Master in International Economics and Public Policy 1st semester

Advanced Macroeconomics

2014/15 Winter term

Klaus Wälde (lecture) and Jean Roch Donsimoni (tutorial) www.macro.economics.uni-mainz.de

Tutorial 10: Volatility & Infinite Horizon Models

January 22, 2015

1. Stochastic Model of Natural Volatility

Let technology follow a Cobb-Douglas specification (with Harrod-neutral technical progress):

$$Y_t = K_t^{\alpha} \left(A_t L \right)^{1-\alpha}$$

Where A_t is total factor productivity, K_t the capital stock and L_t represents hours worked. The accumulation of capital is given by the following relationship:

$$K_{t+1} = (1-\delta) K_t + I_t$$

With δ , the depreciation rate. While the technological level (or total factor productivity) grows as follows:

$$A_{t+1} = (1+q_t) A_t$$

Where:

$$q_t = \left\{ \begin{array}{c} \bar{q} \\ 0 \end{array} \right\} \text{ with probability } \left\{ \begin{array}{c} p_t \\ 1 - p_t \end{array} \right\}$$

This probability depends on resources R_t invested into R&D.

The resource constraint in this economy reads:

$$C_t + I_t + R_t = Y_t$$

Where we have aggregate consumption, investment and R&D expenditure, respectively C, I and R. And assuming optimal behaviour from the household, aggregate consumption and R&D expenditure are determined by:

$$C_t = s_C Y_t \quad ; \quad R_t = s_R Y_t$$

Where s_C and s_R are constant savings rates.

- (a) Show that after a jump in technological progress, the growth rate is higher at first and then progressively decreases over time. Draw a diagram showing this process.
- (b) What is the equilibrium for capital per effective labour $(\frac{K_t}{A_t L_t} = k_t)$? Find the temporary steady-state.
- (c) Explain why the steady-state is called temporary and what happens to it after technological jumps.
- (d) Draw the implication of technological jumps on production over time and give an interpretation.

2. Oil Shocks in the Economy

Consider an economy which utilises oil as an intermediate good, but which affects its entire production process:

$$Y_t = AK_t^{\alpha} O_t^{\beta} L^{1-\alpha-\beta}$$

$$\alpha, \beta \in (0,1) \; ; \; \alpha + \beta < 1$$

- (a) Consider a representative firm in the economy. Specify its profit schedule as a function of the factors of production and find the first-order conditions. What is the price of oil equal to?
- (b) Use your result above to rewrite the overall production function, i.e. rewrite O_t using your result above, and insert this result into Y_t .
- (c) What would the outcome of a rise in oil prices be on productivity?
- 3. Infinite Horizon RBC set-up

Consider the following infinite horizon problem. The economy follows the usual Cobb-Douglas process:

$$Y_t = AK_t^{\alpha} L_t^{1-\alpha}$$

While households maximise:

$$\max_{\{c_t\}} E_t \left[\sum_{t=0}^{\infty} \beta^t u\left(c_t\right) \right]$$

Subject to:

$$a_{t+1} = (1+r_t) a_t + w_t - c_t$$

- (a) What is the optimality rule for households?
- (b) Consider now a central planner, seeking to maximise the following function:

$$\max_{\{C_{\tau}\}} E_t \left[\sum_{\tau=t}^{\infty} \beta^{(\tau-t)} u\left(C_t\right) \right]$$

Subject to:

$$K_{t+1} = (1 - \delta) K_t + Y_t - C_t$$

Using these two expressions and the production function, find the optimality conditions for the central planner.