Solution sketch for Advanced Macro, Problem Set 1 (Golden rule):

For background: see Lecture 2, page 6-20 Assume:

$$y = k^{\alpha}$$
, with: $\alpha \in (0, 1)$

- a) obvious (Lec 2, page 9)
- b) obvious (Lec 2, page 8)

c) Notice

$$f'(k_{GR}) = \delta,$$

implying

$$\alpha k_{GR}^{\alpha-1}=\delta$$

Hence,

$$k_{GR} = \left(\frac{\delta}{\alpha}\right)^{\frac{1}{\alpha-1}}$$

For further use in d) below calculation of c_{GR} :

$$c_{GR} = f(k_{GR}) - \delta k_{GR}$$

$$= \left(\frac{\delta}{\alpha}\right)^{\frac{\alpha}{\alpha-1}} - \delta \cdot \left(\frac{\delta}{\alpha}\right)^{\frac{1}{\alpha-1}}$$

$$= \delta^{\frac{\alpha}{\alpha-1}} \cdot \left(\left(\frac{1}{\alpha}\right)^{\frac{\alpha}{\alpha-1}} - \left(\frac{1}{\alpha}\right)^{\frac{1}{\alpha-1}}\right)$$

$$= \delta^{\frac{\alpha}{\alpha-1}} \cdot \left(\frac{1}{\alpha}\right)^{\frac{\alpha}{\alpha-1}} \cdot \left(1 - \left(\frac{1}{\alpha}\right)^{-1}\right)$$

$$= \delta^{\frac{\alpha}{\alpha-1}} \cdot \left(\frac{1}{\alpha}\right)^{\frac{\alpha}{\alpha-1}} \cdot (1 - \alpha)$$

d) Verify the comparative statics results with respect to δ derived in the Lecture, ie

(i)
$$\frac{\partial k_{GR}}{\partial \delta} = \frac{1}{f''(k_{GR})}$$
 and (ii) $\frac{\partial c_{GR}}{\partial \delta} = -k_{GR}$

 \rightarrow ad part (i):

$$\begin{array}{lll} \frac{\partial k_{GR}}{\partial \delta} & = & \frac{1}{\alpha - 1} \cdot \left(\frac{1}{\alpha}\right)^{\frac{1}{\alpha - 1}} \cdot \delta^{\frac{1}{\alpha - 1} - 1} \\ & = & \underbrace{\frac{1}{\alpha - 1}}_{<0} \cdot \underbrace{\left(\frac{1}{\alpha}\right)^{\frac{1}{\alpha - 1}}}_{>0} \cdot \underbrace{\delta^{\frac{2 - \alpha}{\alpha - 1}}}_{>0} < 0 \end{array}$$

Since

$$f''(k) = \alpha(\alpha - 1)k^{\alpha - 2}$$

we get

$$f''(k_{GR}) = \alpha(\alpha - 1) \left(\left(\frac{\delta}{\alpha}\right)^{\frac{1}{\alpha - 1}} \right)^{\alpha - 2}$$
$$= \alpha(\alpha - 1) \left(\frac{\delta}{\alpha}\right)^{\frac{\alpha - 2}{\alpha - 1}}$$
$$= (\alpha - 1) \cdot \alpha^{1 - \frac{\alpha - 2}{\alpha - 1}} \cdot \delta^{\frac{\alpha - 2}{\alpha - 1}}$$
$$= (\alpha - 1) \cdot \alpha^{\frac{1}{\alpha - 1}} \cdot \delta^{\frac{\alpha - 2}{\alpha - 1}}$$

Hence,

$$\frac{\partial k_{GR}}{\partial \delta} = \frac{1}{f''(k_{GR})}$$

 \rightarrow ad part (ii):

$$c_{GR} = \delta^{\frac{\alpha}{\alpha-1}} \cdot \left(\frac{1}{\alpha}\right)^{\frac{\alpha}{\alpha-1}} \cdot \left(1-\alpha\right)$$

$$\frac{\partial c_{GR}}{\partial \delta} = \frac{\alpha}{\alpha - 1} \cdot \delta^{\frac{\alpha}{\alpha - 1} - 1} \cdot (\frac{1}{\alpha})^{\frac{\alpha}{\alpha - 1}} \cdot (1 - \alpha)$$
$$= -\alpha \cdot (\frac{1}{\alpha})^{\frac{\alpha}{\alpha - 1}} \cdot \delta^{\frac{1}{\alpha - 1}}$$
$$= -\alpha^{-\frac{1}{\alpha - 1}} \cdot \delta^{\frac{1}{\alpha - 1}}$$
$$= -(\frac{\delta}{\alpha})^{\frac{1}{\alpha - 1}}$$

Hence,

$$\frac{\partial c_{GR}}{\partial \delta} = -k_{GR}$$

Upshot:

 \rightarrow although Cobb-Douglas is a standard assumption it turns out that the detailed derivations for the comparative statics exercise for this particular production function are rather algebra-intensiv (ie 'unpleasant').

 \rightarrow Compare this with the short derivations on slides 18-20 under the general neoclassical assumptions (see slide 8/9) that were made with respect to the properties of f(k)

 \rightarrow Hence, often it is advantageous to stick to general assumptions, ie not to turn too early to seemingly simple specific functional forms