
Solution sketch for Advanced Macro, Problem Set 1 (Golden rule):

For background: see Lecture 2, page 6-20
Assume:

y = kα, with: α ∈ (0, 1)

a) obvious (Lec 2, page 9)

b) obvious (Lec 2, page 8)

c) Notice
f ′(kGR) = δ,

implying
αkα−1GR = δ

Hence,

kGR = (
δ

α
)

1
α−1

For further use in d) below calculation of cGR :

cGR = f(kGR)− δkGR

= (
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α
)
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)

1
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α
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α
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)
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d) Verify the comparative statics results with respect to δ derived in the
Lecture, ie

(i)
∂kGR
∂δ

=
1

f ′′(kGR)
and (ii)

∂cGR
∂δ

= −kGR

→ ad part (i):
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∂δ

=
1
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Since
f ′′(k) = α(α− 1)kα−2
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we get

f ′′(kGR) = α(α− 1)
(
(
δ

α
)

1
α−1

)α−2
= α(α− 1)( δ

α
)
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α−1
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Hence,
∂kGR
∂δ

=
1

f ′′(kGR)

→ ad part (ii):

cGR = δ
α

α−1 · ( 1
α
)

α
α−1 · (1− α)

∂cGR
∂δ

=
α

α− 1 · δ
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Hence,
∂cGR
∂δ

= −kGR

Upshot:
→ although Cobb-Douglas is a standard assumption it turns out that the

detailed derivations for the comparative statics exercise for this particular pro-
duction function are rather algebra-intensiv (ie ‘unpleasant’).
→ Compare this with the short derivations on slides 18-20 under the general

neoclassical assumptions (see slide 8/9) that were made with respect to the
properties of f(k)
→ Hence, often it is advantageous to stick to general assumptions, ie not to

turn too early to seemingly simple specific functional forms
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