1. Arithmetic of growth rates

As discussed in the Lecture Notes, Lucas (1988) in a key contribution to modern growth theory summarizes striking features of the arithmetic of growth rates as follows:

"Rates of growth of real per capita GNP are...diverse, even over sustained periods. For 1960-80 we observe, for example, India, 1.4% per year; Egypt, 3.4%; South Korea, 7.0%; Japan, 7.1%, the United States, 2.3%, the industrial economies averaged 3.6%." (Lucas, 1988, p.3)

Using these numbers, Lucas illustrates their implications as follows:

"...Indian incomes will double every 50 years; Korean every 10. An Indian will, on average, be twice as well off as his grandfather; a Korean 32 times."

Verify this statement.

 $(\rightarrow$ hint: the solution will be similar to the discussion of the half-life of growth dynamics discussed in the Lecture Notes)

2. Solow-model and golden-rule discussion

Consider the central steady-state equation in $k^{\#}$ characterizing the Solow-model (as derived in the Lecture Notes):

$$s \cdot F(k_{So}^{\#}) = (\delta + \mu_{N^{\#}}) \cdot k_{So}^{\#}$$

- (a) Find a relationship between $c_{So}^{\#}$ and $k_{So}^{\#}$.
- (b) Let $k_{GR}^{\#}$ denote the golden-rule level of the capital stock per unit of effective labor. Show that $\frac{\partial c_{So}^{\#}}{\partial s} > 0$ if $k_{So}^{\#} < k_{GR}^{\#}$.
- (c) Consider a permanent increase in the savings rate (starting out from a steady-state constellation characterized by $\frac{\partial c_{So}^{\#}}{\partial s} > 0$). Find a graphical representation of the time paths of $c_t^{\#}$ (ie consumption per unit of effective labor) and c_t (ie per capita consumption) before and after the shock occurs.
- (d) Consider the Cobb-Douglas production function

$$F(k^{\#}) = (k^{\#})^{\alpha}$$

Let $\alpha = 1/3$ and s = 0.15. Show that these values imply $\frac{\partial c_{So}^*}{\partial s} > 0$.