Johannes-Gutenberg University Mainz
Bachelor of Science in Wirtschaftswissenschaften

Macroeconomics II: Behavioural Macro
Summer 2017

Klaus Wälde (lecture) and Jean Roch Donsimoni (tutorials)

www.macro.economics.uni-mainz.de
February 22, 2017
Part IV
Wealth distributions and redistribution

14 Origins of wealth distributions

14.1 Some facts

- See a video on the wealth distribution in the USA
- See the evolution of the wealth distribution of a cohort in the USA
 - National Longitudinal Survey of Youth (born between 1957-64)
 - Cohort originally included 12,686 respondents ages 14-22 when first interviewed in 1979
 - https://www.nlsinfo.org/content/cohorts/nlsy79
Figure 28 Empirical wealth distribution of the 1979 cohort in the NLSY from 1986 to 2008
14.2 Determinants of wealth distributions

Questions and (some) answers

- How can we understand wealth distributions theoretically and empirically?

- What are theoretical mechanisms that allow us to understand that some have more wealth than others?
 - born rich (inheritance)?
 - saved a lot over time (preference)?
 - high labour income (intelligent and income-oriented)?
 - luck on the labour market (always had good paying jobs, never lost the job)?
 - wealthy because old (life-cycle considerations)?

- Can we construct economic models that explain wealth distributions (and their dynamics) in a quantitatively satisfactory way?
15 A simple model

15.1 The setup

- The idea (see Bossmann, Kleiber and Wälde, 2007)
 - Individuals live in a 2-period OLG general equilibrium world
 - The economy evolves in a deterministic way at the aggregate level (as in ‘Makro I’)
 - There are no aggregate shocks (no TFP shocks as in section 13.1.3)
 - Two novel features
 - Idiosyncratic shocks: Labour income is uncertain (ability when born and skills when entering the labour market are random)
 - Bequests: Individuals inherit wealth when born and leave bequests
- The formal structure for an individual i

 - First-period budget constraint
 \[w_t l_{it} + b_{it} + g_t = c_{it}^y + s_{it} \]
 \((51) \)
 * b_{it} denotes after tax inheritance received from the parent
 * $w_t l_{it}$ stochastic income depending on (deterministic)
 * wage w_t per efficiency unit and the
 * random ability of the individual l_{it}
 * g_t is the uniform lump-sum transfer received from the government in case that it levies a tax on bequests
 * s_{it} savings

 - The distribution for individual ability
 \[E(l_{it}) = \tilde{l} \equiv 1, \quad \text{var}(l_{it}) = \sigma^2, \quad \text{cov}(l_{ir}, l_{is}) = 0 \text{ for } r \neq s. \]
 \((52) \)
 * l_{it} are identically and independently distributed (iid)
 * Hence, mean and variance are the same for all t (identically distributed) and ...
 * Covariance is zero (independently distributed)
 * Without loss of generality, we set $\tilde{l} = 1$
Second-period constraint

\[s_{it} [1 + r_{t+1}] = c_{it+1}^o + (1 + \tau) b_{it+1}, \quad (53) \]

- \(r_{t+1} \) is the second period certain (!) interest rate
- \(c_{it+1}^o \) is second period consumption
- \(\tau \) is the proportional tax rate on
- bequests \(b_{it+1} \)

Preferences

- Individuals enjoy consumption and bequests ("warm-glow" motive)

\[U_{it} = U \left(c_{it}^y, \ c_{it+1}^o, \ b_{it+1} \right) \quad (54) \]

- They choose consumption \(c_{it}^y \) when young, \(c_{it+1}^o \) when old, and the bequest \(b_{it+1} \) passed on to the child
- Utility depends on the amount \(b_{it+1} \) the child receives after tax
- Joy-of-giving idea: "consumers leave bequests simply because they obtain utility directly from the bequest"
- Next generation also has index \(i \) such that \(i \) is the "name" of a family/dynasty
15.2 Equilibrium

- Optimal behaviour

 - After some (not complicated but time-consuming) steps,
 - employing a Cobb-Douglas utility function

 \[U_{it} = \alpha \ln c_{it}^y + (1 - \alpha) \left[\beta \ln c_{it+1}^g + (1 - \beta) \ln b_{it+1} \right] \]

 - and defining wealth as \(a_{it+1} \equiv s_{it} \), we get

 \[a_{it+1} = (1 - \alpha)w_l l_{it} + \frac{(1 - \alpha)(1 - \beta)(1 + r_t)}{1 + \tau} a_{it} + \frac{\tau(1 - \alpha)(1 - \beta)(1 + r_t)}{1 + \tau} k_t \]

 which shows that wealth of dynasty \(i \) in period \(t + 1 \) depends on

 * wealth \(a_{it} \) of previous generation (via bequests \(b_{it} \))
 * aggregate capital stock \(k_t \) per worker (via government transfers \(g_t \)) and
 * individual skills \(l_{it} \) (via labour income)
Macroeconomic equilibrium and microeconomic dynamics

- Employ a simplifying assumption which is common to very many macroeconomic models
- At the aggregate level, the economy is in a steady state, i.e.
 \[k_t = \bar{k}, \; r_t = \bar{r}, \; w_t = \bar{w} \]
 are constant over time
- At the microeconomic level, there is still idiosyncratic risk via ability \(l_{it} \) of individual/dynasty \(i \)
- Some family \(i \) becomes richer over time, some family becomes poorer, some remain at more or less the same level
• The evolution of wealth

 – Fundamental wealth equation for family i

 \[a_{it+1} = c_3 l_{it} + c_4 a_{it} + c_5 \]
 \hspace{1cm} (57)

 – c_3 to c_5 are abbreviations for parameters and constant variables (w, r, k) as shown in (55)

 – (c_1 and c_2 were used earlier in paper)

 – This is the reduced form of the model – no further simplification possible
15.3 The distribution of wealth

- What does this model tell us about the evolution of wealth of one family i?
 - Not very much
 - As individual skills are uncertain, so is individual wealth
 - Wealth evolves over time, it can rise, it can fall, almost anything can happen
 - Model makes hardly any prediction about the realization of wealth at some future point in time t
 - But we do know something about the probability that wealth is within a certain range – and we can compute expected wealth

- Simple but powerful principle
 - A very simple example which has the same properties: playing dice (Würfel)
 - Before someone throws one die, one cannot say a lot about the realization (apart from numbers between 1 and 6)
 - But one can say something about the probability to throw between 3 and 5, or to throw 1 (or other)
 - This is the case with all models containing some source of uncertainty – they make predictions about probabilities or - more generally - distributional properties
• What does this model tell us about inequality?

 – This depends on how we define inequality
 – Various measures are available: variance, standard deviation, coefficient of variation, wealth held by richest x%, ratios of percentiles and so on
 – We start with a simple measure: variance
 – [The coefficient of variation (standard deviation divided by the mean) would have the advantage of being scale-independent]
From individual probabilities to cross-sectional distributions

- So far, we only discussed, for some future point in time t,
 * probability of an individual to have wealth within a certain range
 * expected wealth of a person
 * variance of wealth of a person

- We also want to know what the expected wealth level is for a group of people

- Imagine we look at many individuals that all start with the same initial wealth level $a_{i0} = a_{\text{low}}$ (we look at “the poor”) or $a_{i0} = a_{\text{high}}$ (we look at “the rich”)

- Employing a law of large numbers, one can show that
 * the probability of an individual to have wealth within a certain range also gives the share of individuals of this group within this certain range
 * expected wealth of a person also gives average wealth of this group
 * variance of wealth of a person also gives variance of wealth of this group
 * we obtain a distribution of wealth for a cross-section of individuals for any point in time

- To illustrate, think about playing dice
15.4 The mean and variance of the wealth distribution

- Let us now compute the variance and coefficient of variation (for which we need the mean) for the wealth distribution for one dynasty i.

- We compute the wealth level a_{it} of an individual i at $t > 0$ by solving the difference equation (57).

- We obtain (Wälde, 2012, ch. 2.5.3) wealth a_{it} as a function of parameters, time t, the initial wealth level a_{i0} and luck, i.e. the realization of skills l_{is} for family i at each point in time between 0 and $t - 1$,

$$
 a_{it} = c_5 \sum_{s=0}^{t-1} c_4^s + c_4^t a_{i0} + c_3 \sum_{s=0}^{t-1} c_4^{t-1-s} l_{is}
$$

- What does this tell us?

 - If we knew l_{is} already in 0, we could perfectly predict (no uncertainty) what the wealth level a_{it} is in t.
 - As we do not know the l_{is}, a_{it} is unknown.
 - Initial wealth a_{i0} matters and c_4 is a measure of social mobility: the lower c_4, the less social background (“wealth of parents”) matters (see Charles and Hurst, 2003).
 - Apart from a_{i0}, why are some people rich and some are poor? The rich were lucky, the poor were not: a_{it} is basically the sum of past luck l_{is}.

270
• Is there “equality of chances”?
 – Same equation as (58) above

\[
a_{it} = c_5 \sum_{s=0}^{t-1} c_s + c_4 a_{i0} + c_3 \sum_{s=0}^{t-1} c_s c_4^{t-1-s} l_{is} \tag{59}
\]
 – If uncertain skills \(l_{is} \) come from the same distribution for all individuals, there is an “equality of chances” in this economy
 – If social background also affects luck, there is no equality of chances
 – Examples for absence of equality of chances
 * the share of students at university coming from parents with a university degree is larger than the share of parents with a university degree in society
 * the share of ethnic group \(A \) in government is larger than the share of this group in society
• Computing the mean

– Define expected wealth as $\mu_{it} = E_0 a_{it}$ (compare the definition in (50))
– In words, μ_{it} is the expected wealth of dynasty i for some future point in time t
 when we form expectations at 0
– Apply this to (58) and get

$$\mu_{it} = c_5 \sum_{s=0}^{t-1} c_4^s + c_4^t a_{i0} + c_3 \sum_{s=0}^{t-1} c_4^{t-1-s}$$

where we use $E(l_{it}) = \bar{l} \equiv 1$ from (52)
– Why does the expected wealth level still depend on the dynasty, i.e. why is there an
 index i in μ_{it}? Because of initial wealth a_{i0} of dynasty i
– After some steps (see web appendix of the paper - which is not part of the contents
 of this lecture), we get a very intuitive result

$$\mu_{it} = (a_{i0} - \bar{k}) c_4^t + \bar{k}$$

– Expected wealth in t depends on initial wealth a_{i0}, wealth per capita, \bar{k}, in the
 economy and the social mobility parameter c_4
– In the presence of equality of chances

* “family background” does not matter, \(E(l_{it}) = \bar{l} \equiv 1 \)
* wealth regresses to the mean \(\bar{k} \) from (56)
* initial wealth matters from generation to generation, but not in the long run

– This is a relatively “optimistic model” with respect to inequality

* Race, gender, country of origin, family background do not play a role
* Hard to believe?
* Empirically hard to support?
• Computing the variance

 – We are interested in the variance of wealth a_{it} as given in (59)

 $$a_{it} = c_5 \sum_{s=0}^{t-1} c_s^t + c_4^t a_{i0} + c_3 \sum_{s=0}^{t-1} c_4^{t-1-s} l_{is}$$

 – Note that we can look at a_{it} as a standard random variable

 * It is true that a_{it} changes from one point in time to the next

 * When we are interested in the variance (or any other moment), we hold time t fixed and use standard rules for standard random variables

 – We therefore need to understand the variance of a sum of parameters and random variables
• Computing the variance (cont’d)

 – Starting from (59)

 \[a_{it} = c_5 \sum_{s=0}^{t-1} c_s^t + c_4^t a_{i0} + c_3 \sum_{s=0}^{t-1} c_4^{t-1-s} l_{is}, \]

 we get (using knowledge from Statistik I and II)

 \[
 \begin{align*}
 \text{var} (a_{it}) &= \text{var} \left(c_5 \sum_{s=0}^{t-1} c_s^t + c_4^t a_{i0} + c_3 \sum_{s=0}^{t-1} c_4^{t-1-s} l_{is} \right) \\
 &= 0 + 0 + c_3 \text{var} \left(\sum_{s=0}^{t-1} c_4^{t-1-s} l_{is} \right) \\
 &= c_3 \sum_{s=0}^{t-1} \left(c_4^{t-1-s} \right)^2 \text{var} (l_{is})
 \end{align*}
 \]

 where the second equality employed that the variance of a constant is zero and the second equality used (52), especially the covariance of zero

 – Using (52) further and Wälde (2012, ch. 2.5.1), we find

 \[
 \text{var} (a_{it}) = c_3 \sigma^2 \sum_{s=0}^{t-1} \left(c_4^{t-1-s} \right)^2 = c_3 \sigma^2 \frac{1 - c_4^{2t}}{1 - c_4^2}
 \]

 which tells us that the variance increases over time (but approaches a constant)
15.5 What do we learn from this?

- Imagine we have a real world distribution (reminder)

Figure 29 *Empirical wealth distribution of the 1979 cohort in the NLSY (1986 to 2008)*
• We can then ask the following question

 – Can we understand this increase in inequality to be consistent with ’equality of chances’?
 – [Let us imagine we consider ’equality of chances’ to be important – think of “all men are created equal” or “All human beings are born free and equal in dignity and rights”]
 – More precisely speaking: if each generation has iid ability l_{it}
 * (a) can we replicate this empirical evolution of wealth in our model?
 * (b) can we do so with realistic parameter values?
 – If not, what is the source of large inequality and why is ’equality of chances’ being violated?

• We can ask further questions

 – What would happen to the wealth distribution if we had a social security system or if we had a (progressive) tax system? Would the wealth distribution become more equal?
 – Is there a trade-off between average wealth (imagine society wants to become richer) and inequality? (Think about the Kuznets curve in economic development.)
 – ... and much more ...
16 Conclusion

- Basic questions
 - Why are some people rich and some people poor? Why do some people even die with debt, i.e. with negative wealth?
 - What is the role of personality, family background, social background, education and work life?
 - Which role does the tax and redistribution system play?

- Framework of analysis
 - We got to know a simple but powerful analytical framework that allows to think about these questions
 - With its two-period structure, it allows for many analytical findings
 - It seems a useful framework to answer questions in principle
 - For a careful explanation of data, a many-period structure (probably with life-cycle features) would be more promising
• Real world relevance?

 – Hard to deny
 – Think about discussions about rising inequality of all sorts in many OECD and G7 countries
 – Think about the outcome of (pre-) elections and a referendum in the US and the UK
 – For more background and a starting point, see OECD (2015, 2008) or Wälde (2016)
Part V

Summary

17 General idea of the lecture

- This was a lecture on behavioural macroeconomics
- The lecture had the following structure
 - Emotional economics
 - Behavioural economics
 - How behavioural macroeconomics could look like
 - Wealth distributions and redistribution
• Structure was chosen as the field of behavioural macro is developing

 – We first look at behavioural foundations

 – Then we look at macroeconomic models (unemployment, growth, business cycles) and discuss their extension to allow for behaviour features

 – Wealth distribution chapter is pure macro (so far) – empirical economists (Dynan, Skinner and Zeldes, 2004) argue that behavioural features are required

• Good example of “research-based teaching”, a concept favoured by JGU
18 Big messages

- What are the messages that should survive from this lecture?
 - Every detail of the course for the rest of everybody’s life ;-)
 - Strong belief that psychological research is extremely useful for understanding economic questions
 - Strong(er) belief that economic methods are even more useful to further develop psychological thinking
 - Example of interdisciplinary research where every discipline learns something from the other discipline

- The most striking insight from emotional and behavioural economics
 - Models of time inconsistency
 - Individuals make plans – and they do not stick to them
 - This is because individuals keep being surprised by their changes in preferences (the present-bias parameter β)
What is THE issue in macroeconomics?

- Inequality in GDP per capita and in its average growth rates over decades around the world
- Yes, there is inequality in wealth distributions within a country
- Yes, there is unemployment
- But none of this is as strong as inequality in GDP per capita
• Do we need economics to solve these problems?

 – Yes and no – where the no is stronger
 – Yes as we need methods to meaningfully run a country, to manage a market economy, to internalize externalities, to control competition by reducing market power of firms that are too large
 – But – in most cases – reasonable methods are known
 – So: no, we need rethinking of human beings
 – We need more sharing, more compassion, more thinking in terms of groups than thinking in individual terms – so keep in mind \(u = u\left(c_{\text{me}}, c_{\text{the others}}\right)\)
 – How this works: Know Thyself
References

