Solution to Problem Set 6

Problem 6.1.

(a) Consumer's problem reads

$$
\begin{array}{r}
\max _{\left\{c_{t}, h_{t}, k_{t+1}\right\}_{t=0}^{\infty}}\left\{\mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \beta^{t}\left(\log \left(c_{t}\right)+v\left(1-h_{t}\right)\right)\right] \mid c_{t}+k_{t+1} \leq w_{t} h_{t}+R_{t} k_{t} \text { for all } t\right. \\
\left.\wedge c_{t} \geq 0 \wedge 0 \leq h_{t} \leq 1 \wedge k_{t+1} \geq 0 \wedge k_{0}>0 \text { given }\right\}
\end{array}
$$

Let $\left(c_{t}^{*}, h_{t}^{*}\right)_{t \geq 0}$ denote the optimal consumption and labor. Consider the following perturbation

$$
\begin{align*}
& c_{t}^{\prime}=c_{t}^{*}-\delta \tag{1}\\
& c_{t+1}^{\prime}=c_{t+1}^{*}+R_{t+1} \delta \tag{2}
\end{align*}
$$

and $c_{s}^{\prime}=c_{s}^{*}$ for all other periods s. Thus, we have

$$
\begin{gathered}
\mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \beta^{t}\left(\log \left(c_{t}^{*}\right)+v\left(1-h_{t}^{*}\right)\right)\right] \geq \mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \beta^{t}\left(\log \left(c_{t}^{\prime}\right)+v\left(1-h_{t}^{*}\right)\right)\right] \\
\Longleftrightarrow \mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \beta^{t} \log \left(c_{t}^{*}\right)\right] \geq \mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \beta^{t} \log \left(c_{t}^{\prime}\right)\right] \\
\Longleftrightarrow \log \left(c_{t}^{*}\right)+\beta \mathbb{E}_{t}\left[\log \left(c_{t+1}^{*}\right)\right] \geq \log \left(c_{t}^{*}-\delta\right)+\beta \mathbb{E}_{t}\left[\log \left(c_{t+1}^{*}+R_{t+1} \delta\right)\right]
\end{gathered}
$$

The right hand side is strictly concave and is maximized at $\delta=0$. Thus,

$$
0=\underset{\delta}{\operatorname{argmax}}\left\{\log \left(c_{t}^{*}-\delta\right)+\beta \mathbb{E}_{t}\left[\log \left(c_{t+1}^{*}+R_{t+1} \delta\right)\right]\right\}
$$

As δ can be either positive or negative, the following FOC is satisfied at $\delta=0$

$$
1=\beta \mathbb{E}_{t}\left[R_{t+1} \frac{c_{t}^{*}}{c_{t+1}^{*}}\right]
$$

The perturbation for labor is left as an exercise. After all, you obtain the following optimality conditions

$$
\begin{align*}
& 1=\beta \mathbb{E}_{t}\left[R_{t+1} \frac{c_{t}}{c_{t+1}}\right] \tag{3}\\
& w_{t}=v^{\prime}\left(1-h_{t}\right) c_{t} \tag{4}\\
& c_{t}+k_{t+1}=w_{t} h_{t}+R_{t} k_{t} \tag{5}
\end{align*}
$$

where the last condition is nothing but the budget constraint.
(b) The firm's decision problem reads

$$
\max _{k_{t}, h_{t}}\left\{k_{t}^{\alpha}\left(A_{t} h_{t}\right)^{1-\alpha}-w_{t} h_{t}-R_{t} k_{t} \mid\left(k_{t}, h_{t}\right) \in \mathbb{R}_{+}^{2}\right\}
$$

The first order conditions are

$$
\begin{align*}
& R_{t}=\alpha k_{t}^{\alpha-1}\left(A_{t} h_{t}\right)^{1-\alpha}=\alpha F\left(k_{t}, A_{t} h_{t}\right) / k_{t} \tag{6}\\
& w_{t}=(1-\alpha) k_{t}^{\alpha} A_{t}^{1-\alpha} h_{t}^{-\alpha}=(1-\alpha) F\left(k_{t}, A_{t} h_{t}\right) / h_{t} \tag{7}
\end{align*}
$$

(4) and (5) imply that $w_{t} h_{t}+R_{t} k_{t}=F\left(k_{t}, A_{t} h_{t}\right)$. Therefore,

$$
c_{t}=F\left(k_{t}, A_{t} h_{t}\right)-k_{t+1}=\left(1-s_{t}\right) F\left(k_{t}, A_{t} h_{t}\right)
$$

(c) Using (4) to rewrite (1) we obtain

$$
\begin{aligned}
1 & =\alpha \beta \mathbb{E}_{t}\left[\frac{F\left(k_{t+1}, A_{t+1} h_{t+1}\right)}{c_{t+1}} \frac{c_{t}}{k_{t+1}}\right] \\
& =\alpha \beta \mathbb{E}_{t}\left[\frac{F\left(k_{t+1}, A_{t+1} h_{t+1}\right)}{\left(1-s_{t+1}\right) F\left(k_{t+1}, A_{t+1} h_{t+1}\right)} \frac{\left(1-s_{t}\right) F\left(k_{t}, A_{t} h_{t}\right)}{s_{t} F\left(k_{t}, A_{t} h_{t}\right)}\right] \\
& =\alpha \beta \mathbb{E}_{t}\left[\frac{1-s_{t+1}}{1-s_{t}} \frac{1}{s_{t}}\right]
\end{aligned}
$$

Assume the saving rate is constant, then it follows that

$$
1=\alpha \beta \mathbb{E}_{t}\left[\frac{1-s}{1-s} \frac{1}{s}\right]
$$

which results in $s=\alpha \beta$.
(d) Using (5) to rewrite (2) we have

$$
\begin{equation*}
v^{\prime}\left(1-h_{t}\right) h_{t}=\frac{1-\alpha}{1-\alpha \beta} \tag{8}
\end{equation*}
$$

Define $v^{\prime}\left(1-h_{t}\right) h_{t}=: g\left(h_{t}\right)$. Consider the first derivative of g

$$
g^{\prime}\left(h_{t}\right)=v^{\prime}\left(1-h_{t}\right)-h_{t} v^{\prime \prime}\left(1-h_{t}\right)
$$

As v is strictly increasing and strictly concave, and $h_{t} \geq 0$, it follows that $g^{\prime}\left(h_{t}\right)>0$. Thus, g is invertible and

$$
h_{t}=g^{-1}\left(\frac{1-\alpha}{1-\alpha \beta}\right)=: \bar{h}
$$

which is constant.
(e)

$$
\begin{equation*}
k_{t+1}=s F\left(k_{t}, A_{t} h_{t}\right)=\alpha \beta k_{t}^{\alpha}\left(A_{t} h_{t}\right)^{1-\alpha}=\alpha \beta \bar{h}^{1-\alpha} A_{t}^{1-\alpha} k_{t}^{\alpha} \equiv \mathcal{K}\left(k_{t}, A_{t}\right) \tag{9}
\end{equation*}
$$

The lower and upper bound capital of the stable set is determined by

$$
\begin{aligned}
& k_{\min }=\alpha \beta \bar{h}^{1-\alpha} \underline{A}^{1-\alpha} k_{\min }^{\alpha}=\bar{h} \underline{A}(\alpha \beta)^{1 / 1-\alpha} \\
& k_{\max }=\alpha \beta \bar{h}^{1-\alpha} \bar{A}^{1-\alpha} k_{\max }^{\alpha}=\bar{h} \bar{A}(\alpha \beta)^{1 / 1-\alpha}
\end{aligned}
$$

Consider the limit

$$
\lim _{k \searrow 0} \mathcal{K}^{\prime}(k, \underline{A})=\lim _{k \searrow 0} \alpha^{2} \beta \bar{h}^{1-\alpha} \underline{A}^{1-\alpha} k^{\alpha-1}=\infty>1
$$

So, the stable set is

$$
\begin{gather*}
{\left[k_{\min }, k_{\max }\right]=\left[\bar{h} \underline{A}(\alpha \beta)^{1 / 1-\alpha}, \bar{h} \bar{A}(\alpha \beta)^{1 / 1-\alpha}\right]} \\
c_{t}=(1-s) F\left(k_{t}, A_{t} h_{t}\right)=(1-\alpha \beta) k_{t}^{\alpha}\left(A_{t} h_{t}\right)^{1-\alpha}=(1-\alpha \beta) \bar{h}^{1-\alpha} A_{t}^{1-\alpha} k_{t}^{\alpha} \equiv \mathcal{C}\left(k_{t}, A_{t}\right) \tag{10}
\end{gather*}
$$

The lower and upper bound consumption of the stable set is determined by

$$
\begin{aligned}
& c_{\min }=\mathcal{C}\left(k_{\min }, \underline{A}\right)=:(1-\alpha \beta) \bar{h}^{1-\alpha} \underline{A}^{1-\alpha} k_{\min }^{\alpha}=\bar{h} \underline{A}(1-\alpha \beta)(\alpha \beta)^{\alpha / 1-\alpha} \\
& c_{\max }=\mathcal{C}\left(k_{\max }, \bar{A}\right)=:(1-\alpha \beta) \bar{h}^{1-\alpha} \bar{A}^{1-\alpha} k_{\max }^{\alpha}=\bar{h} \bar{A}(1-\alpha \beta)(\alpha \beta)^{\alpha / 1-\alpha}
\end{aligned}
$$

Consider the limit

$$
\lim _{k \searrow 0} \mathcal{C}^{\prime}(k, \underline{A})=\lim _{k \searrow 0}(1-\alpha \beta) \alpha \bar{h}^{1-\alpha} \underline{A}^{1-\alpha} k^{\alpha-1}=\infty>1
$$

So, the stable set is

$$
\left[c_{\min }, c_{\max }\right]=\left[\bar{h} \underline{A}(1-\alpha \beta)(\alpha \beta)^{\alpha / 1-\alpha}, \bar{h} \bar{A}(1-\alpha \beta)(\alpha \beta)^{\alpha / 1-\alpha}\right]
$$

Problem 6.2.

(a) The Bellman equation is written as

$$
\begin{array}{r}
V(k, A)=\max _{k_{+}, c, h}\left\{\log (c)+\log (1-h)+\beta \mathbb{E}\left[V\left(k_{+}, A_{+}\right)\right] \mid c+k_{+}=k^{\alpha}(A h)^{1-\alpha}\right. \\
\left.\wedge c \geq 0 \wedge k_{+} \geq 0 \wedge 0 \leq h \leq 1\right\} \tag{11}
\end{array}
$$

where $w h+R k=k^{\alpha}(A h)^{1-\alpha}$, which is predetermined in the firm's problem.
(b) Now we guess $V(k, A)=B+C \log (k)+D \log (A)$. The Bellman equation can be rewritten as
$B+C \log (k)+D \log (A)=\max _{k_{+}, h}\left\{\log \left(k^{\alpha}(A h)^{1-\alpha}-k_{+}\right)+\log (1-h)+\beta \mathbb{E}\left[\left(B+C \log \left(k_{+}\right)+D \log \left(A_{+}\right)\right]\right\}\right.$
FOCs:

$$
\begin{align*}
& \frac{1}{k^{\alpha}(A h)^{1-\alpha}-k_{+}}=\frac{\beta C}{k_{+}} \tag{12}\\
& \frac{1}{1-h}=\frac{(1-\alpha) k^{\alpha} h^{-\alpha} A^{1-\alpha}}{k^{\alpha}(A h)^{1-\alpha}-k_{+}} \tag{13}
\end{align*}
$$

Rearranging (10) and (11) yields

$$
\begin{align*}
& k_{+}=\frac{\beta C k^{\alpha}(A h)^{1-\alpha}}{1+\beta C} \tag{14}\\
& h=\frac{(1-\alpha)(1+\beta C)}{1+(1-\alpha)(1+\beta C)} \equiv \bar{h} \tag{15}
\end{align*}
$$

Plugging (12) and (13) into the Bellman equation gives

$$
\begin{align*}
B+C \log (k)+D \log (A)=\alpha(1 & +\beta C) \log (k)+\log (1-\bar{h})+\log \left(\frac{(A \bar{h})^{1-\alpha}}{1+\beta C}\right) \\
& +\beta C \log \left(\frac{\beta C(A \bar{h})^{1-\alpha}}{1+\beta C}\right)+\beta B+\beta \mathbb{E}\left[\log \left(A_{+}\right)\right] \tag{16}
\end{align*}
$$

(14) implies that

$$
C=\alpha(1+\beta C)=\frac{\alpha}{1-\alpha \beta}
$$

The parameters B and D are solvable but are not of interest. So the policy function for capital is given by

$$
k_{+}=\alpha \beta k^{\alpha}(A h)^{1-\alpha}
$$

Labor supply is constant and equals

$$
\bar{h}=\frac{1-\alpha}{2-\alpha(\beta+1)}
$$

(c) Notice that when $v(1-h)=\log (1-h)$, (6) implies that $\bar{h}=\frac{1-\alpha}{2-\alpha(\beta+1)}$. The saving rate we obtained here is also constant and equals $\alpha \beta$. In conclusion, the two methods yield the same solution.

