put is written
is potentially more risky to the hedger than the return on a long
hedge where the put is bought. Using the same data set, Klemkosky
and Resnick (1979) found that of the original 606 short hedge posi-
tions, 240 (127) indicated positive terminal profits, es , in excess
of the $20 ($60) transaction cost. However, the extent to which re-
tional premature exercise of the put would reduce profits was not

examined.

In their 1979 paper, the ex-post analysis was not followed by ex-
ante tests. Consequently, the detected "paper" profits may have been

solely a result of asynchronous markets. Therefore, in 1980, Klem-
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kosky and Resnick extended the previous work by conducting an ex-
ante analysis with the same data set. Hedges constructed five and
fifteen minutes after mispricing signals indicated terminal profits
in excess of transaction costs of $20 per hedge. Although the long
hedge results indicate that only for high ex-post profitability
levels the corresponding ex-ante level is significantly lower, the
market éfficiency hypothesis was not rejected by the authors. This
conclusion is not surprising given the results of Phillips-Smith
(1980), who showed that even for a member of both the stock and op-
tions exchanges, the total level of transaction costs {(including
opportunity costs of membership on the exchanges and the bid-ask
spread differentials) exceeds $70 per contract. Furthermore, for the
ex-ante results of the short hedge, profits were significantly lower
than the ex-post results on the long hedge investments, but higher
than the ex-ante returns. This might be expected, since these higher
returns may be regarded as a compensation for the risk associated

with the written put in the short hedge position.

Trautmann (1985a) also examines the profitability of long hedge posi-
tions consisting of stock and dividend protected options traded on
the Frankfurt Stock Exchange and Frankfurt Option Exchange, respecti-
vely, during the period April, 1983 to September, 1984. Because of
the protection of German stock options against dividend payments, the

gross terminal profit from engaging in a long hedge position,

n .
ey=(c-p-91e"Tuxs T D (T T oy (22)

=1

is slightly different from equation (20). Unfortunately, the required
simultaneity of option and stock prices could not be guaranteed in

the German market. Alghough trading in the related assets takes place
(almost) simultaneously on the same trading floor, there was no infor-
mation available about the exact time of each transaction or bid/ask
price quotations. For a certain option series at most one transaction
price or bid/ask quote is registered per trading day. These prices
together with the odd-lot prices (Kassakurse) of the underlying stocks
have been used to establish a single long hedge position per trading

day and option series.

In the ex-post analysis, 8,714 of 15,507 positions revealed a mis-
pricing magnitude e , which exceeded the explicit transaction costs
of the lowest cost traders. These net terminal profits were used as

‘the signal to trigger the ex-ante establishment of the long hedge.
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The thinness of the option market, however, caused serious problems
in completing such a position within the next trading day. The long
hedge was attempted only when it was possible to buy the put option
(the least liquid asset) within the next trading day. Depite this
non-simultaneous long hedge construction, there remained some open
positions which could not be hedged (even within the next 20 trading
days). Nevertheless, 5,802 long hedge positions could be established,
and more than 75 % yielded a positive net terminal.profit for an ex-
change member. Major parts of these positive returns, however, may be
regarded as a compensation for the risk associated with the nonsimul-
taneous construction of the ex-ante long hedge position and for the

opportunity costs of an exchange membership.

The convexity rule (3), which involves three call options differing
only in their exercise prices has been empirically examined by Galai
(1979) and Bhattacharya (1983). In the latter study, which takes into
account transactions costs, only one violation of this boundary con-
dition was found among the 1,006 triplets of CBOE options observed
from August, 1976 to June, 1977. For a comparable sample size, but
earlier sample period, Galai (1979) detected twenty-four violations
for the zero transaction cost case. The results offer strong support

for the market efficiency hypothesis.

3.3 Tests of Equity Option Pricing Models

Option pricing models are constructed in part to explain or predict
the absolute price levels of options trading in synchronized, effi-
cient capital markets. The inablility of a model to explain observed

market prices may be due to one or more of the following facts:

(1) the mathematical structure of the model is incorrect, or
(2) model parameters have been incorrectly measured, Or
(3) the options market is inefficient, or

(4) the markets for the related assets are nonsynchronous.

Although most models fail strict predictability tests, other criteria
for judging the model's validity are available. To date, four major
approaches for testing an option model's validity have been distin-

guished:

(1) tests of robustness
(2) tests of predictability
(3) tests of unbiasedness

(4) tests of hedge return behavior
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Among these tests, perhaps the most intuitive is to predict market
prices with model values using parameters based on historical data.
Since casual empiricism indicates that the standard deviation of the
stock's rate of return is not constant over time, the historical vola-
tility may not be a good estimate of future volatility. Following an
idea of Latané and Rendleman (1976), more sophisticated tests of pre-
dictability use the pricing model itself to improve the estimation
techniques. By equating the option's actual market price to the model
value, and solving (numerically) for the only unobservable parameter,
the standard deviation of the stock's return, one obtains the model
implied standard deviation (ISD). Provided that (1) the model is
correct, (2) option and stock markets are efficient and synchronous,
and (3) the ISDs are derived from actual market prices, then the pre-
diction error should approach zero. Nevertheless, sufficient diffe-
rences between observed prices and model values could exist to permit
trading profits. However, a hedging test would have to be conducted
to detect systematic market inefficiency since a predictability test

only compares accuracy.

Tests of unbiasedness focus on identifying systematic behavior in the
prediction error of the valuation models. For some biases (with re-
spect to time and striking price), the concept of ISD has served as
the main workhorse, since it helps to isolate the hypothesis of the
model's validity. For bias with respect to the volatility, the ISD

is not appropriate, as will be emphasized later. Assuming the model
to be tested is valid, it is expected that the ISD will be stationary
across maturities and striking prices. Deviations from this expecta-
tion may be due to the model being misspecified. Furthermore, if vo-
latilities are constant over time, the ISD is also expected to be
approximately equal to the historical time-series standard deviation.
However, nonstationarity, market inefficiency or lack of synchronous
data may cause the deviations from this expectation which are diffi-

cult to isolate.

Tests of hedge return behavior empirically examine whether the re-
turn on an (almost) riskless hedge position is above-normal. In their
pioneering test, Black and Scholes (1972) created a riskless hedge
position by buying (selling) one option, and at the same time sell-
ing (buying) an appropriate fraction (more precisely, the hedge ratio
N(d1)) of the underlying stock. Alternatively, Whaley (1982) formed
a hedge position by buying underpriced and selling overpriced options

in proportions such that the net investment is zero and no risk is
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assumed. As long as the hedge return is computed by using market

prices, both approaches jointly test the propositions that:

(1) the mathematical structure of the model is correct, and
(2) the model parameters have been correctly measured, and
(3) the options market is efficient, and

(4) the markets for the related assets are sychronous.

Tests of robustness investigate how the results predicted by a model
change when its basic assumption are violated or when its input para-
meters are incorrectly measured. Typically, such a test involves the
direct comparison of alternative model values, or the examination of
hedge returns calculated (partly or totally) from simulated data. The
(not exhaustive) survey of the literature presented in Table 4 in-
dicates that most of the purely empirical studies on option pricihg
models involve more than a single test. It is, therefore, not possible
to unambiguously classify these studies with respect to the testing
approach applied. In the following paragraphs, the main results of

the empirical testing approaches (1) - (4) are briefly reviewed. Since
tests of robustness are useful in interpreting the other test results,

these are summarized first.

-3.3.1 Results of Robustness Tests

In a recent paper, Ball and Torous (1985a, p. 155) "provide statisti-
cal evidence consistent with the existence of lognormally distributed
jumps in a majority of the daily returns of a sample of NYSE listed
common stocks." However, they find no "operationally significant dif-
ferences between the Black-Scholes and Mefton model prices of the
call options written on the sampled stock." Ball and Torous confirm
Merton's (1976b) prediction that only for short-maturity and out-of-
the-money calls do the jump model prices deviate significantly (up

to 100 %) . Thus, although most optioned stocks exhibit statistically
significant jumps, the jumps are both too small and too frequent to

cause option values to differ much from the diffusion model.

Black and Scholes (1972) and Bhattacharya (1980) test whether the
deviation of the empirical distribution of stock price changes from
the assumed stationary, lognormal distribution affects the expected
hedge returns. To isolate this effect, Bhattacharya modifies the em-
pirical hedge return test in two ways. First, as in Black-Scholes
original study, instead of an estimate of the stock return volatility,

its realization during the option's life was used in the hedge ratio
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Table 4

Survey of Empirical Testing Approaches

Empirical and simulative studies on option pricing models (not exhaustivel!l). The
type of testing approach is marked in the following way:

1 = test of robustness, 2 =test of predictability, 3 =test of unbiasedness,

4 = test of hedge return behavior.

Note: OTC = Over-The-Counter Market, SIM=SIMulated Sample Market or period,

CBOE = Chicago Board of Options Exchange, AOE =American Options Exchange,
FOE = Frankfurt Options Exchange.

Year Name of Sample Sample Testing
of Authors Market Period Approach
Public. (Year/Month) 1 2 3 4
1972 Black/Scholes oTC 66/01-69/12 x X X

1975 Black CBOE 73/04-74/12 X X
1976 Merton SIM SIM X

1976 Boyle/Ananthanarayanan SIM SIM X
1976 Latané&/Rendleman CBOE 73/10-74/06 X X X
1977 Galai CROE 73/04-73/11 X
1977 Trippi CBOE 74/08-75/03 b'e

1978 Chiras/Manaster CBOE 73/06-75/04 X X X
1978 Finnerty CBOE 73/04-74/12 X
1978 Schmalensee/Trippi CBOE 74/04-75/05 X X
1979 MacBeth/Merville CBOE 75/12-76/12 X X
1980 Boyle/Emanuel SIM SIM X

1980 MacBeth/Merville CBOE 75/12-76/12 x X
1980 Bhattacharya CBOE 76/05~77/10 b'e

1982 Whaley CROE 75/01-78/03 X X X
1982 Gultekin/Rogalski/Tinic  CBOE/ACE 75/01-76/01 X X
1982 Emanuel/MacBeth CBOE 76/01-78/12 X X
1983 Blomeyer/Klemkosky CBOE 77/07-78/06 X X
1983 Galai CBOE 73/04-73/11 bd
1983 Geske/Roll/Shastri SIM SIM pie
1983 Trautmann FOE 79/01-83/03 X X
1934 Geske/Roll SIM SIM b'd
1984 Geske/Roll CBOE 76/08/24 X X X
1984 Blomeyer/Johnson CBOE 78/06-78/08 x X
1985 Ball/Torous CBOE 83/01 X

1985 Rubinstein CBOE 76/08-78/08 X
1985 Trautmann FOE : 83/04-85/06 X X X

calculation. Second, in the hedge return calculation, the option's
market price is replaced by its corresponding model price. This ana-
lysis of the hedge returns led Bhattacharya (1980, p. 1,094) to con-
clude that "if stationarity of the return distributions is assumed
and hedge positions are revised daily, then the Black-Scholes formula
exhibits no operationally significant mispricing except for at-the-

money options with one day to maturity."
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While the above-mentioned robustness tests considered empirical stock
price movements, in Boyle and Emanuel (1980), stock returns were
randomly generated to simulate the assumed lognormal distribution.
Their aim is to analyze the deviations from the assumed distribution
of continuously hedged returns, when the portfolio is rebalanced at
discrete time intervals. They demonstrate that the discrete hedge
distribution is particularly skew, and some consequences of this

skewness for empirical hedge return tests are explored.

3.3.2 Results of Predictability Tests

Since listed options are Bmerican and the Black-Scholes formula is
for ‘European options, it is realisiic to cxpect 2 nrediction error
attributable to the early exercise component of the price. There are
American formulae that can price the early exercise component of
option value. These American models which model the early exercise
feature as compound options are based on the compound option model
of Geske (1979a). Whaley (1982) examines the pricing performance of
Roll's (1977) model for American call options on dividend-paying
stocks (as modified by Geske (1979b) and Whaley (1981)), and com-
pares it with two suggested approximation methods based on the Black-
Scholes model. To analyse each model's power, he uses the model-
specific ISDs calculated from the closing stock prices of week t-1
and the closing stock prices of week t to predict closing option

prices of week t

For this one-week prediction interval, all three formulas yielded
prices which are, on average, within three and a half cents of the
observed market price of $4.1388. For each of the 160 weeks in the
sample period observed market prices Cj from 91 option classes were

~

regressed on each model's price estimates Cj , as follows

C., = ap+0q C.+€. ©(23)
I R

where €5 is a disturbance term. With perfect prediction, the values
of the coefficients oo and o4 in this regression would be indis-
tinguishable form zero and one, respectively. The average values of
the weekly parameter estimates 3¢ and a4 , ranged from -0.0508 to
-0.0300 and 1.0088 to 1.0091, respectively. Whaley (1982, p. 44) con-
cludes that "all of the models seem to perform extremely well, with
the explained variation being greater than 98 percent in all cases

(i.e., the average of the coefficients of determination from the re-
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gressions R2 is 20.98 for each model). However, all models demon—
strate a slight tendency to overprice high-priced options (i.e.,

81>1) .

Although the mispricing errors were small on average, the Black-
Scholes model exhibited previously documented systematic biases. The
Black-Scholes model tends to undervalue (relativée to the market) near
maturity call options (i.e., one month to expiration), deep out-of-
the-money call options (i.e., S/K<.75), and call options on stocks
with relatively low historical volatility. The model overvalues call
options that are deep in-the-money (i.e., S/K>1.25), and call options
on stocks with relatively high historical volatility. Furthermore,
MacBeth and Merville (1979) and Rubinstein (1985) have noted that the
money bias tends to reverse itself in different time periods, and
Geske and Roll (1984a) showed that this reversal of the money bias
may be partially attributable to improper treatment of early exer-

cise.

Trautmann (1983b) tested the pricing performance of the Black-Scholes
model using dividend-protected FOE options written in the 222-week
period before the 1983 changes in trading rules. In this sample period,
no organized secondary market for stock options existed. Thus, trading
was illiquid, and an option's price could only be consistently ob-
served on the day the contract was written. An observed option price
was only considered if within the preceding five trading days at least
two contracts have been written on the same underlying stock with the
same maturity. All prices observed within this five—day period for
options of the same maturity were used to calculate the ISDs are pre-
dictors of the future return volatility. The average values of the
weekly parameter estimates, &, and &4 ranged from 0.072 to 0.121
and 0.981 to 0.993, respectively, depending on the option's maturity.
The average of the coefficients of determination from the cross-sec-
tional regressions R2 , ranged from 0.915 for 2-month options to

0.953 for 6-month options.

Emanuel and MacBeth (1982) extended the previous research of MacBeth
and Merville (1980) in comparing the predictability of the Black-
Scholes and CEV model. The root-mean-squared forecast errors indi-
cate that for short-term predictions, the CEV model yields more accu-
rate predictions that the Black-Scholes model. However, "the super-
iority of the constant elasticity of variance model diminishes as the

prediction interval increases. In general, for prediction intervals
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of one month or longer, the Black-Scholes model does as well as the
constant elasticity of variance model" (p. 541). The explanation of
this result may be found in the nonstationary behavior of the esti-

mated elasticity parameter p in the CEV model.

The American put valuation problem has been addressed by Brennan-
Schwartz (1977), Parkinson (1977), Cox, Ross, and Rubinstein (1979),
and Geske and Johnson (1984). The empirical work on valuing Ameri-
can puts is less advanced than for American calls, in part because
puts werde not listed until June, 1977. Brennan-Schwartz find that
putholders do not seem to optimally exercise the put. Farkas and
Hoskin (1979), using Parkinson's model on weekly CBOE data from June
to December, 1977, find the model to undervalue the puts on average,

especially the out-of-the-money options.

In a direct comparison between a European and an American valuation
model, using 10,295 CBOE transaction observations from June through
August , 1978 , Blomeyer and Johnson (1984) establish that the Geske-
Johnson American model dominates the Black-Scholes European model.
Although the Geske-Johnson American put model will yield the same
value as the above alternatives, it is an order of magnitude faster.
The fact that the American value is significantly closer to the mar-
ket price in more than the majority of cases indicates that the early

exercise is an important component of the put price.

In summary, it must be concluded that in the case of the most widely
traded dividend-unprotected American call options, Roll's (1977)
American formula did yield consistently better predictions of market
prices than the Black-Scholes European model. Also, the Geske-Johnson
American put model appears to dominate the Black-Scholes European

model.

3.3.3 Results of Unbiasedness Tests

The Black-Scholes model values do not consistently give unbiased pre-
dictions of market prices. The reported biases have occurred with re-

spect to

® the stock's volatility
e the exercise price

® the time until expiration.
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Black and Scholes (1972) aﬁd MacBeth and Merville (1979) document the
phenomenon that options on low-risk stocks are undervalued and options
on high-risk stocks are overvalued by the model. Black (1975) reports
that in the early years of trading on the CROE, the model systemati-
cally undervalued deep out-of-the money options and near-maturity options
while it overvalued deep in-the-money options. However, MacBeth and
Merville (1979) and Rubinstein (1985) document a reversal of this
striking price bias for the years 1976 and 1977, respectively. That

is, the authors conclude that the RBlack-Scholes model undervalues
(overvalues) the prices for in-the-money (out-of-themonev) ontions.This
bias acts as if the ISD, the stock volatility implied by an observed
option price, were inversely related to the exercise price. But,
Emanuel and MacBeth (1982) found that the original striking price bias
observed by Black (1975) (which exhibits a direct relation between
ISDs and exercise prices) had reestablished itself in late 1977 and

1978.

Geske and Roll (1984a) offered an explanation of these biases based
on the dividend-induced early exercise feature of American call op-
tions. In fact, Whaley (1982) does demonstrate empirically that these
biases are reduced when Roll's (1977) American call option formula is
employed. For each model Whaley tested, the following cross-sectional
regressions were estimated for each week during the 160-week sample
period to regress the relative prediction error on the stock's vola-
tility, the extent to which the option is in- or out-of-the-money,

and the time until expiration:

Com=0

3 J - gpraqb. te, (24)
C. J J
J

c,-¢, s.-x.e T3%5,

_.3_:__;: Qo + G4 (’*‘l—j“-‘-{‘*)*'ﬁ (25)
Cj K.e_rj J J

J

c.-C.

s raT re, . (26)
C J J

Roll's (1977) corrected formula serves to reduce the magnitude of the
slope coefficient «; and the coefficient of determination in the
cross-sectional regressions (24),(25), and (26), but the hypothesis
that there is no relationship between the relative prediction error
(Cj -Ej)/éj and the volatility estimate 3j is soundly rejected.

Contrary to previous evidence, for each of the three models compared,
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the extent to which the optién is in-the-money or out-of-the-money
apparently does not significantly affect the model's prediction error.
The results of regression (26) show that while there exists a signi-
ficantly negative relationship for the valuation method based on the
Black-Scholes formula (i.e., it undervalues near maturity options and
overvalues longer maturity options), it virtually disappears when

Roll's model is used.

Geske and Roll (1984a) suggest that dividend uncertainty may explain
a small component of the variance bias exhibited by both the Black-
Scholes European and Roll's American model. Trautmann (1983b), how-
ever, demonstrates empirically with FOE data that the consideration
of this aspect does not remove this bias. By constructing a subsample
of 19,040 call options with no dividend payments expected prior to
expiration, it was found that in this subsample the variance bias is
even more significant than in the total sample comprising 28,299 op-

tions.

Rubinstein (1985) examines whether one of the alternatives to the
Black-Scholes model listed in Table 1 can explain the observed strik-
ing price and time-to-maturity biases of the Black-Scholes values.
The null hypothesis is that the Black-Scholes formula produces un-
biased values and hence ISDs should be constant for options on the
same underlying stock with different maturities and striking prices.
By comparing simulated and observed ISDs across maturities and strik-
ing prices, he tries to distinguish which pricing formula seems to
better explain the observed biases from Black-Scholes values. This
methodology avoids the difficult task of estimating the stock volati-
lity. Furthermore, to circumvent possible objections of regression
analysis with data that is not normally distributed, nonparametric
tests were conducted since they require no assumptions about the po-
pulation from which the observed sample is drawn. According to this
test design, Rubinstein argues that the main measurement problem is
the simultaneity of the market prices for the option and the under-
lying stock. To surmount these problems, the data are taken from
Berkeley Options Transactions Data Base. This is a time-stamped record
(to the nearest second) of all reported trades, quotes, and volume on

the CBOE during the day.

Examination of the observed ISDs from August 23, 1976 to August 31,
1978, confirms the previous finding that, for an out-of-the-money

call, the shorter the time to expiration, the higher its ISD which
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means it was relatively oﬁerpriced. This is the only result which is
consistent over the whole sample period. The other conclusions depend
on the subperiod considered (first subperiod: August 23, 1976 to
October 21, 1977, second subperiod: October 24, 1977 to August 31,
1978), and reveal reversals in both the time and money bias observed

in each subperiod.

These conclusions confirm the previous findings of MacBeth and Mer-
ville (1979) that the direction of the striking price bias changes
from time to time. More importantly, Rubinstein concludes that no one
alternative model seems to remove all the observed Black-Scholes
biases. His proposal is to build a composite model which might, in
addition, depend on some macroeconomic variables, such as the level
of stock market prices, the level of stock market volatility and the

level of interest rates.

Geske and Roll (1984b) repeat Whaley's tests using the Berkeley Op-
tions Transaction Data for all options traded at midday on August 24,
1976, resulting in a sample of 667 different options on 85 stocks.
Options on the same stock differed by exercise price, expiration
dates, and scheduled dividend payments prior to expiration. A sub-
sample of 119 options in 28 different stocks with zero scheduled
dividends during their remaining life was identified within the main
sample. Using regression .analysis, Geske and Roll demonstrate the
original time, money, and volatility biases are present in the entire
sample. Next, they show that in the nondividend subsample, the time
and money biases are significantly reduced, but the volatility bias
remains large. However, by correcting the volatility estimates of

all stocks for errors in variables by "shrinking" the volatility of
each stock in their sample toward the mean of the sample in a manner
suggested by Stein (see Effron and Morris, 1975) the volatility bias
is reduced. Thus, Geske and Roll conclude that the time and money
biases may be more related to improper model treatment of early exer-
cise while the volatility bias may be more related to estimation pro-

blems than to model assumptions (see Section 3.5).

3.3.4 Results of Hedge Return Behavior Tests

Most of the studies using option valuation models to identify over-
valued/undervalued call options and then testing for market effi-

ciency are based on the hedging technique of Black and Scholes (1972).
That is, if the model wvalue CM is higher (lower) than the market

price C , the call is underpriced (overpriced), and a long (short)
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position is taken in the call with a corresponding short (long) po-
sition is in the stock. If, in an ex-post test, the hedge position
is established at time t and liquidated at t+1 , the ex-post

hedge return is

' . M
. . f (Ct+1-Ct)-N(dllt)(St+1-—St) if Ct<Ct o)
H,t+1 | ) M
- - (C -
N(dl,t> (Siq St) ( 41 ct) if C.>Cp
The hedge return minus the opportunity cost (erAt—1)IH ¢ °on the
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investment
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will give the excess return for the hedged position.

Working with OTC data, Black and Scholes (1972) adjusted the hedge
position daily by buying or selling shares of the underlying stock,
assuming no transaction costs. Since a secondary market in OTC op-
tions was virtually nonexistent, they use their model to simulate the
market prices needed for the calculation of daily hedge returns. When
regressing the observed positive excess returns against a market in-
dex, no significant systematic risk was detected. When traﬁsactions
costs were included, the substantial positive excess returns detected

in the zero transaction cost case vanished.

Galai (1977) repeated this ex-post test with CBOE options by adjust-
ing the options' positions. The hedge return averaged over all option
contracts considered was $9.80 per option contract (on 100 shares)

per day. Furthermore, he performed an ex-ante test where, on day t- 1,
it is decided whether the option was over or underpriced, and the
hedge ratio was calculated. The hedge position, however, is estab-
lished and liquidated on day t and t+1 , respectively. As expected,
the average of the hedge returns fell from $9.80 to $5.00 per option
contract per day for the ex-ante test. While in the ex-post test for

71 option series out of 202, the average of the time-series hedge re-
turn was significantly different from zero (at the 5 percent level of
significance), this number dropped from 71 to 12 in the ex-ante test.
Since the average opportunity costs for the hedge investment (about
$0.30 per contract per day) were found to be negligible, only the
inclusion of transaction costs might eliminate the remaining positive

hedge returns.
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Similar magnitudes of excéss hedge returns were observed when a
spreading strategy was simulated. A spreading strategy consists of

a long position in an undervalued option on the same underlying stock.
Galai (1977, p. 195) concludes that "the market did not seem perfect-
ly efficient to market makers" but,... "it does not seem that a non-
member of the CBOE can expect to achieve above-normal profits con-

sistently."

Chiras and Manaster (1978), in a similar study, use ISDs instead of
historical volatilities to identify over or underpriced CBOE options
with respect to the Black-Scholes values. A spread position is estab-
lished for those options whose theoretical values deviate by at least
10 percent from the market price. The amount of each option included
in the hedged position is determined by its hedge ratio and all
established positions are liquidated one month later. This spreading
strategy is used to eliminate the effect of stock price movements on
the hedge returns. Unfortunately, the requisite of being able to
identify both an underpriced and an overpriced option on the same
stock restricts the number of options that may be included in the
sample. Although they are careful to realize the ex-post nature of
their tests, the positive excess hedge returns led them to conclude
that even non-members of the CBOE could have made above~normal pro-
fits in the sample period. Using the data of Chiras and Manaster,
Bookstaber (1981) and Phillips and Smith (1980) demonstrate, however,
that the paper profits observed by Chiras and Manaster disappear when
the nonsimultaneity of option prices and the bid-ask spread is con-

sidered, respectively.

In Whaley (1982), the validity of Roll's (1977) American call option
model is tested jointly with the propositions that the previous
week's ISD is an accurate reflection of the expected volatility and
that the related markets are efficient. Roll's model is used to
identify underpriced/overpriced options, and then a hedge portfolio
is created by buying underpriced and selling overpriced CBOE options,
such that the portfolio's net investment and its systematic risk is
zero. Whaley rebalances the portfolio weekly, and thus the sample in-
cludes 160 weekly hedge returns. At the 0.0115 percent significance
level, the null hypothesis of a zero hedge return was rejected. How-
ever, a proportional transaction cost rate of 0.616 percent was suf-
ficient to eliminate all the profits that could be realized by follow-

ing the cost-less trading strategy. Since the Phillips and Smith (1980)



119

estimate of the bid-ask spread transaction cost component exceeds

this critical rate, option market efficiency is soundly supported.

Blomeyer and Klemkosky (1983) also compare the ability of the Black-
Scholes and Roll option pricing models to identify overpriced and
underpriced call option contracts by using the hedging technique
suggested by Black and Scholes (1972). The option positions in the
hedge portfolio are adjusted for each new option transaction price,
and the returns are calculated over the intervals between successive
transactions. Since the Roll model allows for the early exercise of
CBOE options, it is expected that the Roll model should outperform

the Black-Scholes model for options written on high-dividend-yield
stocks. However, the model-specific hedge results do not differ signi-
ficantly. For both models, the ex-post excess hedge returns are signi-
ficantly positive over most trading days and underlying securities.
Even the ex-ante analysis produced significant positive returns on a
before-transaction cost basis. But, these average profits disappear

after the returns are adjusted for transaction costs.

3.4 Tests of New Option Instruments

In the 1980s, the Securities and Exchange Commission (SEC) granted
permission to begin trading put and call options on foreign currency
exchange rates, on futures on stock indices, currencies, and commodi-
ties, and on short-term Treasury Bills, and long-term Treasury Bonds.
The volume in these markets is expected to increase as more inves-
tors become aware of their potential. The previously discussed theory
of pricing options on equities applies to these new option instru-

ments, with some changes.

For example, call option on currencies and futures have a positive
probability of early exercise. The intuition regarding early exer-
cise of American calls on currencies and futures can be attributed

to an implied dividend effect with reasoning similar to the equity
case. The implied dividend for currencies is the differential risk-
free interest rate in the foreign and domestic countries, and is the
cost of carry in the futures market. The debt options are more diffi-
cult to value than equity options because of the fixed maturity and
fixed payout, and because it is not sensible to assume constant in-
terest rates. There are several empirical papers testing valuation

models for the new options.
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For the currency options, Bodurtha and Courtadon (1984) test the
efficiency of the Philadelphia Stock Exchange Foreign Currency Op~—~
tions Market using transactions data dhring the time period from
February, 1983 to September, 1984. They find violations of the early
exercise boundaries and of the put-call parity condition. However,
when bid-ask spread transaction costs and simultaneous prices are
used, most of the violations disappear. Shastri and Tandon (1984a)
test a version of the Geske-Johnson American Options model applied
to currency options for both puts and callskusing the same Philadel-
phia data. They find systematic deviations between market prices and
model values with respect to the time to expiration and the amount
in or out-of-the-money. The model tends to undervalue out-of-the-
money options, long maturity puts and short maturity calls, while it
overvalues in-the-money options, short maturity puts, and long maturi-
ty calls. A hedging strategy returns abnormal profits, but these are

eliminated when the bid-ask spread is properly considered.

Whaley (1984b) examines the prices of options on futures using trans-—
actions data from the Chicago Mercantile Exchange (CME) on the S &P
500 futures options from January to December, 1983. He compares the
Black European futures option model to a version of the Geske-Johnson
American model using about 15,000 observations for calls and 14,000
for puts. Whaley shows that both models undervalue in-the-money op-
tions and options with a long time to maturity. He demonstrates that
the European model's bias is larger and more statistically signifi-
cant than the American model. Finally, he shows that the market is
efficient for retail customers who pay the bid-ask spread. Shastri
and Tandon (1984b) also examine options transactions data from the
CME on S & P 500 and Deutsche Mark futures during the time period of
February, 1983 to December, 1984. Like Whaley, they use a version of
the Geske-Johnson American option model adjusted for futures options.
They demonstrate that biases exist with respect to the exercise price
and time to expiration. They also confirm market efficiency by show-

ing that hedging profits vanish when the bid-ask spread is considered.

Dietrich-Campbell and Schwartz (1984) test the Brennan/Schwartz debt
option model on Treasury bill and bond option data collected from
closing prices reported in The Wall Street Journal, for the year from
November, 1982 through October, 1983. They report that the Brennan/
Schwartz model overvalues put and call options on long maturity bonds.

The calls and overvalued by 33 cents and the puts by 30 cents, on
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average. This is better than'an application of Black-Scholes, which
is shown to overvalue the same options by 57 and 55 cents, respecti-
vely. For Treasury Bill options, the Brennan/Schwartz model mis-
values the puts and calls by 4.3 and 3.1 cents, respectively. The
errors are catalogued with respect to striking price and time to
maturity. (It would be useful to know the percent error, but this
work is preliminary.) Their paper also supports efficiency in the
debt options market by showing that profits disappear when bid-ask

spreads are considered.

3.5 Estimation Problems

A theoretical option value is a function of several variables which
must be observed or estimated. As we have seen, this includes the
price of the underlying asset, the exercise price, time to expiration
of the option, the interest rate over the life of the option, the vo-
latility of the underlying asset, and any payouts to the underlying
assetholdeér scheduled during the option life. Typically, the exercise
price and the option expiration date are contracted and known with

certainty, and have no estimation problems.

The price of the underlying asset can be observed, albeit imperfect-
ly, if it is trading in a market. This measurement error regarding
the exact location of the underlying asset price (at or within the
bid-ask spread) is further complicated by the lack of simultaneous
trading in the option and the stock markets (or currency, futures, or
bond markets). Transactions data, time stamped in both markets, with
recorded trades indicating at the bid or ask, are the besf data fi-
nancial economists can get to alleviate this measurement problem. The
interest rate is generally assumed constant over the option life.
For short-lived options (less than one year) this assumption may be
the best way to treat an otherwise difficult problem. Which interest
rate is used in the hedge process, and differential borrowing and
lending rates further complicate this estimation problem. However,
estimation of the interest rate does not appear to be a serious pro-
blem for equity options since their values are not very sensitive to
changes in interest rates (debt options are ohviously an exception).
Also, scheduled dividend payments over the life of the option are un-
certain, but for short-lived options, this uncertainty is small. The
option value is most sensitive to the volatility of the underlying
asset. Since volatility is not directly observable, it must be mea-

sured. Measurement of volatility is probably the most important esti-
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mation problem in valuing options, and it will be the focus of this

brief subsection.

Tt is well-known that an unbiased estimate of the volatility will
produce a biased estimate of an option value (Thorpe, 1976) . The bias
in the option value arises because the option formula {Black~Scholes,
et al.) are nonlinear functions of the volatility, and unbiasedness

is not preserved under nonlinear transformations. However, this source
of bias in the option price is not large, as Boyle/Ananthanarayanan
(1977) document. Furthermore, Butler/Schachter (1985) demonstrate how

this transformation bias can be eliminated.

A more serious potential problem in variancé estimation is errors in
variables. It is well-known that the Black-Scholes model undervalues
options on low variance stocks and overvalues options on high vari-
ance stocks. Geske and Roll (1984b) point out that the variance-
related mispricing always arises in the context of an inter-stock
comparison, in contrast to the striking price and time-to-exiration
biases, which are detected in an inter-option comparison. Unlike the
striking price and time until expiration, the true variance is iden-
tical for all options on the same stock on agiven date. Thus, investiga-
tions of variance-related mispricing cannot rely on the implied vari-
ance (Latané and Rendleman, 1976), but must instead be based on hi-

storical estimates of actual stock return volatility.

There are many technigues to. improve the volatility estimate for a
single stock. Parkinson (1980) ,Garman and Klass (1980), and Beckers
(1983), use more information (high, low, open, and close for the day)
in the estimate. But, the essence of the present problem is that a
number of variances are estimated simultaneously, one for each stock,
and then option mispricing is related cross-sectionally to these
several estimates. Geske-Roll (1984b) demonstrate that by optimally
"shrinking" each individual stock variance estimate to the grand mean

of all estimates, the observed volatility bias is eliminated.
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4, Appendix: Formulae for the Evaluation of European Calls

In this Appendix, formulae are given for the evaluation of a variety
of European option pricing models subject to the motion equations

listed in Table 1. For a more detailed explanation of each model the
reader is referred to the original paper mentioned in Sec. 2.2.3. Ve
start with model number 2 of Table 1, the binomial model, since the

Black-Scholes diffusion model was already given in Sec. 2.2.2.

Bincmial Model

According as the unit of time is chosen there are two different ways

to present the model and the resulting valuation formula.

® Alternative 1: Unit of time is the interval between two succes-

sive jumps (for instance one day). The time T to the expira-
tion of the call is an integer number of such units of time. Of
course, the risk-free rate of interest r has to refer to this

small unit too.

® Alternative 2: Unit of time is - as usual - one year. If the

number of jumps occurring up to the expiration of the call is
denoted by n , an evaluation formula results which depends on

the number n fixed beforehand.

Alternative 2 is more appropriate to analyze the limiting behavior
(n—->w«) provided that the jump size is suitably related to n ,
whereas alternative 1 is the natural extension of the simple two-
state one-period model to the T period case. The following des-

cription is bas®d on alternative 1.

C:=S-B(a;T,p')-K-RgT-B(a;T,p):=call value ,
where

S = stock price at current date

K = exercise price

T = time to expiration

R = l+r = one plus the risk-free rate of interest
R-d . . s

P =3T3 (sometimes denoted as 'hedging probability')

TR
p R P
u = multiplicative factor of up jump (i.e. the jump is

from S to u-S); u>R
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d = multiplicative factor of down jump; d<R

B(a;T,p) = |
J

™M

(?) pj(l—p)T-J = complementary binomial
a
distribution function

a = smallest non negative integer greater than

w(m)en(s):

sda
if a happens to be greater than T , the call value

C turns out to be zero.

Constant Elasticity of Variance (CEV) Model

\ © X -rT
c=8- % g(n,x)G(n+tr,y) -K-e Zl g (n+A,x)G(n,y) ,
n=1 n=

where the (new) symbols have the meaning:

1

A= 57T:5T (p+#1 1is the exponent of the motion egquation
in Tab. 1)
X = —-~§A£-—~——-Sl/x erT/A (v is the coefficient of the
w2 1
motion equation in Tab. 1)
y = 2\r K1/>\
v2(erT/)\ - 1)
anc
e~z Zn—l
g(n,z)=-—FTET—— = gamma density function
fea)
G(D,W)=:f g(n,z)dz = complementary standard gamma density function.
%

Compound Option Model

T -rT
C=V-Na(h,k;p) -M-e = My, (h=v'VT,k-v'VTy;p) - K-e N(h) ,
where
V = current market value of the firm
M = maturity value of the firm's zero coupon debt
T = time to expiration of the option
TM = time to maturity of the zero coupon debt (where T<<TM)
p = VI/T

M

and
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1 )
h = (KV{(Z—) +rT+§V'2T} !
L v ' v'VT
k = {ZH(Y?~FIT +1V'ZT] !
L M M 2 M V‘\EI:I-

v' = standard deviation of rate of return on the firm's asset

Y is the value of V defined by the equation:

rt

V-N(k) -M-e  N(k-v'VT) —-K=0 (where T=TM~T)
Finally, h ok
1 1 x2 - 2pxy +y2
Nz(h,k;p) =———r [ | exp{~§ ——1—_%’-—-1—}@ dx
21 Vi-p2 -0 —o 0
=bivariate normal distribution function with mean
vector = (0,0) and variances=1.
2
p _}“{2"
N(k) = ———f e dx =univariate standard normal distribution
Vo

function.

Displaced Diffusion Model

(Special Case: No dividend payments)

C=a-S-N(x) - (K-bS)e‘rT N(x-v'VT) = call value

s

where
zn/aS erT
\ "k-bs
x = — + Sy VT
v'VT
a=o0((1+B)

b= (1-a-aB)e *T

v' =standard deviation of rate of return on the firm's risky asset

o = fraction of the total firm value currently invested in the
risky asset; accordingly, 1 -a is the fraction invested in

the riskless asset.

B =firm's debt-equity ratio.

Jump Process Model

rT

C=S'P(x;\) —K-e =~ P(x;A/k) =call value,

where
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A = expected jump frequency per unit time
k = expected jump amplitude

x = nonnegative integer representing the smallest
number of Poisson stock price jumps, such that
the option is in-the-money at the expiration

date (i.e. S(T) >K)

® A
P(x;A) = % 7 = complementary Poisson distribution function
i=x :
with argument x and parameter X .

Diffusion-Jump Model

(Special case: The jump amplitude has a lognormal distribution)
Assuming the jumps have no market component and are thus completely

diversifiable, then

@ euwT(}\'T)i
C= » ———~"—(C,.(8,K,T,0,,r,) =call value,
i=o il i i1
where
Ci = Black-Scholes value of a European call with time to

expiration T and striking price K on a stock with current
price S and volatility oi , conditional on knowing that

exactly 1 Poisson jumps occur during the life of the option.
o, = v/v2-+62 %

§2 = variance of the jump component
At o= A(1+k)
A = expected jump freguency per unit time

k = expected jump amplitude

r - Ak

H
I

ifn (1+k)
+———_....-.__.———_—-
T



127

References:

Ball, C.A.; Torous, W.N. (1983): Bond Price Dynamics and Options,
Journal of Financial and Quantitative Analysis 18, 517-531

Ball, C.A.; Torous, W.N. (1985a):0n Jumps in Common Stock Prices
and Their Impact on Call Option Pricing, Journal of Finance 40,
155-173

Ball, C.A.; Torous, W.N. (1985b):Futures Options and the Volatility
of Futures Prices, Working Paper, University of Michigan

Beckers, S. (1980): The Constant Elasticity of Variance Model and
Its Implications for Option Pricing, Journal of Finance 35,
661-673

Beckers, S. (1981): Standard Deviations Implied in Option Prices as
Predictors of Futures Stock Price Variability, Journal of Bank-
ing and Finance 5, 363-381

Beckers, S. (1983): Variance of Security Price Returns Based on
High, Low, and Closing Prices, Journal of Business 56, 97-112

Bhattacharya, M. (1980) : Empirical Properties of the Black-Scholes
Formula under Ideal Conditions, Journal of Financial and Quanti-
tative Analysis, 1081-1105

Bhattacharya, M. (1983): Transactions Data Tests of Efficiency of the
Chicago Board Options Exchange, Journal of Financial Economics
12, 161-185

Bhattacharya, M.; Rubinstein, M. (1978): Berkeley Options Data Base,
Mimeographed, University of California, Berkeley

Black, F. (1975): Facts and Fantasy in the Use of Options, Financial
Analysts Journal 31, 35-72

Black, F. (1976): The Pricing of Commodity Contracts, Journal of
Finaacial Economics 3, 127-179

Black, F.; Cox, J.C. (1976): Valuing Corporate Securities: Some
Effects of Bond Indenture Provisions, Journal of Finance 31,
351-368

Black, F.; Scholes, M. (1972): The Valuation of Option Contracts and
a Test of Market Efficiency, Journal of Finance 27, 399-417

Black, F.; Scholes, M. (1973): The Pricing of Options and Corporate
Liabilities, Journal of Political Economy 81, 637-659

Blomeyer, E.C.; Resnick, B.G. (1982): An Empirical Investigation of
the Compound Option Pricing Model, Unpublished Manucript

Blomeyer, Z.C.; Johnson, U. (1984): An Empirical Testing of American
Put Pricing, Unpublished Working Paper, Louisiana State Univer-
sity

Blomeyer, E.C.; Klemkosky, R.C. (1983): Tests of Market Efficiency
for American Call Options, in: Brenner, M. (ed.): Option Pricing:
Theory and Applications, Lexington Books, Lexington, 101-121



128

Bodurtha, J.; Courtadon, G. (1963) : Efficiency Tests of the Toreign
Currency Option Market, Ohio State University, Working Paper

Bookstaber, R.M. (1981): Observed Option Mispricing and the Non-
simultaneity of Stock and Option Quotations, Journal of Busi-
ness 54, 141-155

Boyle, P.P.; Ananthanarayanan, A.C. (1977) : The Impact of Variance
Estimation in Option Valuation Models, Journal of Financial
Economics 5, 375-387

Boyle, P.P.; Emanuel D.C. (1980) : Discretely Adjusted Option Hedges,
Journal of Financial Economics 8, 259-282

Brennan, M.J. (1979): The Pricing of Contingent Claims in Discrete
Time Models, Journal of Finance 34, 53-68

Brennan, M.J.; Schwartz, E.S. (1977a): The Valuation of American Put
Options, Journal of Finance 32, 449-464

Brennan, M.J.; Schwartz, E.S. {(1977b) : Convertible Bonds: Valuation
and Optimal Strategies for Call and Conversion, Journal of Fi-
nance 32, 1699-1716

Brennan, M.J.; Schwartz, E.S. (1980) : Analysing Convertible Bonds,
Journal of Financial and Quantitative Analysis, 907-929

Brennan, M.J.; Schwartz, E.S. (1982): An Equilibrium Model of Bond
Pricing and a Test of Market Efficiency, Journal of Financial
and Quantitative Analysis 17, 301-329

Brenner, M. (ed.) (1983): Option Pricing - Theory and Applications,
Lexington Books, Lexington Mass.

Brenner, M.; Galai, D. (1981): The Properties of the Estimated Risk
of Common Stocks Implied by Options Prices, Working Paper, Uni-
versity of California, Berkeley

Brenner, M.; Courtadon, G.; Subrahmanyan, M. (1984) : Options on
Stock Indices and Stock Index.Futures, Working Paper, New York
University

Butler, J.S.; Schachter, B. (1985) Unbiased Estimation of the Black-
Scholes Formula, Journal of Financial Economics, forthcoming

Chiras, D.P.; Manaster, S. (1978): The Information Content of Option
Prices and a Test of Market Efficiency, Journal of Financial
Economics 6, 213-234

Courtadon, G. (1982): The Pricing of Options on Default-Free Bonds,
The Journal of Financial and Quantitative Analysis 17, 75-100

Cox, J.C.;Ingersoll, J.; Ross, S. (1985) : A Theory of the Term Struc-
ture of Interest Rates, Econometrica 53, 385-407

Cox, J.C. (1975): Notes on Option Pricing I: Constant Elasticity of
Variance Diffusions, Mimeographed, Stanford University

Cox, J.C.; Ross, S.A. (1976a): A Survey of Some Mew Results in Finan-
cial Option Pricing Theory, Journal of Finance 31, 383-402



129

Cox, J.C.; Ross, S.A. (1976b) : The Valuation of Options for Alterna-
tive Stochastic Processes, Journal of Financial Economics 3,
145-166

Cox, J.C.; Rubinstein, M. (1983): A survey of Alternative Option
Pricing Models, in: Brenner, M. (ed.): Option Pricing: Theory and
Applications, Lexington, Lexington Books, 3-33

Cox, J.C.; Rubinstein, M. (1985): Options Markets, Englewood Cliffs,
N.J., Prentice-Hall ‘

Cox, J.C.; Ross, S.A.; Rubinstein, M. (1979): Option Pricing: A
Simplified Approach, Journal of Financial Economics 7, 229-263

Dietrich-Campbell, B.; Schwartz, E.S. (1984) : Valuing Debt Options:
Empirical Evidence, University of British Columbia, Working Paper,
November

Dothan, U.L. (1978): On the Term Structure of Interest Rates, Journal
of Financial Economics 6, 59-69

Effron, B.; Morris, C. (1975): Data Analysis Using Stein's Estimation
and Its Generalization, Journal of the Imerican Statistical Associa-
tion 70, 311=319

Egle, K.; Trautmann, S. (1981): On Preference-Dependent Pricing of
Contingent Claims, in: H. G&ppl and R. Fenn (eds.): Money, Bank-
ing and Insurance, K6nigstein/Ts., 400-416

Emanuel, D.C. (1983): Warrant Valuation and Exercise Strategy, Journal
of Financial Economics 12, 211-236

Emanuel, D.C.; MacBeth, J.D. (1982): Further Results on the Constant
Elasticity of Variance Call Option Pricing Model, Journal of Finan-
cial and Quantitative Analysis 17, 533-554

Farkas, K.L; Hoskin , R.E. (1979): Testing a Valuation Model for Ameri-
can Puts, Financial Management 8, 51-56

Finnerty, J.E. (1978): The CBOE and Market Efficiency, Journal of
Financial and Quantitative Analysis 13, 29-38

Fischer,E.O.; Zechner, R. (1984): Diffusion Process Specifications
for Interest Rates: An Empirical Investigation for the RFG, in:
Bamberg, G.; Spremann, K. (eds.): Risk and Capital, Springer
Publ. Company, Berlin-Heidelberg-New York-Tokyo, 64-73

Fuller, R.J. (1977-1978): Factors which Influence Listed Call Option
Prices, Review of Business and Economic Research 13, 21-34

Galai, D. (1977): Tests of Market Efficiency of the Chicago Board
Options Exchange, Journal of Business 50, 167-197

Galai, D. (1978): Empirical Test of Boundary Conditions for CRBOE Op-
tions, Journal of Financial Economics 6, 187-211

Galai, D. (1979): A Convexity Test for Traded Options, Quarterly Re-
view of Business and Economics 19, 83-90

Galai, D. (1983a): The Components of the Return from Hedging Options
Against Stocks, Journal of Business 56, 45-54



130

Galai, D. (1983b): A Survey of Empirical Tests of Option Pricing
Models, in: Brenner, M. (ed.): Option Pricing: Theory and
Applications, Lexington Books, 45-85

Galai, D.; Masulis, R.W. (1976): The Option Pricing Mgdel and the
Risk Factor of Stock, Journal of Financial Fconomics 3, 53-81

Galai, D.; Schneller, M.I. (1978): Pricing Warrants and the Value
of the Firm, Journal of Finance 33, 1333-1342

Garman, M.B.; Klass, M.J. (1980): On the Lstimation of Secugity
Price Volatilities from Fistorical Data, Journal of Business 52,

57-178

Geske, R. (1977): The Valuation of Corporate Liabilities as Compound
Options, Journal of Financial and Quantitative Analysis 12,
541-552

Geske, R. (1979a): The Valuation of Compound Options, Journal of
Financial Economics 7, 63-81

Geske, R. (1979b): A Note on an Analytic Valuation Formula for Un-
protected American Call Options on Stocks with Known Dividends,
Journal of Financial Economics 7, 375-380

Geske, R. (1981): Notes on the Pricing of Bond Options, University
of California, Los Angeles, Manuscript

Geske, R.; Johnson, H.E. (1984): The American Put Option Valued
Analytically, Journal of Finance 39, 1511-1524

Geske, R.; Roll, R. (1984a): On Valuing American Call Options with
the Black-Scholes European Formula, Journal of Finance 39,
443-455

Geske, R.; Roll, R. (1984b): Isolating the Observed Biases in Ameri-
can Call Pricing: An Alternative Variance Estimator, UCLA Work-
ing Paper, 4-84, February

Geske, R. ; Shastri, K. (1985): Valuation by Approximation: A Com-
parison of Alternative Valuation Techniques, Journal of Finan-
cial and Quantitative Analysis 20, 45-71

Geske, R. ; Roll, R.; Shastri, K. (1983): Over-the-Counter Option
Market Dividend Protection and "Biases" in the Black-Scholes
Model: A Note, Journal of Finance 38, 1271-1277

Gombola, M.J.; Roenfeldt, R.L.; Cooley, P.L. (1978): Spreading Stra-
tegies in CBOE Options: Evidence on Market Performance, Journal
of Financial Research 1, 35-44

Gould, J.; Galai, D. (1974): Transactions Costs and the Relationship
Between Put and Call Prices, Journal of Financial Economics 1,
105-129

Gultekin, N.B.; Rogalski, R.J.; Tinic, S.M. (1982): Option Pricing
Model Estimates: Some Empirical Results, Financial Management,
58-69

Harrison, J.M.; Kreps, D.M. (1979): Martingales and Arbitrage in
Multiperiod Security Markets, Journal of Economic Theory 20,
381-408



131

Ingersoll, J.E. (1976): A Theoretical and Empirical Investigation of
Dual Purpose Funds, Journal of Financial Economics 3, 83-123

Klemkosky, R.C.; Resnick, B.G. (1979): Put-Call Parity and Market
Efficiency, Journal of Finance 34, 1141-1155

Klemkosky, R.C.; Resnick, B.G. (1980): An Ex-Ante Analysis of Put-
Call Parity, Journal of Financial Economics 8, 363-378

Kreps, D.M. (1981): Arbitrage and Equilibrium in Economics with In-
finitely Many Commodities, Journal of Mathematical Economics 8,
15-35

Latané, H.A.; Rendleman, R.J. (1976): Standard Deviations of Stock
Price Ratios Implied in Option Prices, Journal of Finance 31,
369-381

Leland, H.E. (1980): Who Should Buy pPortfolio Insurance, Journal of
Finance 35, 581-596

MacBeth, J.D.; Merville, L.J. (1979): An Empirical Examination of the
Black-Scholes Call Option Pricing Model, Journal of Finance 34,
1173-1186

MacBeth, J.D.; Merville, L.J. (1980): Test of Black-Scholes and Cox
Call Option Valuation Models, Journal of Finance 35, 285-303

Madansky, A. (1977): Some Comparisons of the Case of Empirical and
Lognormal Distributions in Option Evaluation, Proceedings of the
Seminar on the Analysis of Securities Prices, Chicago: Center
for Research in Securities Prices, University of Chicago, 155-168

Merton, R.C. (1973a): Theory of Rational Option Pricing, Bell Journal
of Economics and Management Science 4, 141-183

Merton, R.C. (1973b): The Relationship Between Put and Call Ontion
Prices: Comment, Journal of Finance 28, 183-184

Merton, R.C. (1974): On the Pricing of Corporate Debt: The Risk Struc-
ture of Interest Rates, Journal of Finance 29, 449-470

Merton, R.C. (1976a): Option Pricing when Underlying Stock Returns
are Discontinuous, Journal of Financial Economics 3, 125-144

Merton, R.C. (1976b): The Impact on Option Pricing of Specification
Error in the Underlying Stock Price Returns, Journal of Finance
31, 333-350

Merton, R.C. (1977a): On The Pricing of Contingent Claims and the
Modigliani-Miller Theorem, Journal of Financial Economics 5,
241-250

Merton, R.C. (1977b): An Analytic Derivation of the Cost of Deposit
Insurance and Loan Guarantees: An Application of Modern Option
Pricing Theory, Journal of Banking and Finance 1, 3-11

Merton, R.C.; Scholes, M.S.; Gladstein, M.L. (1982): The Returns and
Risks of Alternative Put-Option Portfolio Investment Strategies,
Journal of Business 49, 1-55

Mossin, J. (1968): Optimal Multiperiod Portfolio Policies, Journal
of Business 41, 215-229



132

Parkinson, M. (1977): Option Pricing: The American Put, Journal of
Business 50, 21-36

Parkinson, M. (1980): The Extreme Value Method for Estimating the
Variance of the Rate of Return, Journal of Business 53, 61-55

Patell, J.M.; Wolfson, M.A. (1979): Anticipated Information Releases
Reflected in Call Option Prices, Journal of Accounting Research 1,
117-140

Phillips, S.M.; Smith, C.W. (1980): Trading Costs for Listed Options:
The Implications for Market Efficiency, Journal of Financial
Economics 8, 179-201

Ramaswamy, K.; Sundaresan, S.M. (1984): The Valuation of Options on
Futures Contracts, Working Paper, Columbia University

Roll, R. (1977): An Analytic Valuation Formula for Unprotected Ameri-
can Call Options on Stocks with Known Dividends, Journal of Fi-
nancial Economics 5, 251-258

Rubinstein, M. (1974): An Aggregation Theorem for Security Markets,
Journal of Financial Economics 1, 225-244

Rubinstein, M. (1976): The Valuation of Uncertain Income Streams and
the Pricing of Options, Bell Journal of Economics 7, 407-425

Rubinstein, M. (1977): The Strong Case for the Generalized Logarith-
mic Utility Model as the Premier Model of Financial Markets, in:
Levy and M. Sarnat (eds.): Financial Decision Making Under Uncer-
tainty, New York, 11-62

Rubinstein, M. (1983): Displaced Diffusion Option Pricing, Journal of
Finance 38, 213-217

Rubinstein, M. (1985): Nonparametric Tests of Alternative Option
Pricing Models Using All Reported Trades and Quotes on the 30
Most Active CBOE Option Classes from August 23, 1976 through
August 3, 1978, Journal of Finance 40, 455-480

Schmalensee, R.; Trippi, R.R. (1978): Common Stock Volatility Expec-
tations Implied by Option Premia, Journal of Finance 32, 129-147

Shastri, K.; Tandon, K. (1984a): Valuation of American Options on
Foreign Currency, University of Pittsburgh, Working Paper

Shastri, K.; Tandon, K. (1984b): Valuation of American Options on
Futures Contracts, University of Pittsburgh, Working Paper

Smith, C.; Zimmerman, J. (1976): Valuing Employee Stock Option Plans
Using Option Pricing Models, Journal of Accounting Research 14,
357-364

Stoll, H.R. (1969): The Relationship Between Put and Call Option
Prices, Journal of Finance 24, 801-824

Stoll, H.R. (1973): The Relationship Between Put and Call Prices:
Reply, Journal of Finance 28, 185-187

Thorpe, E. (1976): Common Stock Volatilities in Option Formulas, Pro-
ceedings of the Seminar on the Analysis of Security Prices, 2,
235-276




133

Trautmann, S. (1983a): Tests of Two Call Options Pricing Models
Using German Stock Options Market Data from January 1879 -
March 1983, in: H. Goppl and R. Eenn (eds.), Geld, Banken
und Versicherungen, Verlag Versicherungswirtschaft, Karlsruhe,
619-639

Trautmann, S. (1983b): An Alternative Derivation of the Black/
Scholes Formula ané Its Empirical Examination with German Stock
Options Market Data, Discussion Paper No. 54, Institut flir Ent-
scheidungstheorie und Unternehmensforschung, Universitédt Karls-
ruhe

Trautmann, S. (1985a): Distribution-Free Tests of the Efficiency of
the Frankfurt Options Exchange from April 5, 1983 through Sep-
tember 28, 1984, in: H. GOppl and R. Eenn (eds.), Geld, Banken
und Versicherungen, 1087-1094

Trautmann, S. (1985b): Die Bewertung von Finanztitel mit Wahlrechten
- Theoretische Analyse sowie empirische tiberprifung flir den deut-
schen Kapitalmarkt, Unpublished Manuscript, forthcoming

Trippi, R. (1977): A Test of Option Market Efficiency Using a Rancom-
Walk Valuation Model, Journal of Economics and Business 29, 93-98

Vasicek, 0. (1977): Equilibrium and Term Structure, Journal of Ti-
nancial Economics 5, 177-188

Whaley, R.E. (1981): On the valuation of American Call Options on
Stocks with Known Dividends, Journal of Financial Economics 9,

207-212

Whaley, R.E. (1982): Valuation of American Call Option on Dividend-
Paying Stocks - Empirical Tests, Journal of Financial Economics
10, 29-58

Whaley, R.E. (1984a): On Valuing American Futures Options, Financial
Analysts Journal, forthcoming

Whaley, R.E. (1984Db): Valuation of American Futures Options: Empiri-
cal Tests, University of Alberta, Working Paper, April

Wilson, R. (1968): The Theory of Syndicates, Econometrica 36, 119-
132.



