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General remarks

• In this problem set we deal with the issue of uncertainty.

• In combination with utility functions we need to impose an
additional restriction.

• We assume that preferences over uncertain outcomes can be
represented by an expected utility form.

• We call these functions von Neumann-Morgenstern expected utility
functions.

• Although this is a crucial assumption, in our computations we do
not have to care about it.

• You should have covered this in your micro lecture.
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Why do we care about uncertainty?

• The first reason why to care about uncertainty is that it makes our
models more realistic.

• Particularly agents seem to be risk averse which means that they
dislike risk.

• Consider the following alternatives

1 You get 500.000 with certainty.
2 You get a lottery that pays 1.000.000 with probability 0.5 and 0 else.

• Most of us will prefer the first alternative...

... although both have the same expected payoff (namely 500.000).

• Since in our macroeconomic models we deal with agents‘
behavior under uncertainty we have to think about this issue.
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Asset pricing

• Another reason closely linked to the first one is that we want to
give explanations to empirical observations of financial markets.

• For example, we find that risky assets (take stocks for example)
have a higher expected return compared to riskless assets (e.g.
bonds).

• We want to explain this phenomenon using our structural models
of the economy.

• We deduce implications from basic assumptions about agents
preferences including their attitude towards risk.

• Generally we expect that agents demand a higher return if they
are confronted with risk compared to a riskless asset.
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Overview

• We want to characterize agents‘ attitude towards risk using utility
functions.

• Part of the material you will see here should be familiar to you
from basic microeconomics or finance courses.

• We will relate risk aversion to the certainty equivalent and give an
intuition about risk averse utility functions.

• Using this we will price assets using the consumption capital asset
pricing model (C-CAPM).

• Note that this asset pricing model is different from the “ordinary”
CAPM you know from finance.
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Problem 1 (Power utility)

Prerequisites

• We will see that in order to compute the limit of the function we
need L‘Hôspital‘s rule:
Let g(x0) and f (x0) be both differentiable at x0 and let
g(x0) = f (x0) = 0. The limit of the quotient of both functions is
then given by

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)
g′(x)

.

• This means in plain words that if the limit of the nominator and
the denominator are both zero, we can compute the limit of the
ratio of the derivatives instead.
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Problem 1 (Power utility)

Limit of power utility

• We want to compute the limit

lim
σ→1

U(c) = lim
σ→1

→0
︷ ︸︸ ︷

c1−σ − 1

1− σ
︸ ︷︷ ︸

→0

(1)

• Since the nominator and the denominator approach zero we
cannot determine the limit in one step.

• Therefore we have to use L‘Hôspital‘s rule.

lim
σ→1

c1−σ − 1

1− σ

L‘H
= lim

σ→1

−1c1−σ ln c

−1
= ln c.
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Problem 1 (Power utility)

Differentiation rule

• Note that we used the following differentiation rule

f (x) = ag(x) ⇒ f ′(x) = g′(x)ag(x) ln a.

• To get an intuition for the limit of the function we have just
computed you can plot the power utility function for values that
approach unity.

• You will find that indeed the power utility becomes log utility.

• In the next problem we will see what is captured by σ.
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Problem 2 (Risk aversion)

CRRA utility function

• For the first utility function the relevant derivatives are

U′(W) = W−σ

U′′(W) = −σW−σ−1.

• The coefficient of absolute risk aversion is then

ARA = −−σW−σ−1

W−σ
=

σ

W
.

• The coefficient of relative risk aversion is

RRA = −−σW−σ−1

W−σ
W = σ.
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Problem 2 (Risk aversion)

CRRA

• As we have seen from the derivation above this utility function
exhibits a constant measure of relative risk aversion.

• This means that the degree of relative risk aversion does not
depend on the function argument (in this case W).

• We often refer to this kind of utility functions as constant relative
risk aversion or CRRA utility functions.

• Note that risk aversion requires σ > 0.

• The next function we will analyze is the logarithmic function.

• We have seen in the problem before that the logarithmic function
is a limiting case of the power utility function for the case σ → 1.

• Thus, we could guess that the measure of relative risk aversion is
equal to 1.

Markus Roth (Advanced Macroeconomics) Problem set 5 January 28, 2010 13 / 48



Problem 2 (Risk aversion)

Log CRRA

• The relevant derivatives for this function are

U′(W) =
1

W

U′′(W) = − 1

W2
.

• The coefficient of absolute risk aversion is then

ARA = −− 1
W2

1
W

=
1

W
.

• The coefficient of relative risk aversion is

RRA = −− 1
W2

1
W

W = 1 > 0.
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Problem 2 (Risk aversion)

CRRA=1

• As we already guessed before, the relative risk aversion measure
for the log utility function equals unity.

• Thus, we have again a coefficient of relative risk aversion that is
constant.

• We also call this kind of functions CRRA utility function.

• This emphasizes that this function is just the limiting case of the
power utility function where σ = 1.
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Problem 2 (Risk aversion)

CARA

• Next we consider the CARA utility function.

• The relevant derivatives are

U′(W) = ρe−ρW

U′′(W) = −ρ2e−ρW.

• The coefficient of absolute risk aversion is then

ARA = −−ρ2e−ρW

ρe−ρW
= ρ.

• The coefficient of relative risk aversion is

RRA = −−ρ2e−ρW

ρe−ρW
W = ρW.
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Problem 2 (Risk aversion)

CARA

• Hence, this exponential utility function exhibits a constant
absolute risk aversion.

• The short form for those functions is CARA.

• The coefficient of absolute risk aversion is constant (does not vary
with W) and equal to ρ.

• For risk aversion we must then have that ρ > 0.
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Problem 2 (Risk aversion)

CRRA with σ = 0.5

CRRA with σ = 1

CARA with ρ = 1
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Figure: Plots of three utility functions.
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Problem 2 (Risk aversion)

Properties of utility functions

• In order to have risk averse agents the utility function must be
concave.

• This means that the second derivative must be negative.

• If a function is concave we know by Jensen‘s inequality that

U [E(W)] ≥ E [U(W)] . (JI)

and vice versa.

• This means that the agent would get a higher utility level when
consuming the certain expected value of a lottery compared to
consuming the lottery consisting of the two utility values.

• We will examine this graphically.

• Consider a lottery where the outcome is W + ε with probability p
orW − ε with probability 1− p.
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Problem 2 (Risk aversion)

W

U(W)

U(W)

E[U(W)]

U[E(W)]

W − ε W + εE(W)

Figure: Concave utility and a lottery.
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Problem 2 (Risk aversion)

Why ARA and RRA?

• Thus, one could argue that we only need to look at concavity,
which is determined by the second derivative.

• However, we want to have a measure which is independent of
positive linear transformations.

• This means that the function

V(W) = a+ bU(W)

with b > 0 should exhibit the same degree of risk aversion as
U(W).

• For this reason we apply the concept of ARA and RRA.
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Problem 2 (Risk aversion)

Remarks

• In our cases we consider utility functions with U′(W) > 0.

• This property is called strict monotonicity (“more is always
better”).

• Strictly concave utility functions are then characterized by
U′′(W) < 0.

• Strictly convex utility functions are then characterized by
U′′(W) > 0.

• Linear utility functions are then characterized by U′′(W) = 0.
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Problem 2 (Risk aversion)

W

U(W)

U(W)

Figure: Convex utility.
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Problem 2 (Risk aversion)

W

U(W)

U(W)

Figure: Linear utility.
Markus Roth (Advanced Macroeconomics) Problem set 5 January 28, 2010 24 / 48



Problem 2 (Risk aversion)

Non concave utility

• Think about the implications of convexity and linearity for...

... the certainty equivalent (we will cover this in problem 3).

... the measures of absolute and relative risk aversion.

• Note that concave utility function are also necessary for
consumption smoothing.

• If a utility function is concave we prefer consuming some
intermediate level today and tomorrow to consuming a low level
today and a low level tomorrow.

• If utility would be linear we would not care if we consume today
or tomorrow.

• Convince yourself about this with a graph of a utility function.

• Hence, concave utility functions are also necessary to explain
consumption smoothing in the case of certainty.
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Problem 3 (Certainty equivalent and risk aversion)
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Problem 3 (Certainty equivalent and risk aversion)

Coefficient of risk aversion

• In order to show that the utility function exhibits risk aversion we
derive the coefficient of absolute risk aversion.

• The relevant derivatives are

U′(W) =
1

2
W− 1

2

U′′(W) = −1

4
W− 3

2 .

• The coefficient of absolute risk aversion is

ARA = −− 1
4W

− 3
2

− 1
2W

1
2

=
1

2

1

W
.

• The coefficient of relative risk aversion is

RRA = −− 1
4W

− 3
2

1
2W

− 1
2

W =
1

2
.
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Problem 3 (Certainty equivalent and risk aversion)

ARA, RRA and risk aversion

• Both expressions are positive (as long as W is positive), thus the
agent is risk averse.

• Now we want to compute the certainty equivalent.

• In order to do this we think of the definition of the certainty
equivalent.

• The certainty equivalent of a lottery L is the riskless payoff that
makes the agent indifferent between this payoff and lottery L.

• In our case we must have that

U(C)
!
= E[U(W)] =

1

2
U(4) +

1

2
U(16).
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Problem 3 (Certainty equivalent and risk aversion)

Computing the certainty equivalent

• Thus the certainty equivalent is

√
C =

1

2

√
4+

1

2

√
16

⇔
√
C = 1+ 2

⇔ C = 9.

• By definition of the certainty equivalent the agent is indifferent
between the certainty equivalent and the lottery.

• We can show that the agent is risk averse by comparing the
certainty equivalent C to the expected value µ.

• If C is smaller than µ the agent is risk averse.

• If C is larger than µ the agent is risk seeking.

• If C is equal to µ the agent is risk neutral.
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Problem 3 (Certainty equivalent and risk aversion)

C W

U(W)

U(W)

E[U(W)]

U[E(W)]

W − ε W + εE(W)

Figure: Concave utility and the certainty equivalent.
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Problem 3 (Certainty equivalent and risk aversion)

Comparing C with µ

• The expected value is

µ =
1

2
16+

1

2
4 = 10.

• In our case we have C = 9 < 10 = µ.

• Hence, the agent is risk averse.

• Recall the agent is indifferent between getting 9 without
uncertainty or getting a lottery which has expected payoff of 10.

• Note that we have seen the case of a discrete probability function
with only two outcomes.

• We could make this more realistic (and maybe more difficult) by
assuming some continuous density function.
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Problem 4 (Asset pricing)
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Problem 4 (Asset pricing)

Purpose of this exercise

• This exercise gives an introduction into the C-CAPM for specific
income processes.

• We want to show the relationship between asset prices and
consumption growth.

• Intuitively, when the consumption path (or consumption growth)
is very volatile agents want to invest to smooth consumption.

• This higher demand for assets makes themmore expensive (prices
increase).

• Similarly, a larger coefficient of β means that we are more likely to
invest (give up some of today‘s consumption), thus asset prices
will increase.

• Recall that 0 < β < 1 and that larger values of β mean that the
agent is less impatient.
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Problem 4 (Asset pricing)

General remarks on the C-CAPM

• We solve a household maximization problem similar to what we
have seen before.

• However, the direction of our arguments is reversed in the
C-CAPM.

• We do not want to determine the consumption path over time
given some interest rates.

• We want to determine the interest rate (or sometimes the asset
price) given a consumption path.

• We find that the covariance of the asset return with the stochastic
discount factor determins the risk premium.

• Sometimes the stochastic discount factor is also called “pricing
kernel”.
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Problem 4 (Asset pricing)

This problem

• In the first problem we also deal with the issue of asset pricing by
the C-CAPM.

• However, we are given a specific function for the consumption
growth process and want to give explicit solutions.

• The next problem will then be more general again.
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Problem 4 (Asset pricing)

Maximization problem

• The problem is
max
ct,ct+1,a

U(ct) + βEtU(ct+1) (2)

subject to

ct + pta = yt

ct+1 = yt+1 + (pt+1 + dt+1)
︸ ︷︷ ︸

≡xt+1

a

• Where we defined xt+1 ≡ pt+1 + dt+1.

• By employing the usual steps we come up with the Euler
equation.
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Problem 4 (Asset pricing)

Deriving the optimality condition

• The Lagrangian is

L =U(ct) + βEtU(ct+1)

+ λt(yt − ct − pta) + Et [λt+1(yt+1 + xt+1a− ct+1)] . (3)

• The FOCs are

∂L
∂ct

= U′(ct)− λt
!
= 0 (I)

∂L
∂ct+1

= Et

[
βU′(ct+1)− λt+1

] !
= 0 (II)

∂L
∂a

= Et [−λtpt + λt+1xt+1]
!
= 0. (III)
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Problem 4 (Asset pricing)

The optimality condition

• Rearranging the FOCs gives

λt = U′(ct) (4)

Etλt+1 = βEtU
′(ct+1) (5)

ptλt = Et [λt+1xt+1] . (6)

• Plugging (4) and (5) into (6) gives the Euler equation

ptU
′(ct) = Et

[
βU′(ct+1)xt+1

]
. (7)
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Problem 4 (Asset pricing)

Unsing the period utility function

• We rewrite it to

pt = Et

(

β
U′(ct+1)

U′(ct)
xt+1

)

.

• Using the given period utility function we get

ptc
−γ
t = βEt

(

c
−γ
t+1xt+1

)

.

• Interpretation:

LHS: Costs of buying one more asset (pt valued by marginal utility of
consumption)

RHS: Benefits of buying one more asset (payoff xt+1 discounted and
weighted by marginal utility)

• Costs equal benefits in the optimum.
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Problem 4 (Asset pricing)

One period bond

• We set pt = qt, the equation becomes

qt = Et

[

β

(
ct+1

ct

)−γ
]

.

• We now use the assumption that consumption growth is log

normally distributed ln
(
ct+1
ct

)

∼ N (µ, σ2).

• Using the hint on the problem set we can compute

qt = βe−γµ+ γ2

2 σ2

or

ln qt = ln β − γµ +
γ2

2
σ2.
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Problem 4 (Asset pricing)

Interpretation

ln qt = ln β − γµ +
γ2

2
σ2.

• We have derived the price of a risk free bond.

• For this assumption about consumption growth prices are
constant over time.

• The higher the impatience the lower is the price of the bond.

⇒ If everyone wants to consume today, it takes lower prices to induce
the agents to buy the bond.

• Prices are low if consumption growth is high.

⇒ It pays agents to consume less today

in order to invest today and to consume more tomorrow.
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Problem 4 (Asset pricing)

Consumption growth

• Now assume that consumption growth is characterized by

ln

(
ct+1

ct

)

= (1− ρ)µ + ρ ln

(
ct
ct−1

)

+ εt+1,

with εt+1 ∼ N (0, σ2).

• Using this we get

qt = βe
−γ

[

(1−ρ)µ+ρ ln
(

ct
ct−1

)]

+ γ2

2 σ2

.

or

ln qt = ln β − γ

[

(1− ρ) µ + ρ ln

(
ct
ct−1

)]

+
γ2

2
σ2.
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Problem 4 (Asset pricing)

Interpretation

• Time varying bond price.

⇒ This is more realistic.

• If current consumption growth is high then qt is low.

⇒ High consumption growth today means expected high growth
tomorrow (we see this from the specified consumption growth
process).

⇒ High growth means that consumption in the future will be larger.
⇒ Since agents want to smooth consumption we want to borrow

today.
⇒ Borrowing means that we sell the asset in order to consume.

• Due to smoothing motives agents borrow against future growth
thus qt decreases.

• Interpretation of the remaining parameters is the same as under
log normality of consumption growth.
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Problem 4 (Asset pricing)

Stochastic discount factor

• Next we define the stochastic discount factor to be

Mt+1 ≡ β
U′(ct+1)

U′(ct)
. (8)

• Sometimes it is also called “pricing kernel”.

• Hence, we can express the optimality condition as

pt = Et [Mt+1xt+1] .

• We rewrite this to

pt = Et(Mt+1)Et(xt+1) + Cov(Mt+1, xt+1).
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Problem 4 (Asset pricing)

The risky asset

• Replacing the riskless asset‘s price we get

pt = qtEt(xt+1) + Cov(Mt+1, xt+1).

• Substituting again the expression for Mt+1 yields

pt = qtEt(xt+1) +
Cov(βU′(ct+1), xt+1)

U′(ct)
.

• pt is lowered (increased) if its payoff covaries positively
(negatively) with consumption.

• An asset whose return covaries positively with consumption
makes the consumption stream more volatile. It requires a lower
price to induce the agent to buy such an asset.

• Agents want assets that covariate negatively with consumption.
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Problem 4 (Asset pricing)

Why all this?

• In this problem we have seen how to price assets according to the
C-CAPM.

• We do this because we want to structurally explain asset prices
and returns.

• In this exercise we did not explain the risk premium.

• However, this is also possible using the C-CAPM.

• But the empirical evidence is weak.

• Example: the equity premium puzzle.
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Problem 4 (Asset pricing)

Equity premium puzzle

• The puzzle is that...

... the equity premium is too large to be explained by the covariance
of consumption growth with stock returns (which is quite low).

• The risk premium can only be explained when assuming a degree
of risk aversion which is too big to be plausible.

• For illustration recall the example from the lecture...

... Investors would have to be indifferent between a lottery equally
likely to pay $50,000 or $100,000 (an expected value of $75,000) and
a certain payoff between $51,209 and $51,858 (the two last numbers
correspond to measures of risk aversion equal to 30 and 20).

• There are some approaches that try to solve the puzzle but none of
them can solve it fully.

• For example habit formation or Epstein Zin preferences...
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