Leopold von Thadden

Makroökonomie I Vorlesung 5

Wintersemester 2013/2014

Das *IS-LM*-Modell (Kapitel 5)

Gliederung:

Kapitel 5 schließt die Diskussion der kurzen Frist ab

5.1 Gütermarkt und *IS*-Gleichung
5.2 Geld- und Finanzmärkte und *LM*-Gleichung
5.3 Zusammenspiel von *IS*- und *LM*-Gleichung
5.4 Kombinierter Einsatz von Geld- und Fiskalpolitik
5.5 IS-LM Modell und empirische Evidenz
5.6 Ausblick und Grenzen des IS-LM Modells

Vorbemerkung

- Kapitel 5 führt die partiellen Überlegungen aus Kapitel 3 zum Gütermarkt und aus Kapitel 4 zu den Geld- und Finanzmärkten in einem integrierten Modellrahmen zusammen
- Das IS-LM-Modell bietet einen Analyserahmen zur Erklärung von Zins und gesamtwirtschaftlicher Produktion, d.h. Y und i werden gemeinsam modellendogen bestimmt
- Das IS-LM-Modell eignet sich zur Analyse von Geld- und Fiskalpolitik
- In der kurzen Frist ist P annahmegemäß konstant, d.h.: Kapitel 5 betrachtet das IS-LM-Modell bei konstanten Preisen
- Das IS-LM-Modell geht zurück auf die Interpretation der General Theory (1936) von John Maynard Keynes durch John Hicks (1937)

Gütermarkt-GG-Bedingung aus Kapitel 3 (bei allgemeiner Konsumfunktion):

$$Y = C(Y-T) + \overline{I} + G$$

Vereinfachende Annahmen in Kapitel 3:

- Güternachfrage unabhängig vom Zins i
- Exogene Investitionen (I)

Erweiterung in Kapitel 5:

Güternachfrage wird abhängig vom Zins i (über die Investitionsfunktion)

Investitionsfunktion:

$$I = I(Y, i)$$
 (1)

Determinanten der Investitionsfunktion:

Produktionsniveau: Investitionsneigung steigt in Y, d.h.: Änderungen in der (erwarteten) Produktion führen zu Kapazitätsanpassungen im Kapitalstock

Zins: Investitionsneigung fällt im Zins. Der Zins misst die Kosten einer (kreditfinanzierten) Investitionsentscheidung, d.h.: bei einem höheren Zins werden weniger Investitionsprojekte rentabel

Erweiterte Gleichgewichtsbedingung für den Gütermarkt (IS-Gleichung):

$$Y = C(Y-T) + I(Y, i) + G$$
 (2)

Bei gegebenem Zins: Nachfrage hängt vom Einkommen über 2 Kanäle ab:

i) Konsumfunktion und ii) Investitionsfunktion

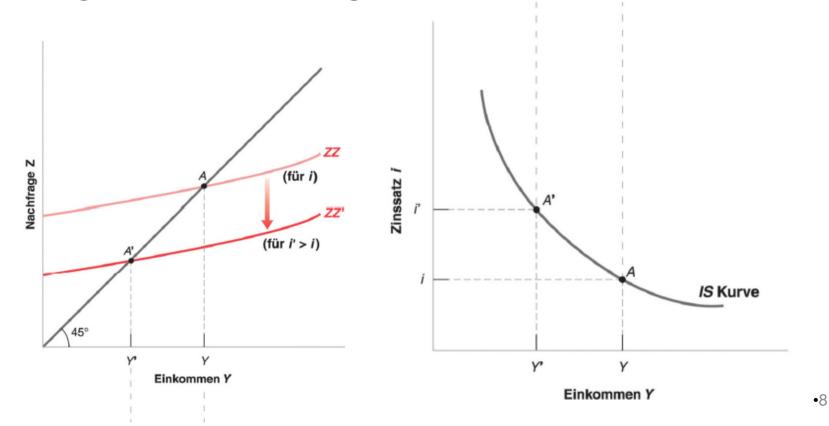
Annahme (notwendig für Konvergenz des erweiterten Gütermarkt-Multiplikators):

Nachfrage Z steigt bei einem Anstieg von Y weniger als 1:1, d.h.: $0 < \frac{dC}{dY_v} + \frac{\partial I}{\partial Y} < 1$

⇒ ZZ-Kurve ist flacher als 45°- Linie...

GG-Bedingung für den Gütermarkt: Y = C(Y-T) + I(Y, i) + G (2) Annahme in der Grafik: Zins i sei zunächst gegeben

> 45° Linie Nachfrage (Z) Einkommen Y


5.1 Gütermarkt und *IS***-Gleichung** Herleitung der IS-Kurve

Ansatz: Änderungen von i führen zu Änderungen von Y

Erste Runde: $i \uparrow \Rightarrow I \downarrow \Rightarrow Y \downarrow$ Weitere Runden: $Y \downarrow \Rightarrow C \downarrow$ und $I \downarrow$

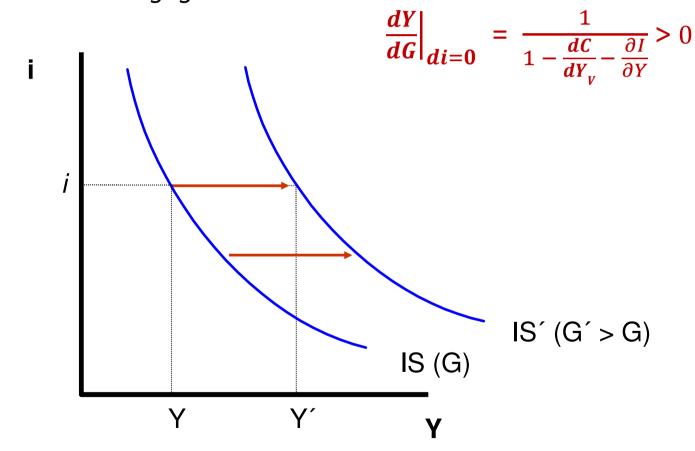
Multiplikatoreffekt: Y fällt um mehr als den ursprünglichen Rückgang von I

IS-Kurve: negativer Zusammenhang zwischen Y und i im Gütermarkt-GG

Eigenschaften der IS-Kurve

1) Bewegung entlang der IS-Kurve

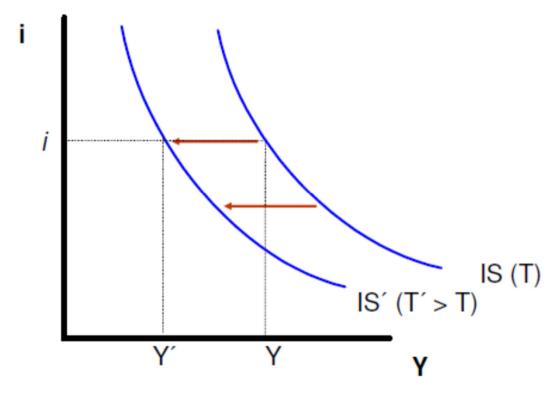
Bestätigung der negativen Steigung der IS-Kurve im Y-i-Raum durch totales Differenzieren der IS-Gleichung (2), d.h.: Y = C(Y-T) + I(Y, i) + G, in Bezug auf Y und i ergibt:


$$\frac{di}{dY} = \frac{1 - \frac{dC}{dY} - \frac{\partial I}{\partial Y}}{\frac{\partial I}{\partial i}} < 0$$

2) Verschiebungen der IS-Kurve

Alle Faktoren, die bei einem gegebenen Zinssatz zu einem Rückgang (Anstieg) des GG-Einkommens führen, verschieben die IS-Kurve nach links (rechts)...

Eigenschaften der IS-Kurve


Verschiebung der IS-Kurve: Höhere (kreditfinanzierte) Staatsausgaben verschieben die IS-Kurve bei gegebenem Zins nach rechts

Eigenschaften der IS-Kurve

Verschiebung der IS-Kurve: Höhere Steuern verschieben die IS-Kurve bei gegebenem Zins nach links

$$\left. \frac{dY}{dT} \right|_{di=0} = \frac{-\frac{dC}{dY_v}}{1 - \frac{dC}{dY_v} - \frac{\partial I}{\partial Y}} < 0$$

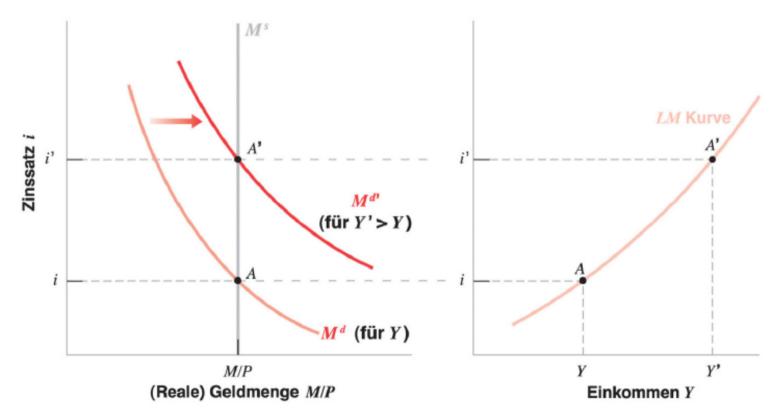
5.2 Geld- und Finanzmärkte und LM-Gleichung

Gleichgewichtsbedingung für den Geldmarkt aus Kapitel 4 (LM-

Gleichung), d.h.: $M = PY \cdot L(i)$, kann umgeformt werden zu:

$$\frac{M}{P} = Y \cdot L (i)$$
 (3)

Interpretation von Gleichung (3):


- Die linke Seite steht f\u00fcr das reale Geldangebot, das (bei konstantem Preisniveau) von der Zentralbank bestimmt wird
- Die rechte Seite steht für die reale Geldnachfrage (als Funktion der beiden Größen Y und i)

5.2 Geld- und Finanzmärkte und LM-Gleichung Herleitung der LM-Kurve

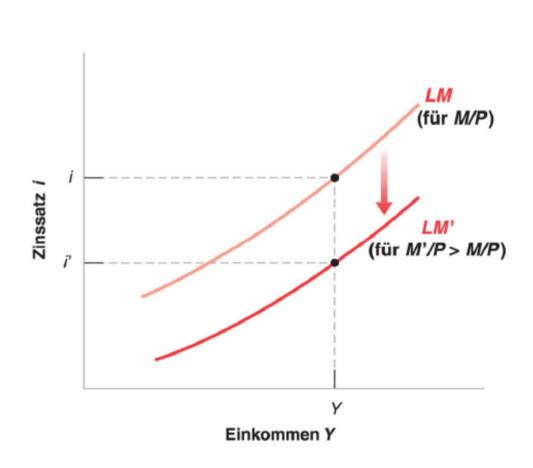
Ansatz: Änderungen von Y führen zu Änderungen von i

Mit steigendem Einkommen steigt ceteris paribus die Geldnachfrage. Bei konstantem Geldangebot muss daher der gleichgewichtige Zins steigen

LM-Kurve: positiver Zusammenhang zwischen Y und i im Geldmarkt-GG

5.2 Geld- und Finanzmärkte und LM-Gleichung Eigenschaften der LM-Kurve

1) Bewegung entlang der LM-Kurve

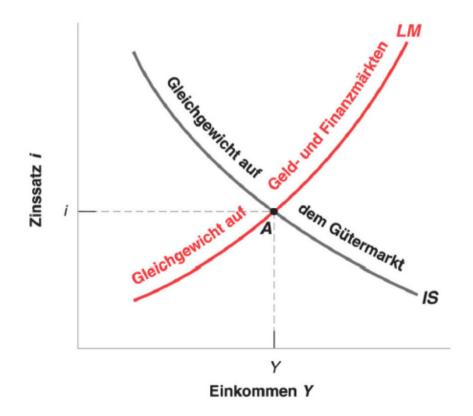

Bestätigung der positiven Steigung der LM-Kurve im Y-i-Raum durch totales Differenzieren der LM-Gleichung (3), d.h.: $\frac{M}{P} = Y \cdot L$ (i), in Bezug auf Y und i ergibt:

$$\frac{di}{dY} = - \frac{L}{Y \cdot \frac{dL}{di}} > 0$$

5.2 Geld- und Finanzmärkte und LM-Gleichung Eigenschaften der LM-Kurve

2) Verschiebung der LM-Kurve

Ein höheres (reales) Geldangebot führt bei einem gegebenen Einkommen zu einem niedrigeren GG-Zins, d.h. die LM-Kurve verschiebt sich nach unten

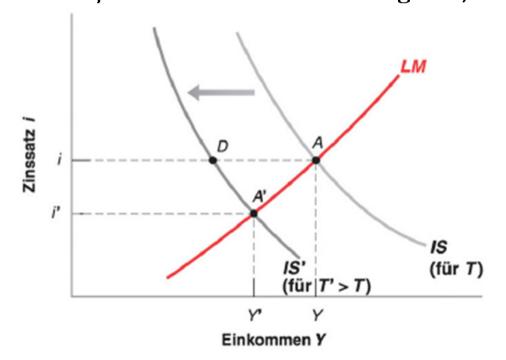


$$\frac{di}{d(\frac{M}{P})}\bigg|_{dV=0} = \frac{1}{Y \cdot \frac{dL}{di}} < 0$$

IS-Gleichung: Y = C(Y-T) + I(Y, i) + G (2) LM-Gleichung: $\frac{M}{P} = Y \cdot L(i)$ (3)

IS-LM-Modell: Im Schnittpunkt (A) von IS- und LM-Kurve herrscht simultanes Gleichgewicht auf Güter-, Geld- und Finanzmärkten

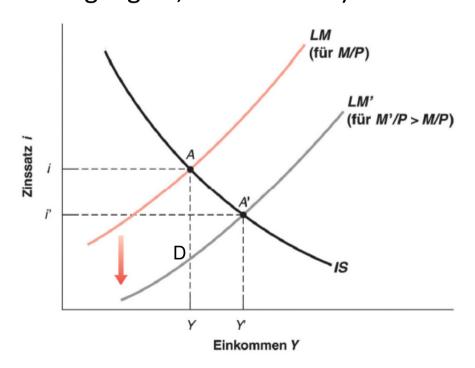
Endogene Variable: Y, i Exogene Variable: G, T, M/P


Wirkung von Fiskalpolitik

Beispiel: Auswirkungen einer Steuererhöhung (kontraktive Fiskalpolitik)

 $T \uparrow$: IS-Kurve verschiebt sich nach links; LM-Kurve ist unverändert $\Rightarrow Y \downarrow$, $i \downarrow$

Bewegung vom alten GG (A) ins neue GG (A') entlang der LM-Kurve:


⇒ Rückgang von Y (gemessen am Gütermarkt-Multiplikator AD) i.A. gemildert durch Geldmarkt-bedingten Rückgang von i (und der niedrigere Zins i schwächt via I(i) den kontraktiven Impuls auf die Güternachfrage ab, d.h.: YY' < AD)

Wirkung von Geldpolitik

Beispiel: Auswirkungen einer expansiven Geldpolitik

 $\frac{M}{P} \uparrow \Rightarrow$ LM-Kurve verschiebt sich nach unten; IS-Kurve ist unverändert $\Rightarrow Y \uparrow$, $i \downarrow$ Bewegung vom alten GG (A) ins neue GG (A') entlang der IS-Kurve: \Rightarrow Rückgang von i (gemessen am Effekt AD bei konstantem Y) i.A. gemildert durch Gütermarkt-bedingten Anstieg von Y (und das höhere Einkommen Y schwächt via L(i) den Zinsrückgang ab, d.h.: ii' < AD)

Zusammenfassung der grafischen Betrachtung:

Isolierte Wirkung von Geld- und Fiskalpolitik

	IS-Kurve ver- schiebt sich	LM-Kurve ver- schiebt sich	Einkommen	Zinssatz
Steuererhöhung	nach links	-	sinkt	sinkt
Steuersenkung	nach rechts	_	steigt	steigt
Anstieg der Staatsausgaben	nach rechts	-	steigt	steigt
Rückgang der Staatsausgaben	nach links	_	sinkt	sinkt
Anstieg der Geldmenge	-	nach unten	steigt	sinkt
Rückgang der Geldmenge	_	nach oben	sinkt	steigt

Analytische Betrachtung:

Isolierte Wirkung von Geld- und Fiskalpolitik

Ausgangspunkt:

IS-Gleichung:
$$Y = C(Y-T) + I(Y, i) + G$$
 (2) **LM-Gleichung:** $\frac{M}{P} = Y \cdot L(i)$ (3)

Totales Differenzieren von (2) und (3):

$$[1 - \frac{dc}{dY_{v}} - \frac{\partial I}{\partial Y}] \cdot dY - \frac{\partial I}{\partial i} \cdot di = -\frac{dC}{dY_{v}} \cdot dT + dG$$

$$L \cdot dY + Y \cdot \frac{dL}{di} \cdot di = d(\frac{M}{P})$$
(3')

Matrix-Notation:
$$\begin{bmatrix} 1 - \frac{dC}{dY_v} - \frac{\partial I}{\partial Y} & -\frac{\partial I}{\partial i} \\ L & Y \cdot \frac{dL}{di} \end{bmatrix} \cdot \begin{bmatrix} dY \\ di \end{bmatrix} = \begin{bmatrix} -\frac{dC}{dY_v} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} dT \\ dG \\ d(\frac{M}{P}) \end{bmatrix}$$

$$= \Delta$$

Analytische Betrachtung:

Isolierte Wirkung von Geld- und Fiskalpolitik

Determinante der System-Matrix
$$A = \begin{bmatrix} 1 - \frac{dC}{dY_v} - \frac{\partial I}{\partial Y} & -\frac{\partial I}{\partial i} \\ L & Y \cdot \frac{dL}{di} \end{bmatrix}$$
:

Det (A) = $[1 - \frac{dC}{dY_v} - \frac{\partial I}{\partial Y}] \cdot Y \cdot \frac{dL}{di} + L \cdot \frac{\partial I}{\partial i} < 0$

Auswirkungen einer Steuererhöhung (Beispiel 1):

$$\left(\mathbf{i} \right) \frac{dY}{dT} \Big|_{ISLM} = \frac{\begin{vmatrix} -\frac{dC}{dY_v} & -\frac{\partial I}{\partial i} \\ 0 & \mathbf{Y} \cdot \frac{dL}{di} \end{vmatrix}}{Det(A)} = \frac{-\frac{dC}{dY_v}}{1 - \frac{dC}{dY_v} - \frac{\partial I}{\partial Y} + \frac{\mathbf{L} \cdot \frac{\partial I}{\partial i}}{\mathbf{Y} \cdot \frac{dL}{di}}} < 0 \quad \mathbf{mit:} \quad \left| \frac{dY}{dT} \right|_{ISLM} \left| < \left| \frac{dY}{dT} \right|_{di=0} \right|$$

(ii)
$$\frac{di}{dT}\Big|_{ISLM} = \frac{\begin{vmatrix} 1 - \frac{dC}{dY_v} - \frac{\partial I}{\partial Y} & -\frac{dC}{dY_v} \\ L & 0 \end{vmatrix}}{Det(A)} = \frac{\frac{dC}{dY_v} \cdot L}{Det(A)} < 0$$

Analytische Betrachtung:

Isolierte Wirkung von Geld- und Fiskalpolitik

Determinante der System-Matrix
$$A = \begin{bmatrix} 1 - \frac{dC}{dY_v} - \frac{\partial I}{\partial Y} & -\frac{\partial I}{\partial i} \\ L & Y \cdot \frac{dL}{di} \end{bmatrix}$$
:

Det (A) = $[1 - \frac{dC}{dY_v} - \frac{\partial I}{\partial Y}] \cdot Y \cdot \frac{dL}{di} + L \cdot \frac{\partial I}{\partial i} < 0$

Auswirkungen einer expansiven Geldpolitik (Beispiel 2):

i)
$$\frac{dY}{d(\frac{M}{P})}\Big|_{ISLM} = \frac{\begin{vmatrix} 0 & -\frac{\partial I}{\partial i} \\ 1 & Y \cdot \frac{dL}{di} \end{vmatrix}}{Det(A)} = \frac{\frac{\partial I}{\partial i}}{Det(A)} > 0$$

$$(ii) \frac{di}{d(\frac{M}{P})} \Big|_{ISLM} = \frac{\begin{vmatrix} 1 - \frac{dC}{dY_{V}} - \frac{\partial I}{\partial Y} & 0 \\ \frac{L}{Det(A)} & 1 \end{vmatrix}}{Det(A)} = \frac{1}{\gamma \cdot \frac{dL}{di} + \frac{L \cdot \frac{\partial I}{\partial i}}{1 - \frac{dC}{dY_{V}} - \frac{\partial I}{\partial Y}}} < 0 \text{ mit: } \left| \frac{di}{d(\frac{M}{P})} \right|_{ISLM} \left| < \left| \frac{di}{d(\frac{M}{P})} \right|_{dY=0} \right|_{OLD}$$

Vergleich der Wirkungen von expansiver Geld- vs. Fiskalpolitik

	IS-Kurve ver- schiebt sich	LM-Kurve ver- schiebt sich	Einkommen	Zinssatz
Steuererhöhung	nach links	-	sinkt	sinkt
Steuersenkung	nach rechts	-	steigt	steigt
Anstieg der Staatsausgaben	nach rechts	-	steigt	steigt
Rückgang der Staatsausgaben	nach links	-	sinkt	sinkt
Anstieg der Geldmenge	-	nach unten	steigt	sinkt
Rückgang der Geldmenge	_	nach oben	sinkt	steigt

• Expansive Fiskalpolitik $(G \uparrow) \Rightarrow Y \uparrow$, $i \uparrow$

Konsum steigt, Effekt auf Investitionen nicht eindeutig

• Expansive Geldpolitik $(\frac{M}{P} \uparrow) \Rightarrow Y \uparrow , i \downarrow$

Konsum steigt, Investitionen steigen

In der Realität werden Geld- und Fiskalpolitik gemeinsam eingesetzt

Die Kombination der jeweiligen Maßnahmen wird als Policy-Mix bezeichnet

Oft bewegen sich Geld- und Fiskalpolitik gleichgerichtet: expansive Geld- <u>und</u> Fiskalpolitik wirkt stimulierend in rezessiven Situationen kontraktive Geld- <u>und</u> Fiskalpolitik verhindert Überhitzungen in Aufschwüngen

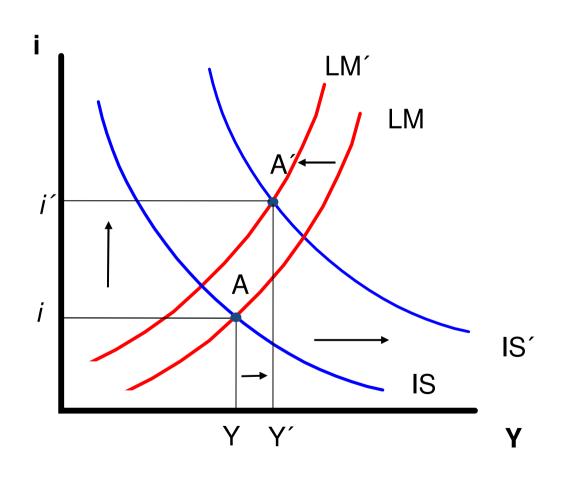
Aber es gibt wichtige Beispiele für Konstellationen, in denen:

- i) Geld- und Fiskalpolitik gegenläufig ausgerichtet sind Anwendung 1: Geld- und Fiskalpolitik in Deutschland nach der Wiedervereinigung
- ii) Geld- und Fiskalpolitik in ihrer Effektivität Begrenzungen ausgesetzt sind, die zu (erheblichen) Modellerweiterungen zwingen Anwendung 2: Finanzkrise und IS-LM Modell

Anwendung 1:

Geld- und Fiskalpolitik in Deutschland nach der Wiedervereinigung

Ausgewählte Makro- Variablen für Deutschland (alte Bundesländer): 1988-1991


	1988	1989	1990	1991
BIP-Wachstum (%)	3,7	3,6	5,7	5,0
Anstieg der Investitionen (%)	5,6	7,4	10,1	7,5
Budgetüberschuss (% des BIP) (Minus-Zeichen = Defizit)	- 2,2	0,1	- 2,1	- 3,3
Kurzfristiger Zinssatz	4,3	7,1	8,5	9,2

⇒ Kombination von expansiver Fiskalpolitik und kontraktiver Geldpolitik

Hintergrund: schon vor der Vereinigung befand sich D in einem starken Aufschwung

Anwendung 1:

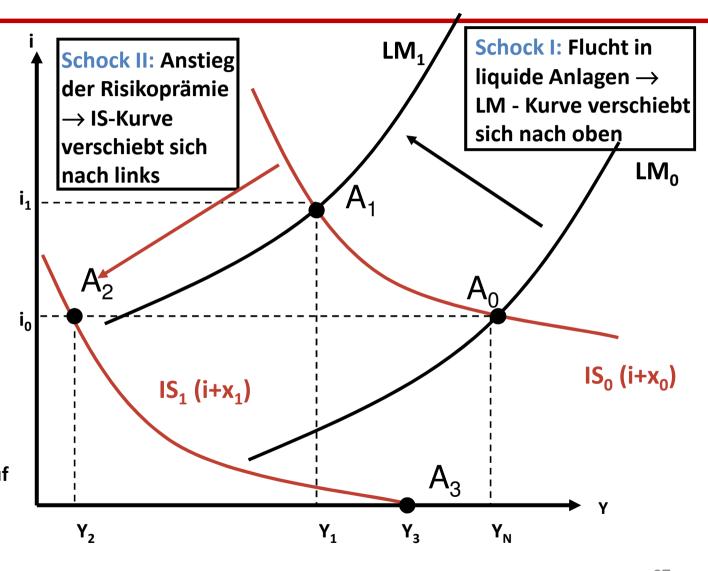
Geld- und Fiskalpolitik in Deutschland nach der Wiedervereinigung

Expansive Fiskalpolitik

(vereinigungsbedingte Staatsausgaben und Transfers) verschiebt IS Kurve nach rechts zu IS'

Kontraktive Geldpolitik der Bundesbank zur Dämpfung der Expansion verschiebt LM Kurve nach links zu LM'

Anwendung 2: Finanzkrise und IS-LM Modell

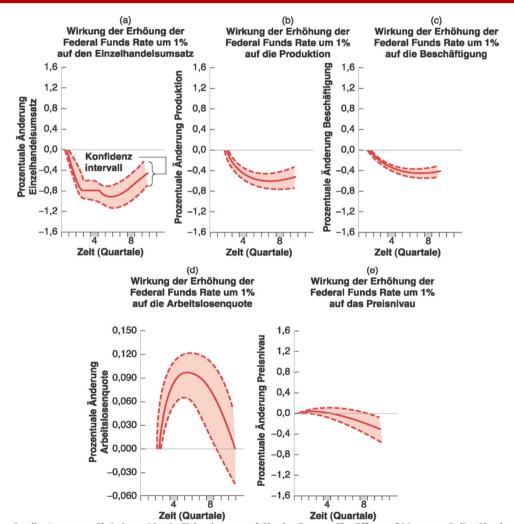

Annahme: für Investitionen relevanter Zins i_m enthält eine Risikoprämie X

Ohne
Politikreaktion:
Y fällt auf Y₂

Fiskalpolitik als
Option? Expansiver
Impuls via G greift
nicht, wenn
Regierungen
überschuldet sind

Geldpolitik als Option?

Selbst wenn der Zins auf Null fällt, steigt die Produktion nur auf Y₃ (Problem der Liquiditätsfalle)



5.5 IS-LM Modell und empirische Evidenz

Das (Lehrbuch-) IS-LM-Modell kennt keine zeitliche Dimension. Dies leisten moderne intertemporale Makromodelle

Beispiel: Simulation einer Zinserhöhung um 1 % durch die Fed für die USA

Qualitativ sind die Ergebnisse vereinbar mit dem IS-LM Modell: Kurzfristig lässt ein Anstieg des Zinssatzes die Produktion sinken (und Arbeitslosigkeit steigen). Dies wirkt sich kurzfristig (für etwa 6 Quartale) kaum auf die Preise aus.

Quelle: Lawrence Christiano, Martin Eichenbaum und Charles Evans, "The Effects of Monetary Policy Shocks: Evidence From the Flow of Funds", Review of Economics and Statistics, February 1996, Vol. 78-1.

5.6 Ausblick und Grenzen des IS-LM Modells

Das (Lehrbuch-) IS-LM-Modell bietet einen ersten Einstieg in das Verständnis gesamtwirtschaftlicher Zusammenhänge

Ausgewählte Grenzen und Defizite:

- Die in Kapitel 5 gewonnenen Ergebnisse hängen an der Annahme der kurzen Frist (d.h. insbesondere: aufgrund der Konstanz von P kommt es am Gütermarkt nur zu Mengen- und nicht zu Preiseffekten)
- Sickerverluste expansiver Maßnahmen in offenen Volkswirtschaften
- Makroökonomischer Feinsteuerungsoptimismus ist mit Skepsis zu sehen
- Vernachlässigung intertemporaler Budgetrestriktionen von privaten Haushalten und der Regierung bei der Herleitung der Multiplikatoren